
Towards Interactive Compilation Models

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

www.informatik.uni-kiel.de/rtsys/
{ssm,als,rvh}@informatik.uni-kiel.de

Abstract. A chain of model-to-model transformations prescribes a par-
ticular work process, while executing such a chain generates a concrete
instance of this process. Modeling the entire development process itself
on a meta-model level extends the possibilities of the model-based ap-
proach to guide the developer. Besides refining tools for model creation,
this kind of meta-modeling also facilitates debugging, optimization, and
prototyping of new compilations. A compiler is such a process system.
In this paper, we share the experiences gathered while we worked on the
model-based reference compiler of the KIELER SCCharts project and
ideas towards a unified view on similar prescribed processes.

1 Introduction

In our previous publications towards a unified view of modeling and program-
ming [9,13] we focused on the program/model that should be compiled. Using the
model-based approach, we showed how a model-based compiler can transform
a program to the desired target platform step-by-step while preserving the in-
termediate results. The approach, named SLIC for Single-Pass Language-Driven
Incremental Compilation, was used to create the compiler for the synchronous
language SCCharts [18].

While working on the model-based compiler, we since recognized that pro-
viding meaningful guidance for and resources to the developer does not solely
depend on the artefact that should be compiled, but also on the process which
performs the transformations. Instead of using a compiler that is particularly de-
veloped for a specific use case, we built upon the experiences we gained during
the development of the SLIC approach to model the entire compilation process.
Modeling the process provides us with new possibilities to aid the developer in
their pursuit to create complex products, such as (1) arbitrary annotated in-
termediate models, and (2) the ability to change the compilation model at any
time. We will demonstrate our generic framework in the following sections. For
more concrete information on the compiler implementation and two technical
use cases, we refer the interested reader to the associated technical report [15].

To illustrate the process and to continue the story told previously [9,13], we
use the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1

1 http://rtsys.informatik.uni-kiel.de/kieler

www.informatik.uni-kiel.de/rtsys/


2

SCCharts language implementation as running example. KIELER is an academic
open-source project that serves as a proof-of-concept platform. However, the
approach presented here is not restricted to the SCCharts compiler, SCCharts,
or KIELER, since every system of consecutive processes may be modeled and
executed in a similar way. For example, our reference implementation within
the KIELER project also includes compilers for languages such as C, Esterel,
and various domain-specific languages as well as non-compilation tasks such as
simulation of compiled artefacts.

Contributions and Outline

We here propose process systems that lift the concept of modeling such that
models are not only used to specify some system under development, but also
to specify how the modeling tool synthesizes an artefact that can be simulated
and, finally, deployed. This approach not only gives the modeler full control over
what the modeling tool should do, but also allows to inspect what it actually
does for a specific functional model, along each step of the synthesis process.
We introduce process systems in Sec. 2, beginning with an exemplary, abstract
user story on classical programming and modeling. Sec. 3 takes a more detailed
view of process system models, illustrated with our exemplary realization in the
KIELER project. This demonstration serves as an example for similar process
system modeling and is not restricted to the work done within KIELER. Further
technical use cases can be inspected elsewhere [15]. Subsequent to related work
in Sec. 4 we conclude in Sec. 5.

2 A Generic User Story

In this section we take a closer look at three alternative development processes
sketched in Fig. 1. We assume that the developer uses an Integrated Development
Environment (IDE) to work on a particular software project. Usually, the build
process and/or project has to be configured by either the developer themselves
or by another build expert Typically, the developer works directly on the artefact
in question. However, the work foci differ.

