
Pragmatics Twelve Years Later:
A Report on Lingua Franca

Reinhard von Hanxleden1[0000−0001−5691−1215],
Edward A. Lee2[0000−0002−5663−0584], Hauke Fuhrmann3[0000−0002−8820−7537],

Alexander Schulz-Rosengarten1[0000−0002−1494−8631],
Sören Domrös1[0000−0002−8011−8484], Marten Lohstroh2[0000−0001−8833−4117],

Soroush Bateni4[0000−0002−5448−3664], and
Christian Menard5[0000−0002−7134−8384]

1 Kiel University, Germany, {rvh,als,sdo}@informatik.uni-kiel.de
2 University of California, Berkeley, USA, {eal,marten}@berkeley.edu

3 Scheidt & Bachmann, Germany, Fuhrmann.Hauke@scheidt-bachmann-st.de
4 University of Texas at Dallas, USA, soroush@utdallas.edu

5 Technical University Dresden, Germany, christian.menard@tu-dresden.de

Abstract. In 2010, Fuhrmann et al. argued for enhancing modeler pro-
ductivity by providing tooling that, put simply, combines the best of
textual and graphical worlds. They referred to this as pragmatics, and
argued that a key enabler would be the ability to automatically synthe-
size customized graphical views from a (possibly textual) model. The
model would be the “ground truth” used, for example, for downstream
code synthesis and simulation; the graphical views would typically be
abstractions from the model serving various purposes, including docu-
mentation.
Twelve years later, we reflect on their proposal, and illustrate the cur-
rent state with the recently developed polyglot coordination language
Lingua Franca (LF). LF has been designed with pragmatics in mind
since early on, and some characteristics of LF make it particularly suited
for pragmatics-aware programming and modeling. However, the under-
lying pragmatic principles are broadly applicable, and by now a set of
mature open source tools is available for putting them into practice.

Keywords: Pragmatics · Lingua Franca · Model-Driven Engineering ·
Diagram Synthesis · KIELER.

1 Introduction

Visual modeling, by some seen as synonymous with modeling altogether, of-
fers the advantage of naturally providing visual diagrams that, ideally, self-
document a system under development. However, practicioners often experience
authoring with diagrams only as less efficient than working on textual arte-
facts, which for example has given high momentum to textual Domain Specific
Languages (DSLs). Twelve years ago, Fuhrmann et al. [8] proposed to enhance

2 R. von Hanxleden et al.

designer productivity by employing pragmatics, interpreted, roughly speaking,
as combining the best of textual and visual modeling worlds. They argued that
key enablers would be the separation of model and view, and the automatic
construction of (graphical) customized views. The graphical views would not
be necessary in a technical sense, for example to simulate a model, to formally
analyze it, or to synthesize code. However, they would be valuable artefacts for
the human modeler for various purposes, a primary purpose being the docu-
mentation of the model. As proof of feasibility, they presented the open-source
KIEL Integrated Environment for Layout Eclipse Rich Client (KIELER) frame-
work for pragmatics-aware modeling. At the time, von Hanxleden et al. [17] en-
visioned that by 2020, the use of pragmatics in software engineering tools would
be widespread.

While it is hard evaluate the level of adoption of the approach, there are sev-
eral projects centered around pragmatics that certainly have had a major impact.
The most popularized contribution from the KIELER initiative might be the
Eclipse Layout Kernel (ELK)6 Java code library that implements sophisticated
graph layout strategies and thus is a key driver for many of the pragmatics im-
provements in the KIELER approach. The transpiled ELK for JavaScript (ELKJS)
library has, at the time of this writing, received around 1,000 stars on GitHub7.

As an official project hosted at the Eclipse Foundation it has some visi-
bility, leading to its adoption in quite a few downstream tools. Just recently,
ELK has been adopted in the Graphical Language Server Platform (GLSP)8
meta-framework for graphical modeling, which follows Microsoft’s approach for
a textual integrated development environment (IDE) with the language server
protocol (LSP)9. It extends the LSP philosophy of having a clear separation be-
tween a backend for language and semantics and a frontend for GUI features to
the domain of graphical modeling languages. Hence, the complex tasks of the
backend can be reused in different frontend implementations and open up for
broader technology mixes. Also other established meta-frameworks adopted ELK,
such as Sirius10, the Graphical Modeling Framework (GMF), and Graphiti11.

More than a decade of employing pragmatics in various languages and tool
kits, both in academic and industrial contexts, has also created a host of users
that can reflect on their experience with pragmatics. As one practitioner from
Bosch Siemens Hausgeräte GmbH put it after using KIELER for some time:

“In our experience, over many years, my colleagues and I concluded that
textual modeling is the only practical way, but that a graphical view of
the models is a must-have as well. Your technology closes exactly that
gap” [44].

6 https://www.eclipse.org/elk/
7 https://github.com/kieler/elkjs
8 https://www.eclipse.org/glsp/
9 https://microsoft.github.io/language-server-protocol/

10 https://blog.obeosoft.com/a-picture-is-worth-a-thousand-words
11 https://www.eclipse.org/modeling/gmp/

https://www.eclipse.org/elk/
https://github.com/kieler/elkjs
https://www.eclipse.org/glsp/
https://microsoft.github.io/language-server-protocol/
https://blog.obeosoft.com/a-picture-is-worth-a-thousand-words
https://www.eclipse.org/modeling/gmp/

Pragmatics Twelve Years Later: A Report on Lingua Franca 3

In this paper, we demonstrate the state of the art and the value of pragmatics-
aware modeling with the recently developed Lingua Franca (LF) language serving
as prime example, while also taking the opportunity to reflect on the broader
developments and feedback received over time.

