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Abstract—Synchronous programming languages, such as Es-
terel, Lustre, SCADE or SCCharts, have been developed for
designing reactive systems. They abstract from computation times
and assume that outputs are synchronous with their inputs. This
leads to a deterministic semantics, without race conditions, which
makes synchronous languages particularly suitable for safety-
critical systems. However, even though synchronous languages
have been designed with real-time applications in mind, the
handling of physical time is traditionally left to the execution
environment. This makes e. g. the expression of arbitrary time-
outs difficult and may lead to excessive “busy waiting” compu-
tations. The recent proposal of dynamic ticks alleviates this by
making physical time a first-class citizen within the synchronous
programming model.

In this paper, we explore and demonstrate the practical
merits of dynamic ticks, including improved timing accuracy
and reduced computational requirements, in the context of
Timed SCCharts. As demonstration platform, we present a
hardware/software platform that involves two stepper motors
whose operation must be synchronized at microsecond accuracy
to avoid physical damage.

Index Terms—Real-time systems, reactive systems, syn-
chronous languages, dynamic ticks, FPGA

I. INTRODUCTION

Synchronous languages are well-established for the mod-
eling and programming of reactive systems. In particular for
safety-critical applications, such as flight control, automotive
applications or in the medical sector, the deterministic se-
mantics and formal grounding of synchronous languages have
proven their practical value [2]. The synchronous paradigm,
which states that outputs of a system are “synchronous” with
their inputs, divides computations into discrete “ticks” that
conceptually take zero time. This is an abstraction from reality,
since the computation of one tick, or one reaction, does of
course take time. However, this abstraction is the basis for
defining a concurrent semantics without race conditions, just
like constructive logic gives a well-founded, deterministic se-
mantics to circuits that abstracts from their physical implemen-
tation and actual stabilization delays. Classical synchronous
languages include Esterel [3], Lustre [10] and Signal [2];
more recent languages include the hybrid modeling language
Zélus [4] and the statechart dialect SCCharts [18], which now
is used in the railway domain; commercially most successful at
this point is probably SCADE [7], with its qualified compiler
that is routinely used by Airbus and other industrial players.

Clearly, synchronous languages have been developed for
real-time applications. However, unlike other languages de-
veloped for that domain, such as Ada, traditional synchronous
languages do not include language features that explicitly
address physical time. Instead, time is typically modeled by
counting occurrences of input signals that denote the passage
of a certain amount of time, or by simply counting ticks if
ticks are known to occur at a certain, fixed frequency. This
mechanism is rather crude and has practical disadvantages,
as observed by Bourke and Sowmya [5]. For example, if
some input signal msec1 denotes the passage of 1 millisecond
and another input signal msec10 denotes the passage of 10
milliseconds, a timeout waiting for 10 occurrences of msec1
does not necessarily take the same amount as another timeout
that waits for one occurrence of msec10, as the actual waiting
time depends on how the the timeouts are aligned with the
timing input signals.

As von Hanxleden, Bourke and Girault have argued [17],
one limitation of the traditional synchronous setting is how
reactions are triggered. Specifically, it is traditionally the
environment that decides on when reactions are computed.
Typically, one of three options is used: 1) a time-triggered
execution, where a reaction is computed for example once per
millisecond; 2) an event-triggered execution, where reactions
are computed whenever some input event occurs, such as for
example the press of a button; or 3) an asap execution, where
the next reaction is triggered as soon as the previous reaction
is finished. Note that the triggering mode does not affect the
synchronous scheduling of the reaction calculation itself. Each
of these options has its merits and is fairly easy to implement,
but neither of them is particularly suitable for handling precise,
fine-grained real-time requirements. However, it turns out that
the synchronous paradigm can be seamlessly extended with a
fourth option that is more amenable for real-time requirements.
Specifically, the recently proposed dynamic ticks [17] give the
synchronous program control not only about how it reacts to
current and past inputs, but also when the next reaction should
occur. The original proposal included a prototypical realization
in Esterel, and the theoretical advantages of that approach
seem rather clear. Subsequently, the concept of dynamic ticks
was incorporated in Timed SCCharts [14], which basically
augment SCCharts with clocks as used in timed automata [1].
However, what was lacking so far was a practical evaluation,
with very tight (i. e., microsecond scale) timing constraints,978-1-7281-8928-4/20/$31.00 ©2020 IEEE



Fig. 1. Demonstrator setup with annotations.

and a demonstrator with a hard real-time application, which
is where this paper comes in.

