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Abstract—We introduce a systematic approach for automati-
cally creating a visual diagram, akin to a SCADE model, from
a Lustre program. This not only saves tedious manual drawing
effort but also allows the creation of different views for the same
program. Furthermore, we present an extension of the SCCharts
language with data-flow constructs that adhere to the Lustre
semantics, which in turn permits a translation from Lustre to
graphical SCCharts. This allows to use the SCCharts simulation
and code synthesis machinery as an alternative to existing Lustre
compilation techniques. Finally, we investigate how the sequen-
tially constructive model of computation underlying SCCharts
can be used to conservatively extend Lustre, thus providing a
deterministic semantics to some Lustre programs that would be
rejected under its original semantics. We have implemented and
validated this work with the Eclipse-based open-source KIELER
framework.

Index Terms—Synchronous Languages, Modeling Pragmatics,
SCCharts, Lustre, View-Synthesis

I. INTRODUCTION

Traditionally, languages tend to fall into either the textual
category, as is the case for most programming languages
(C, Java, Python, . . . ), or the graphical category, as is the
case for most modeling languages (UML, Simulink, Labview,
. . . ). The synchronous data-flow language Lustre illustrates
that a textual and a graphical syntax for a single language
could both be reasonable; Lustre is originally defined with a
textual syntax [1] but is also semantically closely related to
the visual language employed by the Safety Critical Appli-
cation Development Environment (SCADE) [2]. Similarly, the
synchronous state-oriented language Sequentially Constructive
Charts (SCCharts) [3] is primarily considered a graphical
language, using a Statechart syntax, but since its beginning
it has been accompanied by a textual syntax as well.

Thus there is not necessarily a clear line between pro-
gramming and modeling, but this is a debate that we do not
investigate further here [4]. Instead, we here explore, for the
specific case of Lustre-like languages (elaborated further in
Sec. II), how we can make the best use of both textual and
graphical representations when designing (complex) systems.
We do so irrespective of the question of whether we consider
this activity as programming or modeling and we will use both
terms in the following.

Fig. 1: Traditional modeling flow (top) vs. modeling pragmat-
ics (this work, bottom)

Compared to the process of typing in a textual program,
possibly using a modern IDE with code completion etc., the
creation of graphical models can be a rather time-consuming
affair. Typically, graphical elements are dragged from a palette
to a canvas, and the user can spend significant time on po-
sitioning elements, possibly moving other elements around to
make room first. As models evolve, readability tends to suffer,
unless users keep investing significant time just to keep things
readable [5]. As a case in point, some SCADE users do not use
the graphical editor for modeling, but instead use the textual
Scade language that is behind the graphical interface of SCADE.
However, for such textually written models, no graphical
representation is available; SCADE translates graphical models
into Scade, but there is no translation the other way. For
some users and use cases that might be irrelevant; for others,
however, this might be a loss. In particular for communication
and documentation purposes, graphical models are appealing
and useful. Arguably, this is why graphical languages have
arisen in the first place, after textual languages have already
been around for a long time.

In this paper, we investigate how to go the other way,
from textual synchronous data-flow to a graphical repre-
sentation. In that we broadly follow the modeling pragmatics
approach proposed by Fuhrmann et al. [6]. The main idea there
is to separate a (textual) model from a (graphical) view of
that model, and to automatically synthesize the view from978-1-7281-8928-4/20/$31.00 ©2020 IEEE



the model. In fact, once such an automatic generation of a
graphical view is possible, it is just a small step to synthe-
size different graphical views for one and the same model.
Compared to the traditional way of graphical modeling, the
modeling pragmatics approach not only has the advantages
of efficient textual editing, such as powerful IDE operations,
revision control, etc., but one also is liberated from having
to work with just one fixed, hand-crafted graphical repre-
sentation. Fig. 1 illustrates this approach, synthesizing two
views with different strategies for handling delay references,
as detailed later.

