
Extracting Mode Diagrams from Blech Code
Daniel Lucas∗, Alexander Schulz-Rosengarten†,

Reinhard von Hanxleden†
Department of Computer Science, Kiel University

Kiel, Germany
∗stu124145@mail.uni-kiel.de

†{als, rvh}@informatik.uni-kiel.de

Friedrich Gretz, Franz-Josef Grosch
Robert Bosch GmbH, Corporate Research

Renningen, Germany
{Friedrich.Gretz, Franz-Josef.Grosch}@de.bosch.com

Abstract—Software visualization tools can improve the soft-
ware development process by providing a graphical overview of
source code and enhancing collaboration. We here propose a con-
cept to automatically extract mode diagrams from Blech code, an
imperative synchronous programming language for embedded,
reactive and safety-critical systems. Our main findings are that
the visualization is helpful to understand the stateful nature of
the source code and that it can enhance the collaboration between
developers. It is also found, however, that a good understanding of
the precise diagram semantics meaning of the diagram elements
is key. Lastly, the findings indicate that preference on different
labeling options is highly subjective.

Index Terms—synchronous languages, state machines, mode
diagrams, software visualization, reactive systems

I. INTRODUCTION

Software development is more than the process of writing
source code. It begins by recording the requirements for the
desired software and continues with planning of the software
architecture, its components, and its environment. Only then,
actual source code is written. The process then includes
the generation of documentation. It can be generated with
visualization tools and languages such as UML. Creating such
models can be a tedious task that takes a lot of effort and time.
The purpose of documentation is to offer an overview of the
software (components) and providing a help for understanding
the code base in different abstraction levels. Documentation
is beneficial to use for experienced developers as well as
developers that just started out working on a given project.

Code, however, is not static. Code improvements, refactor-
ing, new features, customer requests or updated technology
are all reasons to change existing code. Therefore, automatic
generation of up-to-date code documentation could enhance
the software development process.

In this paper, we investigate how to harness software
visualization [6] for the Blech programming language [7].
Blech is an imperative synchronous programming language
for embedded, reactive, real-time, safety-critical systems. It is
a synchronous language [2], and is inspired by languages like
Esterel [3], Céu [12] or Sequentially Constructive Statecharts
(SCCharts) [16] that are used to implement stateful behavior.
To illustrate that stateful nature, consider the StopWatchCon-
troller example in Fig. 1. In the initial tick we perform some
initializations and then pause at the await statement in line 10,
which we can consider as the initial state of the program. We

1 activity StopWatchController
2 (startStop: bool, resetLap: bool) // Read−only inputs
3 (display: Display) // Read−write outputs
4 var totalTime: int32
5 var lastLap: int32
6 repeat
7 totalTime = 0
8 lastLap = 0
9 writeTicksToDisplay(totalTime)(display)

10 await startStop // State init
11 repeat
12 cobegin weak
13 await startStop
14 with weak
15 run Measurement(resetLap)(totalTime, lastLap, display)
16 end
17 writeTicksToDisplay(totalTime)(display)
18 await startStop or resetLap // State stop
19 // Run again if only startStop was pressed
20 until resetLap end // Back to init if resetLap was pressed
21 end
22 end

(a) Original Blech code.

StopWatchController

init

Measurement

+
stop

startStop
startStop

startStop or resetLap
1: resetLap

2:

-

(b) The corresponding mode diagram, automatically extracted with
the approach presented here.

Fig. 1: The StopWatchController example.

remain in that state until, in some future reaction, the Boolean
flag startStop is true and we enter a repeat loop. In that
loop, the program concurrently does two things (over several
reaction steps): it waits for another occurrence of startStop,
while also executing the Measurement sub-activity. After that,
we wait for the startStop or resetLap flags; if the latter occurs,
we loop back to the initial state.