2.1 Programming vs. Modeling

Fig. 1a gives an abstract view on a classical programming development pro-
cess, which is fairly straightforward. The IDE might be the Eclipse CDT2. The
developer often has to be a programming expert and generally also configures
the build process. While they usually work on one file at a time, they must keep
an eye on the whole project, which is usually a collection of files, because it might
influence the compilation. When they complete a development step, they issue
2 https://www.eclipse.org/cdt



3

Code

IDE
Build

co
nfi

gu
re

edit

com
p
ile

debug

deploy

Programmer

.C Compiler
(e.g. gcc)

0001 0000
0000 0111
0001 0100
0001 0010

(a) An abstract view on classical pro-
gramming development process

Models

IDE
Build

co
nfi

gu
re

edit

debug
simulate

deploy

Modeler

Compiler
(e.g. gcc)

.C
0001 0000
0000 0111
0001 0100
0001 0010

Code Syn.
(e.g. RTW)

(b) An abstract view on classical modeling de-
velopment process

IDE
Process Systems

instantiate

Developer

Models
co

nfi
gu

re

edit

debug
simulate

deploy

Process System Instance
(e.g. compilation/simulation)

Intermediate Results

Compiler
(e.g. gcc)

.C
0001 0000
0000 0111
0001 0100
0001 0010

(c) Development story with interactive process system instances

Figure 1: Three alternative development processes

a compilation command. An embedded (often external) compiler then compiles
the source files to binary code that can be executed or embedded elsewhere if
the source code is error free. Errors and warnings are fed back to the editor
inside the IDE. They mark the erroneous line and give more or less processed
information about the actual error or warning.

The classical modeling work-flow (Fig. 1b) looks actually quite similar.
The modeler has to configure their project and can explore the project’s files.
Instead of editing a text file, the modeler usually works on a domain-specific,
often graphical, model. The IDE, which may be something like Eclipse or a
classical modeling tool, such as Matlab/Simulink or Ptolemy, uses an integrated
code synthesis, such as the Real-Time Workshop (RTW) in Matlab/Simulink,



4

to synthesize code. Similar to the classical programming paradigm, as soon as
a development step is finished, the source models are compiled to a classical,
general purpose language, such as C. Afterwards, they are compiled to binary
code like before, with the addition that the user feedback often includes some sort
of simulation. Here it depends on the concrete design choices if the simulation
runs inside the IDE or on the compiled product.

Although the development processes are quite similar, there is a subtle shift
in the focus on the developer. In the first case, the developer has to be a program-
mer, whereas the models in the second case are typically maintained by a domain
expert. However, even in the second case programming experts are sometimes
required to aid the modeler with special requirements or IDE extensions.

2.2 Interactive Process Systems
Fig. 1c depicts the more interactive approach that we advocate here. With inter-
active process systems, operating procedures, such as compilation or simulation,
can be created and modified by the developer. Here, these process systems are
simply models just like the working artefact, but perhaps models of another
meta-model. When the modeler wants to compile (resp. simulate) the actual
status of the model, the respective process system gets instantiated. Afterwards,
the issued command can be processed by that system’s instance. The feedback,
including errors, intermediate, and final results, is directly available as individ-
ual model instances of appropriate meta-models. They can be inspected by the
modeler or used as source for further systems. In the figure, we see an instanti-
ated process system. The artefact is processed sequentially by single processors,
e. g., model-to-model transformations, of the instance. All intermediate steps
are observable. Eventually, the user wants to deploy binary code and one of the
intermediate results may be general purpose source code that can be sent to
an external compiler as before. Conceptually, the compiler call is just another
process in the system’s sequential chain.

Note that this approach is agnostic to the question whether the intermediate
results (or, in fact, the original model) are graphical or textual. If the syntax is
graphical, a key enabler to be able to represent the artefacts is the integration of
automatic layout facilities into the modeling tool. In KIELER, we make use of the
Eclipse Layout Kernel (ELK)3 to synthesize the views. We argue that this is also
an example of pragmatic modeling concepts [5,19], which aim to enhance modeler
productivity by allowing to seamlessly switch between textual and graphical
representations tailored to specific use cases. To quote a practitioner: “In our
experience over many years my colleagues and I concluded that textual modeling
is the only practical way, but that a graphical view of the models is a must-have
as well. [KIELER] closes exactly that gap.”4

