
Augmenting State Models with Data Flow

Nis Wechselberg (�), Alexander Schulz-Rosengarten,
Steven Smyth, and Reinhard von Hanxleden

Real-Time and Embedded Systems Group
Department of Computer Science

Kiel University
Olshausenstr. 40, 24118 Kiel, Germany

{nbw|als|ssm|rvh}@informatik.uni-kiel.de

Abstract. Numerous modeling languages have adapted a graphical syn-
tax that emphasizes control flow or state rather than data flow. We here
refer to these as state diagrams, which include classic control flow dia-
grams as well as for example Statecharts. State diagrams are usually con-
sidered to be fairly easy to comprehend and to facilitate the understand-
ing of the general system behavior. However, finding data dependencies
between concurrent activities can be difficult as these dependencies must
be deduced by matching textual variable references.
We here investigate how to extract data flow information from state dia-
grams and how to make that information more accessible to the modeler.
A key enabler is automatic layout, which allows to automatically create
dynamic, customized views from a given model. To set the stage, we
propose a taxonomy of state and data-flow based modeling and viewing
approaches. We then compare traditional, static view approaches with
dynamic views. We present implementation results based on the open-
source Ptolemy and KIELER frameworks and the Eclipse Layout Kernel.

1 Introduction

In model-driven engineering (MDE), instead of directly programming a certain
behavior, the developer creates a model, specifying the behavior of the system
in a more abstract form. The model is then usually used to generate specific
code for the target system or to simulate the behavior beforehand. One feature
often found in modeling languages is a graphical diagram of the model, be it
as the primary input like in Scade1, Simulink2, LabView3, or Ptolemy4 [20] or
generated from a textual model like in SCCharts5 [12].

The graphical diagrams can be grouped in two major styles, control flow
diagrams, which include state diagrams, and data flow diagrams. Both of theses
styles have their own benefits and drawbacks in practical application.

1 http://www.esterel-technologies.com/products/scade-suite
2 https://de.mathworks.com/products/simulink
3 https://www.ni.com/labview
4 https://ptolemy.eecs.berkeley.edu/ptolemyII
5 https://rtsys.informatik.uni-kiel.de/kieler

http://www.esterel-technologies.com/products/scade-suite
https://de.mathworks.com/products/simulink
https://www.ni.com/labview
https://ptolemy.eecs.berkeley.edu/ptolemyII
https://rtsys.informatik.uni-kiel.de/kieler
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Fig. 1: State and data flow diagrams

State diagrams are usually composed of states and transitions. States are
places the execution of the program rests in, while transitions control the change
from one state to another. A basic example of a state diagram can be seen in
Fig. 1a. The initial state Init is highlighted by a bold outline. The outgoing
transition from Init is guarded by the trigger true, meaning it is always taken.
As soon as the transition is taken the Output action comes into effect, in this
case setting the Cyel output to 1 and other outputs to 0. The control flow then
reaches the state YellowOn. From this point on, the control alternates between
the states YellowOn and YellowOff each time the input Sec is present. Every time
the state is changed, the output Cyel is turned to either 0 or 1.

Most languages expand this basic form of state diagrams by adding more
features such as, for example, concurrent control flows or hierarchical composi-
tion of state diagrams. One benefit of state diagrams is that the model is usually
close to the natural description of the behavior and to the developer’s mental
model. However, as noted before [2], some model aspects are rather difficult to
infer from state diagrams. For example, if the model employs concurrency and
shared data, the exact nature of data sharing is not graphically visualized, but
requires the modeler to scan the textual transition labels and look for common
variable names.

More insight in the usage of shared data is presented in data flow diagrams.
The nodes in a data flow diagram represent actors that are all executed con-
currently [17]. Two actors are connected if they share data. A simple example
is shown in Fig. 1b. The input signal Sec is passed to the CarLightNormal and
PedestrianLightNormal actors, which communicate through Pgo and Pstop and
produce the outputs Pred, Pgrn and so forth.