Contributions and Outline

• We describe a physical demonstrator, referred to as “disk
and sticks demonstrator,” or “DS demo” in short, that is
reasonably cheap and easy to implement but embodies a
hard real-time problem with scalable timing constraints
(Sec. II).

• We present a Timed SCChart model of a DS demo
controller that illustrates the usage of dynamic ticks and
clocks (Sec. III).

• We describe how a dynamic tick environment can be
implemented in hardware and software (Sec. IV).

• For the DS demo, we evaluate different controller plat-
forms, comparing hardware (FPGA) and software alterna-
tives, and evaluate the effect of dynamic ticks on reaction
time, jitter and computational effort (Sec. V).

We briefly discuss further related work in Sec. VI and conclude
in Sec. VII.

We present the main aspects of the DS demo here. More
detailed information, e. g. on the hardware, can be found in
an extended report [6].

II. THE DISK-AND-STICKS DEMONSTRATOR

Fig. 1 shows an annotated image of the DS demonstrator.
While the name may suggest a link to storage devices, such
as hard disks and USB sticks, the DS demo is in fact based
on two stepper motors that control the rotations of a disk and
sticks.

On the left is the motor controller, in this case a Digilent
Arty A7 35 FPGA board1 (Sec. IV introduces a software
alternative). It is connected to a 5V power supply and a signal
generator to control the target speed of the system with a
square wave input signal. The PMOD headers are used to
connect the controller to the two motor drivers in the middle.

The main components of the motor drivers are two H-
bridges to drive the coils of the stepper motors. The motors

1https://reference.digilentinc.com/reference/programmable-logic/arty-a7/
reference-manual

Fig. 2. Technical drawing of the DS motor assembly.

consume significant power and require a high voltage, espe-
cially for high speeds, hence they cannot be powered by the
controller directly. The two H-bridges on each motor driver
convert the digital low power control signal into high power
signals for each coil of the stepper motor. The driver board
is designed to have easily accessible measurement points for
benchmarks and includes a galvanic isolation of the controller
and the half-bridges components, to protect the more expensive
controller board from potential failures and the high voltages
in the motor driver.

An important feature of the motor drivers is the current
sensing. The driver board reads the current drawn by the motor
and compares it with a reference value. If a motor draws
too much current, an overcurrent signal is sent back to the
controller. This signal is used to implement an overcurrent
protection that allows the motors to be operated with higher
voltages without damage.

The motor assembly, on the right, contains two stepper
motors arranged in a 90 degree angle. Fig. 2 illustrates the
detailed setup of the motor assembly. One motor has a disk
and the other has three sticks mounted to its shaft. If the motors
are running synchronized in an exact 3 to 5 ratio, the sticks
can pass through the disk; any deviation from that ratio may
cause a stick to hit the disk. Furthermore, the discrete nature
of stepper motor control implies that timing errors typically
do not lead to a gradual deviation from the desired speed, but
may stop the motor completely.

The demonstrator uses stepper motors, as these are cheap
and flexible motors often used in industry and they provide
good repeatability, considering the step locations they lock
into. Most importantly, when controlling a stepper motor
directly, the steps in the real world directly correspond to
reactions in software. As a consequence, there are high real-
time requirements on the software and, in our example, on the
efficiency and coordination of ticks, as described in Sec. IV.