Thus, put simply, the original question that motivated
the work presented here was how to get from textual syn-
chronous data-/control-flow (“Lustre”) to graphical represen-
tations (“SCADE”). While the basic concept to do so appears
fairly straightforward, there are various options to do so, as
illustrated in this paper. However, in the course of answering
this original, pragmatics-oriented question, building on the
concepts and diagramming infrastructure for the SCCharts
language, it turned out that there were interesting semantic
questions as well, which this paper will also will report on.
Put briefly, the first semantic question is how to map Lustre
to valid, semantically equivalent SCChart models. I. e., we
aimed to not just synthesize possibly somewhat abstract/infor-
mal diagrams, such as could be drawn up by a programmer for
documentation purposes, to be used along the original code,
but we wish to synthesize models that fully capture the textual
source. Apart from the practical consideration that a model-
ing/compilation framework (Kiel Integrated Environment for
Layout Eclipse Rich Client (KIELER)) that supports SCCharts
is openly available, SCCharts are an interesting target in that
they originally come from a control/state oriented modeling
world, as opposed to Lustre, which has its origins in data-flow.
Thus, when exploring a mapping from Lustre to SCCharts, we
also touch on the broader question of how data-flow maps into
control-flow. We do not aim to provide a general answer here,
but, as illustrated in this paper, at least in our setting such a
transformation seems possible without significant costs, which
we see as an indication that these worlds are not as separate
as they sometimes are perceived.

Finally, the choice of SCCharts as a target leads to another
question, raised by the underlying models of computation.
SCCharts share with Lustre the basic synchronous principle
that divides computation into discrete reactions/ticks and has
a deterministic, concurrent semantics by abstracting from
reaction time. The classic synchronous model of computation,
also employed by Lustre, assumes that shared data have a
unique value per tick. This simplifies semantic reasoning, and
is a prerequisite for example for hardware synthesis. However,
especially for programmers used to imperative languages, this
requirement may be overly restrictive. This has motivated the
sequentially constructive model of computation (SC MoC),
which is also employed by SCCharts. That MoC takes se-
quential scheduling information into account and gives a—still
deterministic—semantics to programs that would be rejected
as “not causal” under the classic synchronous MoC. Thus,

when constructing a mapping from Lustre to SCCharts, the
second semantic question is how the SC MoC may extend
the class of valid Lustre programs.

Contributions & Outline

• We contribute a synthesis strategy to generate graphical
representations for Lustre-like programs using a block
diagram notation as in SCADE (Sec. II).

• We extended SCCharts with a data-flow component that
allows seamless modeling of hybrid control-flow and
data-flow models. We present a transformation from Lus-
tre to SCCharts that preserves the semantics of a Lustre
program (Sec. III).

• We investigate how the Sequentially Constructive (SC)
Model of Computation (MoC) conservatively extends the
semantics of Lustre and allows to accept a greater class
of deterministic programs (Sec. IV).

We evaluate our transformation approach in Sec. V and briefly
discuss related work in Sec. VI. In Sec. VII, we conclude and
give an outlook on future work.

II. FROM KIELER LUSTRE TO GRAPHICAL MODELS

Since the original Lustre proposal, a number of language
variants have been developed, which sometimes makes it
difficult to discern what language one is specifically referring
to. In this paper, we study a synchronous language, hence-
forth referred to as KIELER Lustre (KLustre), named after
the modeling environment in which it is now realized, that
mixes Lustre-like data-flow and a rich set of control-flow
structures like hierarchical automata, and in that is fairly close
to Heptagon [7]1. Specifically, KLustre includes
• the core of Lustre V6 such as pre, ->, fby, general point

wise applications, and clock operations such as when and
current [8];

• control-flow constructs with automata, borrowed from
Scade 6 [2], where transitions can be either weak or
strong aborts and they can restart or reset the behavior of
the target state;

• in the context of states, the operations pre and last, where
pre refers to the previous value of a variable within the
environment of the state it is used.

Type declarations, external nodes, static parameters, arrays
and higher-order functions like map or red are not supported,
but should be relatively straightforward to add, building on
existing work. Also, there is no clock calculus required (but
it could be added), as detailed later in Sec. III-B.