1.1 Contributions and Outline

We will first review the key concepts of pragmatics and its model-view separa-
tion (Sec. 2). For several reasons, including the hierarchical structure and the
separation of coordination language and target language, LF lends itself partic-
ularly well to pragmatics-aware modeling, and its tool chain has incorporated
that from its beginning. We elaborate on this with several practical examples in
Sec. 3. An important component of pragmatics is the choice of graphical syntax,
including its amenability to automatic layout; case in point, we discuss some of
our design choices for LF in Sec. 4. The issues that arise from a graph draw-
ing/diagram synthesis perspective and some ongoing work are covered further
in Sec. 5. For readers interested in possibly employing modeling pragmatics in
other tools/languages than presented here, Sec. 6 briefly covers the underlying
technology, which is all available open-source. Feedback from users on their ex-
perience with pragmatics and an outlook on the challenges ahead is summarized
in Sec. 7. Some related work is covered in Sec. 8, we wrap up in Sec. 9.

2 Pragmatics in Linguistics and Modeling

In linguistics, the study of how the meaning of languages is constructed and
understood is referred to as semiotics. It divides into the disciplines of syntax,
semantics, and pragmatics [32]. These categories can be applied both to natu-
ral as well as artificial languages (i. e., languages that are consciously devised),
such as programming languages. In the context of artificial languages, syntax is
determined by formal rules defining expressions of the language [13] and seman-
tics determines the meaning of syntactic constructs [18]. “Linguistic pragmatics
can, very roughly and rather broadly, be described as the science of language
use” [14]. This definition can be applied verbatim to our domain of interest;
programming languages, or modeling languages, as they are often referred to
in the context of Model-Driven Engineering (MDE). However, before we further
discuss and define pragmatics in the realm of software engineering and MDE, we
first introduce some more terminology.

The main artifacts in MDE are models, which adhere to two main concepts.
First, a model represents some software artifact or real world domain. Second,
it conforms to a metamodel or grammar [19], defining its abstract syntax. The
concrete syntax, on the other hand, is the concrete rendering of the abstract
concepts. Concrete syntax can be textual or displayed in a structured way, such
as a tree view extracted from an Extensible Markup Language (XML) represen-
tation of the abstract syntax. Graphical syntax is often used to visualize model
structure; the Unified Modeling Language (UML) encompasses several graphical

4 R. von Hanxleden et al.

example languages. According to Gurr, a visual language is any language that
is expressed to the reader’s visual sense. Therefore, diagrams as well as textual
programs or mathematical models, are visual languages. One special character-
istic of diagrams is that they exhibit intrinsic properties, and these properties
directly correspond to properties in the represented domain [13], such as con-
tainment relations of boxes.

A graphical model is a model that can have a graphical representation, like a
UML class model. A view of the model is a concrete drawing of the model, some-
times also diagram or notation model, e. g., a UML class diagram. The abstract
structure of the model leaving all graphical information behind is the semantical
or domain model, or just model in short. E. g., a class model can also be serialized
as an XML tree. Hence, a model conforms to the abstract syntax, while a view
conforms to a concrete syntax.

A view can represent any subset of the model, which in some frameworks is
used to break up complex models into multiple manageable views. Hence, there
is no fixed one-to-one relationship between model and view.

In linguistics, pragmatics traditionally refers to how elements of a language
should be used, e. g., for what purposes a certain statement is eligible, or un-
der what circumstances a level of hierarchy should be introduced in a model. It
denotes the “relation of signs to (human) interpreters” [32] and therefore Gurr
calls it the “real semantics” of a language [13]. Pragmatics addresses questions
concerned with avoiding ambiguities or misleading information in graphical rep-
resentations, for example by improper usage of layout conventions, termed sec-
ondary notation by Petre and Green [11]. As Gurr states:

“A major conclusion of this collection of studies is that the correct
use of pragmatic features, such as layout in graph-based notations, is a
significant contributory factor to the effectiveness of these representa-
tions.” [13]

In the context of MDE, Selic [45] (somewhat implicitly) uses “pragmatics” in a
rather broad sense, referring to practical aspects such as code synthesis. We here
slightly extend the linguistic interpretation of pragmatics as follows:

Pragmatics concern all practical aspects of handling a model in its design pro-
cess. This includes practical design activities such as editing and browsing of
graphical and/or textual model representations in order to construct, ana-
lyze, and effectively represent a model’s meaning. Pragmatics aim to increase
modeler productivity and product quality. Pragmatics-aware tooling helps
achieve a separation of model and view, in line with the well-established
Model-View-Controller (MVC) paradigm [36]. A key enabler is the ability to
automatically construct customized graphical views of a model.

