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Abstract. The Single-Pass Language-Driven Incremental Compilation
(SLIC) strategy uses a series of model-to-model (M2M) transformations
to compile a model or program to a specified target. Tool developer and
modeler can inspect the result of each transformation step, using a fa-
miliar, graphical syntax of the successively transformed model, which is
made possible by harnessing automatic layout. Previous work (presented
at ISoLA’14) introduced the basics of the SLIC approach and illustrated
it with a compiler that translated SCCharts, a synchronous, determin-
istic statechart language developed for safety-critical systems, to soft-
ware. The compiler is implemented in the Kiel Integrated Environment
for Layout Eclipse Rich Client (KIELER), an open-source development
framework based on Eclipse.
This paper proposes two extensions to SLIC. First, we extend the M2M
transformation mechanism with a tracing capability that keeps track
of model elements during transformations. Second, we make use of the
tracing capability for an interactive simulation, where we not only ob-
serve a model’s input/output behavior during execution, but can inspect
the run-time behavior of each model component, at any transformation
stage. We illustrate these concepts by new transformations in the KIELER
SCCharts compiler, which allow to synthesize hardware circuits, and a
simulator that executes an intermediate-level software model and visual-
izes the simulation at the high-level model as well as the low-level circuit.

1 Introduction

In an earlier case-study on interactive model-based compilation [12], we inves-
tigated possible compilation strategies for Sequentially Constructive Statecharts
(SCCharts). SCCharts [21] is a synchronous statechart modeling language for
reactive systems, designed with safety-critical systems in mind. Due to its se-
quentially constructive model of computation [22] it provides semantic rigor and
determinism. At the same time, it permits sequential assignments within a re-
action, which is forbidden in classical synchronous languages.

The case-study also introduced Single-Pass Language-Driven Incremental
Compilation (SLIC). The user story is as follows: i) A user edits a textual model.

www.informatik.uni-kiel.de/rtsys/
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Fig. 1. Full compilation tree from Extended SCCharts to hardware (e. g., VHDL) or
software (e. g., C code) splits into a high-level and low-level parts (adapted from [12]).

ii) The user selects a chain of M2M transformations to be applied to the source
model. iii) The selected transformations are applied and the visual representation
of the transformed model is updated.

Unlike in traditional compilers, each step of the transformation chain is fully
transparent and each intermediate result can be inspected. As long as the M2M
transformations are within the same meta model, the same graphical syntax that
is already familiar to the user can be used to visualize the transformation results.
The tool smith can validate and optimize each step of the compiler. There are no
hidden (intermediate) data structures that carry additional information. This is
particularly useful for safety-critical systems.

The original introduction of the SLIC approach [12] implemented the com-
pilation tree depicted in Fig. 1, using Statecharts notation, and explained the
high-level synthesis part in detail. The SCCharts language is split into two parts:
Extended SCCharts, the syntactic sugar, and Core SCCharts, the minimal lan-
guage set. The high-level compilation involves (1) expanding extended features
by performing consecutive M2M transformations on Extended SCCharts, (2) nor-
malizing Core SCCharts by using only a small number of allowed Core SCCharts
patterns, and (3) straight-forward M2M mapping of these constructs to a Sequen-
tially Constructive Graph (SCG).

The low-level synthesis strategies involve the code generation for software
(e. g., C code) and hardware (e. g., VHDL) as presented earlier [21], with the
data-flow approach for software, (4) and (5), explained in detail elsewhere [18].
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Modeling and Programming

Traditionally, one way to separate programming and modeling was based on
whether the primary concrete syntax of the high-level artifact was graphical
(“model”) or textual (“program”). However, if that distinction was ever justified,
it is now less and less so as textual modeling frameworks such as Xtext become
more common place, and these frameworks provide standard compilation services
such as parser generation. The SLIC approach and its extensions proposed here
is related to the fields of program compilation and modeling alike. We address a
classical compilation task, namely translating a high-level artifact developed by
a human to a low-level, executable piece of hardware or software. While doing
so, we make systematic use of classical modeling concepts and a widely used
modeling ecosystem (Eclipse).

