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Abstract—Object orientation is a powerful and widely used
paradigm for abstraction and structuring in programming.
Many languages are designed with this principle or support
different degrees of object orientation. In synchronous languages,
originally developed to design embedded reactive systems, there
are only few object-oriented influences. However, especially in
combination with a statechart notation, the modeling process
can be improved by facilitating object orientation as we argue
here. At the same time the graphical representation can be used
to illustrate the object-oriented design of a system.

Synchronous statechart dialects, such as the SCCharts lan-
guage, provide deterministic concurrency for specifying safety-
critical systems. Using SCCharts as an example, we illustrate how
an object-oriented modeling approach that supports inheritance,
can be introduced. We further present how external, i. e. host
language, objects can be included in the SCCharts language.
Specifically, we discuss how the recently developed concepts of
scheduling directives and scheduling policies can be used to ensure
the determinism of objects while retaining encapsulation.

Index Terms—Synchronous languages, object orientation, in-
heritance, determinacy, state machine modeling

I. INTRODUCTION

The object-oriented (OO) paradigm has proven to be a
powerful design and programming concept that facilitates an
abstract and modular design of large and complex systems.
Consequently, most general-purpose programming languages
popular today support OO concepts, such as encapsulation of
data and functions, inheritance on abstract data types and
message passing. In software engineering, the OO paradigm
is often combined with a model-based approach, for exam-
ple in UML, to create well-designed software architectures.
Today, software engineers are well-trained in Java and C++
programming, so that OO design techniques are second nature
to them. Hence, it is compelling to try and exploit the benefits
of OO also in a specialized domain such as synchronous
programming.

Synchronous languages (SLs) are designed for the program-
ming of safety-critical embedded systems. These typically
involve complex interactions between system components and
the environment, while imposing stringent requirements on
functional correctness, real-time performance and fault toler-
ance. SLs are especially suited for that task, as they provide
deterministic and simple mathematical semantics based on
Mealy machines. One of the key issues addressed by SLs is
the safe handling of concurrency, which is both a powerful
programming principle and intrinsic to the execution model

for reactive embedded systems. Concurrency can easily com-
promise a safety-critical system by introducing race condi-
tions. SLs solve this problem traditionally by two techniques.
Firstly, concurrent threads are forced to operate in lock-step,
by synchronizing on a logical clock. The clock acts as a
global barrier that breaks the computation into a sequence
of reaction instants. Secondly, during each instant, concurrent
threads may only communicate through synchronous signals
or channels. These special-purpose shared memory structures
are protected by an (intra-instant) synchronization protocol
which ensures a unique value per instant, despite possibly
multiple concurrent write and read accesses. As a result, the
observable behavior of a program is that of a synchronous
Mealy machine, providing a deterministic functional reaction
to its environment. The compiler performs a static causality
analysis in order to establish that a program is schedulable
under the synchronization protocol. If a scheduling order can
be found, it is considered constructive otherwise rejected.

SLs come in different programming styles and with slightly
different synchronization protocols. The most prominent SLs
are Esterel [5] and Lustre [14]. Lustre is based on data-flow
equations and is commercially used by the Safety-Critical Ap-
plication Development Environment (SCADE) [10] that allows
the graphical modeling of data-flow diagrams. In Lustre and
its derivatives communication is via single-writer/multi-reader
(1-place) channels. Esterel supports an imperative coding style
and uses multi-writer/multi-reader signals, implementing the
write-before-read protocol, which aggregates all written values
before reading. This protocol prohibits a shared signal to be
overwritten during an instant, only thread-local variable can
be destructively updated but cannot be shared concurrently.
SyncCharts [3] is a dialect of Harel’s statecharts with the
synchronous semantics of Esterel. Sequentially Constructive
Statecharts (SCCharts) [23] provide a statecharts notation in-
spired by SyncCharts but relax the write-before-read protocol
so that signals, channels and local variables are unified in a
single notion, the SC-variable. SC-variables are synchronized
under the initialize-update-read (iur) protocol which supports
at the same time concurrent multi-writer/multi-reader accesses
and destructive updates by a single thread. This respects
the sequential ordering of statements while still preserving
deterministic concurrency.