The interactivity of the approach becomes apparent in the ability to observe
all intermediate steps, to run system instances as they are needed and to cre-
ate new or change existing systems all during run-time. There is no need to go
3 https://www.eclipse.org/elk/
4 Dr. Andreas Seibel, BSH Hausgeräte GmbH, E-Mail from Oct. 6, 2017.

https://www.eclipse.org/elk/


5

Domain-Specific Language Model

SCCharts Model [8, 11]

Modeler

Domain-Specific Language Meta-Model

SCCharts Meta-Model [7]

Process System Meta-Model

KIELER Compiler Framework [Sec. 3]

Process System Model

Compilation Process [8]

Process System Instance
Compilation Process Intance

Process System Model

Simulation Process

Process System Instance
Simulation Process Intance

Tool
Developer

Process System Input Process System Framework

Figure 2: Process system’s different model layer and user roles

through long re-build and re-start cycles. As described before, a process sys-
tem can basically perform any kind of job. As an example, the figure depicts a
model-to-model (M2M) compilation. Here, technically, the term interactive sub-
sumes the dynamic nature of the approach, meaning that instances of systems
are generated dynamically as they are needed. These instances carry dynamic
properties on their own and live as long as they are required. This also resembles
the classical class-object hierarchy of the object-orientated paradigm.

Another take on this is to view process systems as a—rather abstract—data
flow model. Traditionally, data flow models are collections of actors that con-
sume and produce data [7]. Conceptually, the processors of a process system
correspond to actors, and the data they consume and produce correspond to the
intermediate results generated along a synthesis chain. One difference is that in
process systems, each actor typically “fires” only once, and the “schedule” that
governs how the process system is executed/instantiated is rather simple, usu-
ally just a single sequential execution of all processors. However, more complex,
dynamic execution schemes are also possible, as alluded to later in Sec. 3.2. Al-
ternatively, if we want to focus on the schedule of the processors, we can also view
process systems as control-oriented state machines, where one processor can be
“active” at a time, and when it is finished, control advances to the next proces-
sor. This view can be helpful for example to define more elaborate schedules, but
hides what is actually produced and consumed by the processors, which is why
we consider the data-flow analogy typically more fitting than the state-oriented
analogy.

Due to the interactivity of the approach, tool developers and modelers can
easily create, explore, and modify different aspects of the whole development
process. The difference is not disparate work-flows, but the diverse work-flow
artefacts that are being worked on. Fig. 2 shows the different layers of models
and the two main roles of users. On the left side, the modeler mainly works on
the system’s input, e. g., a particular model in a specific domain-specific language
(DSL). The model’s meta-model also belongs to the system’s input, but is usually
outside of the modeler’s scope w.r.t. making changes during a particular project.
In the example in the figure, the modeler works on an SCCharts model, whose



6

syntax is defined in the corresponding meta-model. Again, it is not important
here wheter the syntax is textual or graphical. This decision can be made as the
case arises depending on the preference of the domain expert. At this, the form
of editor must not be the same as the graphical view of the model. Transient
view and automatic layout technologies [14] may help the modeler to explore
the model without getting distracted by tedious tasks, such as placement and
alignment of graphical elements.

On the framework’s side on the right, there is also the framework’s meta-
model for defining system models. Derived from this, different systems can be
created that hold the necessary instructions. These systems can be instantiated
to be applied on a specific artefact. In the example shown, the created SCCharts
model is fed into an compilation system instance. During compilation, several
observable intermediate results are created. The result of the whole context also
serves as input for a simulation instance.