We thus see the work presented here as yet another step towards blurring
the boundary between modeling and programming. This not only concerns the
“technical” aspects of how programs/models are analyzed and synthesized, but
also how the programmer/modeler is involved in the process. The choice of con-
crete syntax is just one example; other examples, which we invite the reader to
consider in the remainder of this paper, include the way the compiler is con-
trolled using a “model” of the compilation chain (as illustrated in Fig. 1), how
intermediate compilation results are presented, or how a program/model is sim-
ulated.

Contributions

In this paper, we present two extensions to the SLIC approach. First, we extend
the M2M transformation mechanism with a tracing capability that keeps track
of model elements during transformations. This allows to map high-level model
elements to their low-level counterparts and vice versa. Second, we make use of
the tracing capability for an interactive simulation. As in source-level debugging
familiar from high-level languages, the execution state is reflected in the original
model, but here we can inspect the run-time behavior of each model component
at any transformation stage as well.

To illustrate these concepts, we further explore the picture given in Fig. 1
by explaining how to create hardware circuits from models written in SCCharts
within the SLIC approach. This includes (6) the transformation of the SCG into a
Single Static Assignment (SSA) [15] form and (7) the generation of the circuits via
M2M transformations as well as the visualization and simulation. The simulation
is done based on an intermediate transformation result that determines a tick
function, which is compiled to C code that is then executed. The bidirectional
transformation tracing information not only allows to map simulation results to
the original model, but also to the hardware circuit that is the final result of the
transformation.
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Outline

The next section covers the SCCharts language, as far as required for the re-
mainder of this paper. The section introduces AO, a subset example of ABRO
presented in the previous paper [12]. AO will serve as ongoing example for the
circuit synthesis.

Sec. 3 then discusses the two proposed extensions to the SLIC, tracing and
simulation, at a general level. The interactive incremental hardware synthesis
that illustrates these extensions follows in Sec. 4. That section explains the
transformations that are necessary to create circuits and how to extend the
existing toolchain to simulate and validate the generated circuits. The evaluation
for the interactive hardware synthesis, showing the practicability of the approach,
is discussed in Sec. 5.

We summarize related work in Sec. 6, and conclude in Sec. 7.

2 SCCharts

In this section, we will introduce the AO SCChart, see Fig. 2a, a tiny example
of SCCharts. We choose AO because of space considerations. Nevertheless, the
approach presented here applies any SCChart that is statically scheduable, e. g.,
ABRO, the “hello world” [1] of synchronous programming, included in the previ-
ous case-study [12]. We will explain all used features of SCCharts as far as they
are necessary to understand the model. In depth details of the SCCharts lan-
guage are described in the introductory SCCharts paper [21] and the technical
report on the features of the SCCharts language [20].

In general, an SCChart starts with an interface declaration at the top that can
declare variables and external functions. Variables can be inputs, which are read
from the environment, and/or outputs, which are written to the environment.
One may also declare local variables. In AO the interface declaration consists out
of one input variable A and one output variable O, which will be fed back to the
environment at the end of a reaction cycle.

AO has only one (top) level of hierarchy. It includes its two states Init and
DoneA which are connected via a transition. Since AO does not comprise any
concurrency, only one of these states may be active. At the start of the program
AO state Init, the initial state (thick border), is the active one. The program ends
after DoneA, a final state (double border), is reached. If Init is active and the
trigger of the transition, input A, is true, Init is left and DoneA becomes active.
Simultaneously, the effect O = true is executed which sets O to true. If two or
more transitions outgoing from the active state are eligible to run, the transition
with the higher priority is taken (cf. _Depth in Fig. 2b). The transition in AO is
an immediate transition, indicated by the dashed edge, which means that it is
enabled as soon as its source state becomes active. Otherwise, it would have been
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(a) Source model of the AO SCChart

(c) SCG of AO depicting the control-flow
of AO. The basic blocks (purple boxes) en-
close the statements of the program. They
are annotated with their name and the ex-
pression that determines when a block is
active.