In general, a stepper motor creates a rotating magnetic field
by magnetizing coils to move the shaft. The demonstrator
uses two-phase bi-polar hybrid stepper motors. This type
uses a permanently magnetized rotor, surrounded by a stator
containing two separately controllable coil sets. Both the stator
and rotor are multi-toothed, and energizing a set of coils

https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
https://reference.digilentinc.com/reference/programmable-logic/arty-a7/reference-manual
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(a) Top-level SCChart controller connecting multiple SCCharts modules handling sub tasks.
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(b) Motor controller SCChart.

Fig. 3. SCCharts models for the top-level controller and one of its submodules.

will cause the rotor to snap into the next position (step) by
aligning itself to the magnetic fields. Furthermore, the motors
in this demonstrator are driven in half step operation mode to
increase the resolution, such that the motion is smoothened and
vibrations are reduced. Consequently, this doubles the number
of control signals to perform a full rotation and imposes higher
reaction speeds on the controller, compared to a full step
mode. A single (half) step is performed by (de-)energizing
the appropriate coils but the electromagnetic magnetization is
affected by the inductance of the coil. It takes some time to
increase the current flowing through the winding after voltage
is applied to it. To speed up this process and thus the maximal
possible rotational speed of the motor, it is common to apply
higher voltages. The stepper motors used in this demonstrator
have a nominal voltage of 4.2V but can easily reach about
11,000 rounds per minute when powered with 30V. However,
increasing the voltage also increases the current drawn by the
coil when powered over time and this will destroy the coil. The
nominal voltage is a safe value that will not harm the motor
in a steady state with permanently energized coils. Hence, to
safely operate the motor at higher speeds with higher voltages,
an overcurrent protection is needed that decreases the supply
voltage to a coil for some time, to limit the resulting current.
This could be done directly in hardware on the motor driver
board, but we decided to only sense the overcurrent event there
and to feed it back to the controller, to create a critical hard
real-time environment for benchmarking the control software.
Then the controller can disable the half bridge for a short
period, such that the coil in the motor is partially discharged
via protection diodes. Our setup uses the principle of a Buck
converter in a continuous conduction mode and keeps the coils
always magnetized, without exceeding the current limit.

The modular structure of the demonstrator allows to con-
nect different controllers to this setup. As a software-based
alternative to the FPGA-based controller shown in Fig. 1, we
also use a Raspberry Pi model 3B as controller. It requires a

simple converter board to connect the GPIO pins with PMOD
jacks for the driver board cables. Sec. IV presents the results
of a comparison of these two controller platforms.

III. MODELING A DS CONTROLLER WITH TIMED
SCCHARTS

The controller running the DS demonstrator is modeled
using Timed SCCharts. SCCharts [18] is a statecharts dialect
and, as such, it primarily consists of states connected via
transitions. Due to its synchronous nature, SCCharts have
delayed transitions (represented by solid lines) that require to
stay for at least one tick in a state before it can be left via this
kind of transition, and immediate transitions (dashed lines)
that can be taken instantaneously. Using regions, SCCharts
can be nested hierarchically and composed in parallel, while
the sequentially constructive semantics ensures determinism
for concurrently shared variables. Each SCChart can declare
variables, including those for inputs and outputs to communi-
cate with its environment or another SCChart it is embedded
into. SCCharts have a large set of extended features, which
can be considered syntactic sugar, since they are usually
replaced by simpler but larger constructs during compilation.
For example, entry actions will be executed immediately when
a state is entered. At its core, SCCharts is a control-flow-
oriented statechart but it also supports a hybrid design where
some aspects are expressed as data-flow diagrams. Another
recently added feature are Timed SCCharts [14], that introduce
clocks that progress with the real time and allow time-based
transition triggers. The concept is based on timed automata [1]
in which clocks are continuous variables that represent time.
In SCCharts, the progress of time in variables of type clock is
handled automatically and the modeler can read and set their
value, to track time and react to timing events.

