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Abstract. SCCharts is a recently proposed statechart language de-
signed for specifying safety-critical reactive systems. We have developed
an Eclipse-based compilation chain that synthesizes SCCharts into either
hardware or software. The user edits a textual description which is visual-
ized as SCChart and subsequently transformed into VHDL or C code via
a series of model-to-model (M2M) transformation steps. An interactive
environment gives the user control over which transformations are ap-
plied and allows the user to inspect intermediate transformation results.
This Single-Pass Language-Driven Incremental Compilation (SLIC ) ap-
proach should conceptually be applicable to other languages as well. Key
benefits are: (1) a compact, light-weight definition of the core semantics,
(2) intermediate transformation results open to inspection and support
for certification, (3) high-level formulations of transformations that de-
fine advanced language constructs, (4) a divide-and-conquer validation
strategy, (5) simplified language/compiler subsetting and DSL construc-
tion.

1 Introduction

Sequentially Constructive Statecharts (SCCharts) are a recently proposed state-
chart modeling language for reactive systems [13]. SCCharts have been designed
with safety-critical applications in mind and are based on the sequentially con-
structive model of computation (SC MoC) [15]. The SC MoC follows a syn-
chronous approach, which provides semantic rigor and determinism, but at the
same time permits sequential assignments within a reaction as is standard in
imperative languages. The basis of SCCharts is a minimal set of constructs,
termed Core SCCharts, consisting of state machines plus fork/join concurrency.
Building on these core constructs, Extended SCCharts add expressiveness with
a rich set of advanced features, such as different abort types, signals, or history
transitions. The safety-critical focus of SCCharts is reflected not only in the de-
terministic semantics, but also in the approach to defining the language, building
up on Core SCCharts, which facilitate rigorous formal analysis and verification.
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Fig. 1. Screen shot of KIELER SCCharts tool annotated with high-level user story for
interactive model-based compilation

The original SCCharts language proposal [13] also presents possible compi-
lation strategies for compiling SCCharts into software (e. g., C code) or hard-
ware (e. g., VHDL). That presentation covers the abstract compilation concepts,
largely specific to SCCharts. However, it gives only little detail and motivation
on our incremental, model-based strategy for realizing these concepts, which is
the focus of this paper now.

To get a first idea of this incremental model-based compilation approach and
the possibilities it offers, consider the user story depicted in Fig. 1: (1) The user
edits a model in a textual entry window. In our SCCharts prototype, this is
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done with the SCCharts Textual Language (SCT). (2) The user selects model-
to-model (M2M) transformations to be applied to the model in a compilation
control window. In our prototype, these transformations are a series of incremen-
tal compilation steps from a textual SCChart (SCT) to C or VHDL. (3) The
user inspects visual renderings, synthesized by modeling tool in the visual brows-
ing window, of both (a) the original SCChart that directly corresponds to the
SCT description, before applying the transformation, and (b) the transformed
SCChart. (4) The user may fine-tune the graphical views of the SCChart in the
layout control window. The visual browsing window is updated whenever any
input in any of the other three windows changes. For a modeler, the possibility
to view not only the original model, but also the effects that different trans-
formation/compilation phases have on the model can help to understand the
exact semantics of different language constructs and to fine-tune the original
model to optimize the resulting code. Furthermore, the tool smith can validate
the compiler one language feature at a time. This compiler validation support is
desirable for any language and compiler; it is essential for safety-critical systems.

In contrast, the traditional modeling and software synthesis user story is: (1)
The user edits/draws one view of a model. (2) A compiler parses the model and
synthesizes code. (3) The user may inspect the final artefacts, such as a C file.
This is appropriate for advanced users who are very familiar with the modeling
language. However, it offers little guidance for the beginner. Also, this hardly
allows to fine-tune and optimize the intermediate and/or resulting artifacts.
Furthermore, and perhaps even more importantly, the compiler developer has
little support here.