(b) Equivalent Normalized SCChart af-
ter high-level compilation (expansion)

-
A

O
-

A

O

(d) Two possible execution traces with
true-valued inputs above the tick time
line and true-valued outputs below. The
second trace emits O in the first tick
because the transition in AO is taken
immediately.

Fig. 2. The AO example, illustrating Extended and Normalized SCCharts features and
its sequential control-flow

delayed by default, meaning it cannot trigger in the first tick of its source state.
This convention prevents instantaneous cycles, which would be problematic for
this synthesis.

AO_NORM (Fig. 2b) expresses the exact semantics of AO but uses only lan-
guage elements of the Core SCCharts subset. The transformation from com-
pact extended SCCharts to Normalized SCCharts and more key features of SC-
Charts, such as concurrency, hierarchy and preemption, are explained in detail
elsewhere [12,20].

According to the compilation strategies presented before [12, 18, 21] a nor-
malized SCChart is mapped to its corresponding SCG (also see (3) in Fig. 1.).
The SCG of the normalized version of AO (cf. Fig. 2b) is shown in Fig. 2c. The
basic blocks (purple boxes) determine which part of the program is active in
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Fig. 3. Matrix showing the entire mapping throughout the transformation process from
SCCharts to circuits (adapted from [21])

the actual tick. They are annotated with their activation expression, also called
guard. The specific mapping from normalized SCCharts pattern to SCG elements
is depicted in the upper part of Fig. 3. The lower part shows the direct mapping
between SCG elements and data-flow code and their corresponding circuits.

The execution of an SCChart is divided into a sequence of logical ticks. Two
example traces for AO can be seen in Fig. 2d. The program is terminated as
soon as the reaction that emits O occurred. This includes the first tick of the
program, in which Init becomes active, because the transition between Init and
DoneA is immediate.

3 SLIC Extensions

In this section, we first recall the general SLIC user story [12]. Afterwards, the
new extensions, namely tracing and simulation, are introduced. An extended
SLIC compiler is able to present every intermediate result and propagate infor-
mation, such as runtime information about a running simulation, between all
intermediate model instances. The models may be instances of different meta
models.
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SLIC User Story

Fig. 4 shows a screenshot of the Kiel Integrated Environment for Layout Eclipse
Rich Client (KIELER1) modeling tools for SCCharts annotated with a schematic
workflow:

(1) A modeler models their model textually.
(2) The model gets displayed graphically. This is done instantly and achieved

by using automatic layout techniques, such as KIELER’s layouting tools.
(3) At any point in time, the modeler may select one or more transformations

in the compiler selection. Subsequently, the model gets transformed and will
be displayed as intermediate result. The tooling will only present transfor-
mations that match the input model or any model format that is reachable
from the input model. As described in the original introduction of SLIC [12],
the transformation steps are executed in a statically determined order and
each transformation produces an intermediate result. This is depicted as di-
rected chain of arrows in the box at the bottom of Fig. 4. The added tracing
technology, explained in Sec. 3.1, allows a bidirectional mapping between all
intermediate results.

(4) The results may be simulated. Therefore, an (intermediate) model is com-
piled to executable code. A simulation engine then runs the program and
feeds back runtime information that can be used, e. g., to visualize the model
instances.

3.1 SLIC Extension: Tracing

The tracing of model elements creates a map that stores information about the
relationships between different model elements w.r.t. intermediate transforma-
tion results. Transformation rules, introduced earlier [12], describe how model
elements get transformed into different, new model elements. The newly gener-
ated model elements may be of the same or a different meta model. Fig. 5 shows
a transformation step. Model I with nodes A, B, C, D, and E gets transformed to
model II with nodes F, G, H, and I. We observe four kinds of element relations:

(1) Object A transforms to F and G. This depicts a 1:n relation.
(2) Node B translates to I in a 1:1 relation.
(3) Element D has no corresponding nodes in the target model.
(4) Nodes C and E both transform to node H, which depicts and n:1 relation.