While we performed the specific work presented in this
paper with the KLustre language, we argue that the principles
apply to Lustre-like languages in general. Thus, when the
distinction is not important, we may still refer to just “Lustre.”

A. From Lustre to a Graph Structure

In order to retrieve the graphical model there are three steps
that need to be performed.

1http://heptagon.gforge.inria.fr/



(a) Expression trees of Lustre equations

(b) Equation dependencies (c) Dependency
graph

(d) Connected expres-
sion tree

Fig. 2: Graph extraction steps

1) Step 1, Create expression trees: The retrieval of the Ab-
stract Syntax Tree (AST) of a Lustre program is the entry point
for a graphical representation. Starting at this AST, the first
step towards a graphical model is performed—the extraction
of an expression tree for each equation. Each equation defines
the value for one variable, hence an expression tree always
corresponds to one variable. Fig. 2a shows examples of the
expression trees for the variables cond and inc.

2) Step 2, Construct dependency graph: In Lustre, each
variable needs to be written before it is read. An exception
is made for variables read within a delayed operator such as
pre or fby. They refer to the value of the previous tick and
are thus read before they are written [9]. In a valid Lustre
program there is always a topological sorting of the equations
constrained by variable dependencies, as shown in Fig. 2b. The
dotted arrows indicate that the variable at the source is required
for the destination of the arrow. Following this dependency
information, a general dependency graph for the variables on
the left side of the equation can be established. Fig. 2c gives
an example. The variable preV is read twice, so there are two
dependency edges from the equation defining preV to the other
equations. This dependency graph now defines the ordering in
which the different expression trees are processed in the next
step.

3) Step 3, Connect expression trees: The last step connects
the independent expression trees according to the dependen-
cies. The flow of the data in an expression tree is bottom
to top, so an edge states the lower node as source and the
top node as destination. If a variable occurs non-delayed in
one of the leaves of an expression tree, this leaf is replaced
by linking to the root of the expression tree this variable is
referring to. Processing starts with the variable at the root
of the dependency tree, Fig. 2d shows the resulting graph.
The variable cond is used in the equation init = 0 -> cond.
Therefore, the expression tree defining the value for cond is
put in place of the actual reference to cond in the second
argument of the -> operator. Inputs are an exception to this

1 automaton Automaton
2 state A
3 let o = 0 −> last s;
4 run = false;
5 tel
6 until if Switch resume B;
7 state B
8 let o = 2 * last o;
9 run = true;
10 tel
11 unless if Switch restart A;
12 returns ..;

(a) KLustre code

(b) Collapsed view (c) Expanded view

Fig. 3: Example for an automaton in KLustre

rule as they can be read without being written to explicitly.
They remain as a leaf.

Since delayed operators do not introduce dependency edges
in Step 2, it is possible that a variable is read before a
corresponding expression tree for this variable is created.
For local variables there can be two different strategies for
visualization, with or without cycles, as illustrated in the two
generated views in Fig. 1.

B. Visualizing control-flow/states

KLustre includes automata, which can be defined at every
place that equations could be defined. Those automata can
include states and each state may define equations that are
executed when this state is active. Fig. 3 shows an example
definition of an automaton and two possible views with
collapsed and expanded inner behavior.

These states can also be processed into a graph model. The
definition of an automaton already introduces a hierarchical
node. The behavior of the automaton is then added within this
node. This way the data-flow and the control-flow parts are
also visually separated.

C. Automatic Layout

We now defined a graph that holds information about the
data-flow and the control-flow of a given KLustre program.
A non-trivial question, studied by a whole community of
researchers on graph drawing, is how to turn such a graph into
a visual representation. Even though the field of graph drawing
goes back a long time and some libraries, such as GraphViz,
are already widely used, the problem still appears hard enough
such that very few visual modeling tools provide automatic
layout functionality and instead leave that task entirely to the
user. In fact, this may also be the reason why so far there are
so few serious efforts to synthesize visual models from textual
descriptions. However, as we also hope to illustrate here, today
it is indeed practical to automatically construct visual models
of the type we want here.