Outline and Contributions

The next section covers the SCCharts language, as far as required for the re-
mainder of this paper, introduces the ABRO example, and presents an overview
of the compilation of SCCharts.

A main contribution of this paper, which should be applicable outside of
SCCharts as well, is the Single-Pass Language-Driven Incremental Compilation
(SLIC) approach presented in Sec. 3. We discuss how to determine whether
features can be successively transformed in a single sequence, how to derive a
transformation schedule, guiding principles for defining transformations and how
to build feasible language subsets.

Another contribution of this paper, which is more specific to SCCharts and
synchronous languages, is the transformation sequence from ABRO to an equiv-
alent SCChart presented in Sec. 4.

We give some implementation notes in Sec. 5, summarize related work in
Sec. 6 and conclude in Sec. 7.
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Fig. 2. Syntax overview. The upper region contains Core SCCharts elements only, the
lower region illustrates Extended SCCharts.

2 SCCharts & Compilation Overview

An overview of the SCCharts visual language is shown in Fig. 2. The upper part
illustrates Core SCCharts; the lower region contains elements from Extended
SCCharts.

2.1 Core SCCharts Language Elements

Interface/Local Declarations. An SCChart starts at the top with an interface
declaration that can declare variables and external functions. Variables can be
inputs, which are read from the environment, and/or outputs, which are written
to the environment. At the top level, this means that the environment initializes
inputs at the beginning of the tick (stimulus), e. g., according to some sensor
data, and that outputs are used at the end of a tick (response), e. g., to feed
some actuators. The interface declaration also allows the declaration of local
variables, which are neither input nor output. Declarations of local variables
may also be attached to inner states as part of a local declaration.

States and Transitions. The basic ingredients of SCCharts are states and tran-
sitions that go from a source state to a target state. When an SCChart is in a
certain state, we also say that this state is active. Transitions may carry a transi-
tion label consisting of a trigger and an effect, both of which are optional. When
a transition trigger becomes true and the source state is active, the transition is
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taken instantaneously, meaning that the source state is left and the target state
is entered in the same tick. However, transition triggers are per default delayed,
meaning that they are disabled in the tick in which the source state just got
entered. This convention helps to avoid instantaneous loops, which can poten-
tially result in causality problems. One can override this by making a transition
immediate, which is indicated graphically by a dashed line. Multiple transitions
originating from the same source state are disambiguated with a unique priority ;
first the transition with priority 1 gets tested, if that is not taken, priority 2 gets
tested, and so on. If a state has an immediate outgoing transition without any
trigger, we refer to this transition as default transition because it will always be
taken. Furthermore, if additionally there are no incoming deferred transitions,
we say that the state is transient because it will always be left in the same tick as
it is entered. When taken, deferred transitions preempt all immediate behavior
(including leaving) of the target state they are connected with.

Hierarchy and Concurrency. A state can be either a simple state or it can be
refined into a superstate, which encloses one or several concurrent regions (sep-
arated region compartments). Conceptually, a region corresponds to a thread.
A region gets entered through its initial state (thick border), which must be
unique to each region. When a region enters a final state (double border), then
the region terminates. A superstate may have an outgoing termination transition
(green triangle), also called (unconditional) termination transition, which gets
taken when all regions of this superstate have reached a final state. Termination
transitions may be labeled with an action, but do not have an explicit trigger
label; they are always immediate (indicated by the dashed line).

2.2 The ABRO Example

The ABRO SCChart (Fig. 3a and also Fig. 1), the “hello world” [1] of synchronous
programming, compactly illustrates concurrency and preemption. The reset sig-
nal R triggers a strong abort (red circle) of the superstate ABthenO, which means
that if R is present, ABthenO is instantaneously re-started.