3 Diagrams for Development of Lingua Franca Programs

LF (LF) is a recently-developed polyglot coordination language for concurrent
and possibly time-sensitive applications ranging from low-level embedded code

Pragmatics Twelve Years Later: A Report on Lingua Franca 5

to distributed cloud and edge applications [29]. An LF program specifies the in-
teractions between components called reactors. The emphasis of the framework
is on ensuring deterministic interaction with explicit management of timing. The
logic of each reactor is written in one of a suite of target languages (currently
C, C++, Python, Rust, or TypeScript) and can integrate (possibly legacy) code
in those languages. A code generator synthesizes one or more programs in the
target language, which are then compiled using standard toolchains. If the ap-
plication has exploitable parallelism, then it executes transparently on multiple
cores. This happens without compromising determinacy because data depen-
dencies between reactors translate into scheduling constraints at runtime. A
distributed application translates into multiple programs and scripts to launch
those programs on distributed machines. The communication fabric connecting
components is synthesized as part of the programs.

There are a number of features of LF that make its programs particularly
well suited to diagram representations:

1. The LF language expresses only the structure of programs, not their detailed
logic. The latter is done in chunks of target-language code that are ignored
by the LF parser.

2. The language encourages the use of hierarchy, where components contain
other components. This lends itself well to the KIELER mechanisms for han-
dling hierarchy, where hierarchical components can be expanded or collapsed
to focus attention.

3. LF components (reactors) are concurrent, lending themselves naturally to
being rendered as side-by-side boxes coexisting in a space.

4. The interactions between components are explicit. Each reactor has input
and output ports, and a container reactor explicitly connects the ports of
its contained reactors. This contrasts with most actor frameworks, such as
Akka [38], where the existence and interconnections of actors is buried in
the logic of target-language code.

LF’s interactive diagram synthesis capability is an integral part of its IDE
support. An Eclipse-based LF IDE called Epoch is available at GitHub12. An
LSP-based Visual Studio Code Extension for LF is installable from both the
Visual Studio Marketplace13 and the Open-VSX Registry14.

3.1 Data Dependencies

We begin with the use of automatically generated diagrams that emphasize
reasoning about data dependencies in a LF program. Consider the program in
Fig. 1a. The program is constructed textually and is hopefully reasonably easy
to read. It defines three reactor classes, Sense, Compute, and Actuate, creates one
instance of each, named s, c, and a, respectively, and connects their two output
12 https://github.com/lf-lang/lingua-franca/releases
13 https://marketplace.visualstudio.com/items?itemName=lf-lang.vscode-lingua-franca
14 https://open-vsx.org/extension/lf-lang/vscode-lingua-franca

https://github.com/lf-lang/lingua-franca/releases
https://marketplace.visualstudio.com/items?itemName=lf-lang.vscode-lingua-franca
https://open-vsx.org/extension/lf-lang/vscode-lingua-franca

6 R. von Hanxleden et al.

1 target C;
2 reactor Sense {
3 output y:int;
4 timer t(0, 1 msec);
5 reaction(t) -> y {=
6 // ... C code to produce output.
7 =}
8 }
9 reactor Compute {

10 input x:int;
11 output y:int;
12 reaction(x) -> y {=
13 // ... C code to process data.
14 =}
15 }

16 reactor Actuate {
17 input x:int;
18 reaction(x) {=
19 // ... C code to take action.
20 =}
21 }
22 main reactor {
23 s = new Sense();
24 c = new Compute();
25 a = new Actuate();
26
27 s.y, c.y -> c.x, a.x after 1 msec;
28 }

(a) Textual LF code

(b) An interactive rendered diagram in the Epoch IDE; selecting Actuate in the diagram
highlights the definition and instantiation in the textual code.

Controller

s : Sense

(0, 1 msec)

y

c : Compute

x y

a : Actuate

x
1 msec1 msec

(c) Expanded diagram, exposing internals of reactors.

Fig. 1. A simple pipeline in LF.

ports to their two input ports (with a logical delay of 1 millisecond) on a line
that reads like this:

s.y, c.y -> c.x, a.x after 1 msec;

Although such a statement is not difficult to read, it is dramatically easier to see
what is going on with the automatic diagram rendering provided through LF’s

Pragmatics Twelve Years Later: A Report on Lingua Franca 7

IDE support. To underscore this difference, we had an interaction with a user who
had built a program similar to this. This person filed a bug report saying that
the logical delay introduced was 2 milliseconds rather than the intended 1 ms.
It turned out that this individual was using the command-line tools rather than
one of the IDEs. Upon opening the program in Epoch, rendering the diagram
reproduced in Fig. 1b, it was immediately obvious that the specified end-to-end
delay was in fact 2 ms.

Fig. 1b illustrates a number of features that make building and understand-
ing LF programs much easier. For example, the diagram can be used to efficiently
navigate in the textual source code. The box labeled a : Actuate, which repre-
sents the instance a of class Actuate, is highlighted, by a thick border, having
been clicked on by the user. The corresponding instantiation and class defini-
tion are both highlighted, by non-white backgrounds, in the source code. Double
clicking on any of these boxes will expand it, showing the inner structure of the
reactor class. Fig. 1c shows all three components expanded, revealing the inter-
nal timer in the Sense component and the reactions (represented by the chevron
shape) in each reactor.