Fig. 3a shows the top-level SCChart of the DS controller. It
uses a dataflow notation to connect various SCCharts modules
handling different tasks. At the center is the SSD component,
the speed signal divider, which converts the input speed into



step instructions for each of the two motors in a strict 3 to 5
ratio to avoid collisions. The SSD component also receives
inputs of the four buttons on the controller board that can be
used to calibrate the initial positions of the disk and sticks.
The preprocessing components (MC* and ED*) debounce and
capture changes in the button signals. Each motor has its own
MotorState that models the state of magnetization in the motor
and allows to perform a step by (de-)activating the correct coils
in the motor. Fig. 3a illustrates the corresponding SCChart,
where each state corresponds to a combination of positive,
negative, or disabled state of each coil. Note that the variables
for the two H-bridges in this SCChart (*A and *B) will be
bound accordingly when instantiated by the top-level SCChart.
In addition to the positive or negative magnetization of the
coils, the H-bridge also needs to be enabled to perform a step.
These enabling outputs are post-processed by an OCP* module
for each H-bridge that handles overcurrent events and performs
a timed cooldown for the coils.

Fig. 4 shows the timed SCChart performing the overcurrent
protection. The basic idea is to use the coil of the motor,
the H-bridge and the protection diodes as a Buck converter
where the continuous conduction mode keeps the coils always
magnetized. The power is disconnected, via the enableOut
output, for a constant time. During this off time, the coil
is discharged through the protection diodes. The SCChart
has three states: Wait, Power, and Cooldown. The enableIn
input triggers alternation between the Wait and Power states in
normal operation mode. When the motor is powered, an over-
current event may occur, which triggers entering the Cooldown
state and disabling the coil. However, this transition has an
additional timing constraint that only allows this transition to
be taken if at least a BLIND TIME of 1500ns has passed since
entering the Power state. This blind time has its origin in the
parasitic induction of the resistor used to measure the current.

Using the clock construct, provided by Timed SCCharts,
this timeout is straightforward to express. The clock delay is
reset when the Power state is entered, and is compared with
BLIND TIME in the predicate of the transition to Cooldown.
When the H-bridge is activated, the coil is still charged and
the current flowing through the coil tries to flow to the ground
through the resistor. However, the parasitic inductance of the
resistor is not yet charged and blocks the current flow. This
leads to a brief voltage spike until the inductance is overcome.
This voltage spike would unnecessarily trigger a transition into
the Cooldown state and would repeat itself until the coil is
completely discharged. The length of the blind time depends
of the parasitic induction. The blind time has to be much
smaller than the off time, otherwise there would be a risk
of a run away situation in which the current decrease during
the cooldown is smaller than the increase during the blind
time. When in the Cooldown state, the coil stays disabled for
10,000ns (OFF TIME) and then returns either to Wait or Power,
depending on Cooldown. This is again modeled with the delay
clock. The off time has to be selected based on the speed of
the H-bridge, overcurrent detection, the coil, and the possible
current change during a PWM cycle.

Fig. 4. Timed SCChart to handle overcurrent events.

1 TickData data;
2 reset(&data);
3 long preT = currentTime();
4 while (!data.TERM) {
5 long curT = currentTime();
6 data.deltaT = curT− preT;
7 preT = curT;

8 readInputs(&data);
9 tick(&data);
10 writeOutputs(&data);
11

12 // This is omitted for asap execution
13 waitForInputOrTimeout(data.sleepT, preT);
14 }

Fig. 5. Simplified structure of a tick environment loop for dynamic/asap
execution.

With dynamic ticks, each active state that has a timed
transition computes a sleep time that is the remaining time
until its timed trigger will be enabled. The overall sleep time
of the program is the minimum of all these sleep times and
some large default value, e. g. 100 msec [14].

IV. A DYNAMIC TICK ENVIRONMENT IN HW AND SW

The concept of dynamic ticks [17] gives the program
access to real time and allows to delay its own logical steps
based on time. Timed SCCharts implement this concept and
provide high level clock constructs based on timed automata
as presented in the previous section. However, even if this
enables the SCCharts to influence its own pace, the answer to
the main question, “when to react?” (see [14]), still depends
on the execution environment.