The execution of an SCChart is divided into a sequence of logical ticks. The
interface declaration of ABRO states that A and B are Boolean inputs and O is
a Boolean output. The execution of this SCChart is as follows. (1) The system
enters initial state ABthenO as well as WaitAB. When entering ABthenO the entry
action sets the output O to false. WaitAB consists of two regions (threads) HandleA
and HandleB. Transitioning into a superstate does not trigger transitions nested
within that state unless those transitions are immediate. The initial states WA
and WB of both concurrent regions are also entered. (2) HandleA stays in its initial
state WA, until the Boolean input A becomes true. Then it transitions to the final
state DA. Similary, HandleB stays in its initial state WB, until the Boolean input
B becomes true. Then it transitions to the final state DB. (3) When both threads
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Fig. 3. ABRO, illustrating Extended and Core SCCharts features and the result of con-
secutive transformations from an Extended SCChart into an equivalent Core SCChart.

eventually are in their final states DA and DB, immediately the termination
transition from WaitAB to Done is taken which is setting the output O to true.
(4) The behavior can be reset by setting the input R to true. Then the self-loop
transition from and to ABthenO is triggered causing a strong preemption and a
re-entering of that state. This causes the entry action to reset the output O to
false. The strong preemption means that the output O will not be true in case
R is true in the same tick when the termination transition from WaitAB to Done
is taken.

The exact semantics of ABRO is expressed by the equivalent ABRO CORE
(Fig. 3c), which only uses Core SCCharts language elements.

The ABRO example (Fig. 3a) illustrates some significant concepts of Core
and Extended SCCharts. Core features are tick-boundaries (delayed transitions),
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Fig. 4. Full compilation tree from Extended SCCharts to VHDL or C code splits into
a high-level part and two different low-level parts.

concurrency (with forking and joining), and deterministic scheduling of shared
variable accesses. Extended features are the concept of preemption by using a
strong abort transition type for the self-loop transition triggered by R and the
entry action for initializing or resetting the output O to false.

2.3 Compilation Overview

The full compilation tree is illustrated in Fig. 4, using Statecharts notation. In
a way, this compilation tree, where incremental compilation steps correspond
to the edges, is the dual to the compilation control window (Fig. 1), where the
compilation steps correspond to the nodes.

The compilation splits into a high-level and a low-level part. The high-level
compilation involves (1) expanding extended features by performing consecutive
M2M transformations on Extended SCCharts, (2) normalizing Core SCCharts by
using only a small number of allowed Core SCCharts patterns, and (3) straight-
forward (M2M) mapping of these constructs to an SC Graph (SCG).

An SCG is a pair (N , E), where N is a set of statement nodes and E is a
set of control flow edges. The node types are entry and exit connectors, assign-
ments, conditionals, forks and joins, and surface and depth nodes that jointly
constitute tick-boundaries. The edge types are flow edges (solid edges), which
denote instantaneous control flow, pause tick-boundary edges (dotted lines), and
dependency edges (dashed edges), added for scheduling purposes. The SCG of
ABRO that results after applying (2) normalization and (3) mapping to the core
version (cf. Fig. 3c) is shown in Fig. 5.
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Fig. 5. The ABRO SC Graph (SCG). Dependencies (dashed edges) are used to sequen-
tialize the SCG in further low-level compilation steps.
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SCCharts

SCG

Fig. 6. Direct mapping from Normalized (Core) SCCharts constructs to SCG elements
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(a) SCCharts Meta Model

(b) SCG Meta Model

Fig. 7. EMF Meta Models used in SCCharts compilation
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Fig. 8. Extended SCCharts features with their SLIC schedule index and their interde-
pendencies

The normalization of Core SCCharts restricts the patterns to be one of the
constructs shown in the upper part of Fig. 6, which also illustrates how Normal-
ized SCCharts can be mapped directly to SCG elements.

As illustrated in Fig. 7, the meta models of SCCharts and SCGs are both
fairly light-weight, but quite different. Technically, SCGs are just another rep-
resentation of Normalized SCCharts to facilitate further compilation steps. The
low-level transformation steps (cf. Fig. 4) also involve semantics-preserving M2M
transformations. Then the resulting sequentialized SCG, e. g., is used directly to
derive executable VHDL or C code [13].