One phenomenon that we have noted is that the automatic diagram synthesis
tends to expose sloppy coding and encourages the programmer to modularize,
parameterize, and reuse components. Without the diagram synthesis, sloppy
structure is much less obvious, and the diagram synthesis gives considerable
incentive to clean up the code. As an exercise, we developed a small Pac-Man
game based on the 1980 original released by Namco for arcades. We started
with straight Python code written by Hans-Jürgen Pokmann and released in
open-source form on Github.15 Our goal was to capture the dynamic aspects of
the game in components that could be individually elaborated to, for example,
replace the player with an AI. Our first working version of the game rendered
as the diagram in Fig. 2a. A more refined version rendered as the diagram in
Fig. 2b. The incomprehensibility of the first diagram was a major driving factor
for the improvements. When executed, this program creates a user interface like
that shown in Fig. 2c.

The two programs have identical functionality. The differences between them
fall into two categories. First, we used a feature of LF that enables creating a
bank of instances of a reactor class using a compact textual syntax that also
renders more compactly in the diagram. The textual syntax in this example is
the following:

ghosts = new[4] Ghost(
width = {= ghost_specs[bank_index]["width"] =},
height = {= ghost_specs[bank_index]["height"] =},
image = {= ghost_specs[bank_index]["image"] =},
directions = {= ghost_specs[bank_index]["directions"] =},
character_class = ({= pacman.Ghost =})

)

15 https://github.com/hbokmann/Pacman

8 R. von Hanxleden et al.

PacMan

controller : GameController

1

2 3

4

5

6

7

t i ck

pacman_sprite

ghost_sprites[4]

wall_list

gate

block_list

score

game_over

player : Player

(0, 100 msec)

1

2

3

4

icon

gate_list

wall_list

sprite

icon_name

pinky : Ghost

1

2

3

4
t i ck

icon

gate_list

wall_list

sprite

icon_name

blinky : Ghost

1

2

3

4
t i ck

icon

gate_list

wall_list

sprite

icon_name

inky : Ghost

1

2

3

4
t i ck

icon

gate_list

wall_list

sprite

icon_name

clyde : Ghost

1

2

3

4
t i ck

icon

gate_list

wall_list

sprite

icon_name

display : Display

(0, 100 msec)

1

2

3

4

5

6

7

icon_name[5]

score

game_over

static_sprites[2]

moving_sprites[6]

t i ck

icon[5]

(a) First attempt, with four individual Ghost reactors.

PacMan

controller : GameController

4

5

6

1

2

3

t i ck

pacman_sprite

ghost_sprites[4]

block_list

score

game_over

ghosts : Ghost

2

1

4

t i ck sprite

display : Display

3

4

5

(0, 100 msec)

1

2

score

game_over

moving_sprites[6]

t i ck

player : Player

(0, 100 msec)

1

2

sprite

(b) Second version, with bank of Ghost instances.

(c) User interface.

Fig. 2. Pac-Man game, with different Ghost instantiation strategies shown at same
scale, and UI.

This creates four instances of class Ghost and sets their parameters via a table
lookup. This version of the program renders much more compactly, as shown at
the bottom center of Fig. 2b.

The second significant change was to avoid using messages to pass around
static information that does not change during runtime, such as the configuration
of the walls. Such information is converted to parameters (when the informa-
tion differs for distinct instances) or shared constant data structures (when the
information is identical across the whole game). We believe that the automatic
diagram rendering was the driving factor for improving the design.

The diagram also aids during debugging. Take Fig. 3a as an example. This
is a small variant of the Pac-Man program that simply moves reaction 2 of the
Display reactor, which produces the tick output, from position 2 to position 4.
This move has semantic implications, since in LF, the order in which reactions

Pragmatics Twelve Years Later: A Report on Lingua Franca 9

PacMan

player : Player

(0, 100 msec)

1

2

sprite

display : Display

(0, 100 msec)

1

2

3

4

5

moving_sprites

game_over

score tick

ghosts : Ghost

1

2

4

tick sprite

controller : GameController

1

2

3

4

5

6

ghost_sprites

pacman_sprite

tick block_list

score

game_over

Reactor contains cyclic dependencies!

Show Cycle Filter Cycle

(a) Unfiltererd view, showing all components.

PacMan

display : Display

3 4moving_sprites

game_over

score

tick

ghosts : Ghost

2
4

tick sprite

controller : GameController

4

5

ghost_sprites

pacman_sprite

tick block_list

score

game_over

Reactor contains cyclic dependencies!

Show Cycle Remove Cycle Filter

(b) Filtererd view, showing only components in cycle.

Fig. 3. Pac-Man game with cyclic dependencies, different views shown at same scale.

are declared affects the order in which they are invoked at each logical time. This
is a key property that helps ensure determinacy, as the scheduling of reactions
and their accesses to shared variables is determined, at compile time, by their
textual order. In the example, however, the scheduling change implied by this
move creates a problem because, now, reaction 3 must be invoked before the
reaction that produces tick, but reaction 3 is ultimately triggered by tick. This
“scheduling cycle,” sometimes also referred to as “causality loop,” is extremely
difficult to see in the textual source code. To help identify such problems, LF
diagrams highlights the offending causality loops in red, as shown in Fig. 3a.
The tools also adds dashed arrows that indicate exactly where the flaw may be
due to reaction ordering, in this case indicating a path from reaction 3 to 4 in
the Display reactor.