Motivation One way to overcome the shortcomings of a specific diagram style
(state or data flow) is the combination of the different aspects. This approach
is known as multimodeling. Here multiple different kinds of diagrams can be
combined to form the complete model. This approach has been used in Ptolemy
II [20] by embedding modal models, which contain some form of extended state
machine, into normal data flow models and allowing refinements of states in
state machines to contain data flow models. Multimodelling is now well under-



stood from a semantic level. However, as we argue here, there is still room for
improvement concerning the pragmatics of multimodelling [8], that is, how to
support the user in applying multimodeling in a productive manner. Specifi-
cally, the traditional modeling approach of having the modeler produce the one
and only static view of a model, which we here refer to as a static view, limits
productivity and hampers human model analysis and understanding.

Contributions / Outline We first propose a taxonomy of modeling and viewing
alternatives, see Sec. 2. In Sec. 3, we survey traditional approaches based on
static views in more detail. The main contribution follows in Sec. 4, where we
present how to automatically derive hybrid state/data dynamic views from state
models. We also investigate how dynamic views can help model analysis, in par-
ticular concerning schedulability and synthesizability. Related work is discussed
in Sec. 5. We conclude in Sec. 6.

2 State and Data—A Taxonomy of Models and Views

In the domain of software engineering, the distinction of models, views and
controllers is common place, not the least because of the MVC pattern [21], the
perhaps most widely employed software design pattern [9]. However, in the MDE
community this distinction seems less common, even though it can (and as we
argue should) be employed there as well.

2.1 Models vs. Views

State and data diagrams adhere to some concrete, visual syntax, which for ex-
ample entails that edges (representing for example state transitions) must have
some source and sink nodes (representing a states). We say that such a diagram
is a view of some underlying model, which comes with a certain semantics. The
work flow of today’s modeling tools typically prescribes that the model devel-
oper directly works on such graphical views, as shown in Fig. 1, using some
WYSIWYG graphical editor. This is so common that modelers typically regard
the view they draw as “the model,” even though the modeling tool first has to
translate that view into a model. However, as argued elsewhere, this unification
of view and model has some drawbacks [8]. To just name a few, modelers often
spend an inordinate amount of time with drawing activities [16]; comparison and
version management of visual models is difficult; there is just one and only view
for a model. In particular this last issue is central to the work presented in this
paper, as we wish to argue that especially when working on applications that
have both a state and a data aspect, one would like to have flexible, dynamic
views available.

As a general remark, in our experience this unfortunate unification of models
and views in MDE is mainly due to two factors: (1) the automatic synthesis of
a view from a model requires automatic graph drawing capabilities, which most
tools lack, (2) users want to keep control of the views and are sceptical that



an automatic drawing algorithm can do a good job, just as the first high-level
language compilers at the day were not necessarily welcomed by experienced
assembler programmers. However, our experience also indicates that when (1)
users get to work with a modeling tool that makes high-quality, state-of-the-
art automatic graph drawing a priority, and (2) users employ automatic view
synthesis from the beginning instead of first drawing model views manually,
they do appreciate the ability of focussing on a model and getting automatically
created, well-readable, customizable views for free. We thus in the following build
on the premise that models and views can and should be treated separately.

In the remainder of this section we present an overview classification of dif-
ferent modeling and view options. The subsequent sections will explore these in
more detail.

2.2 Modeling Options

We first consider the different options of what is modeled explicitly by a human
developer. This is not always clear cut, but we identify broadly the following
categories:

State Model (M1) This is the traditional state-based modeling approach, us-
ing implicit data flow through signal scopes and name matching. This mod-
eling style is supported by various Statecharts tools.

Data-Flow Model (M2) This uses only data flow diagrams. This is typically
used for models that do not really have a notion of state. This is provided,
for example, by Simulink (without Stateflow).

Multimodel (M3) This uses state diagrams as well as data flow diagrams,
explicitly modeled by the user. This is supported, e. g., by Ptolemy, SCADE,
or Simulink with Stateflow.