3 Single-Pass Language-Driven Incremental Compilation
(SLIC)

We propose to break down rather complex compilation/synthesis tasks, such as
the transformation of arbitrary SCCharts that may contain extended features
into Core SCCharts, into a sequence of smaller transformation steps. Each trans-
formation step should handle just one language feature at a time. We call this
single-pass language-driven incremental compilation (SLIC). This approach is
not fundamentally new, the concepts of syntactic sugar and language preproces-
sors are quite related. We here advocate to exploit this paradigm specifically for
purposes of user feedback and tool validation.
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The SLIC approach has several advantages:

– Deriving complex language constructs as syntactic sugar from a small set of
elementary constructs allows a compact, light-weight definition of the core
semantics.

– Intermediate transformation results are open to inspection, which can also
help certification for safety-critical systems.

– Existing languages and infrastructures for M2M transformations allow high-
level formulations of transformations that can also serve as unambiguous
definitions of advanced language constructs.

– Complex transformations are broken into individual components, which al-
lows a divide-and-conquer validation strategy.

– The modularization of the compilation facilitates language/compiler subset-
ting.

When developing a SLIC transformation sequence, two non-trivial questions
arise:

Q1 Does a linear, single-pass transformation sequence suffice?
Q2 If so, how must we order the individual transformation steps?

These questions are answered by the transformation relations presented next.

3.1 Transformation Relations

Given a set of language features F , we propose to define each feature f ∈ F
in terms of a transformation rule Tf that expands a model (program) that
uses f into another, semantically equivalent model that does not use f . More
precisely, Tf produces a model not containing f , but possibly containing features
in Prodf ⊆ F . Also, Tf can handle/preserve a certain set of features Handlef ⊆
F . Note that Handlef must include f .

Based on Prod and Handle, we define the following relations on F :

Production order: f →p g iff g ∈ Prodf . We say that “Tf produces g.”
Handling order: f →nhb g iff f /∈ Handleg (“f is not handled by Tg”).
SLIC order: f → g iff f →p g or f →nhb g (“Tf must precede Tg”).

Now we can answer the two questions from above. On Q1: A linear, single-
pass transformation sequence suffices iff the SLIC order is acyclic. On Q2: We
must order the individual transformation steps according to the SLIC order.

If the SLIC order is acyclic, we can implement a static SLIC schedule, which
assigns to each f ∈ F a schedule index i(f) such that f → g implies i(f) < i(g).

3.2 A SLIC Order for SCCharts Compilation

We now discuss the SLIC order for compiling SCCharts. We focus on the “Ex-
pand Extensions” part (see compilation overview, (1) Expand in Fig. 4), but the
same principles apply to the other compilation steps as well.
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Extended SCCharts provide a set F of extended features, listed in Fig. 8. The
Extended SCCharts features are grouped into three categories:

C1: Basic Statecharts features. Common features of various statecharts di-
alects as known from Harel statecharts [5], e. g., entry actions, exit actions
or strong and weak preemption.

C2: SyncCharts features. Extended SCCharts are quite rich and include, for
example, all of the language features proposed for SyncCharts [1], e. g., syn-
chronous signals or suspension.

C3: Further features. Extended SCCharts include additional features adopted
from other synchronous languages such as weak suspension from Quartz [10]
or deferred transitions from SCADE. We also categorize History transitions
here for language subsetting purposes (cf. Sec. 3.4), even though they were
part of the original Harel statecharts.

The transformation rules are not only used to implement M2M transforma-
tions, but also serve to unambiguously define the semantics of the extensions.
Each such transformation is of limited complexity, and the results can be in-
spected by the modeler, or also a certification agency. This is something we see
as a main asset of SCCharts for the use in the context of safety-critical systems.