Traditionally, SLs are used with rather low-level target
platforms, such as micro-controllers often programmed in
subsets of C. In such contexts there is no strong need for978-1-7281-4113-8/19/$31.00 c©2019 IEEE



OO design concepts. However, SLs are also used as high-
level orchestration languages to control a larger software
system deterministically. This requires a close and convenient
integration with the targeted host languages, such as Java or
C/C++. In the safety-critical domain such systems must satisfy
high standards regarding system architecture, documentation
and code reviews. As experienced in other programming
domains shows, OO has a lot to offer here. Also, object-
based modelling has already long been recognised as a useful
structuring principle in intermediate languages for the modular
compilation of traditional SLs [13], [6]. Despite this, however,
the OO paradigm has not yet been made available at the source
level for the programmer in leading SLs.

Without entering into a wide-ranging discussion about OO
programming, we aim to enrich the embedded safety-critical
domain of SLs by OO facilities, as far as they fit. In this paper,
we are adding to SCCharts selected OO features that are not
only useful but also can be compiled conservatively by simple
semantic transformations that can be inspected and verified
on source level, thus grounding their semantics in the existing
well-established execution model of SCCharts. In this way, we
provide some of the benefits of OO modeling yet remain on
safe semantical terrain.

Contributions and Outline

We first discuss related work in Sec. II and then present the
following contributions:

• We present how the OO design is applied to the modeling
concepts of SCCharts (Sec. III). SCCharts are extended
by inheritance to facilitate abstraction and reusability, as
well as the possibility to design classes.

• We show how class-based data structures coming from a
host language can be used in SCCharts (Sec. IV).

• We propose mechanisms to ensure the determinism of ob-
jects (Sec. V) while retaining their encapsulation under a
“black box” scheduling approach. Specifically, we present
solutions based on scheduling directives (Sec. V-A) and
scheduling policies (Sec. V-B).

We conclude and give a short outlook in Sec. VI.

II. RELATED WORK

There is much work on adaptations of OO concepts into
various statechart dialects and SLs. André et al. [2] introduce
synchronous objects (referred here as SOs) based on the idea
of the reactive object model [7]. This approach divides the
program into a collection of regular host code objects (referred
here as ROs) and SOs that communicate with each other.
Messaging allows SOs to communicate instantaneously and
preserves the synchronous semantics. The resulting directed
interconnection graph is required to be acyclic because mod-
ules are considered “black boxes” which cannot interleave with
each other. Communication with ROs is done via signals that
can be read outside SOs but inputs require special handling by
interface objects to enter the synchronous messaging mecha-
nism. The structure of a system using SOs is represented by
an object-modeling technique (OMT) class diagram augmented

by communication interfaces. For specifying the internal be-
havior of an SO, André et al. support SyncCharts, among
other SLs. SCCharts could be integrated, too, by providing a
code generation that synthesizes SOs from SCCharts modules.
In contrast to the approach presented here, however, the
SyncCharts dialect is not extended by OO features but the
models are synthesized into separate interconnected objects in
an OO target language (C++). Also, André et al. do not address
the integration of more complex OO data structures and the
preservation of determinism in instantaneous communication,
as we do here.

The synchronous OO language synERJY [8] provides syn-
chronous reactive classes in a Java-like syntax. Programs can
be written as imperative code, dataflow equations or textual
state machines. The resulting synchronous reactive objects
communicate only via signals with each other or the envi-
ronment, similar to SOs by André et al. For handling causality
problems inside a synchronous reactive class, synERJY pro-
vides a mechanism for specifying static precedences, that is
very similar to Scheduling Directives (SDs). However, it does
not include a combination with graphical modeling or ways
to determinstically include host code objects.

The SL Blech [12], which has recently been introduced in an
industrial context, provides shared data structures of a general
form with a deterministic reference mechanism and modular
(“black box”) scheduling. It uses a rigid form of scheduling
which is not as flexible as our scheduling directives or as
expressive as our policies. Also, Blech does not support OO
concepts such as inheritance.