A. The Tick Function

Code syntheses for synchronous languages usually generate
a tick function that receives the read inputs, computes a single
reaction (tick), and produces the outputs. The most simple and
common mode of execution is invoking this tick function in
a loop as soon as possible (asap) or in a constant rate. Fig. 5
illustrates the general structure of such an asap environment in
C. TickData is a struct generated by the SCCharts compilation
to hold the variables for inputs, outputs and the internal state.
The reset and tick function are likewise synthesized from the



SCChart and initialize/reset the internal state and compute a
reaction respectively. The basic structure of this environment
is to read the inputs from the hardware, store it in the TickData,
invoke the tick function, send the outputs to the hardware and
repeat this sequence immediately as long as the program does
not indicate its termination. To enable the use of clocks in
SCCharts, the asap mode also needs to compute the time
passed between invocations of the tick function and store it
in the deltaT input (lines 5 to 7).

In a dynamic tick environment, the only but significant
difference is that the environment will wait after a tick
(line 13). To provide the eager semantics [14] necessary for
dynamic ticks, both the timeout requested by the SCChart
(sleepT output) and input events must be able to start the
next tick cycle. This waiting approach requires polling inputs
for changes or awaiting interrupts, as well as a timeout
mechanism. Compared to the asap approach that reads and
processes inputs continuously, dynamic ticks actually allow
a faster and more precise reaction to input events, as the
evaluation in Sec. V will show.

B. Managing Time

An important aspect when creating timeouts based on sleepT
is to consider the computation time. The tick function holds
a synchronous program, hence, it assumes based on the
synchronous paradigm that outputs are produced at the same
time as inputs are read. In reality, this is infeasible but it means
that the sleepT time is also computed based on the deltaT input
without considering the time passed after the deltaT sample
was taken. Consequently, when setting up a timeout after the
tick function call, the time passed since starting of the tick
(prevTime in Fig. 5) must be deducted from the sleep time.
However, this may result in situations where the requested
sleep time has already passed due to a long computation time.
This is a clear sign that the platform or the program does not
perform well enough to fulfill the timing constrains. If the
platform is fixed, a timing analysis of the program can reveal
bottlenecks. For example, SCCharts support an interactive
timing analysis approach that is incorporated into the graphical
modeling process [9]. In Sec. V we also evaluate the influence
of the code generation of the performance of the program.
Clearly, on an FPGA platform, variation in the computation
time or a delayed handling of timeouts is not an issue, but
on a software-oriented general purpose processor with limited
real-time capabilities, it can have a significant effect on the
reaction time.

With dynamic ticks, there are different possibilities to
handle timing deviations. Either the program is provided with
a simulated time where deltaT is always equal to sleepT if
no input events occurs during sleep time, or deltaT is the real
time passed between ticks. We prefer the latter, as this enables
the synchronous program to transparently and deterministi-
cally react to timing deviations without assumptions on the
environment. Schulz-Rosengarten et al. [14] present different
options to react to imprecisions and deviations in the SCCharts
model.
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Fig. 6. Implementation of a dynamic tick environment in the DS controller.