While the underlying state machine is explicitly laid down in
the program, extracting it requires some fairly careful reading
of the source code. In real life, the code quickly becomes
more complex than this simple example and keeping track
of the stateful behavior may become a challenging task. This
is where software visualization and the work presented here
come into play.978-1-6654-1825-6/21/$31.00 ©2021 IEEE

Contributions and Outline

We here investigate the automatic synthesis of mode dia-
grams, such as Fig. 1b, from Blech code. We first present in
Sec. II a structural translation (“Phase 1”), which takes care
of directly translating Blech code into SCCharts statement by
statement. This results in an SCChart that reflects the modes
in the given Blech code. However, the states will not be
labelled, which limits their usefulness, and the diagram will
typically be quite bloated. This motivates “Phase 2,” presented
in Sec. III, where we propose different approaches to label
mode diagrams based on Blech source code annotations, and
“Phase 3,” covered in Sec. IV, where we present optimization
approaches to generate more concise mode diagrams. Sec. V
presents evaluation results based on feedback from industrial
Blech users. We wrap up with a discussion of further related
work in Sec. VI and conclusions in Sec. VII.

For space considerations, we will focus here on the concepts
underlying our approach. For full technical detail, we refer to
the thesis of the first author [8] .

A. Background on SCCharts

Our mode diagrams are finite state machines with hierarchy
and concurrency. It is not our goal to find an accurate repre-
sentation of a low-level control flow graph. The term mode
emphasizes the objective to represent somewhat higher-level
modes of operation of a program. A mode may persist over
several reactions and comprise an arbitrary amount of program
states (evaluations of program counters and variables). We
borrow syntax and semantics from SCCharts [16]. However,
we only use a subset of SCCharts that visualizes the high-level
behavior, omitting transition effects, variable declarations, etc.

To get full value from the mode diagrams, we now sum-
marize the key syntactical SCChart elements used here. States
with a thick border, as state init in Fig. 1b, are initial states,
through which a super state, such as StopWatchController, is
entered. States with a double border are final states, which
denote termination of the enclosing super state. Super states
consist of one or more regions that execute concurrently, see
for example Fig. 7.

SCCharts also adopt the distinction introduced by Sync-
Charts [1] between delayed transitions, drawn with a solid
line, and immediate transitions, drawn with a dashed line.
Roughly speaking, delayed transitions denote tick/reaction
boundaries, whereas immediate transitions denote control flow
within a reaction. When a state is entered in a reaction,
the state can be left within the same reaction only through
immediate transition. E. g., in the StopWatchController, the stop
state is entered when we are in the Measurement state at the
beginning of the tick and the startStop event is present. Since
stop does not have any outgoing immediate transitions, we
end the reaction in that state. To leave the state we require
another event startStop in a subsequent reaction, or an event
resetLap. Connectors, drawn as a small black disk, are states
that are guaranteed to be left again in the tick they are entered.
Transitions leaving connectors must be immediate, and there
must be a default transtion that is taken unconditionally. If

a state or connector has multiple outgoing transtions, these
are checked in order of their priority, where 1 is the highest
priority. Coming back to the StopWatchController in Fig. 1,
we observe that if we are in stop at the beginning of the tick,
we advance to init if resetLap is present, and we transition to
Measurement (via the default transition from the connector) if
resetLap is present.

Finally, SCCharts also offers different types for transitions
that leave super states. Termination transitions, indicated with
a green triangle, are taken when all regions in a super state
have reached a final state. Strong abort transtions, indicated
with a red circle, suppress execution of the inner behavior of
the super state when they are taken. Transitions out of a super
state without any adornments are weak abort transtions, which
permit inner behavior (a “last wish”) of the left super state.
Strong aborts and termination transitions are used for example
to translate the when-abort statement, as shown in Fig. 9.

In addition to these pre-existing SCCharts language features,
our mode diagrams also include final regions, indicated by a
double outline, as illustrated in Fig. 7. Final regions effectively
make each of their states final, which allows to capture weak
branches of the Blech cobegin statement, see also Sec. II-F.

II. PHASE 1: STRUCTURAL TRANSLATION

Generally, the translation rules are applied recursively. The
body of a hierarchical Blech element will be translated before
the rest of the list on the same hierarchy level is evaluated.
Unnecessary hierarchies originating from this procedure, as
well as hierarchies that contain no stateful behavior, will be
simplified in Phase 3.

Some translation rules append an empty exit state to the
chart representing a Blech construct. This additional exit state
serves as a connection point when combining two charts in
sequence, for instance. The connecting transition emanates
from the designated exit state and therefore does not interfere
with transitions that are relevant for the inner behavior of the
first state chart in the sequence. As before, unnecessary exit
states will be removed in Phase 3.