Furthermore, there are many concepts for OO modeling
using statecharts, without an explicitly synchronous semantics.
ObjectCharts [11] are developed by Coleman et al. and char-
acterize the communication behavior of an object as a state
machine based on Harel’s statechart diagrams. In combination
with a configuration diagram that specifies the object relations
such as instancing, inheritance, and communication, they allow
a top-down design of a system in an iterative development pro-
cess. A similar approach is presented by Harel and Gery with
O-charts for specifying classes and structures and statecharts
for modeling the behavior of objects [15]. They introduce
an OO statecharts version, which resulted in the Rhapsody
semantics of statecharts [16] and an adoption by UML. These
statecharts support C++ code for specifying transition actions
and provide inheritance that allows refining inherited state-
charts by decomposing states or adding orthogonal states, as
well as adding new transitions or modifying existing ones.
ROOMcharts [21] is another statecharts dialect, used in the
real-time object-oriented modeling (ROOM) language, to spec-
ify the behavior of actors in the higher-level ROOM model.
ROOMcharts also support inheritance but prohibit concurrency
since the authors consider synchronization mechanisms too
inefficient for the targeted real-time domain. With SCCharts
being a statecharts dialect, the mentioned dialects and their
introduction of OO modeling inspired the concepts presented
here, disregarding the differences in semantics. Furthermore,
we do not follow the approach of separating the modeling



LoggingApplication extends MessageReceiver
input signal next

ACausesError extends DefaultLogger

Wait ErrormessageA 
/ logError("Error: A occured")

- override HandleA

BCausesError extends DefaultLogger

Wait ErrormessageB 
/ logError("Error: B occured")

- override HandleB

nextnext

-

DefaultLogger extends MessageReceiver
extern Logger.info logInfo
extern Logger.error logError

Receive LoggedmessageA 
/ logInfo(val(messageA))

- HandleA

Receive LoggedmessageB 
/ logInfo(val(messageB))

- HandleB

MessageReceiver
input signal string messageA, messageB

LoggingApplication
input signal string messageA, messageB
input signal next

ACausesError
extern Logger.info logInfo
extern Logger.error logError

Receive LoggedmessageB
/ logInfo(val(messageB))

- HandleB

Wait ErrormessageA
/ logError("Error: A occured")

- HandleA

BCausesError
extern Logger.info logInfo
extern Logger.error logError

Receive LoggedmessageA
/ logInfo(val(messageA))

- HandleA

Wait ErrormessageB
/ logError("Error: B occured")

- HandleB

nextnext

-

Fig. 1: Example for usage of inheritance in SCCharts (left) and the result after inheritance is statically expanded by the compiler
(right). Red arrows indicate where the parts of the model are expanded into.

of the system’s structure from the modeling of behavior, as
discussed in Sec. III-C.

Lohstroh et. al [17] propose a real time refinement of the
actor model, called reactors. A reactor is a computation unit
that manages its own state and exposes multiple reactions like
an object exposes its methods. Each reaction is associated with
a time-stamped input, clock or a trigger action. Reactions are
sequentially ordered and executed atomically to ensure deter-
minism. A reaction is considered logically instantaneous at the
time stamp of its trigger. This generates a notion of “logical
time,” like a synchronous instant in SCCharts. Reactors do not
communicate by method calls, such as we propose here, but
via inputs and outputs events to exchange messages similar to
Esterel signals or Lustre data flow channels.

III. OBJECT-ORIENTED MODELING IN SCCHARTS

The OO paradigm includes many aspects that can greatly im-
prove the design, quality, and understandability of programs,
such as object composition, encapsulation, and inheritance.
Not surprisingly, including OO features can greatly improve the
effectiveness and convenience when modeling in SCCharts.

A. Inheritance

Inheritance is an OO core concept to express commonalities
between entities of a system. The need for such a feature

was recently expressed by students using SCCharts in an
educational project for modeling a larger scale controller
for a model railway installation1. SCCharts provide a macro
expansion mechanism, similar to Esterel [4] and SyncCharts,
which allows to include code from another SCChart. However,
this requires to redefine and bind interfaces in every module
again, complicating the design of commonalities. For example,
it also hampers the modeling of different types of trains that
adapt the same basic behavior in different ways. This motivates
us to extend SCCharts further towards OO and to introduce
inheritance.