Again, this classification concerns what is modeled, not how it is modeled.
Concerning the latter, this could be either done the traditional way, using some
WYSIWYG graphical editor, or it could also be done for example by providing
a textual description of the model.

2.3 Viewing options

As mentioned in the introduction, we distinguish between static views, which
are directly created by a human modeler (with a varying degree of layout sup-
port from the modeling tool) and from which a model is derived, and dynamic
views, which are synthesized automatically from a model. Orthogonal to the
static/dynamic distinction, we here propose the following classification:

State View (V1) This is the traditional view for state-based modeling lan-
guages, showing only the state diagram without visual indication of shared
data or data flow. Statechart tools traditionally offer static state views, an
example is shown in Sec. 3.1.



Data-Flow View (V2) Analogously, this consists of data flow diagrams only,
as in a typical Simulink diagram.

Multimodel View (V3) This shows data flow as well as state diagrams, using
separate diagrams for each purpose. This is what is provided by Ptolemy (see
Sec. 3.3), SCADE, or Simulink with Stateflow.

Hybrid View (V4) This uses a single diagram for data flow as well as state,
combining the different layers of hierarchy. Static V4 is offered by SCADE
(see Sec. 3.4), dynamic V4 is provided by the Ptolemy Browser (Sec. 4.1)
and the KIELER SCCharts tool (Sec. 4.4).

Data Overlay View (V5) This is an enriched version of V1, with added in-
dication for access to shared data. This is also offered by the KIELER SC-
Charts tool (Sec. 4.3).

Naturally, both V1 and V2 can be seen as special cases of V3, V4 and V5.
Thus tools that support V3–V5 also support V1 and V2.

3 Static Views

As explained before, the traditional modeling approach entails that the modeler
creates one static view of the model. In this section we review the different
options that have emerged so far, following the model/view taxonomy presented
in Sec. 2. We also introduce a canonical example, a simple traffic light controller,
that we will use throughout the paper.

3.1 State Modeling (M1) and Viewing (V1)

Fig. 2 shows the traffic light controller modeled with a state diagram. The exam-
ple has been presented in previous work on multimodeling [2] as a SyncCharts
model [1] and has subsequently adapted to different modeling languages. The
diagram in Fig. 2 is SCChart [12], which can be viewed as a conservative ex-
tension of SyncCharts, which in turn can be viewed as a synchronous version of
Harel’s Statecharts [13]. However, for the purpose of this paper, the specifics of
SCCharts are not relevant. We can thus see SCCharts as a generic place holder
for a state-oriented modeling language. Furthermore, the diagram in Fig. 2 hap-
pens to be automatically synthesized from a textual model that the modeler has
written in the SCCharts Textual (SCT) language6, and is thus is, technically, a
dynamic view. However, the same type of diagram is also used for static, user-
created diagrams in traditional Statechart tools, hence we show it in this section
that focusses on existing modeling approaches.

The idea of the traffic light controller is that there is a street with a pedestrian
crossing controlled by one traffic light each for the pedestrians and the cars (and
any other street traffic). There are three lights for cars, Cgrn, Cyel and Cred,
as well as two lights for the pedestrians, Pgrn and Pred. In normal operation,
the traffic light should alternate between cars and pedestrians passing, with the

6 http://www.sccharts.com

http://www.sccharts.com
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Fig. 2: Simple traffic light controller created as state model (M1), shown in state
view (V1)

green lights active for a few seconds in each cycle. In case of an error, the lights
for pedestrians should be turned off completely and the cars should be alerted
by a blinking yellow light.

The model has a main state TrafficLight which consists of two hierarchical
states. The state on the left, Normal, manages the normal operation of the traffic
light, while the state on the right is activated in the case of an error. The Normal
state is marked as initial, shown by the thicker outline. There are signals, Error
and Ok, generated by the environment, that guard the transitions between the
two states. If Error is signaled, the normal operation is aborted and the control
changes from Normal to Error. If OK is signaled, the control switches back, leaves
the Error state and restarts normal operation.