C. Dynamic Ticks for the DS Demonstrator

Fig. 6 illustrates the dynamic tick environment setup im-
plemented for the DS controller interface. The general setup,
as presented by Schulz-Rosengarten et al. [14], defines that
a Time Manager communicates with the logic via deltaT and
sleepT variables. A Trigger Unit starts ticks based on input and
timing events. In Fig. 5 the Time Manager is represented by
lines 3 and 5 to 7 and the Trigger Unit is implemented by the
delay in waitForInputOrTimeout in line 13 or its absence in the
asap mode. In the DS implementation these components are
also present but in their abstracted form. Additionally, there
is a tickDone signal used by the Trigger Unit that enables the
start of a new tick. It is part of the multi-cycle tick logic that
will be discussed later. The Hardware Environment provides
the raw inputs, here, the 4 buttons and the direction switch,
the square wave speed signal, and the over-current events
of the two H-bridges for each motor. These inputs are first
buffered in the Dynamic Ticks handler and then processed by
an Edge Detection such that value changes trigger a reaction.
The tick signal indicates the start of a new computation.
Inputs are copied into the registers of the logic, and when
the computation finishes, the outputs are sent to the two motor
controllers and the sleep time is fed back to the Time Manager.
As presented in Fig. 3a each motor has a positive, negative,
and enabling value for each of its H-bridges.

While Fig. 5 illustrates an imperative view on tick envi-
ronments, Fig. 6 implements a multi-cycle logic environment
for the invocation of the tick function that is specific for the
use in hardware. In general, synchronous languages are well
fitted for a hardware synthesis, as they both use a synchronous
clock to drive computations (ticks). SCCharts provide a netlist-
based compilation approach [18] that is able to produce VHDL
code directly. For an asap or fixed periodic environment it is
sufficient to simply wire the inputs and outputs to the hardware
interfaces and to configure the clock of the FPGA to drive
the logic at a fixed rate. However, for dynamic ticks this
undermines the efficiency and precision gained by reacting
exactly when it is necessary because the pace during waiting
would be bound to the minimal rate of the SCChart’s logic,



i. e. the longest path through the generated netlist. Hence, to
circumvent this problem, our dynamic tick environment in
VHDL uncouples the ticks of the SCChart from the clock
of the FPGA and allows the tick computation to spread across
multiple clock cycles.

D. Multi-Cycle Tick Logic

In the multi-cycle logic environment in Fig. 6, the stateless
SCCharts Logic is surrounded by various registers. Inputs are
held stable during compilation by the registers on the left. They
are clocked by the FPGA’s base clock but only enabled (EN)
when the tick signal is given to start the computation of a tick.
The same holds for the registers that store the internal state.
The registers for the outputs are enabled when the computation
finishes, which is determined by the chain of registers at the
top. The tick signal ripples through these registers until the
computation is finished and tickDone is signaled.

The number of registers can be adjusted at compile time
and allows to set the FPGA’s clock at a respective fraction
of the logic’s computation time. With such a setup, the
environment can wait more precisely for timeouts and sample
inputs in a finer granularity before triggering the multi-cycle
tick computation. Furthermore, since steps in a synchronous
program are strictly ordered, a new tick may only be started
when the previous reaction is finished, indicated by tickDone,
otherwise the internal state and outputs will be corrupted.

E. Assessment

Dynamic ticks enable the handling of real time and a
dynamic reaction pace while retaining the sound semantics and
determinism of the synchronous languages. In fact, the actual
semantics is not affected at all, since only the environment
is adjusted, as illustrated in Fig. 6. deltaT and sleepT simply
extend the input output interface of the program similar to
the multiform notion of time but without its inconsistencies
when it comes to different abstraction of timing events.
Regarding verification, a real time input, of course, increases
the complexity, however, with SCCharts clocks based on timed
automata, there are various approaches and tools to tackle this
issue, e. g. as implemented in the Kronos tool [8].

V. EVALUATING DYNAMIC TICKS USING THE
DS DEMONSTRATOR

The DS demonstrator offers a realistic environment based
on common hardware with scalable timing requirements to
evaluate dynamic ticks. In addition to the FPGA-based con-
troller shown in Fig. 1, the demonstrator can also be con-
trolled by an Raspberry Pi. This allows to compare the
performance of Timed SCCharts on a very specialized FPGA
with a general purpose ARM processor. In this evaluation the
KIELER tool [16] was used to compile the SCCharts controller
into either VHDL, for the FPGA board, or C code, for the
Raspberry Pi. The FPGA board itself serves as logic analyzer
to capture the data. This approach has the disadvantage that
the logic analyzer and the controller share the same 100MHz
clock when measuring the FPGA. Hence, the FPGA-based

Fig. 7. Comparison of reaction time between FPGA and Raspberry Pi with
asap and dynamic tick environment (logarithmic scale).

motor controller has an advantage of up to 10ns in reaction
time; these 10ns were added to the analysis results to display
worst case behavior of the used implementation.