Inheritance in SCCharts now allows to derive states from
one or more base states2 using the extend keyword. A state
inherits all variables and behavior from all its base states.
In principle, inheritance in SCCharts is an advanced macro
expansion that statically expands base states. Inheritance un-
folds its full potential when allowing overriding the inherited
behavior to adapt it for the purpose of the extending object.
Harel’s statecharts support fine granular altering of states and
transitions in extending statecharts. However, here we follow a
more conservative approach and allow only region overriding.

1https://rtsys.informatik.uni-kiel.de/confluence/x/VABgAQ
2The term ‘superstate’, following superclass, might be more obvious here.

However, in SCCharts a superstate is already defined as a state that contains
inner behavior such as regions [23].

https://rtsys.informatik.uni-kiel.de/confluence/x/VABgAQ


Fig. 1 shows on the left-hand side how inheritance can
be used in SCCharts. The SCChart is a simplified model of
a real-world example. In the underlying scenario, incoming
messages, here messageA and messageB, must be processed
differently depending on the state of the application. By
default, a receive message must be logged. This common
behavior is modeled in the DefaultLogger, which has separate
regions for each message. The state machine in these regions
immediately logs the message content on an info level if
received, switches to the Logged state, and returns to the
receiving state in the next instant to process further mes-
sages. The input messages are declared in MessageReceiver
and available due to inheritance. In the actual application
represented by LoggingApplication, the behavior differs from
the default logging behavior depending on the state. In this
abstract example there are two states in the application, ACaus-
esError and BCausesError, that alternate triggered by the next
input. Each state inherits the behavior of the DefaultLogger.
In state ACausesError the handling of messageA is altered by
overriding region HandleA, indicated by the override keyword
and the green color. If messageA is received, an error is logged
and the Error state is entered but not left until next occurs,
ignoring future occurrences of messageA. Analogously the
state BCausesError is designed for MessageB.

Inheritance is considered an extended feature [23] in SC-
Charts and removed by a model-to-model transformation in
the first step of the compilation. Fig. 1 presents on the right-
hand side the result of this transformation, which is essentially
a macro expansion with finer granularity, all variables and
regions are copied into their extending states w. r. t. overriding.
The red arrows indicate this process. In a macro expansion,
input and output variables must be bound, since only top
level SCCharts can have an input output interface. Inheritance
handles this aspect in the same way. In this example the
input messages declared in MessageReceiver and inherited by
DefaultLogger are automatically bound to the input messages
of LoggingApplication since they share the same base state.

In general, if any conflicts or inconsistencies in the inher-
itance hierarchy or name clashes occur the compiler rejects
the model, similar to default methods in Java interfaces.
Furthermore, we added access modifiers for variables and
regions to allow visibility restrictions and support accessing
the scope of the base state while overriding, by using the
super keyword, as known from languages such as Java. We
contributed the implementation of inheritance to the open-
source KIELER tool providing SCCharts.

B. Class Modeling

Traditionally, SCCharts are primarily used to model a sys-
tem as a statechart. However, in line with the new OO view
that we wish to advance here, SCCharts can also be used
to model complex data structures. In SCCharts a state has
a name, can contain variables and provides behavior usually
associated with its regions. However, the behavior in regions
is always executed when the state is active. To adhere to the
concept of objects we introduce methods in SCCharts that are

Counter

- counter: int

+ increment(void): void
+ decrement(void): void
+ getValue(void): int

(a) UML notation

Counter
private int counter

entry

counter++

exit

- void increment ( )

+ void decrement ( )
+ int getValue ( )

(b) SCCharts notation

Fig. 2: Visual representation of a Counter class

only executed when invoked and can be modeled alongside
regions. This corresponds to Blech where a struct may contain
variables, instantaneous functions to invoke, and activities that
can run non-instantaneous behavior when started. Compared to
reactors, presented in Sec. II, methods can be invoked multiple
times during an instant/reaction.