Both states in the main module are hierarchical and employ two concurrent
regions each. In both states the left region controls the lights for the pedestrians
and the right region controls lights for the cars.

This state model/view nicely expresses the behavior of the application, how-
ever, the data handling is not obvious, in particular concerning the potential
interactions between concurrent regions, as detailed next.



3.2 Data Flow Questions

There exist many semantic variations of data flow languages [14]. A prominent
example are Kahn process networks (KPNs) [15], where concurrent actors com-
municate by producing and consuming tokens, and data flow edges represent
unbounded FIFO queues. In the data-flow examples we present here, as far as
it matters for the subject of this paper, we assume a synchronous setting with
a clocking regime [3], and communication through shared variables.

One typical question, regarding the semantical validity of a model, is whether
there is any feedback, that is, a mutual inter-dependence of concurrent regions
(region A writes some x that concurrent region B reads, and B writes some y
that A reads). Some modeling languages (including Ptolemy, or SCADE with
“black-box scheduling”) forbid such feedback outright, unless delays (registers)
break the cycle, while others (such as SCCharts, or SCADE with “white-box
scheduling”) only allow it under certain circumstances [12].

Another typical question is whether there may be conflicting writes (con-
current regions A and B both write x). Again, some modeling languages always
forbid it (Ptolemy, SCADE), others allow it under certain circumstances. For ex-
ample, some synchronous languages, including SyncCharts and SCCharts, have
the notion of combination functions, which can be used to combine concurrent
writes in a deterministic manner, similar to resolution functions used in hardware
design for signals that have multiple drivers. For example, a commutative, asso-
ciative function such as addition is a valid combination function, and for a shared
integer x, two concurrent writes x += 2 and x += 3, if executed atomically, do
not impose a race condition; no matter how they are scheduled, their effect will
be x += 5. More generally, a valid combination function f on x, y must fulfill
that for all x, y1, y2, f(f(x, y1), y2) = f(f(x, y2), y1) holds. For example, “minus”
is a valid combination function, even though it is not commutative.

In SCCharts, we say that assignments of the form x = f(x, e) are relative
writes, provided that f is a valid combination function and e is an expression
that does not depend on x and whose evaluation does not have side effects. To
clearly delineate relative writes for the compiler (and the modeler), we use the
convention that relative writes must be written as compound assignments, such
as x += 2 instead of x = x + 2. All relative writes of the same type are confluent,
meaning they can be scheduled in any order. Absolute writes are those that are
not relative, meaning they do not use a combination function, and absolute
writes may also be confluent if they write the same value and do not have side
effects. All told, the SCCharts scheduling regime permits concurrent writes to
some variable x as long as, within a reaction (logical tick), all absolute writes to
x are confluent and are scheduled before all relative writes to x, and all relative
writes are of the same type [12]. Furthermore, writes must precede reads, which
corresponds to the KPN scheduling constraint that tokens must be produced
before they can be consumed.

Again, these questions are rather difficult to answer with the state view, more
helpful here are Data-Flow modeling/viewing (M2/V2), or the multimodeling
approach (M3/V3) described next.
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Fig. 3: Traffic light controller in Ptolemy II [2], illustrating multimodeling (M3)
and multimodel view (V3)

3.3 Multimodeling (M3) and Multimodel View (V3)

In multimodeling tools, like Ptolemy II, the developer is not restricted to a
single type of model. Instead the model can be composed of different types of
actors. In Ptolemy II, main building blocks are Modal Models, which are used to
define finite state machines [7], and Composite Actors, which can model different
kinds of data flow models. Each of these types can be used in different levels of
hierarchy.

Fig. 3 shows the traffic light controller introduced in Sec. 3.1, modeled as
a hierarchical model with separate data flow and state machines [2]. Each of
the boxes shows one part of the hierarchy, gray lines show the relation between
actors and the contained model.