When LF programs have feedback, such causality loops commonly arise dur-
ing development and require careful reasoning to get the intended behavior. The
LF tools provide a further filter that can help understand the root cause and
suggest fixes. By clicking on the “Filter Cycle” button at the top, a new diagram
is rendered that includes only the components that are involved in the causality
loop, as shown in Fig. 3b. Simply by inspecting this diagram, it is clear that
swapping the order of reactions 3 and 4 in the Display reactor could resolve
the cyclic dependency. The ability to generate such a filtered view automati-
cally depends on the model-view-controller architecture of the system and on its
sophisticated automated layout.

10 R. von Hanxleden et al.

3.2 Control Dependencies

So far, the diagrams emphasize the flow of data between components and the
ensuing execution dependencies. Decision making, i.e., whether to perform action
A or action B, is hidden in the target language code and not rendered in the
diagrams. Indeed, rendering the detailed logic of the reaction bodies would likely
lead to unusably cluttered diagrams.

Nevertheless, sometimes, the logic of decision making is truly essential to un-
derstanding the behavior of a program, even at a high level. Consider a program
to control a Furuta pendulum [9], a classic problem often used to teach feedback
control. As shown in Fig. 4, it consists of a vertical shaft driven by a motor, a
fixed arm extending out at 90 degrees from the top of the shaft, and a pendulum
at the end of the arm. The goal is to rotate the shaft to impart enough energy
to the pendulum that it swings up, to then catch the pendulum and balance
it so that the pendulum remains above the arm. Each of these steps requires
a different control behavior, which makes a controller a prime candidate for a
modal model. It cycles through the three modes, which we will name SwingUp,
Catch, and Stabilize.

Fig. 4. Schematic of the Furuta pendulum from Wikipedia by Benjamin Cazzolato |
CC BY 3.0.

Fig. 5a shows an LF program for such a controller based on the design of
Eker et al. [28]. This program uses a newly added feature of LF to explicitly rep-
resent modal models, programs with multiple modes of operation and switching
logic to switch from one mode to another. The overall program consists of three
connected reactors Sensor, Controller, and Actuator. The diagram in Fig. 5c
shows these modes very clearly.

Of course, such modal behavior could easily be written directly within reac-
tors in target-language code without using the modal models extension of LF.
Such a realization, shown in Fig. 5b, in this case, is even slightly more compact.
Notice that the existence of modes is now hidden in the control logic of the imper-
ative target language, C in this case. As covered in the related work in Sec. 8,

https://en.wikipedia.org/wiki/Furuta_pendulum#/media/File:Furuta_pendulum.jpg
https://creativecommons.org/licenses/by/3.0/

Pragmatics Twelve Years Later: A Report on Lingua Franca 11

1 reactor Controller {
2 input angles:float[];
3 output control:float;
4
5 initial mode SwingUp {
6 reaction(angles) -> control, Catch {=
7 ... control law here in C ...
8 SET(control, ... control value ...);
9 if (... condition ...) {

10 SET_MODE(Catch);
11 }
12 =}
13 }
14
15 mode Catch {
16 reaction(angles) -> control, Stabilize {=
17 ... control law here in C ...
18 SET(control, ... control value ...);
19 if (... condition ...) {
20 SET_MODE(Stabilize);
21 }
22 =}
23 }

25 mode Stabilize {
26 reaction(angles) -> control, SwingUp {=
27 ... control law here in C ...
28 SET(control, ... control value ...);
29 if (... condition ...) {
30 SET_MODE(SwingUp);
31 }
32 =}
33 }
34 }
35
36 import Sensor ...
37 import Actuator ...
38 main reactor {
39 s = new Sensor();
40 c = new Controller();
41 a = new Actuator();
42 s.angles -> c.angles;
43 c.control -> a.control;
44 }

(a) Sketch of the Controller reactor code with LF modes

1 target C;
2 preamble {=
3 typedef enum {SwingUp, Catch, Stabilize} modes;
4 =}
5 reactor Controller {
6 input angles:double[];
7 output control:double;
8 state my_mode:modes;
9

10 reaction(angles) -> control {=
11 if (self->my_mode == SwingUp) {
12 ... control law here in C ...
13 SET(control, ... control value ...);
14 if (... condition ...) {
15 self->my_mode = Catch;
16 }

17 } else if (self->my_mode == Catch) {
18 ... control law here in C ...
19 SET(control, ... control value ...);
20 if (... condition ...) {
21 self->my_mode = Stabilize;
22 }
23 } else {
24 ... control law here in C ...
25 SET(control, ... control value ...);
26 if (... condition ...) {
27 self->my_mode = SwingUp;
28 }
29 }
30 =}
31 }

(b) Controller without LF modes

FurutaPendulum

Sensor
angles

Controller

SwingUp

1
angles control

Catch

2
angles control

Stabilize

3
angles control

angles

angles

anglesangles control
Actuator

control

(c) Diagram for code in Fig. 5a

Controller

angles control

(d) Diagram for code in Fig. 5b

Fig. 5. Alternative LF realizations to drive the Furuta pendulum, with and without
using LF-level modes.

12 R. von Hanxleden et al.

there are several approaches for extracting state/modal structures for various
programming languages. However, it is notoriously difficult for tools to discern
modal structure in such code, and the rendered diagram, shown in Fig. 5d gives
no hint.