That the SLIC order for SCCharts is acyclic can be validated by visual
inspection of Fig. 8, where all features f ∈ F are ordered left-to-right according
to →p (solid arrows) and →nhb (dotted arrows). We can also see the SLIC
schedule, as each f ∈ F is prefixed with a “i(f).” label that shows its schedule
index.

Concerning the feature categories C1, C2, and C3, we observe that inter-
category precedence constraints are only of type C2 → C1 or C3 → C1. Thus
we can modularize our schedule according to categories: First transform away
all features from C3, then all features from C2, and finally all features from C1.

Referring back to the interactive user story depicted in Fig. 1, note that the
compilation control window presents a customizable, slightly abstract view of
the transformations and their dependencies depicted in Fig. 8. The user can
customize this view by collapsing/expanding parts of the compilation chain. In
Fig. 1, the user has chosen to expand the Statecharts node, corresponding to C1,
and has selected the Abort Default transformation to be applied (thus shown in
dark blue). The tool automatically selects all “upstream” required transforma-
tions (light blue) as well, as such that the Abort Default transformation is not
confronted with any language constructs it cannot handle.

3.3 Designing the Transformation Rules

Whether the SLIC order is acyclic or not is not an inherent property of the
language features themselves, but depends on how exactly the transformations
for the features are defined. For example, we might have defined our transforma-
tion rules Tf such that each extended feature f would be transformed directly
into Core SCCharts by Tf alone (Prodf = ∅), while preserving all other features
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(Handlef = F ). This would have resulted in an empty SLIC order that would be
trivially acyclic. However, this would have defeated the purpose of modularizing
the compilation, as at least some of the transformation rules would have to be
unnecessary complex.

Instead, we wish the transformation for each f to be rather lean. For that
purpose Tf may make use of other features, as reflected by a non-empty Prodf .
Furthermore, in defining Tf , we may restrict the models to be transformed to
not contain all features in F , meaning that Handlef may be small. However,
care must be taken to not introduce cycles this way. This implies that the more
“primitive” a feature f is, the more features Tf it must be able to handle. Fur-
thermore, there is often a trade-off between on the one hand lean transformation
rules where some features undergo a long sequence of transformations and on
the other hand compact, efficient transformation results.

3.4 Language Subsetting / Constructing DSLs

Given a language L with a set of language features F , a tool smith may wish to
offer a derived language L′ that offers only a subset F ′ ⊆ F of language features
to the user. For example, the SCCharts language proposal is very rich, which
nicely illustrates how a wide range of different features proposed in SyncCharts,
SCADE etc. can be grounded in a small set of Core SCCharts features. However,
this variety of features may be overwhelming for the user. Also, some features
might be rarely used in practice or not be appropriate for certain domains (such
as, in our experience, suspension), or might be considered non-desirable for some
reasons (such as history transitions, which increase the state space drastically).

Given a feature set F and a production order →p, we say that F ′ ⊆ F is a
feasible subset iff for all f ∈ F ′ and g ∈ F , f →p g implies g ∈ F ′. In other
words, the transformations of the features in F ′ do not produce any features
outside of F ′.

A conservative approach to ensure subset feasibility would include in F ′ all
features whose SLIC schedule index is above a certain value. E. g., for SCCharts,
if we define F ′ such that it includes all features with schedule index 10 and higher,
we would obtain all features in category C1, which would be a feasible language
subset. However, the definition of subset feasibility permits other subsets as well.
E. g., the subset of SCCharts features with indices 11, 14, 15, 16, which includes
Aborts (index 11) and all subsequently produced features, would also be feasible.