The highest level of hierarchy is the state diagram TrafficLight in the top-
left corner. It is equivalent to the first hierarchy level of the model described in



Sec. 3.1. The two states are marked green to indicate the presence of a refinement,
a child hierarchy, inside the state. The refinement of the normal state is shown at
the center left. This refinement is the data flow model already shown in Fig. 1b.
Unlike in the state view shown in Fig. 2, the connection via Pgo and Pstop
between the two controlling regions and the absence of feedback is immediately
visible.

Note that to be precise, Fig. 3 is an enhanced version of what the modeler
usually sees and works with. The different state/data flow diagrams are arranged
carefully not to hide any information, and gray lines are added manually to
show the inter-relationships. In practice, when working with a modeling tool,
the modeler will have OS-managed windows for each data flow or state diagram.
When exploring a complex model, this routinely requires re-organization of the
windows on the screen. It may also pose a mental burden on the modeler to
remember which part of the model is where on the screen, as some parts may
become completely hidden behind other parts.

One approach that avoids the problem of overlapping parts of the view is
presented next.

Fig. 4: Railway model in SCADE, illustrating multimodeling (M3) and static
hybrid view (V4) and the fact that this can become rather unwieldy (from [24])
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3.4 Multimodeling (M3) and Static Hybrid View (V4)

Some modeling tools allow to mix data flow and state in the same diagram.
Fig. 4 shows a railway controller modeled with SCADE. At the top level, there
is a state machine, each state is refined with a data flow sub-model. This view
exposes the whole model in one diagram, thus there are no overlap issues as in
the multimodel view (V3). However, as this example illustrates, there are two
issues with this: (1) a high manual effort in producing the drawing (this example
has consumed 50+ hours of mere drawing time), (2) details are not legible when
viewed as a whole, as is the case in this paper with Fig. 4, unless the viewing
area is very large, e. g., if the paper happens to be printed on A0.

4 Dynamic Views

To avoid the burden of manually creating a view while modeling, dynamic views
provide automatic representations of the model. Consequently, additional or de-
rived information can be displayed to the user without interfering in the actual
creation of the model.

4.1 Multimodeling (M3) and Dynamic Hybrid View (V4)

Fig. 5 shows a partial view of the same model as Fig. 3. The view has been gen-
erated, based on the original Ptolemy model, by the KIELER Ptolemy Browser,
using automated view synthesis as well as automated layout algorithms, in this
case provided by the Eclipse Layout Kernel (ELK)7.

The view allows the user to expand or collapse any hierarchical actor as
needed by clicking on it. In Fig. 5 the error state and the embedded modal model

7 https://www.eclipse.org/elk

https://www.eclipse.org/elk


CarLightNormal are collapsed, while PedestrianLightNormal has been expanded.
The hierarchy depth is visualized by a background gradient getting darker on
deeper levels.

The Ptolemy Browser also supports different ways to filter diagram elements.
In Fig. 5 port labels are only shown for PedestrianLightNormal. Additionally the
directors, visible in Fig. 3, are currently hidden.

4.2 Inferring Data Flow

Before showing the enriched viewing options V5 and V4 for state models (M1),
we briefly describe the way the data flow is extracted from the source model. This
approach is not specific to a certain modeling language but should be adaptable
to any state-based language using concurrent regions.

The data flow analysis is performed in a postfix depth-first traversal order of
the model hierarchy. This allows us to first analyze the usage of data in all child
states of a region and to immediately use the data to visualize the data flow.

For each state, multiple sets of valued objects, meaning variables, signals or
other kinds of data used in the model, are gathered. The objects are placed in
different sets, to separate objects used locally in the state from objects used in
a nested hierarchy and to separate read objects from written objects.

For each region, the sets corresponding to the child states are collected and
combined with the objects used on the transitions inside the region. These ag-
gregated data then contain all the valued objects, used in the region directly or
in some nested hierarchy within the region.

To compute the resulting data flow, the sets of each region are compared to
the concurrent regions in the state. Any valued object read in one region and
written in a different region results in data flow. Additionally, reading valued
objects that are marked as model inputs, or writing valued objects marked as
outputs, should be regarded as data flow. These set intersections are used to
create the inferred data flow visualizations presented in Sec. 4.3 and Sec. 4.4.