A. Activities

In Blech, an activity is an encapsulated piece of code that
contains reactive behavior with at least one await statement.
Besides standard sequential composition, behaviors can be
composed concurrently using cobegin and hierarchically using
run statements. This differs from functions in Blech which
must not contain stateful behavior and are used to encapsulate
sequential computation that finishes immediately within a tick.
Consequently, functions are ignored by our synthesis.

The designated entry point activity in the Blech source code
will always be the outermost part of our visualization, unless
the user selects another activity to start the visualization from.

Blech activities declare two list of parameters: read-only
inputs and read-write outputs. This significantly simplifies the
readability of interfaces and allows for a simple causality
analysis. For our visualization parameters, that distinction

activity act (inp: int32) (out: bool)
//...

end

act

input int inp
output bool out

a b

-

Fig. 2: Blech activity and synthesized SCChart.

run act(inp)(out) a
act

input int inp
output int out

-

b

Fig. 3: Blech run statement and synthesized SCChart.

await condition a b
condition

Fig. 4: Blech await statement and synthesized SCChart.

could be ignored. However, parameters may occur in expres-
sions guarding mode transitions. In order to help the user
to distinguish local activity variables from parameters we
preserve the declared parameters, as shown in Fig. 2.

An activity is visualized and initialized as follows.

1) Create an empty SCChart with the name of the activity.
2) Add input and output variables of the activity as the input

and output variables of the SCChart using the same names
and types.

3) Add an initial state and a final state.
4) Translate the activity’s body and add the result to the

body of the current SCChart.
5) Connect the final state of the inner (body) SCChart to

the final state of the current chart, if it exists. Otherwise
(if the inner SCChart corresponds to an infinite behavior
without an exit state) remove the obsolete final state from
the current SCChart.

An example of the synthesis for an activity is given by
Fig. 2. The Blech code contains a comment that abstracts
away the code of the body. The abstracted inner behavior is
the square that is connected to the initial state a and final
state b via immediate transitions. The name of the activity is
preserved, as well as the input and output variables.

The names of the states a and b are added here for easier
description of the figures. Those labels will not be added
automatically through the synthesis. However, it is possible to
add custom labels for states in Phase 2, as will be discussed
in Sec. III.

Now that the translation of activities has been established,
we consider the statements in their bodies.

B. Run

The run statement calls one Blech activity from another. For
the sake of brevity, we skip the step-by-step translation rules
and simply illustrate the translation in Fig. 3.

repeat
// ...

until condition end
a

b
-

c

2:

1: condition

Fig. 5: Blech repeat statement and synthesized SCChart.

while condition repeat
// ...

end

b
-

c

1: condition

2:

Fig. 6: Blech while statement and synthesized SCChart.

C. Await

The await statement ends the current reaction of a thread.
In the next tick, the thread will resume execution at this
point, check the awaited condition and, if it holds, proceed
execution. In the context of this work, await is the most
important statement as it clearly defines the end of a state
and a transition to the next one. Fig. 4 shows the translation
of an await statement.

D. Repeat

A repeat loop executes its body and then exits if the
condition is true, or restarts otherwise. Fig. 5 illustrates the
translation rule. Optionally, the until condition can be left out,
which then yields an infinite loop.

E. While

The while construct is very similar to the repeat construct
just described. The main difference in the workflow is that the
condition is checked at the beginning of the loop. The loop-
starting state, which was considered to be the previous state
in previous translation steps, therefore has a transition into a
complex state containing the body of the loop and to a state
that was newly added and is the starting point for connecting
subsequent statements. If the previous state is simple, it simply
serves as a connection point for transitions and is not really a
state. If this is the case, the previous node can be replaced by
a connector (see Sec. I-A), as shown in Fig. 6.

F. Cobegin

A cobegin statement represents concurrency. Concurrent
branches can be weak, which means they are weakly aborted
by other branches that have terminated. For example, an
infinite loop in a weak branch can be aborted by a simple await
statement in a concurrent branch. The awaiting branch termi-
nates on a given condition and then aborts the weak branch.
When aborted, a weak branch will continue to execute until
the current tick ends, for example with an await statement.

cobegin weak
// ..

with
// ..

end

a

-

-
b

Fig. 7: Blech cobegin statement, with a weak and a strong
branch, and synthesized SCChart. The weak branch is trans-
lated to a final region, indicated by a double outline.

if condition then
// ..

else
// ..

end

b
-

c
-

d

1: condition

2:

Fig. 8: Blech if-else statement and synthesized SCChart. The
initial state is transformed into a connector state.

when condition
abort

// ..
end

a

b
-

c

1: condition

2:

Fig. 9: Blech when-abort statement and synthesized SCChart.

when condition reset
// ...

end a

b
-

c

1: condition

2:

Fig. 10: Blech when-reset statement and synthesized SCChart.