Every transformation produces an intermediate compilation result, which is a
fully functional model instance. It can be visualized and used as origin for further
transformation steps. The changes that enable tracing capability to SLIC trans-
formations are minimal because the developer must only add tracing information
1 http://rtsys.informatik.uni-kiel.de/kieler

http://rtsys.informatik.uni-kiel.de/kieler
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Fig. 4. SLIC extended with tracing and an interactive simulation as implemented in
the KIELER SCCharts tools

for newly created elements. Elements that are present in both, the source and
the target model, are mapped to a 1:1 relation by default. Analogously, model
elements without a target are also handled automatically.

For example, the initialization transformation of the KIELER SCCharts im-
plementation, see Fig. 6, creates a new entry action for every initialization part
of a declared variable. Therefore, it retrieves an iterator for objects with ini-
tialization part and creates an entry action for each at index 0 in reverse order
to preserve the initialization order. The initialValue of the valuedObject will be
added to the assignment of the entry action in Line 5. Hence, the expression is
removed from the valuedObject containment. As mentioned before, this is implic-
itly traced and must not be added to the transformation rule explicitly. For the
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Fig. 5. Transformation step from model I
to model II: Model element tracing de-
picted by arrows.

1 def transformInitialization(State state) {
2 val valuedObjects = state.valuedObjects.

filter[initialValue != null].reverseView
3 for(valuedObject : valuedObjects) {
4 state.createEntryAction(0) => [
5 effects +=

valuedObject.createAssignment(
valuedObject.initialValue)

6 trace(valuedObject)
7 ]
8 }
9 }

Fig. 6. Xtend implementation of trans-
forming variable initializations including
tracing command

tracing, only Line 6 had to be added. This traces the newly created entry action
back to valuedObject in a 1:1 relation.

Applying the tracing to all transformations creates a tracing tree, which can
be used to trace model information between arbitrary intermediate model in-
stances of a complete compilation chain. Fig. 7a shows the application of the
rules depicted in Fig. 5 for models I and II. Additionally, four subsequent trans-
formations, creating the instances III, IV, V, and VI, form the model instance
hierarchy seen in the figure. The tracing tree can be used to show the rela-
tionships between all model elements of a particular compilation. E. g., model
element K in model IV corresponds to element A in model I via O in model III
and G in model II.

Furthermore, it is not mandatory to always map from source to target or vice
versa. The topology of the tracing tree w.r.t. the model instances can be seen in
Fig. 7b. Since the tracing is transitive, the elements from, e. g., model instance
IV can be used to trace relationships in, e. g., model instance VI as depicted
in the figure. Here, model II serves as least common transformation result. For
example, as depicted in red in Fig. 7a, elements M and L in model IV both relate
to element T in model VI and vice versa.

At the moment our tracing framework only allows the mapping from model
instance to model instance and not, e. g., to pure text. Hence, the mapping of
the last code generation step in the KIELER compiler must be done explicitly,
if textual program code, such as C, is generated. However, this is only a tooling
restriction of the current KIELER version. In principle, the tracing tree can also
include the textual program data, e. g., represented as model.

3.2 SLIC Extension: Simulation

The user story told at the beginning of this section also depicts the possibility
to simulate any intermediate model (cf. (4) in Fig. 4). If using a SLIC compiler
equipped with transformation tracing as described in Sec. 3.1, each interme-
diate result can be simulated to gather runtime information about all other
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(b) End-to-End mapping depicting the tracing path
from model IV to model VI via model II. Information
about model elements propagate transitively between
the different model instances.

Fig. 7. Resolving model tracing

model instances. E. g., the model can be compiled down to C code and then be
executed by a simulation engine which handles input/output communication.
This technique is implemented in the execution manager [11] that is part of
the KIELER modeling tools. Another way would be the execution of a model by
an interpreter on model level. In both cases the runtime information could be
propagated throughout the whole tracing tree. The modeler may choose, which
model instances they want to inspect (cf. (3) in Fig. 4).