In addition to the usual requirements and aesthetics criteria
employed in graph drawing–––no overlapping nodes, short
edges, few crossings, etc.—we typically have a preferred
reading direction. In data-flow diagrams, we usually want
inputs on the left and outputs on the right. In state diagrams,
we prefer initial states on the left and final states on the right.
One class of graph drawing algorithms that are guided by
such a reading direction is the layered approach, pioneered by
Sugiyama et al. [10] and provided for example by GraphViz
dot. However, data-flow diagrams, unlike state diagrams, typ-
ically induce port constraints in that nodes (actors) often
prescribe where they connect to which input/output data-flow
edges. This imposes non-trivial further requirements on the
layouting algorithm [11].

D. Implementation in KIELER

We have prototyped the diagram synthesis in the KIELER
IDE. A main objective for KIELER was to synthesize views
automatically from textual code, as illustrated in Fig. 4a. The
graph model synthesized from KLustre is rendered with the
Kieler Lightweight Diagrams (KLighD) framework [12]. As
illustrated later in Fig. 8c to Fig. 8f, the styling/skinning of
the graph can be defined separately. Thus, with KLighD, the
resulting diagram may “look and feel” like SCADE, SCCharts,
Ptolemy or some other visual language.

The automatic layout in KIELER is realized through the
Eclipse Layout Kernel (ELK)2, which provides a wide range
of layout algorithms. All the SCCharts shown here are syn-
thesized automatically within KIELER using ELK and KLighD.
For data-flow and state diagrams, we use the ELK Layered
algorithm, which also considers port constraints. For plac-
ing concurrent regions within a superstate, we use the LR-
rectpacking algorithm.

III. FROM LUSTRE TO SCCHARTS

After focussing on the pragmatics of how to visualize Lustre
programs in the previous section, we now consider the first
semantic question raised in the introduction, namely, how
to synthesize valid, semantically equivalent SCCharts from
Lustre. As one motivation, such a translation allows not only to
visualize a textual Lustre program, but it can also be compiled
into code and be simulated, as shown in Fig. 4a.

A. Adding data-flow to SCCharts

Data-flow in Lustre is defined in a declarative style as a
set of concurrent equations that are evaluated each tick, each
defining a stream. In principle, the original SCCharts [13]
are already expressive enough to capture this. However, the
SCCharts language was originally focused on control-flow.
Thus, to close the conceptual gap to Lustre, we extended
SCCharts with (unclocked) data-flow.

In the original SCCharts, concurrency is achieved through
superstates that contain an arbitrary number of regions that
are concurrently active until they reach a final state or the
enclosing superstate is left. We incorporate data-flow into

2https://www.eclipse.org/elk

(a) Screenshot of KIELER, while simulating an SCChart that contains control-
flow and data-flow regions. The user edits the text on the left, the graphics
on the right is synthesized automatically whenever the text is saved. During
simulation, entered states are highlighted in red, left states and taken transitions
are shown in blue. Data-flow edges are annotated with their current values.

(b) The SCChart after transforming away the data-flow region.

Fig. 4: A temperature model with data-flow and states

SCCharts by providing data-flow regions, which can co-exist
with the usual (control-flow) regions. Each data-flow region
contains a set of data-flow equations, which are evaluated
concurrently, just as in Lustre. Data-flow regions are an
extended SCChart feature, meaning that they are transformed
away through a model-to-model transformation that creates
an SCChart without data-flow regions. The transformation
generates one control-flow region per data-flow equation, as
illustrated in Fig. 4b and actually as in the transformation
of during actions. Each region has an initial state (bold
outline), which is left immediately (indicated by the dashed
transition) and unconditionally with a transition that, as its
effect, evaluates the corresponding data-flow equation and that
leads to another state where control rests until the end of the
tick. In subsequent ticks, that other state is left through the
non-immediate (solid) transition that leads back to the original
state, from where immediately the next transition/equation
evaluation occurs.

B. Streams vs. variables

Our translation from Lustre to SCCharts basically maps
streams to variables. Note that such a mapping is also part
of a traditional Lustre compiler that translates Lustre to, e. g.,

https://www.eclipse.org/elk


C code. We do this mapping at a somewhat higher level, where
the result becomes visible at the SCChart modeling level.