The cobegin translation is illustrated in Fig. 7. As already
mentioned in Sec. I-A, weak branches are handled by final
regions.

G. If-else

The if-else transformation is rather straightforward and
illustrated in Fig. 8. If there are more else cases, more super
states are added accordingly.

H. When-abort

Fig. 9 illustrates the translation of the when-abort statement.
The inner behavior is aborted when a specific condition is met,
but only after the execution in the body was halted for the first
time. After that, the condition is checked at the beginning of
each reaction.

activity runningEx
(in1: int32, in2: bool, in3: bool)
repeat

if in1 > 42 then
await in2

else then
cobegin

await in2
with

await in3
end

end
end

end

(a) Blech code.

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in2

-

in3

-

-

1: 42 < in1

2:

-

-

(b) Mode diagram synthesized by Phase 1.

Fig. 11: Running example to illustrate Phase 1 and, in Fig. 16,
Phase 3.

I. When-reset

The when-reset is similar to the when-abort, except that the
inner behavior is restarted when the condition is met. This is
illustrated in Fig. 10.

J. Running example after the translation step

The code in Fig. 11a will serve as a running example to
illustrate the different phases. Fig. 11b shows the visualiza-
tion of the running example after the initial translation step.
The single statements have been transformed into their set
SCChart counterparts. The bodies of hierarchical constructs
are contained inside complex states. The activity name and
the parameters were preserved. Await statements were realized
with delayed transitions.

III. PHASE 2: LABEL EXTRACTION

As could be seen in Fig. 11b, the mode diagram synthesis
described so far produces states with empty labels (except for
activity call states). In order to talk about individual states
in the figures we had to additionally inscribe labels such as
“a” or “b”. This shows the necessity to provide the user with
a mechanism to specify labels for code locations which are
then transferred to the corresponding states in SCCharts. In
this way visualized states may have meaningful names that
can be referred to in a code review or documentation.

@@[label=”aLabel”]
await condition

aLabel
condition

Fig. 12: Blech await statement with label specification and
synthesized SCChart.

We propose to use Blech pragmas for the specification
of labels. Pragmas are distinguished by a double @ prefix.
Essentially, they act like comments with a special meaning
in the source code. We adopt a @@[keyword=”text”] syntax
wherein various keywords denote the various labeling options
as explained in the following.

We discuss two approaches to labeling the code locations:
a state-only and an extended approach.

A. State-only labeling

The await statement is the primary source of states and
transitions in our diagrams. Often, the code before the await
implements one mode of operation and the code after the await
implements the next mode. For instance, in our introductory
example code in Fig. 1a, the code before line 10 is concerned
with the initialization, while the code after line 10 starts a
measurement. Here we would like to give a meaningful name,
such as init, to the state the program is in while waiting for
a certain condition. In Fig. 1a a simple comment is used
to describe this location. To reflect this in the diagram, we
propose a @@[label=”text”] pragma which is placed before an
await statement to label the state that the awaiting transition
emanates from, as illustrated in Fig. 12.

B. Extended labeling approach

The extended approach allows for a more fine grained
labeling of the elements. As we will see later, after some
simplification steps, the only hierarchies that remain in the
SCChart are due to activity calls or cobegin constructs. Since
activity calls already have a label given by the activity they are
referencing, no extra label is needed. Hence we consider the
visual elements representing a cobegin construct. The elements
to be labeled are different regions, each representing a cobegin
branch, and the complex node containing these regions. For
our extended labeling approach, we add the cobegin and branch
pragma keywords.

As shown in Fig. 13, the labels are assigned using @@
[cobegin=”text”] for the complex node and @@[branch=”text
”] for a branch. All labels specified in the Blech code for
the visualization must be placed before the cobegin construct.
Consequently, a branch label is needed for each branch, when
labeling the different regions, in order to make the labeling
unambiguous.