Hence, considering the example depicted in Fig. 7a in Sec. 3.1, any model of
models I – VI may be executed to gather runtime information. E. g., if model VI
is executed and element T is active, the simulation deduces that elements L and
M in model IV would also be active. The granularity of these deductions depends
on the structure of the tracing branches of the tracing tree. The simulation sets
an element to active as soon as at least one corresponding tracing element is
also active. Therefore, while executing model IV, element T would be marked as
active if element L or element M is active. Of course, this simulation convention
may be changed. Depending on the actual use-case and transformation setup, it
is for example conceivable to set an element to active only if all corresponding
tracing elements are also active.
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Fig. 8. Interactive Incremental Hardware Synthesis workflow overview. The new steps
(3 – 7, marked in blue) fully integrate into the existing SLIC toolchain.

4 Interactive Incremental Hardware Synthesis

We used the SLIC approach, including the aforementioned extensions, to imple-
ment an interactive incremental hardware synthesis. Fig. 8 presents an overview
of all necessary steps from 1 – 7 to realize the transformation from SCCharts
into circuits. The incremental synthesis steps marked in blue (3 – 7) are the
steps presented in this section. The overview shows how the hardware synthesis
steps are integrated into the existing SLIC toolchain and how they depend on
each other.

As indicated in Fig. 1 the transformation from sequentialized SCGs into cir-
cuits needs one intermediate step to generate an SSA form of the SCG (3). The
SSA transformation (cf. Sec. 4.1) resolves data-flow dependencies appearing in
the SCGs. Eventually, the actual transformation into circuits takes place (5) (cf.
Sec. 4.2). The visualization of the circuits is another M2M transformation (6)
and is done via KLighD [17]. Hence, the circuits get layouted fully automatically
without the need to manually rearrange individual elements. Sec. 4.4 explains
the mechanics of the simulation. The visualization of the SCG simulation is used
to visualize the dynamic behavior of the circuit (7).
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Fig. 9. Screenshot of KIELER SCCharts tool annotated with high-level user story for
incremental interactive model-based hardware synthesis

User Story for Interactive Hardware Synthesis

Referring to the user story introduced in Sec. 3, the new incremental transfor-
mation for hardware synthesis and interaction is depicted in Fig. 9:

(1) The textual representation of the model is written in SCT, the textual lan-
guage of SCCharts. In the screenshot, AO is shown.

(2) The interactive compilation control view allows the user to select different
M2M transformations. Transformations may depend on each other. The new
feature group Circuit (lower left part of (2) in Fig. 9) contains the interactive
incremental hardware synthesis presented in this paper.

(3) The user may inspect the source model and the results of the transforma-
tions, selected in step (2), in the visual browsing windows. (3a) shows the
source model, which is AO in this case. Since the user selected the appropri-
ate transformations in (2), (3b) illustrates the SSA version of the SCG cor-
responding to the source model. (3c) depicts the resulting hardware circuit.
If the source model gets modified in the editor (1), all views get updated.

(4) The user may add simulation components in the execution manager view to
configure a simulation. The selected transformation (2) serves as input for
the simulation. While executing a simulation, for each tick, the active com-
ponents of the visualized model will be highlighted in all model views. This
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(a) Sequential SCG of AO (b) SSA SCG of AO

Fig. 10. Transformation of the sequentialized SCG of AO into an SSA form

improves the dynamic comprehensibility of the model instances, and hence,
of the circuit.

(5) During the execution of a simulation, the user may set input variables and
observe the reaction of the system. This can also be done automatically by
loading traces of previous simulations.

4.1 SSA SCG Transformation

The target of the SCCharts data-flow approach is a sequentialized form of an SCG
which only consists out of assignments and conditionals [18]. In sequentialized
SCGs multiple writes to one and the same variable are possible. To solve data-
flow dependencies if such a variable is read, the SCG is transformed into an SSA
form. As defined elsewhere [15] a program is in SSA form if each variable is
the target of exactly one assignment in the program text. In the transformation
of sequentialized SCGs into SSA, each variable which is the target of multiple
assignments becomes indexed. If at some point of execution a variable is read
from, the value of the assignment with the highest index at this point of execution
is used.