Fig. 2a shows the UML class diagram of a Counter class.
It consists of a private integer field value and three methods,
to increment and decrement the counter value and a getter
method to return its value. The same information is also
available in the SCChart in Fig. 2b. Additionally, the given
SCChart includes implementations for the three methods,
illustrated by the detailed view on increment. In contrast
to regions, the methods do not contain a state machine
but immediate imperative code parts written in a subset of
SCL [23], a synchronous subset of C. Graphically, they are
displayed in gray and contain the controlflow graph (SCG [23])
representation of the SCL code. Now, consider Fig. 2a as a
class interface and Fig. 2b as its implementation. Then, we
can declare an instance of a counter variable, by referencing
the Counter SCChart with ref Counter counter and access this
object as presented later in the CounterApplication in Fig. 4c.
There the three regions invoke methods counter.increment(),
counter.decrement() and counter.getValue() concurrently.

Currently, like for inheritance, our compiler handles meth-
ods by macro expansion. A transformation statically expands
the methods bodies into their invocation, known as function
inlining. Parameters are passed by reference. Regarding com-
pile time and code size, it might be more efficient to keep
invocations. Leveraging our method of policies as scheduling
interfaces, described in Sec. V, we envisage a future extension
for modular compilation in which methods may remain opaque
and need not be copied.

C. Automatic Diagram Synthesis

In software development there is often the problem that the
actual implementation starts to diverge from the architecture
defined in an earlier phase or that the architecture of an
implementation needs to be documented, for example in UML
diagrams. When modeling with statecharts, such as SCCharts,



Counter
protected int counter

+ void increment ( )
+ void decrement ( )

+ int getValue ( )

AdvancedCounter extends Counter
+ void double ( )

Fig. 3: Inheritance visualized

such problems are reduced by a graphical notation. The model
acts as documentation and source for the generated code.
However, as discussed in Sec. II, most statecharts approaches
use separate diagrams to model object relations and behavior.
Using the concept of transient views [20], as in SCCharts, the
implemented model can be augmented or shaped into different
forms to represent different aspects of a system. As a result, the
tasks of designing, implementing and documenting a system
start to merge while handling a single model.

Fig. 3 shows how the Counter SCCharts in Fig. 2b is ex-
tended by an additional method for doubling the counter value.
Note that the internal counter variable was set to protected
visibility to allow access. In this view, a generalization edge
is added to visualize the inheritance relation and to provide
the information usually expected of an UML class diagram in
the documentation of such data structures.

IV. OBJECT-ORIENTED HOST LANGUAGE INTEGRATION

Sec. III-B shows that SCCharts now can be used to model
data structures and that static expansion creates one self-
contained program that can be processed by the existing com-
piler without further extension of the lower-level semantics.
This might suffice when SCCharts is used as the only or
primary programming language in a project but in practice
it is more common that SCCharts, or SLs in general, are used
as a high level orchestration language. SCCharts for example
are currently used by an industrial partner to replace hand-
written state machines in Java and C++ projects. Such a use
case requires close integration with the targeted host language
and the used frameworks and other host code. On the example
of SCCharts we propose a host language integration that (1)
uses and supports basic OO capabilities of the host language
and itself, (2) uses syntactical concepts a programmer might
be familiar with from major synchronous and general-purpose
languages, (3) is independent from a specific host language to
allow code generation into different target platforms, and (4)
provides a robust synchronous semantics, especially regarding
deterministic concurrency (Sec. V).

Furthermore, an OO host language integration also facilitates
a more modular or incremental code generation approach,
which utilizes the explicitly designed structure of the model,
especially separation. An approach similar to synERJY and
SOs, presented in Sec. II, interconnects separate components
rather than expanding them into one monolithic program.