IV. PHASE 3: TRANSIENT STATE ELIMINATION &
HIERARCHY FLATTENING

The translation above produces rather bloated diagrams as
can be seen in our running example in Fig. 11b. For instance,
the if and repeat statements induce unnecessary hierarchies,

@@[cobegin=”calculation label”]
@@[branch= ”calculation A”]
@@[branch= ”calculation B”]
cobegin

// ...
with

// ...
end

calculation label

a c

- calculation A

a c

- calculation B

Fig. 13: Region labeling with the advanced labeling approach.

a b c d
awtCond

-

e

1: abrtCond

2:

(a) Before flattening.

a b
c d

e2: awtCond

1: abrtCond

(b) After flattening.

Fig. 14: An example of how hierarchy is flattened for the
when-abort construct.

which only obscure the stateful nature of the code. Further-
more, some of the generated states turn out to be superfluous,
too. In our example, in every super-state there is a final state
that is entered and left immediately. Such transient states do
not convey any information and will be removed as well.

Thus after generating a diagram in Phases 1 and 2, we
propose to simplify the result in Phase 3, which is divided
into two steps. Step 1 flattens hierarchy levels, as discussed
in Sec. IV-A. In Step 2 we collapse superfluous immediate
transitions, as covered in Sec. IV-B. Step 2 follows after
Step 1 because hierarchy flattening may produce additional
immediate transitions that can be collapsed as well.

A. Hierarchy Flattening

Most translation rules in Sec. II introduce complex states
with inner behavior. Those states add hierarchy to the mode
diagram, which may or may not be desired by the modeler.

1) Aborts: Fig. 14a shows the mode diagram produced by
Phase 1 for the following snippet of code.

when abrtCond abort
await awtCond

end

The hierarchical structure of the code is reflected in the
hierarchical construction of the diagram. Note that the only
state with a delayed outgoing transition is state b. Thus the
only way that the super-state comprising b, c and d can be
aborted is if it is waiting in b and abrtCond becomes true.
This insight is explicitly shown in Fig. 14b. The hierarchy is
removed (or, as we say here, flattened), all states are preserved,
only their final or initial status is changed to a regular status,
and the aborting transition directly links states b and e.

In this example, one may argue that removing the hierarchy
has simplified the diagram. However, we have also lost some
of the structure of the original Blech code. Furthermore, if

a

b c d
condition

-

e f

-
g

(a) Before flattening.

a e f

-

g

1: condition

2:

(b) After flattening.

Fig. 15: The weak-abort pattern.

the body that is aborted contains not just one but many states,
we would have to add an abort-transition for each of these
states, which goes agains the “write-things-once principle”
that generally motivates hierarchy in Statecharts. Hence, we
propose to allow the user to configure whether hierarchy
for aborts should be eliminated or not. As confirmed by the
evaluation in Sec. V, users do appreciate this flexibility.

2) Activities: A run statement is represented by a special
hierarchical state that calls into the respective sub-chart. Flat-
tening this call essentially means to inline the mode diagram
of the sub-chart in place of the call state. If done recursively
from the entry point diagram, the result would be a global
mode diagram of the entire program. However, for non-trivial
programs this may become confusing. Activities represent self-
contained parts of the source code and thus we generally
recommend to also inspect their respective mode diagrams
separately. Sometimes, however, code might be split into
sub-activities for some implementation specific reasons but
logically they are best understood together. For such cases we
propose to make the inlining of call hierarchies configurable
in the visualization tool.

3) Cobegin & Weak-Abort pattern: Recall that the cobegin
construct represents concurrency, and that the synthesized

mode diagram has multiple concurrent regions. In general
we cannot flatten these regions without constructing a cross-
product of the region’s states. It would be counter-intuitive
to clutter the visualization with this artificial complexity. In
fact, the very purpose of cobegin is to disassemble a complex
behavior into separate easy-to-grasp behaviors. However, we
can identify special patterns where a simplified visualization
is possible.

A common pattern is to use cobegin to model weak preemp-
tion, where one branch contains only a single await statement
(the preemption condition) and the other branches are weak
and have some stateful behavior inside. The weak branches
will be weakly aborted when the branch containing only the
await statement terminates. Fig. 15 illustrates the flattening
with the weak-abort pattern, with a strong awaiting branch.