4 On the Graphical Syntax in Lingua Franca

An important design decision for LF diagrams is how data flow and control flow
should visually relate to each other. In LF, reactors are denoted with rounded
rectangles and their data flow is visualized with rectangular edge routing. Reac-
tions are depicted by chevrons, a choice that was made intentionally to reduce
visual clutter. Because the shape of the reaction already implies a direction
(left-to-right), it is unnecessary to show arrows on incoming and outgoing line
segments that connect to triggers/sources (attached on the left) and effects (at-
tached on the right).

Following established practices for state machine models, modes are also rep-
resented using rounded rectangles. As illustrated in Fig. 5c, modes are distin-
guished from reactor instances via a differing color scheme, and state transitions
are drawn as splines. Initial states are indicated with a thicker outline. Tran-
sition labels are drawn on top of the edge, instead of the more common label
placement alongside the transition, which is prone to ambiguities. LF diagrams
offer various ways for a user to influence the appearance and level of detail. For
example, transitions may be shown without labels, or with labels that indicate
which inputs and/or actions could cause a mode transition to be taken.

Labeling itself is also subject to design considerations. Traditionally, transi-
tion labels include triggers and effects. However, this would require an analysis
of target code, and the conditions that actually lead to taking a transition, as
well as the effects that result from taking that transition, might become arbi-
trarily complex. We therefore opted to restrict the transition labels to the events
that may trigger a reaction, omitting whatever further logic inside the host code
determines whether a transition will actually be taken. This appears adequate
in practice so far, but if one would want to visualize triggers further, it would
for example be conceivable to let the user control what part of the program
logic should be shown by some kind of code annotation mechanism. If labels are
filtered out, we bundle multiple transitions between the same modes into one to
further reduce diagram clutter.

After defining the basic visual syntax for data flow and control flow, the next
question is how to combine these different diagram types. One option would be
to fully integrate these diagrams. This would mean, for example, that a data
flow edge would cross the hierarchy level of the mode to connect any content
of the mode. We created several visual mockups for that. However, all variants
that included some form of cross-hierarchy edges were considered confusing as
soon as they exceeded a trivial size. Additionally, the interaction for collapsing
modes to hide their contents and the feasibility with respect to automatic layout
algorithms seemed non-trivial. In the end we opted for breaking up these out-

Pragmatics Twelve Years Later: A Report on Lingua Franca 13

side connections on the level of each mode. This makes some connections more
implicit, but leads to cleaner diagrams and simplifies the layout task. For ports,
we duplicate those used in a mode and represent them by their arrow figure. The
name is used to create an association to the original reactor port. In Fig. 5c one
can see this in the angles input triggering reactions.

5 Auto-Layout of Lingua Franca Diagrams

As explained in Sec. 2, a key to pragmatics-aware modeling and programming
is the ability to synthesize graphical views of a model, which is commonly also
referred to as “automatic layout.” As discussed further in Sec. 7, key to accep-
tance is a high-quality layout, which should meet a number of aesthetic criteria
such as minimal edge crossings.

While the average user should not be required to to have a deep understand-
ing of the graph drawing algorithm engineering employed by an IDE, just like the
average programmer should not need to know the inner workings of the compiler
used, it is helpful to understand some of the basics. This in particular when one
wants to tweak the layout in some ways, e. g., via the model order covered below.
We consider this basic understanding also essential for tool developers who want
to harness layout libraries effectively. Even though these libraries may produce
reasonable results out of the box, they typically have numerous parameters that
one may adjust to fine-tune the results.

A natural candidate for the synthesis of LF diagrams is the “Sugiyama” al-
gorithm, also known as layered algorithm [51], which is, for example, employed
in the well-known GraphViz package [5]. The LF tooling uses an extension of
the Sugiyama algorithm that can handle hierarchical graphs, hyperedges, and
port constraints necessary for LF [43]. That extension is provided by ELK16,
which provides automatic layout for a number of commercial and academic vi-
sual tool platforms, including, e. g., Ptolemy II [35]. All the LF diagrams shown
in this paper have been generated automatically by ELK, using the tooling de-
scribed further in Sec. 6. In this section, we very briefly review the basics of the
underlying algorithm and point out some of the issues that arise in practice.

The Sugiyama algorithm is divided into five phases to break down complex-
ity: 1) The graph is made acyclic, by reversing a set of edges. One tries to
minimize the number of reversed edges, to create a clear left-to-right data-flow,
which makes it easier to follow edges. 2) Nodes, which correspond to reactors,
reactions, actions, and timers, are assigned to vertical layers such that edges
only occur between layers, which can be seen in the Display reactor in Fig. 3a.
Here, reactions 1 and 4 are in the second layer, the other nodes are in the first
(leftmost) layer. 3) Edge crossings are minimized by changing the node order
inside a layer and the port or edge order on a node. With that, the “topology”
of the layout, consisting of the assignments of nodes to layers and node order-
ing within the layers, is fully defined. 4) Nodes are assigned coordinates within

16 https://www.eclipse.org/elk/

https://www.eclipse.org/elk/

14 R. von Hanxleden et al.

layers, trying to minimize edge bends. 5) Layers are assigned coordinates, edges
are routed.