When the data flow between the regions is found, the sets of the regions are
combined and propagated upwards to the parent state. This analysis can gather
all data flow information in a single pass over the model.

4.3 State Modeling (M1) and Data Overlay Viewing (V5)

Using the information gathered in the data flow analysis, we can show the data
flow as an overlay on the original state diagram as shown in Fig. 6. Every data
flow between concurrent regions is shown as a direct connection from the writer
to the reader of the data.

In the example we can see dependencies in the Normal state, from the write
accesses to Pgo and Pstop in the CarLight region to the read accesses in the Pedes-
trianLight region. These are the connections that have been manually modeled in
the Ptolemy model. One benefit of this approach is the stability of the diagram.
The original diagram of the model is not changed, but only enhanced with new
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Fig. 6: SCCharts traffic light controller with dependency overlay (green dashed
arrows), illustrating state modeling (M1) and data overlay viewing (V5)

information. The mental map of the developer is preserved [19]. However, com-
pared to the Ptolemy model, this view lacks information about the inputs and
outputs of the model regions. In particular, potential conflicting writes to the
same output are not directly visible.

The overlay shows the connections between concurrent regions in as much
detail as possible. Every relevant connection is individually drawn. In more com-
plex diagrams, this may be more information than can reasonably be displayed
visually, as illustrated in Fig. 7, which is part of another railway controller model.
The data flow indications overlap each other and create a diagram that is rather
unreadable. This problem can partially be addressed through proper filtering,
i.e. only showing the dependencies for a selected element. Still, for models of this
complexity, the data overlay viewing seems inappropriate to answer, e. g., the
questions concerning possible feedback and write conflicts formulated before.

Looking at diagrams as the one in Fig. 7, one may wonder whether visual
representations are appropriate for models of this complexity in the first place.
In fact, past experience of working with complex models in a tool that offers tex-
tual modeling suggests that users are quick to dismiss the automatic graphical
views altogether and just stick to the textual models. However, with dynamic,
customizable views, graphics may become usable and valuable again. For exam-



Fig. 7: Railway model, illustrating the limits of data overlay viewing (V5)

Fig. 8: Screen shot of the railway model with selective region expansion and
selected transition label in the KIELER SCCharts tool



ple, consider Fig. 8 for an the alternative view of the same railway model. The
two regions that due to their size caused trouble in Fig. 7 are collapsed, and the
remaining three regions are small enough to be viewed at once.

Fig. 8 also illustrates another feature of view management, namely the use of
an abstract, summary graphical representation together with a detailed textual
representation. The top part of the screen shot contains the textual SCChart
description as written by the user. The lower part contains a state view of the
model, where some transitions are labeled with a more compact summarizing
text instead of the concrete trigger and action. One such transition is labelled
Segment reached (see added green oval); when clicking on the transition, the part
of the textual source that describes the details of the transition trigger/action
is automatically scrolled to and highlighted. Finally, the screen shot also illus-
trates how comments (the “post-it” notes) can be shown in the dynamicl view,
constructed from semantic comments in the textual model.

4.4 State Modeling (M1) and Dynamic Hybrid View (V4)

An alternative view, that aims to avoid the potential cluttering issues of the data
overlay view (V5) that was illustrated in Fig. 7, is the dynamic hybrid view (V4)
again. In Sec. 4.1, the dynamic V4 was synthesized from a multimodel, which
already had explicitly modeled the data flow. We now synthesize dynamic V4
from a state model.

The main idea behind this visualization is to use the previously “unused”
hierarchy layer between regions to show the data flow. In normal Statecharts
there are no connecting edges between regions and the placement of the regions
next to each other usually carries no semantic meaning except concurrency.
To enrich the diagram, we leverage this hierarchy level and add the data flow
between the regions.