1 class Counter {
2 private int value = 0;
3

4 public void increment() {
5 value++;
6 }
7 public void decrement() {
8 value−−;
9 }
10 public void getValue() {
11 return value;
12 }
13 }

(a) Counter class in Java

1 scchart CounterApplication {
2

3 host class Counter {
4 void increment()
5 void decrement()
6 int getValue()
7 } counter
8

9 during do counter.increment()
10 during do counter.decrement()
11 during do print(counter.getValue())
12 }

(b) CounterApplication in textual SC-
Charts notation

CounterApplication
host class Counter {

void increment ( )
void decrement ( )
int getValue ( )

} counter

/ counter.increment()
-

/ counter.decrement()
-

/ print(counter.getValue())
-

(c) CounterApplication in graphical SCCharts notation

Fig. 4: CounterApplication modeled in SCCharts using the Java
class Counter

Regarding host language integration, all established SLs,
such as Esterel and Lustre, support some degree of generalized
host code integration into their language, such as external
function invocation and access to the host’s type system. In
accordance to that, SCCharts allows the declaration of external
functions, such as:

extern @C ”rand”, @Java ”Math.random” random.
Then the random function can be used in the SCChart and
will be replaced by the given string variants in the generated
code, depending on the targeted host language. When further
compiling the generated code, the invoked methods must be
(manually) provided with an implementation to allow correct
linking. This is a common practice for host code integration
in SLs. Additionally, variables can be declared with a specific
host code type. For example, if a host implementation for the
Counter class presented in Fig. 2a is available, such as the Java
class in Lst. 4a, then this type can be used in SCCharts with
host ”Counter” counter.

This integration might suffice for simple function calls in C
but has no concepts of OO. One could argue that, for example
in the integration of the Counter, the development IDE could
parse all related sources to give the modeler access to the
members of that object. However, such support is not available
in the current SCCharts implementation, mostly because a



certain degree of independence from the target platform is
desired. Furthermore, in SCCharts as well as Esterel, Lustre
and other SLs, the previously presented host integration is
considered semantically unsafe, when it comes to side-effects
and stateful behavior in such functions and types, see Sec. V.

We propose an OO extension to the host language integration
in SCCharts. The results can be inspected in the example
in Fig. 4 that uses a counter in Java as external host code
in an SCChart. The Counter class in Lst. 4a implements
the specification of the UML diagram in Fig. 2a w. r. t. the
intended behavior. Lst. 4b shows the textual representation of
the CounterApplication SCChart importing this Java class. The
SCChart declares a counter variable with the external Counter
class type, including the methods that should be available for
this class in the SCChart. The actual behavior is defined by
during actions that invoke the each method in every reaction
of the model and in parallel to each other. In the graphical
SCChart in Fig. 4c, which is automatically generated from
the textual notation, the during actions are replaced by their
equivalent state machine representation. Each of the three
parallel regions contains a single state with a self transition
invoking the associated method.

The new class declaration allows to encapsulate multiple
declarations as members, including methods. Instead of an
extern declaration the method’s signature is given, as pre-
sented in Lst. 4b. Variables with this class type are statically
instantiated, same as ref types referencing other SCCharts.
Hence, it it possible to have multiple instances but no dynamic
instantiation. The host keyword in the declaration specifies
that an implementation will be available in the host language.
We think this host language integration matches our goals
by (1) supporting classes of the host language including
member access, (2) providing Java/C++ like class syntax, and
(3) retaining a certain independence from the host language,
for example in object creation and memory management,
regarding for example Java vs. C++. The next important aspect
is a robust synchronous semantics, discussed in Sec. V.

V. DETERMINISTIC OBJECTS

The most important feature of SLs is their deterministic con-
currency, which makes them predestined for safety-critical ap-
plications. On the face of it, this seems to preclude shared data
structures and thus genuine object integration. For instance,
the naive compilation of the CounterApplication example in
Fig. 4 renders the program vulnerable to non-determinism. The
concurrent calls to increment, decrement and getValue, which
access the internal counter value, are prone to race conditions:
The return value of getValue is different depending on whether
it is executed before or after an increment. Additionally, if the
increment and decrement methods are not atomic, their inter-
leaved or parallel execution may also lead to a race condition.
The problem is well-known and avoided by demanding that
external function calls must not have any side-effects through
shared memory. Hence, to realize the CounterApplication in
Fig. 4, we must code the method calls as function calls in-
crement(&value), decrement(&value) and getValue(value) where

value exposes the internal memory of the object. To ensure
deterministic interaction of host code functions, all major
SLs implement a strict write-before-read scheduling protocol
regarding function parameters. Call-by-value parameters are
considered read and call-by-reference parameters are write
accesses on the respective variable. In Blech, the mutating
behavior of functions arguments is controlled statically by the
position of the parameter in the argument list of the function
call. Since the scheduling protocol forbids concurrent writes,
our CounterApplication with concurrent calls increment(&value),
decrement(&value) is unschedulable and thus rejected. The
problem with CounterApplication is typical for any host object
integration in SLs because each method call, in general, is an
implicit write access with a side-effect to the object’s memory.