For the SSA SCG transformation only variables defined by the user are rel-
evant w.r.t. SSA because automatically created guard variables are unique by
definition. In sequentialized SCGs, assignments to variables depend on condi-
tionals. The assignments are executed if the corresponding guard is true. Hence,
the else branch of these conditionals does not have any nodes. Fig. 10a depicts
the sequential SCG of AO. As the first conditional node in this SCG shows, O
shall not be modified if g0 is evaluated to false. Instead, it is desired that O
still stores the unmodified value. The SSA transformation therefore adds assign-
ment nodes on the else branches. If a condition is evaluated to false, those nodes
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Fig. 11. The circuit and its regions in the context of the controlled environment

assign the latest version of a variable. This is shown in Fig. 10b. If guard g0
in the first conditional node evaluates to false, O_1 is target of the assignment
pre(O). This means the value of O from the previous tick is applied to O_1,
which reflects the fact that in SCCharts, variables are static and hence persist
across tick boundaries. Otherwise, O_1 is set to false. Analogously, if guard g2
in the second conditional node is evaluated to false, O is set to O_1 which is the
latest unmodified instance of O at this point of execution. As observable, the
depicted SSA SCG is not in classical SSA form. In general, a φ-function decides
which version of an SSA variable is used after possible modifications on different
instances. However, the φ-function that decides which instance of a variable is
chosen can directly be resolved in the conditional branches because from both
branches always only one is executed exclusively [9, 16].

4.2 Circuit Transformation

According to Fig. 8, Step (5), the SSA SCG gets transformed into a circuit repre-
sentation. SCCharts models are designed for reactive systems. The correspond-
ing circuit is usually meant to be embedded in a reactive environment. Hence,
sensor inputs are read from the environment, outputs are computed and then
fed back to control the environment. Therefore, for each input (output) in the
source model, a corresponding input (output) port is created in the circuit. The
structure of the circuit is depicted in Fig 11. It is divided in two parts. The
first part, the Initialization Region, provides the reset and tick logic. The second
part, the Program Logic Region, contains the transformation of the SSA SCG and
represents the logic of the program.

The exact translation rules are depicted in Fig. 3. Each SCG node corresponds
to data-flow equation which can be translated directly into hardware circuits.
For example, an assignment of the form x = e in the SCG gets translated into a
Multiplexer (MUX) element. The responsible guard g, which is the composition
of its predecessor guards gin, decides whether or not e is assigned to x. Therefore,
g is connected to the select pin of the MUX and x and e serve as inputs. x′ then
becomes the new actual instance of x.
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Fig. 12. Tracing of M2M transformations: Selecting the circuit block g2 in the circuit
shows the origin in the intermediate and the source model.

4.3 Traceability

As depicted in the user story at the beginning of Sec. 4, the modeler may inspect
the result of every transformation, including the final circuit. The elements of
the graphical representation of a model are interactive. Each may be selected to
trace its individual transformation history as explained in Sec. 3.1.

Fig. 12 illustrates a side-by-side view of selected transformation steps. The
modeler may select an arbitrary number of transformations. In the figure, the
source model, the SSA SCG, and the final circuit are selected. By selecting the
g2 block in the circuit, the modeler sees the origin and transformation history
of the g2 block. In this case, the block was created because of the assignment to
g2 in the SSA SCG. The guard g2 guards the basic block (cf. Fig. 2c) and hence
is indirectly created from the elements which are guarded by g2, namely state
_S, the outgoing transition of _S and the assignment O = true.

As can be seen in the middle part of Fig. 12, g2 determines whether or not
O is set to true, which is the case when the outgoing transformation from _S
is taken (cf. Fig. 12). Otherwise, O is set to O_1, the previous instance of O,
meaning the state of O stays unchanged. Inspecting the circuit in Fig. 12 reveals
that guard g2 controls the MUX O. Therefore, the aforementioned selection of
the O instance is directly visible in the circuit.
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(a) Simulation step of AO with input A
set to false

(b) Simulation step of AO with input A
set to true

(c) Simulation step of the AO circuit with A set to true: All active elements, analogous
to the SSA SCG, are highlighted in orange.