This basic approach is unchanged since the beginnings of KIELER and the
underlying ELK algorithmics. However, a current development, also spurred by
the LF effort, is to give the modeler more and easier control over the layout than
is traditionally the case. Specifically, the model order, which refers to the order
in which nodes (e. g., reactors or modes) or edges (e. g., transitions) are declared
in the textual LF code, should have a direct influence on the layout topology.
This is not the case in standard graph drawing practice, which considers a graph
to consist of an unordered set of nodes and an unordered set of edges. Thus,
when computing the layout topology, if the Sugiyama algorithm has multiple
solutions of the same aesthetic quality to choose from, it usually picks one of
them randomly, which may not be what the modeler wants. One common way to
give the modeler influence over the layout topology is to allow layout annotations
in the textual code, and this is also possible in KIELER. However, this requires
some extra effort, also in communicating and familiarizing oneself with these
annotations, whereas the model order is a concept that is already inherent in
the process of modeling.

For example, concerning Phase 1 of the Sugiyama algorithm, if the graph
contains a cycle, then one may randomly choose any edge to be reversed. At
least from a graph drawing perspective that only tries to minimize the number
of reversed edges, that solution will be as good as any other that only reverses
one edge. However, when considering the model order, here the order of declara-
tion of the states, it seems desirable to break cycles such that the model order is
preserved. For example, the mode transitions in the Controller in Fig. 5c form a
cycle17, meaning that (at least) one transition has to be rendered in the reverse
direction. The model order suggests to order SwingUp first, and hence to reverse
the edge that leads from Stabilize back to SwingUp. Thus, we say that model
order should serve as “tie breaker” whenever there are several equally good so-
lutions to choose from. For modal models, there is also the convention to place
initial states first, which in Fig. 5c also happens to be SwingUp.

The model order also concerns the textual order of reactor instantiations.
This would, e. g., in Fig. 2a suggest to place clyde and pinky in the same vertical
layer as inky, blinky, and the player, which are currently only placed in the
rightmost layer because of a random decision of the used edge reversal heuristic.

Also, the order of reactions in the same layer should be taken into account
during crossing minimization, as seen in Fig. 3a. The startup and shutdown ac-
tions, which are not in the textual model, should be placed at the top and bottom
of the first layer, as seen in the Display and GameController reactor. Further-
more, reactions should be ordered based on their order inside their respective
vertical layers, as their numbering suggests.

Reactors are laid out left-to-right, resulting in vertical layers. Modes are
laid out top-to-bottom, which turned out to result in a better aspect ratio.
Therefore, horizontal layers are created, as seen the Controller reactor in Fig. 5c.

17 The reactions do not form a causality loop in this case, so the program is well-formed.

Pragmatics Twelve Years Later: A Report on Lingua Franca 15

The greedy cycle breaker reverses edges based on the difference of inputs and
outputs, called the outflow. As discussed, if several modes have the same outflow,
the model order should be taken into account. The model order of the modes
can also be used as a tie-breaker during crossing minimization, as described by
Domrös and von Hanxleden [4].

6 Diagram Synthesis Tooling

Providing a comprehensive modeling experience that combines textual editing
and interactive diagrams with automatic layout requires sophisticated tooling.
The tool has to account for model parsing and editing, diagram synthesis, dia-
gram layout, rendering, and providing a user interface. The KIELER project [8]
has been a testbed and birthplace of some key technologies in pragmatics-aware
modeling. In the past, it was primarily build upon Eclipse, a versatile and ex-
tensible Java-based IDE. Recent development also allows a simultaneous support
for Visual Studio Code using the LSP. A major factor in supporting both IDEs
is the Xtext framework18 [7] that enables the development of DSLs with multi-
platform editor support. Based on a grammar specification, it automatically
creates a parser, as well as editor support for syntax highlighting, content-assist,
folding, jump-to-declaration, and reverse-reference lookup across multiple files,
in the form of either Eclipse plugins or a language server. Furthermore, Xtext
follows a model-based approach that uses the ecore meta-model of the Eclipse
Modeling Framework (EMF) to represent the parsing result in a more abstracted
format that is easier to process.

Diagram SynthesisModel Parsing

Source

Xtext

Custom
Parser &
Editor

Support

(Ecore)
 Model

KLighD-based
Synthesis

Sprotty-based
Synthesis

Xtext Grammar

ELK

KLighD

Sprotty

CLI SVG/PNG

Eclipse

VS Code /
Browser

Rendering / UI

Fig. 6. Overview of the frameworks involved in and around the KIELER project. Sticker-
like boxes indicate (in-memory) artifacts, rectangles are IDEs. Rounded boxes represent
frameworks or modules, where red ones are language-specific.

We will now take a look at how these technologies come together in the tool
chain created around the KIELER project. Fig. 6 gives a schematic overview of
18 https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

16 R. von Hanxleden et al.

the frameworks and steps involved in turning a textual source into an interactive
diagram. There are different paths, we start with the one used by LF. We will
discuss alternatives afterwards, as they represent options to utilize this tool
chain for a new project. Boxes in red indicate where a user has to provide a
model-specific implementation.