A solution for host integration comes from relaxing the stan-
dard notion of constructiveness by sequential constructiveness.
It permits multiple destructive memory updates, provided these
are commuting3 with each other. This is the case for incre-
ment(&value) and decrement(&value) assuming they are atomic.
As a consequence, the method calls counter.increment and
counter.decrement may be classified as (commuting) updates
and counter.getValue as a read. Then, the CounterApplication
is sequentially constructive and schedulable under the iur
protocol.

As it turns out, sequential constructiveness enables deter-
ministic usage of host code objects without either exposing
internal variables in parameters or following a white box
scheduling approach and analyzing the implementation of
external functions. We propose to augment classes and objects
with the necessary scheduling information to avoid data races,
acting as a contract between the synchronous program and
the host object. Note that such a contract can only preserve
determinism as far as its specification is correct. E.g., in case of
the Counter example above this is the guarantee that increment
and decrement are atomic and commuting. If supported by the
host language, such contracts can also be added to objects
as annotations, such as suggested by Caspi et al. [9]. We
believe this approach fits well into the OO paradigm, as
the existing objects or classes are extended to provide an
adapted, in this case deterministic, behavior in the context of
the SL. Our proposal builds on recent work on Scheduling
Directives (SD) [22] and Scheduling Policies (SP) [1], which
are applicable for statecharts in general. The former allow
to define static indices that directly prescribe ordering of
statements. The latter augment an object by an automaton that
controls concurrent method calls to that object. This allows to
specify a wide range of (state-dependent) access regimes.

In the following we present the Counter example from
Fig. 4c, with a contract thats allows clients to invoke increment
and decrement potentially multiple times in any order, but
strictly before any calls to getValue. This results in a deter-
ministic value read from a counter object in every instant.

3In [23] this is called “confluent” but we feel “commuting” is more precise
in this context. Method execution is “confluent” because the methods are
pairwise “commuting.”



CounterApplicationWithSDs
host class Counter {

schedule {commuting,commuting} CounterSD
void increment ( ) schedule CounterSD 0
void decrement ( ) schedule CounterSD 0
int getValue ( ) schedule CounterSD 1

} counter
-

-

/ counter.increment()

/ counter.decrement()

/ print(counter.getValue())
-

(a) Counter using SDs to assign scheduling indices. Re-
sulting dependencies are visualized as green arrows.

CounterApplicationWithPolicy
host class Counter {

policy CounterPolicy
void increment ( )
void decrement ( )
int getValue ( )

} counter

     count     read

σ tick

increment: ∅

decrement: ∅

getValue: {increment, decrement}

getValue: ∅

σ tick

- CounterPolicy

/ counter.increment()
-

/ counter.decrement()
-

/ print(counter.getValue())
-

policy

(b) Counter augmented with an policy automaton

Fig. 5: Deterministic usage of host language object Counter in CounterApplication

A. Scheduling Directives
An SD associates a scheduling unit, such as a single as-

signment or a whole method, with a named schedule and
an index. All SDs associated with the same named schedule
must be scheduled according to their index, lowest index first.
This induces a new schedule that may alter the pre-defined
synchronization protocol of the SL. Further, the declaration
of the named schedule defines the behavior if two scheduling
units possess the same index. Conservatively, by default, same
indices are considered conflicting. However, specific indices
can be set to commuting meaning that the order of their
execution does not matter.

Fig. 5a shows the Counter example with SDs in SCCharts.
The current SCCharts compilation ensures atomicity of black
box method calls and, hence, can be seen as scheduling
units. The contract states that increment and decrement can
be scheduled in any order, but must be scheduled before
getValue. Therefore, a named schedule CounterSD with two
commuting indices is declared. The index 0 is assigned to
increment and decrement, meaning that their invocations can
be ordered arbitrarily, but before any calls to getValue, since
it has the higher index 1 assigned. Index 1 is also commuting
as readers cannot conflict.