In general, the modeler will be more interested in the actual project’s model
and the systems’ results, whereas the tool developer’s focus will lie on the sys-
tems and the underlying framework, including the relevant meta-models. How-
ever, both can utilize all aspects of the development process to drive their work.
For example, the modeler may also change a particular system to toggle opti-
mizations if necessary. More obviously, the tool developer can use different model
inputs to test and extend the framework. This could also lead to closer feedback
loops between domain experts and tool developers.

3 Process Systems in KIELER

In the KIELER Compiler (KiCo) the smallest compilation unit is called a proces-
sor. We moved away from the specific term transformation to emphasize that
a processor does not have to perform a transformation. Instead processors are
categorized into transformer, optimizer, and analyzer to specify their role. A va-
riety of tasks can be implemented as processors, such as M2M transformations,
optional optimizations, and, e. g., object counting, but this should be restricted
to this atomic task to facilitate modularity and reuse.

3.1 Static Process Systems

E

p

E

Figure 3: The atomic compila-
tion unit, a processor p, re-
ceives a source and a target en-
vironment when instantiated.

A list of processors forms a process system.
These systems describe a single compilation
from a certain source type down to the desired
target. When compared to the object-orientated
programming paradigm, process systems can be
seen as classes. They can be instantiated to per-
form a task for a concrete artefact. In the previ-
ous publications we described two compilation
approaches, the netlist-based and the priority-
based approaches, for SCCharts [9,18]. Each of
these is an own process system, more specifically a compilation system.



7

2

E

p

E

p

E

S
ta

rt
 c

o
n
fi
g
u

ra
ti

o
n Intermediate snapshots

Processor source model Processor target model

S
e
ttin

g
s co

p
y

1

3
4

5

Figure 4: Concept of a compilation context with two processors.

When a system is instantiated, an instance for every processor within the
system is created. A processor instance is then connected to a source environ-
ment from which it will receive input data and a target environment to work on
and store data for the next processors. The simplest system possible is shown
in Fig. 3. It consists of a single processor with its corresponding source and
target environments. Once the system is fully instantiated, a new compilation
context (gen. process context) exists, which can be used to compile an artefact.
While the context, including all environments and all data, is observable during
compilation, it will remain accessible even after the compilation finished until
discarded, so that all data and results can be inspected as long as desired.

Conceptionally, the developer is free to choose the nature of their environ-
ments. In KIELER we use typed, but arbitrary data storages. Hence, processors
may store arbitrary (ancillary) data in the environments, but have a form of
type-safety when accessing it.

The developer does not have to bother with all the instances and environ-
ments. The KiCo framework will do most of the work. In general, when invoking
a compilation programmatically, one only needs two lines of code. First, a con-
text has to be created. The context needs to know which system model it should
use and on which artefact the compilation should be invoked. Once the context
is created, the compilation can be executed. List. 1.1 shows an excerpt from the
KIELER project where a compilation is started asynchronously as soon as the
user presses a particular button. The programmer could make adjustments to
the context before the compile method is executed, but in this case, it is not
necessary.

1 val context = Compile.createCompilationContext(view.activeSystem, model)
2 context.compileAsynchronously

Listing 1.1: Compilation invocation excerpt from the KIELER project



8

E

p

E

p

P
re

 P
ro

ce
ss

o
r

Tra
n
sfo

rm
a
tio

n

76 8 9

Figure 5: To save resources several processors can be grouped together. Gener-
ally, everything that happens between two environments is commonly called a
transformation.

Usually a compilation system includes more than one processor. Fig. 4 shows
how processors interact with their environments to orchestrate the entire com-
pilation. As described before, once a context has been created, it needs an input
artefact and can be configured if necessary. The first environment in the con-
text receives the start configuration as can be seen in the figure. After the
invocation of the compilation, the first processor begins its work. It fetches the
model from its source environment and begins its computations. That model is
the source model from the processor’s perspective. While working on the model,
the processor can do several snapshots of the current state and store them in
its target environment . These intermediate states can be inspected during or
after the compilation. At the end of the processor’s job, the result is saved .
In the example, the graphic indicates that the result is of the same meta-model
as the source model. However, any type can be used. E. g., as targets are often
other programming-languages, the backends usually give simple text as results.
Once the processor terminates, the next processor starts its job. From its per-
spective, the former target environment now becomes the source environment
and the processor can work on the next one. The framework takes care that all
settings, model references, and additional auxiliary data get copied to the new
environments if necessary .