Streams in Lustre are clocked, meaning that they carry a
value in a tick iff a corresponding clock is true in that tick.
Thus, clocks are also streams, of boolean type. Per default,
streams are clocked by the base clock, which is always true.
If we refer to stream x, we mean x as defined in the current
tick, and the compiler must guarantee that x carries a value
whenever it is referenced. More generally, Lustre programs
must be clock-consistent, typically meaning that streams can
be combined using data operators only if they operate on the
same clock.

Variables in SCCharts behave as in, e. g., C or Java, in that
they basically refer to memory cells. This implies that they
always carry a value, and that they persist from one tick to the
next. Thus, if we refer to some variable x, we retrieve the value
that was written to x last, which may be in the current tick or
in some previous tick. Thus, unlike with streams, there is no
clock consistency requirement when operating on variables.

C. Clock operators

As Lustre operates on clocked streams, it provides several
functions that operate on clocks. We here discuss two of these
operators, when and current.

1) Downsampling — when: The Lustre assignment x =
e when c only evaluates e when c is true. Moreover, x is
only defined in those ticks where c holds true. So clocking
introduces two main ideas: absence of values and conditioned
evaluation of expressions. This concept of clocks is also used
to gain a mechanism for expressing control in data-flow.
However, there is no presence or absence check of a value in
Lustre, other than the clocking itself. During code generation
of Lustre, those clocks are translated to conditionals [1], [9].

In SCCharts the clocking can be emulated within a condi-
tioned evaluation for the corresponding expression. Only in
those instances when the clock (implemented as a boolean
variable) is true, the value for x needs to be computed. We
express this with a simplified variant of the ternary operator,
without an explicit else branch—the assignment x = e when c
is translated to x = c? e, which in turn gets translated into if
(c) x = e. This directly reflects the Lustre code generation [9].

2) Upsampling — current: If the clock of a stream x is
false, current x stands for the last known value of x. The
variables of SCCharts naturally support this through their
persistence across ticks. Thus, each occurrence of current x
in KLustre is simply replaced by x in SCCharts.

3) Clocks and Registers: Each operator individually now
realizes the same behavior as in Lustre. Especially the clock-
ing, however, has an effect on the behavior of other operations.
Combining when with the pre operation behaves differently
in SCCharts than originally in Lustre. To account for the
clocked nature of streams, the plain SCCharts pre operator is
not sufficient. Instead, a clocked pre operator is needed that
we added as extended feature to SCCharts.

Fig. 5: Sequential
execution of states

1 x += y;
2 x = 1;
3 x += (y > 2) ? 3;
4 z = x + 4;
5 y = 5;

Fig. 6: KLustre
example with con-
current data-flow
equations, includ-
ing multiple writes
to x

1 x = 1;
2 y = 5;
3 x += y;
4 if (y > 2) x += 3;
5 z = x + 4;

Fig. 7: Sequential
C code resulting
from Fig. 6, il-
lustrating the IUR
protocol

IV. SEQUENTIALLY CONSTRUCTIVE LUSTRE

As explained in the introduction, the translation of Lustre
to SCCharts also raises the question of how the SC MoC that
underlies SCCharts may open the door towards accepting more
Lustre programs than under the standard assumption of just
one value per variable (stream) per tick.

A. Sequentiality in data-flow

In original Lustre, every equation holds globally (w. r. t.
clocks) and defines the current value of a variable. Conse-
quently, recursive definitions that rely on the current value
of variables to define its current value are rejected. With the
notion of sequentiality in the SC MoC, this classical view of a
globally consistent value is relaxed. For example, assignments
that read the current value of the variable they assign are
not rejected but simply overwrite the value in the sense of
imperative programming. This is based on the argument that
in an assignment x = e, there is a clear sequential ordering
between evaluating expression e and assigning the value to x.
There is no concurrency involved that may give rise to race
conditions; thus determinism, which is the overall goal of the
synchronous MoC, is not compromised. The following exam-
ple of a simple counter illustrates this notion of sequentiality.
The equation x = 0 -> x + 1 in SCCharts initializes x with zero.
In subsequent ticks it reads the value of x that is currently held
in memory, and sequentially afterwards, increments the value
by one. This behavior can be realized without explicitly using
the pre operator.