A. Reaction Times

A first experiment measured the reaction time of the tick
function at 400 steps per second and 5V motor supply voltage.
The reaction time is measured as the delay between the input
of the function generator and the resulting output change.
Hence, it includes the tick calculation time and the offset
caused by the environment. These quantitative evaluations
were performed for controlling one stepper motor in isola-
tion, outside of the DS demo, to avoid possible damage to
the demonstrator. The results are presented in Fig. 7. The
horizontal red line indicates the reaction time that allows safe
operation with correct overcurrent protection (5 µs).

The dynamic tick environment on the FPGA has a constant
reaction time, since there are no two events close enough
together to influence each other. The asap environment, on the
other hand, has a variance from 1 to 2 calculation times. This is
because the events can occur at any time, even during an active
tick calculation, adding the remaining calculation time to the
reaction time. The Raspberry Pi controller performs worse,
as expected for a general purpose processor with a Linux
operating system. Despite that, the most obvious difference to
the FPGA-based controller are the outliers in the reaction time.
These outliers are caused by the kernel and have a calculation
time that is up to 10 times bigger than their average. In the
asap environment the variance is again higher, since events
usually occur during the tick calculation. A real-time kernel
and isolation of the controller process on a single core would
reduce the number of outliers, but cannot remove them.

B. Tick Counts

The dynamic and asap operation modes also differ signif-
icantly in the number of ticks computed, since asap triggers
“superfluous” reactions without output change. At one rotation
per second, corresponding to 400 steps per second, the asap
mode executes about 1.25 × 107 ticks/sec on the FPGA, and
260,000 ticks/sec on the Raspberry Pi. The dynamic mode



Fig. 8. Comparison of jitter in the actual off time between the between FPGA
and Raspberry Pi with dynamic ticks (logarithmic scale).

requires about 1000 ticks/sec on both platforms, as only
relevant inputs and points in time are processed.

C. Timing Precision

In a second experiment we measured the timing precision
of the overcurrent protection by capturing the actual off time
produced by the Cooldown state. The results are plotted in
Fig. 8. This test is performed by setting the motor speed to 0
in a motor state that powers both coils, with a supply voltage
of 10V and a current limit at 0.5A. Hence the overcurrent
protection of both coils needs to be constantly active. The
length and variance of the off times are used to measure
the reaction time jitter. The FPGA timing is perfect with the
exception of a few outliers. The maximal outliers are less than
one tick calculation time bigger than the expected value. These
outliers are created by an overcurrent event that is less than
one tick calculation prior to the timing event. The results of
the Raspberry Pi show outliers that are too long, similar to the
previous test, and outliers with off times too small. These early
reactions are indirectly created by the slow outliers. If a long
tick calculation time puts calculations behind the real-time,
the calculations try to catch up with the real time, resulting in
shortened off times.

The results show that dynamic ticks not only reduce the
computation effort compared to an asap mode but also allow
more accurate reactions, since it is less likely that a tick
computation is running while an important event, such as over-
current, occurs. As expected, the FPGA controller performs
well, but the experiments using the Raspberry Pi illustrate the
limitations of a general purpose platform in such a scenario.

D. Evaluating Compilation Approaches

The netlist approach is the most fitting compilation strategy
for an FPGA controller and consequently it is only fair to use
the same on the Raspberry Pi. However, SCCharts also support
alternative, more software focused compilation approaches,
which were tested using the DS demo. The priority-based
approach [18] separates the program into multiple partitions
that are executed and scheduled by a lightweight runtime

Fig. 9. Comparison of different compilation approaches for SCCharts with
dynamic ticks and asap environment on the Raspberry Pi (logarithmic scale).

scheduler using static priorities for concurrent parts. The state-
based approach [15] stays close to the statemachine structure
in SCCharts and generates functions for each state and region
that are invoked based on active states and control flow.