To facilitate modularity and consume less resources, processors often per-
form pre- or post-processing jobs for transformers without the need of dedicated
environments as depicted in Fig. 5. Hence, a processor can run with the same en-
vironments as another one . In the example, the job saves a second model with
a different meta-model in the environment . This secondary model may store
ancillary data (e. g. loop information from a loop analyzer), which can be picked
up by subsequent processors . Usually, what is commonly called transformation
is everything that happens between the source and the target environments .
The result that is stored in the last environment represents the result of the
whole compilation.

Note that pre- or post-processors also store these data in the target environ-
ment of the main processos as they are not allowed to change the source environ-
ment. However, the developer is not required to handle these inputs differently
as the framework will ensure correct accesses. In fact, technically, KiCo pro-



9

E

p

E

E

p

E

E

p

E

E

p

E

execute execute

m = 0.8m = 1.1

m = 0.8

execute

Figure 6: When joining different branches, model measures rate the quality of
the preceding results to determine the new source environment.

cessors internally always only work on the target environment. The framework
automatically creates a copy from the source environment before a processor is
called.

To be even more resource-saving, a compilation can be set to in-place. Com-
piling in-place does not create new model instances to work on. The processors
all work on the same models, hence intermediate results are only observable dur-
ing compilation and only one at a time. At the end of the compilation, only the
final result remains. Conceptually, this would also look like the schema in Fig. 5
where only two environments exist and all processor instances live in between.

3.2 Dynamic Process Systems

The KiCo framework can also handle branching. As we tend to create small,
concise systems and this mechanic is rarely used at the moment, we will only
sketch the two predominant concepts of KiCos decision-making. Succeeding pro-
cessors are always executed in KiCo. In the first approach, when joining different
branches, KiCo compares quality measures (m) inside the joining environments
to decide which result will be the source for the joining processor as can be seen
in Fig. 6. The measure is determined by a post-processor and can be handled
and customized like every other processor. Which characteristics of the model
are used to determine the value is up to process system. By definition, a smaller
value generally means a better result, e. g., model size. In the figure two paths
branch from a source. On both paths, a processor performs its job. The result
is then judged by a measuring processor. Compared to the source model, the
result on the left branch is greater, i. e. worse. Subsequently, the right branch is
chosen for the joining processor. Note that this mechanism can also be used to



10

exclude invalid paths. An invalid model results in an infinite measure (∞) and
is discarded. This, however, depends on the task of the processor. For example,
if an optimizer fails, it should simply return the source model with m = 1.0 as
a failed optimization should not change the artefact semantically.

In the second approach, as a process system is also a model and accessible
from the contained processors, a processor can alter the process system and,
therefore, affect the succeeding processors. Hence, it is also possible to decide
for the next processor during run-time. This is particularly helpful when a static
schedule is not determinable, as has been shown by Rahimi-Barfeh [12].

3.3 SCCharts Compilation

The default version of the netlist-based compilation system uses 33 processors.
List. 1.2 shows a shortened description for the netlist-based compilation of SC-
Charts. Every processor has its own unique identifier. However, compilation
systems are often composed of other systems, which can be referenced. Here, the
downstream compilation builds upon the standard high-level SCCharts compi-
lation (line 4–5) and nine further processors identified by their identifiers.