This convenience based on sequentiality also comes at a
price. The substitution principle that applies for original Lustre
does not apply in the SC universe. Splitting x = 0 -> x + 1 into
x = 0 -> y and y = x + 1 would not be schedulable anymore
because both equations depend on each other. The single-
equation version inherently implies a read-write ordering, and
for the two-equation version this information is lost. Thus, it
may be a matter of taste whether one actually wants to program
in a style that takes advantage of sequentiality or not.

B. Sequentiality in control-flow

In Heptagon/Scade 6, if there is a transition from some state
A to some other state B, then A and B cannot be active in
the same tick. If the transition is taken, then either A is still



executed (weak abort) and B is not entered yet (deferred entry,
indicated with a blue circle), or A is not executed anymore
(strong abort, indicated with a red circle) but B is entered
(non-deferred entry). This design choice eliminates write-write
conflicts in case A and B write to the same variable. However,
under the SC MoC, we consider A to be sequentially ordered
before B, thus giving a clear, deterministic semantics even if
both A and B are executed in the same tick. Furthermore,
the SC MoC considers strong/weak aborts to be sequentially
ordered before/after the state they abort. Thus, for example, it
is legal for the trigger of a strong abort to depend on a variable
that is written (in case the abort does not take place) in the
potentially aborted state. For example, in Fig. 5, out is first
set to 15 in state A, then A is weakly aborted since out > 10
holds, and finally out is set to 5 in B.

C. Concurrency

As explained in Sec. III-A, we map Lustre data-flow equa-
tions to concurrent SCChart regions that each handle one
equation. Unlike Lustre, the SC MoC allows multiple concurrent
definitions for the same variable, as long as they can be
scheduled according to the Initialize-Update-Read Protocol
(IURP). Briefly, there may be one initialization (absolute write),
followed by an arbitrary number of confluent updates (relative
writes), followed by an arbitrary number of reads. An update
of a variable x is a write that depends on the current value of x
via some combination function, e. g., addition in x += e, where
the value of e must not depend on x. Updates are confluent if
they use the same combination function. An initialization is
a write that is not an update. This is akin to the combination
functions of Esterel, except that we allow to combine them
with initializations.

As example, consider variable x used in lines 1–4 in the
KLustre code in Fig. 6. The IURP applied to x requires that the
initialization of x in line 2 must be scheduled first, followed by
the updates in lines 1 and 3 in any order, followed by the read
in line 4. Similarly, the write of y (line 5) must be scheduled
before the reads (lines 1 and 3). The resulting dependency
graph is acyclic, thus the KLustre program is schedulable and
valid. A possible resulting C code is shown in Fig. 7.

V. ASSESSMENT

The generation of code from Lustre-like languages is al-
ready a well-studied subject, with numerous compilers avail-
able including the qualified code generator of SCADE, and it
was not a primary objective of this work to add yet another
code synthesis approach. However, since we now have a path
from KLustre to SCCharts, for which there are also several
code generators available, it is a natural question to ask
how the end results compare. To that end, we now examine

3During this work, we noticed that the SCADE diagram from the original
paper [14] was inconsistent with the Lustre code in that the addition operator
was missing. Graphical inconsistencies such as these are another argument
for synthesizing diagrams automatically. Additionally, in the original counting
node [14] the type of o is bool, which is inconsistent with its assigned value.
Here, we use a fixed version.

the whole synthesis chain from a Lustre example through
SCCharts to C code.