Fig. 13. Simulation visualization of AO

4.4 Simulation

Step (7) in Fig. 8 marks the simulation component of the synthesized circuits.
Following the simulation approach depicted in Sec. 3.2, C code is generated from
the SSA SCGs. However, as explained before, the simulation is not restricted to
C code. Every system that feeds back runtime information about the running
program can be used. Since the circuit synthesis translates assignment nodes with
guards and expressions as described in Sec. 4.2, the highlighting information
gained from the generated C code can be used for the highlighting of circuit
components. In each tick, the C code delivers runtime informations of active
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SCCharts depending on the number of nodes

guards and, hence, their basic blocks. The elements in the SSA SCGs and the
circuits are highlighted according to this information. This corresponds to the
end-to-end mapping of the tracing tree depicted in Fig. 7b in Sec. 3.1.

Fig. 13 shows parts of the simulation of the AO example program. The high-
lighted nodes in the depicted SCG mark the active guards in two consecutive
ticks in Fig. 13a and Fig. 13b. An assignment with orange colored background
indicates that this guard is active. Fig. 13a shows a non-initial tick in which A is
set to false. Therefore, the final state has not been reached yet which is indicated
by the highlighting of g3. Furthermore, the highlighting of g4 shows that this
tick is non-initial because g4 stores the value of g3 from the last tick. Node g1
is active in every tick. This node describes the guard for the basic block which
contains the evaluation of input A. In Fig. 13b, the subsequent tick, A is set to
true. Hence, the assignment g2 = g1 && A now evaluates to true. The highlighting
of assignment O = true shows that the program reacts as desired.

The simulation of the second tick is also depicted in the circuit in Fig. 13c.
All live wires and components are highlighted orange. As described before, g2 is
the composition of g1 and A. g1 is either true at the beginning of the program,
indicated by the _GO signal, or if register g4 is active. As A is set to true in this
tick, guard g2 also becomes true and sets the selection input of MUX O which
applies the voltage to the output. Hence, O is set to true.

5 Evaluation

Fig. 14 shows the size in terms of the number of model elements of each interme-
diate result between the normalized source mode and the resulting circuit. The
number of nodes of the normalized SCCharts reach from 5 for the AO model to
86 for a slightly bigger model, the DVDPlayer. Because the SSA transformation
only adds assignments in the else branches of the conditional nodes, the number
of nodes between sequentialized SCGs and SSA SCGs stay almost the same. As
for the circuits, it is observable that in no case the number of nodes exceed twice
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the number of nodes in the SSA SCGs (omitting multiple occurrences of vcc and
gnd). The AO circuit has 11 nodes and the DVDPlayer has 200 nodes. The number
of nodes in the circuit for ABRO, the “hello world” example discussed in the case
study [12], does not exceed 50. The complete ABRO circuit can be inspected in
the thesis regarding interactive incremental hardware synthesis [16].

There are three different aspects which influence the scaling of circuits de-
pending on the nodes in sequentialized SCGs:

1. Expressions like gX = gY are simply translated as one wire with two different
names and therefore do not increase the number of nodes in circuits.

2. Guard expressions like gX = gY || gZ produce as many logic gates as nested
operator expressions exist. Notice that the pre operator results in the creation
of a register that stores the value of the previous reaction. Depending on the
number of concurrent regions in the SCChart, a complex guard [18], which
is used for joining threads, may be more complex. For each pause statement
per thread, another logic gate is required.

3. New assignment nodes on else branches in the SSA SCGs (cf. Sec. 4.1) do
not increase the number of logic gates. The conditional still only needs one
MUX as each MUX summarizes the assignment nodes from each conditional
branch. This is the reason why, e. g., the ALDO circuit has fewer nodes than
its sequentialized SCG.