As these descriptions define compilation models interactively, we use con-
cepts such as transient views [14] to visualize the system graphically and, if
necessary, point to problems such as unknown processors or type incompatibil-
ity between processors. Interactively means that we can inspect, change, and
save the model during runtime to invoke altered compilation runs without the
need of long re-configure and re-start cycles. Fig. 7a shows the automatically
generated graphical representation of the netlist-based compilation system dur-
ing editing. This view is synchronized with the editor of the model’s description

1 public system de.cau.cs.kieler.sccharts.netlist
2 label "Netlist−based Compilation"
3

4 system de.cau.cs.kieler.sccharts.extended
5 system de.cau.cs.kieler.sccharts.core
6 de.cau.cs.kieler.sccharts.scg.processors.SCG
7 post process de.cau.cs.kieler.scg.processors.threadAnalyzer
8 de.cau.cs.kieler.scg.processors.dependency
9 de.cau.cs.kieler.scg.processors.basicBlocks

10 post process de.cau.cs.kieler.scg.processors.expressions
11 de.cau.cs.kieler.scg.processors.guards
12 de.cau.cs.kieler.scg.processors.scheduler
13 de.cau.cs.kieler.scg.processors.sequentializer
14 de.cau.cs.kieler.scg.processors.codegen.c

Listing 1.2: Model description of the netlist-based SCCharts compilation



11

(a) SCCharts netlist-based compilation system. In this view, the Extended system is
collapsed and the Core system is expanded.

(b) While modeling, errors, such as type incompatibility, can be highlighted immedi-
ately.

Figure 7: Example of an automatically generated graphical (view) of a compila-
tion system

and instantaneously re-generated upon change. The referenced high-level SC-
Charts systems can be expanded and collapsed for readability. Problems appear
in red. The generated views are also used as control panel in the KIELER project
to invoke the compilations and to select intermediate results.

In the example depicted in Fig. 7a, the Surface / Depth processor creates an
SCCharts model which is then transformed to its corresponding Sequentially
Constructive Graph (SCG), a sequentially constructive variant of a control-flow
graph, by the SCG processor. The subsequent Dependency processor expects an
SCG as input. If one would swap the SCG and Dependency processors, the com-
pilation chain becomes type incompatible, as depicted in Fig. 7b.

Fig. 8 shows a complete example of a running KIELER instance during sim-
ulation. In the SCCharts editor tool, the abstract model is described with a
textual syntax . A graphical view of the model is instantaneously generated by
the transient view framework [14] . The user can further influence the visual-
ization of the presented data via options on the right sidebar . However, these
options consist mainly of rather coarse convenience settings to set the current
focus to specific points of interests. – show examples of different informa-
tion views. These can be configured (and saved per perspective) individually.
Together with the transient live visualization , they resemble the systems and
intermediate result regions from the previous figures. The selected compilation
system is depicted in . A view to manipulate the running simulation is open
in . Selected data observers can be inspected in . Note that information of
the running simulation is visible in the model diagram , the simulation view
, and the observers simultaneously. The variable states and current active

model elements can be highlighted directly in the model. The user can input new
environment settings in the simulation view. Here, one can also control single



12

Figure 8: Complete example of a running KIELER instance during simulation.

forward and backward steps of the simulation. Furthermore, the actual and past
data of selected variables can also be visualized in the data observer .

4 Related Work

Steffen already showed a close relation between compilation and modeling back
in 1997 [16]. He proposed to use consistency models to detect inconsistencies
between different model descriptions. This relates to giving a semantics to a
programming language by translation into an intermediate language. Over the
years, a number of modeling compilation approaches have been developed such as
Cinco [10], a meta-level modeling tool generator, and Marama [6], which pro-
vides metatools for language specification and tool creation. KiCo’s process cat-
egorization into specialized work units is in line with ETI’s process system [17].
While targeting a slightly different group of experts, such an even more generic
process synthesis approach could also be implemented in KiCo. We discuss fur-
ther possible future routes in the conclusion in Sec. 5. In our approach we provide
the modeler with generic, interactive tools to orchestrate compilation processes.
These are divided into atomic steps that aid the modeler to refine the process and
to find errors without the need for long development cycles. The source, inter-
mediate, target, and additional models are presented in well-readable graphical
views using transient view and automatic layout technologies [14].