The Traffic Light Example Fig. 9 shows the inferred data flow with local
inputs and outputs, automatically created from the very same SCCharts model
from which the state view of Fig. 2 was synthesized. Local inputs and outputs
are the valued objects that are used on the same hierarchy level as the input
or output. Alternatively, all inputs and outputs, including usages in nested hi-
erarchy levels, could be shown, or all input and output nodes could be hidden,
leaving only the concurrent data flow between neighboring regions. Inside every
hierarchical state, each shared valued object is represented by one (hyper)edge.
All writers of the valued objects are sources of the edge and all readers are sinks.

On the top hierarchy level, input nodes for Error and Ok are added because
these signals govern the transition between the two top-level states. Inside the
Normal state, the local data flow between CarLight and PedestrianLight, the read-
ing of the Sec input, as well as the written outputs have been added. In terms
of visualized information, the resulting diagram is similar to the correspond-
ing Ptolemy diagram in Fig. 5. One deviation occurs in Normal.PedestrianLight,
which in the manually specified data flow part of the Ptolemy model defines
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input signal Error, Ok, Sec
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Fig. 9: SCCharts traffic light controller with inferred data flow, illustrating state
modeling (M1) with a dynamic hybrid view (V4)

Sec as an input, even though Sec is actually not read in PedestrianLight. This
“modeling glitch,” manifested also in Normal, is probably not on purpose, as
for example the Sec input is (correctly) omitted for Error.PedestrianLight. This
glitch in such a small, well-studied example indicates that dynamically created
data flow visualizations not only offer the convenience of not having to explic-
itly re-model information that is already present in the state part; dynamic,
automatically inferred views also help to keep state and data flow consistent, in
particular as models become more complex.

Another noteworthy detail is the order of the regions CarLight and Pedes-
trianLight inside the Normal state. Compared to the original diagram in Fig. 2,
these two regions switched their place in the diagram. This is done by the auto-
matic layout algorithm, to always draw the data flow edges from left to right if
possible. If the data flow edges create a cycle, one of the edges has to be reversed
and will be drawn as a feedback edge from right to left, thus making potential
feedback obvious to the modeler.

Compared to the overlay presented in Sec. 4.3, the precision of this approach
is a bit reduced. The usages of the objects are not indicated directly, but only on a
per-region granularity. On the other hand, this approach always produces a clean
diagram without edges potentially overlapping relevant parts of the diagram.
Additionally this approach can show the data flow between regions, even when
the regions itself are collapsed and the child states are not currently visible.

The Railway Example Dynamic hybrid views also let us draw the railway
example, shown before in the rather inaccessible Fig. 7, in a cleaner and more



readable way. By collapsing all regions and configuring some label management
we can create the diagram shown in Fig. 10.

StationScheduler

[+] moving
[+] station_update

[+] position_updating [+] segment_scheduler

[+] calculating_of_substations

moving

Fig. 10: Railway model with data flow, illustrating multimodeling (M3) and
dynamic hybrid view (V4) for a complex model, with absolute/relative writes
(black/green edges) and mouse-over annotation of data flow edges.

The view exhibits feedback, visible in the edges routed around the outside
of the diagram. In this case, all feedback edges end in a register. These registers
are automatically created, both in the code synthesis and in the inferred data
flow view, if the value is not used directly but instead read in a pre operator.
In SCCharts, as in other synchronous languages, the pre operator accesses the
value a variable had at the end of the previous reaction. This is similar to a delay
actor in Ptolemy.

As can be seen in Fig. 10, the automatic layout of the SCCharts editor
tends to place registers at the left of the diagram. Specifically, when the layout
algorithm encounters a cycle in the graph that makes it impossible to draw all
edges in the same direction, it tries to break the cycle by reversing edges that
enter a register. This is another convention that helps the modeler to quickly
grasp whether feedback is broken by a register or not.