Our implementation can also flatten hierarchies introduced
by the other Blech statements, such as conditionals, but for
brevity we skip their discussion.

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1 in2

2:

-

(a) Result after hierarchy flattening.

runningEx
input int32 in1
input bool in2
input bool in3

in2

-

in3

-

1: 42 < in1

in2

2:

-

(b) Result after eliminating transient states.

Fig. 16: Effect of Phase 3 on the running example diagram
from Fig. 11b

Note that flattening hierarchy and removing complex states
has implications on the labels described in Sec. III. Labelled
complex states are due to either run statements or cobegin

constructs. Their labels will be discarded when flattening
the hierarchy. Labels which are attached to simple states, as
discussed in Sec. III-A, are not affected by the flattening step.

4) Running example after flattening of hierarchy: Fig. 16a
shows the running example after the hierarchy flattening step.
The hierarchies of the if−then−else and repeat statements are
flattened. Incoming edges changed their targets to the former
initial states, whereas outgoing edges changed their source to
the former final states. The hierarchy of the cobegin construct
was not flattened, since it does not match the described weak-
abort pattern. However, there are many transient states, some
of them have been introduced by the flattening step. This
motivates the optimization described next.

B. Transient State Elimination

Transient states are states whose outgoing transitions are
all immediate. These states serve as connection points during
the translation and flattening phases, but they do not represent
any mode of operation of the program. In order to obtain a
concise mode diagram we should remove transient states as
far as possible. Transient states are removed by connecting
each predecessor state with each successor state by a direct
transition, possibly merging the guards, if there are any.

The challenge is to maintain the correct use of immediate
termination transitions. They are used for exiting complex
states as discussed earlier. Some of them are transformed
during the flattening of hierarchies as covered in Sec. IV-A, but

not all. Plus, depending on configuration settings specifying
that some degree of flattening is not desired, more termination
transitions are present. Their presence has to be considered
when proposing the collapse of transitions.

Fig. 16b shows the final mode diagram for the running
example after eliminating transient states. This is now quite
compact and we argue that its structure is probably close to
how a human programmer would think about the Blech code.
For technical details on how this translation is achieved, under
consideration of preserving labels as well as possible, we refer
to [8]

V. EVALUATION

To validate the approach proposed here, we have imple-
mented a prototype for extracting mode diagrams from Blech
code and have asked four Blech developers from industry
to evaluate it. The developers were given visualizations of
real Blech code examples as well as artificial examples that
illustrate the different layout options as described earlier. The
experts were asked to validate the given visualizations for
correctness, to assess whether the visualization is helpful to
understand the given code, and to give their opinion on the
representation. For those examples with several visualization
options, they were asked to chose the one they liked most and
explain their choice.

The general feedback was that the visualizations are helpful,
especially if the code base is unknown or things are dis-
cussed with people who are not familiar with the code base.
According to their overall assessment, the generated mode
diagrams offer good insights, but still leave room for further
improvement.

One finding was that it is hierarchy flattening is desirable in
most but not all cases. Generally, hierarchies induced by run
and abort statements should be preserved. Therefore, having
flattening configurable is desired and will be kept.

The feedback to the proposed concept and suggestions by
the experts revealed that labeling is a difficult topic, where
experts have very individual preferences. Generally, there are
multiple options to realize labels in terms of their declaration,
place and handling (merging, discarding, etc.). A quantitative
validation of different variations with a broad group of devel-
opers should help to determine the best solution for default
settings.

One observation was that the indication of weak branches
of cobegin constructs is too subtle. This is plausible, as the
added rectangle for final regions in SCCharts is a light grey
color on a white background. A straightforward approach to
remedy this would be to simply use a stronger color to indicate
final regions or including the “weak” keyword in the label.
However, both solutions may be rather confusing and are not
a distinct visual clue.

Finally, it became clear that knowledge of SCCharts is
required to fully understand the visualization. Some form of
learning or guide for users should be available for the tool to
do its job without requiring the user to do research on their
own. The need to understand SCCharts semantics raises the

question of course, whether such details are needed or if a
basic state chart with the most basic transitions would suffice,
as further discussed in the conclusions in the last section.