13

The proposed process systems can be seen as a variant of scientific work-
flows [4], as implemented in tools such as Taverna [11], for M2M transforma-
tions combined with state-of-the-art pragmatic modeling techniques. While there
are similarities, such as a loose processor concept and type-checking, the focus
of KiCo lies on M2M transformations where every intermediate result is a fully
functional artefact. The processor system itself, including the environments in
a running context, is also considered a simple model here. There is no need
for a specialized description language or special data storages, e. g., for proces-
sor meta-data such as processor run-time. In our approach, the system’s model
can be influenced during design- and run-time, which includes alterations by
the contained processors. Furthermore, as long as the transient view framework
supports the meta-model of the intermediate results, views can be generated
instantaneously and there is no difference between the different artefacts, even
if they are positioned on distinct meta-levels.

When it comes to general compilation techniques, numerous well-understood
approaches (e. g. Copy Propagation [1] and Register Allocation [3]) can be ap-
plied to our compiler to improve the results. However, as classical compilers are
more or less a blackbox, working with intermediate results becomes difficult. For
example, as depicted elsewhere [15], the gcc5 possesses settings to toggle different
optimizations or to print out intermediate representation of the basic blocks [2]
of a source program. However, the interplay between the different modules and
the textual representation of data seems to only target compiler experts and is
arguably rarely useful for the common user.

5 Conclusions

We presented how the compiler framework works that was used to create the
reference implementation for the synchronous language SCCharts. We showed
that process systems, such as compilation or simulation, themselves are also
models and how this can help both, the domain expert and the tool developer,
with the goal to get better results faster and to increase modeler productivity.
While both may have different foci during a project’s lifetime, both can use a
similar framework to drive their development and to help each other.

For us, in Model-driven Software Development (MDSD), programming with
models does not only mean to model a program with, e. g., a sophisticated IDE
that provides us with new tools to construct the program. For example, modern
programming IDEs provide features such as syntax highlighting, code completion,
reference counting, refactoring, etc. Many of these features focus on creating the
model and then they are done. In our approach, the whole process is modeled.
The user can inspect and change every part of it interactively. They can influence
the compilation improving the final result or add new processors that provide
new models and views to give better feedback. We thus argue that MDSD is not
solely about modeling a particular artefact. It is also about the way to get to
the final deployable software.
5 https://gcc.gnu.org



14

Besides further improvements for the SCCharts compiler and streamlining
the MDSD user experience, we see further future work. For example, the KIELER
project includes several modules that still use dedicated components that per-
form dedicated model transformations to prepare the models for specific tasks.
As illustrated in Sec. 2, we are currently working on the compilation and simula-
tion systems. However, the KiCo framework could also be used to generalize even
more of these processes, e. g., deployment tasks. This would also facilitate the
re-usability of the approach beyond the classical compilation task. Furthermore,
we want to combine our approach with the continuing trends of mobile location-
independent technologies, such as mixed web/desktop applications using tools
such as electron6. We are optimistic that this will further increase the possibili-
ties for and flexibility of prototyping and team-driven software development.

References
1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers — Principles, Techniques, and

Tools. Addison-Wesley, Reading, Massachusetts, 1986.
2. F. E. Allen. Control flow analysis. In Proceedings of a Symposium on Compiler

Optimization, pages 1–19, New York, NY, USA, 1970. ACM.
3. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and

P. W. Markstein. Register allocation via coloring. Comput. Lang., 6(1):47–57,
Jan. 1981.

4. V. Curcin, M. Ghanem, and Y. Guo. The design and implementation of a work-
flow analysis tool. Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 368(1926):4193–4208, 2010.