Fig. 9 shows the results of all compilation approaches
for both the asap and the dynamic tick environment on the
Raspberry Pi. The test setup is the same as in the first
experiment (Fig. 7). Again, the asap mode leads to greater
deviations in the reaction time and performs far more ticks
per second, as the numbers on top of the diagram indicate.
The netlist-based approach performs best. This might come
from its simple structure and many optimizations that are
implemented for this approach in the KIELER tool. The
priority-based approach performs worst, despite the fact that it
is primarily designed for a software platform. It uses a rather
minimal runtime scheduler implemented in C macros with
computed gotos, but it seems this still generates an overhead
that puts this approach behind the others. Usually, it stands
out in supporting loops and large programs where only a small
portion is actually executed per tick. Both properties do not
hold for this controller. The rather new state-based approach
performs quite well and is only a few milliseconds behind
netlist. We think these results are remarkable, considering that
the primary focus of this approach is on readability and manual
verification of the generated code. It seems the compiler is
able to handle the extensive use of functions and function
calls, probably via inlining, and produces a relatively efficient
executable, in comparison to netlist. Thus we intend further to
develop and improve this approach in the future.

VI. RELATED WORK

There are many languages, also outside the domain of
synchronous languages, that fit well to model a controller for



the DS demonstrator, for example LabVIEW [19]. However,
the main focus here is to evaluate dynamic ticks that are
designed for synchronous languages. Besides SCCharts, which
already provide both an integration of dynamic ticks and a
VHDL synthesis, SCADE [7], with Lustre [10] at its core,
would be a very capable alternative for modeling the controller.
SCADE provides a certified code generator and is used in the
industry to model safety critical embedded applications. Ad-
ditionally, there has been work by Pampagnin and Letellier on
a VHDL synthesis from SCADE in an avionics context [12].
Pampagnin et al. also developed a model-based approach ded-
icated to avionics hardware design [13]. Even if they follow a
methodology that is based on a multi model approach to allow
different abstraction levels, they define a development process
and tool that is relatively similar to SCCharts in KIELER.

Regarding the demonstrator hardware, there are various
ways to create a challenging real-time environment. We de-
cided to use an FPGA and stepper motors as these are of-
the-shelf hardware widely used in industry and enable proper
performance benchmarks [11]. Bourke and Sowmya used a
microprinter controller equipped with a stepper motor as their
motivating example for illustrating delays in Esterel [5]. This,
among others, inspired the development of dynamic ticks.
Hence we wanted to evaluate this approach in a similar
scenario.

VII. CONCLUSIONS AND OUTLOOK

The DS demo has achieved its objective of being a clear
demonstration of reactive system programming with a syn-
chronous language, in this case Timed SCCharts, and the
potential merits of using dynamic ticks. With the FPGA-based
controller, the DS demo was operated successfully with up to
100 stick/disk crossings per second. This corresponds to 1200
RPM for the disk. With 400 steps per rotation, and at least 10
ticks per step due to the sampling/synchronization logic, this
corresponds to 80,000 ticks per second, or 12.5 µs per tick. At
this speed, each tick requires stable and precise timing in the
microsecond range. The dynamic tick environment facilitates
such precise reactions and the FPGA provides a fast and jitter-
free execution platform. The Raspberry Pi, as expected, has
a lower performance and occasionally misses steps due to
outliers in the reaction time. These interruptions are not only
limiting the maximal possible RPM, but are already audible
at lower speeds.

There are several avenues for future work, including im-
proved hardware synthesis that allows higher clock rates and
software solutions with reduced operating system disturbances
and performance improvements based on optimizations of the
generated code.
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