Fig. 8a shows the Lustre code of the counting node,
originally presented by Colaco et al. [14]. The corresponding
SCADE diagram is depicted in Fig. 8b. The KIELER IDE allows
to edit the Lustre source code with common editing features,
such as highlighting and code completion. While editing in
the textual editor, a diagram as the one shown in Fig. 8c
is (re-)synthesized automatically whenever the text file is
saved. Similar to SCADE, both equations are depicted in the
graphical representation. However, the diagram synthesis can
be configured interactively to display several variations to fit
the modelers needs. For example, the whole diagram can
be skinned to get a SCADE look-and-feel, see Fig. 8d. The
disconnected components can also be ordered sequentially, as
in Fig. 8e. The sequential ordering is indicated by the red
dashed hyperedge, because v, written in the first equation (the
first line of the Lustre node), is read in the second one, even
though their order is reversed in the textual representation
of the node. Since v is not visible from outside the node,
its graphical input/output representation can be omitted alto-
gether, corresponding to the Lustre substitution principle, see
Fig. 8f.

The KIELER Compiler (KiCo) included in KIELER is con-
figured as depicted in Fig. 8i for the evaluation. First, the
Lustre program is compiled into an SCCharts model. Possible
graphical representation of the generated SCChart are shown in
Fig. 8c to Fig. 8f. The data-flow representation of SCCharts is
translated into its semantically equivalent control-flow oriented
counter-part, shown in Fig. 8g. From there, we use the netlist-
based compilation approach [13].

The compilation approach generates a netlist with guarded
basic blocks from the control-flow graph of the program.
The overhead, which might be introduced by the control-
flow-based compilation approach, can be reduced in stateless
models. After standard optimization techniques the graph is
sequentialized. From here, guards that guard states that are
evaluated in every tick form persistent state patterns, which
always evaluate to true: The guard is true in the first tick
( GO) or if it was true in the previous tick. The final optimized
version is depicted in Fig. 8h.

The C code of the counting node example generated by KiCo
is listed in Fig. 8j. Code from the immediate environment,
such as the reset function and the GO signal which signals
a program start, are omitted here. Hence, the generated logic
function directly resembles the data-flow of the node. This
example demonstrates, using one example, that the generated
code can be still compact and readable even if SCCharts data-
flow equations are translated into a statechart, then into a
control-flow graph and finally into imperative code.

Note that saving the previous value of o is embedded in
the code, because pre is an extended feature of SCCharts and
not part of the underlying expression language. The register
retrieval and save can be observed in Lines 3 and 8 of Fig. 8j.
However, since sequential constructiveness inherently stores
the immediate previous value, the modeler can omit the pre



1 node counting(tick:bool;
2 top:bool) returns (o:int ) ;
3 var v: int ;
4 let
5 o = if tick then v else
6 0 −> pre o + v;
7 v = if top then 1 else 0;
8 tel ;

(a) Lustre, adapted from [14, Fig. 1]2
(b) Manually drawn SCADE diagram,
adapted from [14, Fig. 1]3
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(e) View 3, displaying the sequential flow
of data

(h) Optimized sequential control-flow-graph (SCG)
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(f) View 4, with connected equations

(i) Lustre–SCCharts compilation chain in
KIELER

__df_main

__df_0 __df_d0/ v = top ? 1 : 0

-

__df_1 __df_d1/ o = tick ? v : (0 -> pre(o) + v)

-

(g) Control-flow-oriented SCCharts model

1 void logic (TickData* d) {
2 d−> v = d−>top ? 1 : 0;
3 d−> pre o = d−> reg o;
4 if (! d−> GO) {
5 d−> iop 0 = d−> pre o + d−> v;
6 }
7 d−>o = d−>tick ? d−> v : d−> iop 0;
8 d−> reg o = d−>o;
9 }

(j) logic function for counting node generated by KiCo using
the compilation chain depicted in Fig. 8i; red parts are
omitted when compiling without pre

Fig. 8: From Lustre via SCCharts to C code, with several automatically generated views

operator altogether. In this case, the marked parts in the listing
will not be generated.

Apart from the counting example, we included functional
behavior tests for about 50 other programs. Moreover, we
compared the computation times resulting from the SCCharts
netlist compilation and the Lustre V6 compiler. They indicate
that the translation from Lustre to SCCharts does not impose a
significant performance penalty. However, in order to draw a
more solid conclusion, we feel that more benchmarks with
larger programs/models would be needed. In addition, the
Lustre V6 compiler does not support the state extension.
Therefore, compiler like the Heptagon4 or KCG [2] should
also be included.