Furthermore, Esterel’s valued signals can be coded using the
iur protocol [19] that is at the heart of the notion of sequential
constructiveness [23]. This protocol is expressible as an SD
using three scheduling indices, a non-commmuting index 0
(“init”) and commuting indices 1 (“update”) and 2 (“read”).

B. Scheduling Policies
The SDs can be generalized to SP [1], which provide even

more advanced scheduling rules. SP augment an object by

a policy automaton that controls concurrent method calls to
that object such that the scheduling order can be an arbitrary
precedence graph and also be state-dependent. Both the iur
protocol and the static indices of SDs mentioned above are
special cases.

Fig. 5b presents the CounterApplication with its associated
policy automaton depicted as an SCChart in a region called
CounterPolicy. The automaton has two states which capture
the two different scheduling modes, before and after the
first reading. Initially, in state count, all three methods calls
increment, decrement and getValue are admissible as expressed
by the dashed (instantaneous) transitions starting from count.
Each transition is labeled by the name of the method call and
a so-called blocking set, separated by a colon. Specifically,
the transition labeled getValue: {increment, decrement} states
that getValue is admissible but must wait for any concurrent
call to increment or decrement, which take precedence. The
admissible calls increment: {} and decrement: {}, on the other
hand, have an empty blocking set. Hence, they are not blocked
by getValue and also do not block each other. As seen in
Fig. 5b, if and when the getValue is executed the automaton
moves into state read. There, no increment or decrement is
admissible any more, only calls to getValue. The solid (non-
instantaneous) transitions labeled σ tick are the synchronous
clock, which starts a new instant and resets the SP to the initial
state.

An SD schedule as in Sec. V-A is the special case of a
linear automaton whose states are the scheduling indices n.
Each method labeled m is a transition m : Lm from each
state n ≤ m to state m. If index m is declared commuting
then it is blocked only by indices larger than itself m, i.e.,



Lm = {k | k > m}. Otherwise, Lm = {k | k ≥ m}. Using
policy automata we can express state-dependent schedules.
E.g., we could implement bounded queues in which the
enqueue method is only admissible until the queue is full
and the dequeue is only admissible while it is not empty.
This case can be efficiently implemented and is supported by
the current SCCharts compiler, the general case is likely to
be computationally intractable. Other tractable state-dependent
policies are pure Esterel signals [1], run-time enforcers [18],
and the synchronous object policies [9].

VI. CONCLUSIONS AND OUTLOOK

We have presented approaches to introduce aspects of the
OO paradigm to a synchronous statecharts dialect and extended
the SCCharts language to implement our concepts. To improve
structuring of large systems and to allow efficient modeling
of commonalities, we introduced inheritance. In the face of
the synchronous semantics and the influence of the safety
critical domain in SCCharts, we decided to follow a static
approach in handling this feature and to allow overriding of
regions. Inheritance in combination with the new possibility
for specifying and implementing methods enables modeling
of complex class structures in SCCharts.

We further investigated how objects of an OO host language
can be integrated into SCCharts, while retaining a determinis-
tic behavior and the OO paradigm. We proposed to mimic the
class definition of the host’s objects and extend it, if necessary,
by a set of rules to ensure determinism in a concurrent con-
text. To specify a contract between the synchronous program
and external objects, regarding its method invocations, we
integrated two recently proposed approaches. With SDs it is
possible to specify a scheduling order based on static indices,
while a policy allows to model an automaton that handles
precedences between method calls. Both approaches match the
OO idea of extending an object by a contract and permit more
flexibility than other synchronous scheduling schemes, such
as used by SyncCharts or Blech.

In the future we want to investigate more OO concepts in
statechart modeling, including more dynamic aspects of OO
programming, as well as polymorphism, while retaining the
sound semantics of SLs. Furthermore we plan to improve the
convenience of handling objects in SCCharts, for example by
introducing references similar to Blech. Regarding inheritance,
a finer granularity for overriding behavior could further benefit
the modeling process.
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