4 Example: An M2M Transformation Sequence from
Extended ABRO to Core ABRO

This section uses the ABRO example to illustrate how selected Extended SC-
Charts features are incrementally transformed into Core SCCharts. Further de-
tails for these transformations and generalizations of the presented transforma-
tions are given elsewhere [12].
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(a) Simple approach (b) WTO approach

Fig. 9. Transformation for Abort

4.1 Aborts

A hierarchical state can be aborted upon some trigger. The ability to specify high-
level aborts is one of the most common motivations for introducing hierarchy into
statecharts. Aborts are thus a powerful means to specify behavior in a compact
manner, but handling them faithfully in simulation and code synthesis is not
trivial. There are two cases to consider, strong aborts, which get tested before
the contents of the aborted superstate gets executed, and weak aborts, which get
tested after the contents of the aborted state get executed.

Consider the original ABRO Extended SCChart as shown in Fig. 3a. ABthenO
is left by a self-loop strong abort transition triggered by R. This abort takes
place regardless of which internal state of ABthenO is active at the time (tick) of
an abort. In case of nested superstates with aborts, this transformation must be
applied from the outside in, so that inner aborts can also be triggered by outside
abort triggers.

Fig. 9a illustrates how expanding ABRO results in an equivalent SCChart
that does not use the extended feature Abort anymore. The underlying idea is
to make the internal regions of WaitAB terminate explicitly whenever ABthenO
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Fig. 10. Transformation for Entry Action Fig. 11. Transformation for Connector

is aborted, and then use a termination transition to leave WaitAB. Note that
strong abortion has the highest priority and thus the transitions triggered by R
have the highest transition priority 1. Also note that in Fig. 9a the condition R
was duplicated 4 times. This may result in multiple evaluations of R and thus
violates the Write-Things-Once (WTO) principle. This may not be problematic
if the condition consists of a single flag (in this case R), but can be an issue
if the condition consists of a costly expression; down-stream synthesis may or
may not be able to optimize this again by applying, e. g., common subexpression
elimination. Fig. 9b shows an alternative transformation that meets the WTO
principle by concurrently evaluating R just once and triggering the abort using
an auxiliary variable trig.
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4.2 Entry Actions

When eliminating the extended abort feature from ABRO, the WTO-variant of
the Aborts-transformation produced an auxiliary variable trig together with an
entry action for resetting it to false. Entry actions also are extended SCCharts
features and hence need to be eliminated during compilation to Core SCCharts.
As indicated in Fig. 8, entry actions must be transformed after aborts. Note that
entry actions do not get moved outside of the state that they are attached to,
hence entry actions can also make use of locally declared variables.

When a state S has an associated entry action A, then A should be performed
whenever S is entered, before any internals of S are executed. If multiple entry
actions are present, they are performed in sequential order. A non-trivial issue
when defining this transformation is that we would like to allow entry actions
to still refer to locally declared variables. Hence we cannot simply attach entry
actions to incoming transitions, as these would then be outside of the scope
of local variables. Our transformation handles this issue by handling all entry
actions within the state they are attached to. This also handles naturally the case
of initial states, which do not have to be entered through an incoming transition.

The transformation result after further transforming ABRO using the entry
action transformation is shown in Fig. 10. The entry actions were inserted before
the original initial state inside ABthenO. A new auxiliary initial state Init and
connectors for sequential ordering of all auxiliary transitions (one for each entry
action) are used. Entry actions are executed instantaneously, hence all transitions
are immediate.

4.3 Connectors

The last feature to eliminate in order to transform the ABRO Extended SCChart
(cf. Fig. 3a) into a Core SCChart (cf. Fig. 3c) are connectors.

Connector nodes, sometimes also referenced as conditional nodes, link mul-
tiple transition segments together to form a compound transition. Connectors
typically serve to make a model more compact, and to facilitate the WTO prin-
ciple, without the introduction of further (transient) states.

Our approach to transform connectors is simply to replace each connector
by a state which must be a transient state that is entered and immediately left
again as part of a transition. Therefore, all outgoing transitions must explicitly
be made immediate. This can be seen in Fig. 11.