6 Related Work

The close relation between compilation and modeling techniques has been ob-
served quite early, e. g., by Steffen, who proposes to make use of consistency
models to detect inconsistencies between different model descriptions, and re-
lates this to giving a semantics to a programming language by translation into
an intermediate language [19]. Since then, a number of modeling approaches have
been developed that also address model compilation. For example, Cinco can
automatically construct code generators from a given meta model [13]. Grundy
et al. give a good overview of the current state and present Marama, which
provides a set of mostly visual metatools for language specification and tool
building, including synthesis [7]. One difference of these approaches and our
proposal here is that we aim to 1) divide the synthesis of the human-authored
artifact into the low-level result into rather small, in themselves conceptually
simple steps, applied in a single, sequential pass, and to 2) make the interme-
diate transformation results accessible to the user, by automatically deriving
well-readable graphical views of the model stages. Moreover, the separation of
model and graphical view starts at the very beginning, as the human works on a
textual model description, using all efficiency advantages of a textual editor and
frameworks such as Xtext. This is in line with pragmatic modeling, which aims
to free the user of tedious layout tasks involving a palette and manual place and
route [6]. Lopes [10] studies the general specification of mappings and inspired
the tracing SLIC extension. However, Lopes’s approach considers the mapping
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specification between two meta models, where we also consider mappings be-
tween models of the same meta model.

Concerning our case study, the synthesis of hardware from SCCharts, the
hardware synthesis from Statecharts [8] introduced by Drusinsky and Harel [4]
uses Statecharts as behavioral HDL. The idea is to use single machines imple-
menting finite state machines (FSMs). Since Statecharts allow non-deterministic
behavior this approach is not taken into consideration for the hardware synthesis
from SCCharts. Esterel [3] is a synchronous language tailored for the develop-
ment of embedded reactive applications in hardware and software. Esterel pro-
grams can directly be translated into circuits [2]. Since SCCharts’ SC MoC is a
conservative extension of the classical synchronous MoC [21], the ideas of concur-
rent regions and the usage of registers to store the system state is adapted from
Esterel’s hardware synthesis. However, Esterel’s hardware synthesis approach is
a bit more involved than the synthesis from the SCG we propose here in that
preemptions have already been transformed away when the SCG level is reached.
Sequentially Constructive Esterel (SCEst), studied by Rathlev et al. [14], can
be used to generate hardware circuits with our approach because the hardware
synthesis can be directly applied to the SCG. Hence, we also provide a new route
for circuit creation for Esterel. Johannsen [9] studied hardware synthesis for SC-
Charts before and translated SCCharts to VHDL. The ISE tool2 then visualizes
and simulates the circuit. This approach can also be pursued by other tools
that are capable of describing FSMs. However, the interactive and incremental
approach proposed here has no breaks in the toolchain and is integrated into
the KIELER framework and thus uses KIELER layout and visualization. There-
fore, no external tool is necessary. The traceability of the circuits behavior is
supported since all intermediate transformations are visible. Additionally, SC-
Charts models can be compiled to software. Nevertheless, a comparison of the
synthesis quality of classical hardware design tools with the approach presented
here would be interesting future work.

Edwards [5] provides an overview of different approaches for hardware synthe-
sis from C like languages and their limitations. Since SCCharts can be compiled
to C or Java code, it is also possible to pursue these routes to generate hardware
circuits. This would be particularly useful for hostcode calls, which are currently
not included in our compiler.

7 Conclusions

The incremental interactive hardware synthesis integrates into the SCCharts
SLIC approach. By adding two M2M transformations to the compiler chain, a
modeler is able to generate hardware circuits for SCCharts models conveniently.
Each transformation step, including the final circuit, can be simulated within the
toolchain. During simulation, runtime information is visualized in all selected
intermediate transformation results. Additionally, each model element can be
2 http://www.xilinx.com
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traced back to the source model; there are no breaks in the toolchain. Summa-
rized, the convenient creation of source models, automatic generation of hard-
ware circuits, and fully integrated simulation and traceability of model elements
are powerful tools for developing integrated circuits. The interactivity between
these key component is crucial.

As mentioned in Sec. 3.1, our tracing framework only considers actual model
instances. In the future we are going to extend the framework, so that it can
handle textual results as well. Additionally, a dedicated simulation interpreter,
as proposed in Sec. 3.2, could exemplify the advantages of the combination of
SLIC and a tracing framework even further. Concerning synthesis, we plan to
reintroduce support for VHDL and hostcode calls. Simulation and visualization
of dedicated tools, such as the ISE tool, could be compared to the KIELER
results and hence represent a new resource for validation.
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