VI. RELATED WORK

For synchronous languages, there has been previous work
to transform imperative programs into statechart representa-
tions. For example, Prochnow et al. proposed to synthesize
SyncCharts [9] from Esterel. While our approach follows the
same principle of structural statement-by-statement translation,
the general goal differs. Previous approaches focused on full
semantic equivalence between the programming languages and
the graphical modeling notation. We here aim to provide
automatically generated documentation with a higher level of
abstraction. Hence, we focus on control-flow structures that
expose the implicit stateful nature of the underlying program,
and explicitly leave out most data-related execution aspects.

Outside the context of synchronous languages, Sen and
Mall [13] present ways to extract state machines from object-
oriented languages. They analyze the behavior of classes and
infer state machines describing the class behavior. Approaches
by Giomi [5] and Said et al. [11] describe state machine
extractions based on control flow to represent the program’s
state space. Giomi processes hardware description languages
and creates states based on wait statements in the control-flow
graph. Said et al. propose a similar approach for C code but
apply special state variable mining to detect relevant states.
Compared to these approaches, we do not aim to visualize
the implicit state space of a Blech program but its inherent
operation modes, explicitly expressed in await statements.

To recover implicit state machine structures in imperative
code, Somé and Lethbridge [15] use a pattern-based approach.
They detect special nested choice patterns and switch state-
ments and interpret and visualize these as state machines. This
procedure is not necessary for a synchronous language such
as Blech, since the await already explicitly separates states.

Another direction in this context, especially when working
with legacy C code, is to generate a graphical representation
for the program to compensate missing documentation and
improve understandability. Smyth et al. [14] transform control
structures and statements of a C programs into equivalent
SCCharts. The EHANDBOOK1 allows to extract graphical
models from C code. It applies a more dataflow-oriented
approach based on a flat program dependence graphs. In
contrast to these approaches, we here focus on a more abstract
view of the underlying program and its modes of operation,
rather than a fully functional graphical replacement.

Aside from language-specific solutions, there is also the
general field of software visualization [6]. The goal is to
improve the understanding of given software artifacts by using
various different graphical representations. One example in
this area is the ExplorViz [4] tool. It takes an entire software
system as input and creates an interactive “3D city” model to
display the communications between the different components,

1http:/www.etas.com/ehandbook

http:/www.etas.com/ehandbook

packages, and classes. Rentz et al. [10] present an interactive
graphical approach for exploring bundles, their dependencies,
and services in OSGi software projects. Our Blech mode
diagrams likewise emphasize a more high-level view on the
software but may also be used during development to have an
on-the-fly graphical representation of a specific activity. This
concept of transient views is similar to tools like mbedder2

that feature fluent and interchangeable editing of a textual and
graphical representations.

VII. CONCLUSIONS AND OUTLOOK

We have presented an approach to automatically extract
mode diagrams from the so far purely textual Blech language.
The stateful nature of Blech allowed for a natural mapping
from Blech code to modes/states and transitions. We postulate
that such a translation would also be natural for other textual
languages for developing reactive systems.

The mode diagrams are effectively a slightly extended and
abstracted variant of SCCharts. This choice made it simple to
capture precisely the semantics of the state-relevant part of the
Blech language, which is not surprising given that Blech was
inspired by the sequentially-constructive model of computation
realized in SCCharts [7]. Furthermore, we could harness the
existing open-source infrastructure for SCCharts to create the
mode diagrams, crucially including the ability to automatically
compute a layout for them.

The preliminary feedback from industrial users was encour-
aging, but also pointed to a number of still open questions
and issues. The users also confirmed that preferences on
mode diagrams are quite individual. Thus, flexibility and
configurability for the mode diagram synthesis seems key.
This may also include, as part of possible future work, the
ability to choose how much “semantic accuracy” the mode
diagrams should provide. Our focus so far was to provide
a diagram synthesis that abstracted from run-time behavior
in particular concerning data handling, but that still precisely
captured possible state traces in reactions. That goal implied
the need to differentiate, e. g., between immediate and delayed
transitions and between different types of abort. However, at
least for some users that was still too much detail, and made
the mode diagrams less obvious to understand than a plain
state diagram with just one type of transition would have been.