Another feature in Fig. 10 can be seen on the hyperedge from two writ-
ers, moving and position updating, to the reader station update. As explained in
Sec. 3.2, multiple writers may indicate a problem in a model. However, the write
performed by position updating is a relative write (see again Sec. 3.2), indicated
by a green edge segment. A closer inspection of Fig. 8, where the textual SCCha-
rts description shows the relative write access moving &= false, confirms that
this is a relative write of type conjunction. Thus it can be safely combined with
the absolute write (black) from station update. A similar situation is present
in the model with an absolute write from station update and the relative write
from segment scheduler. These two writes are combined and fed back to the cor-
responding register. There is another concurrent write, where position updating
and station update perform absolute writes to the same value, but these happen



to be confluent because they write the same value. As a possible extension to the
current tooling, this fact could be fed back visually in the diagram as well, e. g.,
by showing some kind of error marker in case there are non-confluent absolute
writes.

As a last detail, for compactness the dynamic view from Fig. 10 has been
configured to not show any data flow labels. However, a mouse-over on an edge,
such as the aforementioned hyperedge, shows the shared variable in question, in
this case moving.

5 Related Work

Beyond the work on multimodeling mentioned in the introduction [2], there are
several proposals on combining different model types [10, 26, 4]. However, there
appears to be little comparable work that focusses on modeling pragmatics the
way we do here, compared to the large body of work on semantic and synthesis
issues. There are some works, such as by Petre [18], which compare the utility
of graphical and textual views.

Human-centered software engineering aims to improve usability in software
development, but not with a focus on modeling [22]. Another related community
focuses on software visualization [6]. Smyth et al. have presented an approach
to extract SCCharts from legacy C code [23]. Together with the work presented
here, this now allows a data flow view of C programs.

The synthesis of diagrams advocated here builds on automatic layout, for
which the graph drawing community has developed a large variety of approaches,
as for example surveyed by Di Battista et al. [5].

6 Conclusions and Outlook

We have illustrated that data flow views do not necessarily have to be created
manually by a modeller, as is long-standing tradition, but can be inferred auto-
matically, in our case from state models. More generally speaking, we made the
argument that views can and should be separated from models. Designers should
be able to concentrate on creating and maintaining models, in whatever formal-
ism is most convenient, and a modeling tool should infer different, customizable
views according to the task at hand. This not only saves valuable developer time,
but can also help to avoid model inconsistencies.

Even though we did not question the difference between state models and
data flow models here, the fact that a data flow view can be just synthesized
from a state model begs the question of how fundamental that difference really
is. For example, going in the other direction, ongoing work indicates that it is
not too difficult to synthesize fairly concise SCCharts from Lustre [11], which is
generally viewed as a data flow language.

There are numerous directions to go from here. For example, we have focussed
on showing data flow relations between concurrent regions/actors, implying that



this is what the modeler is most interested in. However, data flow languages are
also used to express sequential computations, and one might extend the work
here to infer data flow for sequential computations as well. For example, referring
back to the existing work on the model extraction from legacy C code [23], it
might be interesting to infer the data flow from a C program that performs
some complex signal processing using various components. Conceptually, these
components can be seen as actors and could be visualized as such, even if the
actors may not be concurrent anymore but typically are already sequentialized
in the C program.

Another, largely open question is how to give good visual feedback on more
complex causality questions. As briefly alluded to, feedback may be permitted in
some cases, such as when back-and-forth scheduling between concurrent actors
is permitted within a reaction. This is a powerful language feature, but may lead
to models that are hard to debug in case they are not schedulable.

Finally, as the concept of dynamic views hinges on the capability to auto-
matically draw well-readable diagrams, the area of automatic graph drawing is
called upon. We believe that auto-layout is already good enough to be usable in
practice, with open source libraries that make state-of-the-art algorithms freely
available and have stable interfaces. Thus auto-layout should become a standard
feature in today’s modeling tools, as is for example already the case in Ptolemy
(which uses ELK). However, further improvements are still possible. One detail
is the handling of hyper edges, which sometimes is still unsatisfactory, a broader
issue is that of “interactive” layout where the modeler can influence the model
drawing without having to fall back to manual layout.
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