5. H. Fuhrmann and R. von Hanxleden. On the pragmatics of model-based de-
sign. In Foundations of Computer Software. Future Trends and Techniques for
Development—15th Monterey Workshop 2008, Budapest, Hungary, September 24–
26, 2008, Revised Selected Papers, volume 6028 of LNCS, pages 116–140, 2010.

6. J. C. Grundy, J. Hosking, K. N. Li, N. M. Ali, J. Huh, and R. L. Li. Generating
domain-specific visual language tools from abstract visual specifications. IEEE
Transactions on Software Engineering, 39(4):487–515, Apr. 2013.

7. E. A. Lee, S. Neuendorffer, and M. J. Wirthlin. Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
(JCSC), 12(3):231–260, 2003.

8. C. Motika. SCCharts—Language and Interactive Incremental Implementation.
Number 2017/2 in Kiel Computer Science Series. Department of Computer Sci-
ence, 2017. Dissertation, Faculty of Engineering, Christian-Albrechts-Universität
zu Kiel.

9. C. Motika, S. Smyth, and R. von Hanxleden. Compiling SCCharts—A case-study
on interactive model-based compilation. In Proceedings of the 6th International
Symposium on Leveraging Applications of Formal Methods, Verification and Vali-
dation (ISoLA 2014), volume 8802 of LNCS, pages 443–462, Corfu, Greece, Oct.
2014.

10. S. Naujokat, M. Lybecait, D. Kopetzki, and B. Steffen. Cinco: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Inter-
national Journal on Software Tools for Technology Transfer, 20(3):327–354, Jun
2018.

6 https://electronjs.org



15

11. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

12. M. Rahimi-Barfeh. Incremental compilation of SCEst. Bachelor thesis, Kiel Uni-
versity, Department of Computer Science, Sept. 2017. http://rtsys.informatik.uni-kiel.
de/~biblio/downloads/theses/mrb-bt.pdf.

13. F. Rybicki, S. Smyth, C. Motika, A. Schulz-Rosengarten, and R. von Hanxleden.
Interactive model-based compilation continued – interactive incremental hardware
synthesis for SCCharts. In Proceedings of the 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA
2016), volume 8802 of LNCS, pages 443–462, Corfu, Greece, Oct. 2016.

14. C. Schneider, M. Spönemann, and R. von Hanxleden. Just model! – Putting au-
tomatic synthesis of node-link-diagrams into practice. In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’13),
pages 75–82, San Jose, CA, USA, Sept. 2013.

15. S. Smyth, A. Schulz-Rosengarten, and R. von Hanxleden. Watch your compiler
work — Compiler models and environments. Technical Report 1806, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, July 2018. ISSN
2192-6247.

16. B. Steffen. Unifying models. In STACS 97, 14th Annual Symposium on Theoretical
Aspects of Computer Science, Lübeck, Germany, pages 1–20, Mar. 1997.

17. B. Steffen, T. Margaria, and V. Braun. The Electronic Tool Integration plat-
form: concepts and design. International Journal on Software Tools for Technology
Transfer, 1(1):9–30, Dec 1997.

18. R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado,
S. Mercer, and O. O’Brien. SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14), pages 372–383, Edinburgh, UK,
June 2014. ACM.

19. R. von Hanxleden, E. A. Lee, C. Motika, and H. Fuhrmann. Multi-view modeling
and pragmatics in 2020 — position paper on designing complex cyber-physical
systems. In Proceedings of the 17th International Monterey Workshop on Devel-
opment, Operation and Management of Large-Scale Complex IT Systems, LNCS,
volume 7539, Oxford, UK, Dec. 2012.

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mrb-bt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mrb-bt.pdf

	Towards Interactive Compilation Models
	Introduction
	A Generic User Story
	Programming vs. Modeling
	Interactive Process Systems

	Process Systems in KIELER
	Static Process Systems
	Dynamic Process Systems
	SCCharts Compilation

	Related Work
	Conclusions