5 Implementation

The SCCharts tool prototype1 (cf. Fig 1) is part of KIELER2 and uses the
KLighD diagram synthesis framework [9] for graphical visualization of textually

1 http://www.sccharts.com
2 http://www.rt.informatik.uni-kiel.de/kieler

http://www.sccharts.com
http://www.rt.informatik.uni-kiel.de/kieler
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1 def void transformConnector(State state) {
2 // If a state is of type connector, then apply the transformation
3 if (state .type == StateType::CONNECTOR) {
4 // Set the state type to normal
5 state .setTypeNormal
6 // Explicitly set all outgoing transitions to be immediate transitions
7 for ( transition : state .outgoingTransitions) {
8 transition .setImmediate(true)
9 }

10 }
11 }

Fig. 12. Xtend implementation of transforming connector states

modeled SCCharts. We implemented all transformations from Extended SC-
Charts to Core SCCharts, the normalization, the SCG mapping and all SCG
transformations (cf. Sec. 2.3) as M2M transformations with Xtend3. To illus-
trate the compact, modular nature of the M2M transformations, Fig. 12 shows
the Connector transformation described in Sec. 4.3. Xtend keywords and Xtend
extension functions are highlighted. The precondition is checked in line 3, i. e.,
whether the considered state is a connector state. Line 5 sets the type of this
state from connector to normal. Finally, lines 7-9 ensure that all outgoing and
previously implicit immediate transitions of this state are now being set explic-
itly to be immediate transitions. As can be seen, the transformation description
is straight-forward and of limited complexity.

For modeling SCCharts the textual editor shown in Fig 1 is used. We gener-
ated it using the Eclipse based Xtext framework which produces a full-featured
textual editor for the SCCharts Textual Language (SCT) with syntax high-
lighting, code completion and built-in validation. More specifically, this editor is
generated from an SCT Xtext grammar description declaring the actual concrete
textual syntax for the SCCharts meta model elements (cf. Fig. 7a).

We defined the SCCharts and the SCG transformations on the EMF meta
models. The extended and the normalization transformations of the high-level
synthesis are so-called “inplace” model transformations because they modify the
SCChart model that conforms to the SCCharts meta model shown in Fig. 7a. The
SCG mapping transformation is defined on both the SCCharts meta model (cf.
Fig. 7a) and the SCG meta model (cf. Fig. 7b). The low-level synthesis, e. g., the
sequentialization of SCGs is again defined as several consecutive inplace model
transformations all only based on the SCG meta model.

6 Related Work

Statecharts, introduced by Harel in the late 1980s [5], have become a popular
means for specifying the behavior of embedded, reactive systems. The visual syn-
tax is intuitively understandable for application experts from different domains
and the statechart concepts of hierarchy and concurrency allow the expression

3 http://www.eclipse.org/xtend/

http://www.eclipse.org/xtend/
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of complex behavior in a much more compact fashion than standard, flat finite
state machines. However, defining a suitable semantics for the statechart syn-
tax is by no means trivial, as evinced by the multitude of different statechart
interpretations. In the 1990s, von der Beeck identified a list of 19 different non-
trivial semantical issues, and compared 24 different semantics proposals [11],
which did not even include the “official” semantics of the original Harel state-
charts (clarified later by Harel [6]) nor the many statechart variants developed
since then, including, e. g., UML statecharts with its run-to-completion seman-
tics. One critical issue in defining a statecharts semantics is the proper handling
of concurrency, which has a long tradition in computer science, yet, as argued
succinctly by Lee [7], has still not found its way into mainstream programming
languages such as Java. Synchronous languages were largely motivated by the de-
sire to bring determinism to reactive control flow, which covers concurrency and
aborts [2]. SCCharts have taken much inspiration from André’s SyncCharts [1],
introduced as Safe State Machines (SSMs) in Esterel Studio. However, SCCharts
are more liberal that SyncCharts in that they permit multiple variable values
per reaction as long as the SC MoC can guarantee determinism.