VI. RELATED WORK

This paper introduced an approach for enhancing the mod-
eling experience of Lustre programs with visual diagrams.
Graphical data-flow is used in various domains and tools.
Simulink5, Labview6 and Ptolemy7 also use a notion of block
diagram for their diagrams. Besides their different underlying

4http://heptagon.gforge.inria.fr/
5https://de.mathworks.com/products/simulink.html
6http://www.ni.com/getting-started/labview-basics/
7http://ptolemy.berkeley.edu/ptolemyII/

MoC, they all represent actor-oriented data-flow. Each uses
a graphical editing approach, and the user can modify the
diagram via drag and drop of the components. Ptolemy offers
the possibility of an automatic layout, also harnessing ELK.
However, the initial model requires manual graphical editing.

The approach of automatic diagram generation for programs
with a textual syntax has been investigated for other languages
before. Prochnow et al. introduced an automatic Esterel to Safe
State Machine Transformation [15]. Moreover, they elaborated
on the differences between visual and textual editing in practi-
cal use. Especially in terms of comprehensiveness and editing
speed each has advantages and disadvantages. The motivation
was similar to transforming Lustre to SCCharts—the benefits
of both alternatives are combined.

The basic idea of automatically generated diagrams follows
the principle of Model-driven Visualization (MDV) introduced
by Bull et al. [16]. This automatic generation allows for multi-
ple views on the same model. Schneider et al. elaborated more
on this by introducing a meta-model and an infrastructure for
automatic layout. The developed infrastructure is the KLighD
framework that we use for the graphical view generation in
the Lustre context.

The synchronous language Esterel was also extended in



a conservative manner. A sequentially constructive approach
was introduced by Rathlev et al. creating the language SCEst
[17]. SCEst also overcomes some restrictions implied by the
classical synchronous MoC without losing determinacy.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented, to our knowledge for the first
time, a generic approach for synthesizing graphical diagrams
from a variant of textual Lustre. The original goal was
driven by modeling pragmatics, based on the observation
that graphical languages, including SCADE, have their merits
for visualization and documentation, however, their practical
usage can be rather tedious. Thus, by automating the process of
generating customizable graphical views from textual Lustre,
made possible by state-of-the-art layouting algorithms, we
believe to have made a step towards having the best of both
the textual and the graphical worlds.

Beyond that original goal, we also addressed two questions
that concern semantics, irrespective of textual/graphical syn-
tax. First, we made a link from Lustre to SCCharts, basically
by extending SCCharts with data-flow and by mapping clocked
streams to variables. Second, we investigated how the SC MoC
that underlies SCCharts gives meaning to Lustre programs
that classically would be rejected, by harnessing sequential
scheduling information.

We have implemented these concepts in the open source
KIELER tool, for a specific variant of Lustre, termed KLustre.
With that, a programmer may now write Lustre code as usual,
alongside an automatically synthesized visualization that is
updated on the fly (and without significant delay) whenever
the code is saved. That visualization is in fact a valid SCChart
model, meaning that it can be simulated and compiled into
software and hardware. Preliminary experiments indicate that
the code synthesized from Lustre via SCCharts is of reasonable
quality, but further evaluations of that would be needed.

Moreover, there are different programming languages that
are variants of or inspired by Lustre. We chose to build
our own subset of supported Lustre features, but there are
also other Lustre-alike languages that could be used. Sup-
port for Scade, the internal language used in SCADE, would
allow for direct diagram comparison and maybe automatic
diagram generation in SCADE [14]. The language supported
by the Heptagon compiler could also offer a nice entry for
evaluation results. Other than the Lustre V6 compiler, it also
supports automata. It was already considered to create efficient
code [7], thus it is especially interesting for comparison with
the SCCharts code generation.

Finally, we feel that the relationship between the classical
synchronous MoC and the SC MoC in the context of Lustre-
like languages would merit further investigation. This should
include a formal treatment, building for example on the work
by Aguado et al. [18].
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