Another possible improvement, also according to the feed-
back from the industrial users, would be the merge of awaiting
transitions followed by a decision point (i. e. if-else, repeat-
until). That merge is not trivial regarding the triggers on the
transitions. If one would simply merge the triggers from the
delayed transition with the branches of the if-else, the label
of the await would be duplicated. It is doubtful that this
is an optimal and compact solution. Further problems arise
if variables are used in the if-else conditions and the await
statement. Complicated conditions might emerge this way.

Boolean optimizations and smart simplifications have to be
made here to make the merge viable.

2http://mbeddr.com/

On a practical implementation side, a full integration into
Visual Studio Code would allow for example to link the ele-
ments in the code with their visual representation, as is already
the case in KIELER when working with textual SCCharts and
their visualization. Clicking in the visualization could highlight
the corresponding parts in the code and vice versa, a feature
that several industrial users had asked for.

REFERENCES

[1] Charles André. Computing SyncCharts reactions. Electr. Notes Theor.
Comput. Sci., 88:3–19, 2004.

[2] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The Synchronous Languages
Twelve Years Later. In Proc. IEEE, Special Issue on Embedded Systems,
volume 91, pages 64–83, Piscataway, NJ, USA, January 2003. IEEE.

[3] Gérard Berry. The foundations of Esterel. In Proof, Language,
and Interaction: Essays in Honour of Robin Milner, pages 425–454,
Cambridge, MA, USA, 2000. MIT Press.

[4] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring.
Live trace visualization for comprehending large software landscapes:
The ExplorViz approach. In Proceedings of the 1st IEEE International
Working Conference on Software Visualization (VISSOFT’13), pages 1–
4, September 2013.

[5] Jean-Charles Giomi. Finite state machine extraction from hardware de-
scription languages. In Proceedings of Eighth International Application
Specific Integrated Circuits Conference, pages 353–357. IEEE, 1995.

[6] Denis Gračanin, Krešimir Matković, and Mohamed Eltoweissy. Soft-
ware visualization. Innovations in Systems and Software Engineering,
1(2):221–230, 2005.

[7] Friedrich Gretz and Franz-Josef Grosch. Blech, imperative synchronous
programming! In Proc. Forum on Specification Design Languages (FDL’
18), pages 5–16, September 2018.

[8] Daniel Lucas. Extraction of mode diagrams from Blech. Master thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, April 2020. https://rtsys.informatik.uni-kiel.de/∼biblio/downloads/
theses/dalu-mt.pdf.

[9] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Syn-
thesizing Safe State Machines from Esterel. In Proceedings of ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’06), Ottawa, Canada, June 2006.

[10] Niklas Rentz, Christian Dams, and Reinhard von Hanxleden. Interactive
visualization for OSGi-based projects. In 2020 Working Conference on
Software Visualization (VISSOFT), pages 84–88, Adelaide, Australia,
September 2020. IEEE.

[11] Wasim Said, Jochen Quante, and Rainer Koschke. On state machine
mining from embedded control software. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
138–148. IEEE, 2018.

[12] Francisco Sant’Anna, Roberto Ierusalimschy, Noemi de La Rocque Ro-
driguez, Silvana Rossetto, and Adriano Branco. The design and im-
plementation of the synchronous language céu. ACM Trans. Embedded
Comput. Syst., 16(4):98:1–98:26, July 2017.

[13] Tamal Sen and Rajib Mall. Extracting finite state representation of Java
programs. Software & Systems Modeling, 15(2):497–511, 2016.

[14] Steven Smyth, Stephan Lenga, and Reinhard von Hanxleden. Model
extraction for legacy C programs with SCCharts. In Proceedings of
the 7th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA ’16), Doctoral Symposium,
volume 74 of Electronic Communications of the EASST, Corfu, Greece,
October 2016. With accompanying poster.

[15] Stéphane S. Somé and Timothy C. Lethbridge. Enhancing program
comprehension with recovered state models. In Proceedings 10th In-
ternational Workshop on Program Comprehension, pages 85–93. IEEE,
2002.

[16] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven
Smyth, Michael Mendler, Joaquı́n Aguado, Stephen Mercer, and Owen
O’Brien. SCCharts: Sequentially Constructive Statecharts for safety-
critical applications. In Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’14), pages 372–383,
Edinburgh, UK, June 2014. ACM.

http://mbeddr.com/
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/dalu-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/dalu-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola16-poster.pdf