Edwards [3] and Potop-Butucaru et al. [8] provide good overviews of compila-
tion challenges and approaches for concurrent languages, including synchronous
languages. We present an alternative compilation approach that handles most
constructs that are challenging for a synchronous languages compiler by a se-
quence of model-to-model (M2M) transformations, until only a small set of Core
SCCharts constructs remains. This applies in particular to aborts in combination
with concurrency, which we reduce to terminations.

The incremental, model-based compilation approach using a high-level trans-
formation language (Xtend) allowed us to build a compiler in a matter of weeks
and to validate it in a divide-and-conquer manner. Furthermore, the ability to
synthesize graphical models, with a high-quality automatic layout, lets the user
fully participate in this incremental transformation, as illustrated in the interac-
tive model-based compilation user story in the introduction. This fits very well
with the pragmatics-aware modeling approach [14], which advocates to separate
models from their view and to let the modeling tool generate customized views
that highlight certain model aspects. In this light, we might say that the in-
teractive model-based transformation provides the user with different views of
one and the same model that differ in abstraction level, from the possibly very
abstract model designed by the user all the way down to the implementation
level.

7 Conclusions

The incremental, model-based compilation approach presented here did not orig-
inate from a desire to develop a new, general approach to synthesis, but rather
was the outcome of building a compiler for a specific language, SCCharts. In
fact, when building this compiler we did intend to re-use existing approaches
and technologies as much as possible. Furthermore, the main purpose of M2M
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transformation rules that constitute the compiler was originally to unambigu-
ously define the various extended SCCharts features; we were positively surprised
to find that they also produce fairly compact, efficient code as well [13]. In the
end, the desire to quickly prototype a modular compiler, easy to validate and
to customize, prompted us to follow the SLIC approach presented here; and
Xtext, Xtend, KIELER and KLighD, all part of Eclipse, were the key enabling
technologies for the implementation.

When asking what exactly is “model-based” about the SCCharts compilation
approach, one notices that indeed there are many similarities to traditional com-
pilation approaches. For example, the SCCharts with their hierarchical structure
might also be considered a form of abstract syntax tree (AST), and the SCG is
related to other intermediate formats used in compiling synchronous languages.
However, the SLIC approach is model-driven in the following aspects:

– The compilation steps are M2M transformations where the resulting model
contains all information. There are no other, hidden data structures.

– For the most part, the intermediate transformation steps are in the same lan-
guage as the original model. We just apply a sequence of language sub-setting
operations, transforming away one feature at a time. There is a change of
language when going from normalized SCCharts to the SCG, but that is
mainly for convenience, for example, to be able to separate the surface of a
pause from its depth. However, even that step would not have been strictly
necessary, we could have stayed with the SCCharts meta model all the way
to the final C/VHDL code. In fact, our first implementation had only one
meta model.

We see numerous directions for future work. For example, we want to explore
further the best ways on how to let the user interact with the compiler and how
to manage the model views. Especially for larger models we want to employ
techniques like reference states to gain modularization and preserve scalability.
Regarding scalability and practicability we hope to report on an ongoing larger
case study soon. In this case study our approach is used for designing and im-
plementing a complex model railway controller. The SLIC order for SCCharts,
depicted in Fig. 8, has evolved over time, and we expect it to evolve further. For
example we currently explore tool support for consistent choices of selected trans-
formations, statically from the SLIC order and dynamically from the features
used in concrete models. Also, we are experimenting with alternative transfor-
mation rules for one and the same feature, where the choice of the best rule may
depend on the original model and overall constraints/priorities. Another active
area is that of interactive timing analysis [4], where we investigate how to best
preserve timing-information across M2M transformations. The main advantage
of our approach is its interactivity. Nonetheless we envision a fully automatic
compilation process including the possibility to include our compiler in scripts
(e. g., a Makefile) or using it online in the Web.
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