Since the very start, LF was based on an Xtext grammar, so it was relatively
quick and easy to integrate with the KIELER framework. As Fig. 6 illustrates,
Xtext produces an ecore model. Next is a model-specific diagram synthesis that
defines the graphical elements and their appearance. In case of LF, the KIELER
Lightweight Diagrams (KLighD)19 [41] framework is used. Based on the internal
representation (also an ecore model), KLighD performs layout by using ELK and
is able to display the diagram in Eclipse. In case of LF, the result is a custom
Eclipse product, called Epoch. It is also possible to bundle the Xtext and KLighD
infrastructure into a command line tool to export diagrams without an IDE. To
incorporate diagrams in VS Code, KLighD utilizes the Sprotty framework20, a
more basic diagramming framework built with web technologies. The final VS
Code extension for LF only needs to bundle KLighD into the language server
and depends on a KLighD extension.

A project that does not rely on Xtext, Eclipse, or even Java can still utilize
the given tool chain. For example the Blech language21 [12] has a custom parser
written in F# but uses the Sequentially Constructive StateCharts (SCCharts)
language [16] as an exchange format with diagram support, to visualize an ab-
stracted view of its structure [30]. In a Java-based context, even non-ecore-based
model representations can be used to create KLighD diagram syntheses. For a
fully web-based solution targeting only VS Code and browsers, Langium22 could
be a viable replacement for Xtext, and instead of KLighD, a Sprotty-based syn-
thesis would be written. Sprotty is likewise capable of performing layout using
ELKJS.

7 Modeling Pragmatics—Obstacles, Opportunities and
Outlook

As explained, the practicality and value of modeling pragmatics has been vali-
dated now for some time. However, it is still far from standard practice, which
begs the question of what is holding progress back. We believe the underlying
issues are as much of psychological as of technical nature. In the following, we
review some of the impediments, but also cover some (overall rather positive)
user feedback beyond the LF context and reflect on what we see as the main
challenges ahead.

19 https://github.com/kieler/KLighD
20 https://github.com/eclipse/sprotty
21 https://www.blech-lang.org/
22 https://langium.org/

https://github.com/kieler/KLighD
https://github.com/eclipse/sprotty
https://www.blech-lang.org/
https://langium.org/

Pragmatics Twelve Years Later: A Report on Lingua Franca 17

7.1 A Priori User Concerns

When first presented with the concept of pragmatics-aware modeling, the reac-
tions typically range from all-out enthusiasm to pronounced scepticism. Here are
some of the more common reactions.

“I want full control” As Gurr states, “people like having feedback and con-
trol” [13]. There is the fear to lose control when handing the layout problem
to the machine. Of course, there is some truth in this—when using a compiler,
people cannot fully control how the assembler is written anymore. In a similar
vein, Taylor commented on What You See is What You Get (WYSIWYG) for
typesetting and states its two-faced nature [53]:

“Why has WYSIWYG succeeded so spectacularly, while other typeset-
ting approaches have languished? I think WYSIWYG’s main appeal is
that it appears to offer its users superior cybernetics—i. e., feedback and
control. To the extent that you can trust its authenticity, the screen
gives immediate feedback. Acting on that feedback, the user then has
immediate control. And people like having feedback and control. [. . .]
It is worth remarking in this context that while WYSIWYG may have
won the hearts and minds of designers through “superior cybernetics,”
the degree of control that such programs offer may be more illusory
than real. Or perhaps it is more accurate to say that desktop publishing
programs let you fiddle interactively with the details of your typography
until the cows come home, but they do not let you control the default
behaviors of the composition algorithms in a way that efficiently and
automatically delivers the kind of quality typography that was formerly
expected of trade compositors.”

However, in practice, experience shows that one often is satisfied with any
readable layout and thus does not invest efforts in making the layout sound
with a freehand Drag-and-Drop (DND) editor. Therefore, in practice the issue
of full control may be less relevant than it may seem at first. We also see an
analogy here to the usage of auto-formatters in coding that is well-accepted by
now and that helps to achieve a consistent “look” for textual code. Still, when
propagating automatic layout, one should listen carefully to the potential users
and try to extract what it really is that they want control of. Often this is
not the individual pixel-by-pixel placement, but something more abstract, that
might even be integrated into automatic layout. We see the incorporation of
model order into the layout sketched in Sec. 5 as a prime example for that.

Graphical 6= informal “I’m not a graphical person, I’m a formal person” is
another, not untypical comment. However, graphical vs. textual is a question
of syntax, and both diagrams and text can have arbitrarily formal or informal
semantics. Therefore, the proposal here is to combine the best of both worlds
and not to play text off against diagrams.

18 R. von Hanxleden et al.

Layout algorithms not good enough One claim of this work is that auto-
matic layout must be so good that people are willing to replace manual placing
and routing by it. However, a common opinion is that the layout algorithms
today do not meet this requirement. And indeed, there have been several exam-
ples of tools that provided some auto-layout functionality that produced rather
unsatisfactory results. However, there also are positive examples, also in com-
mercial tools; e. g., LabView has employed sophisticated layout algorithms in its
“clean-up” functionality [39], which seems quite satisfactory (see also a quote
citing LabView further below).

Not aware of productivity loss Many decision makers seem to be unaware
of the productivity losses of the usual freehand DND editing and manual static
view navigation for diagrams. Practitioners of graphical modeling realize the
benefits more immediately. Numbers from industry partners indicate that about
30% overhead is induced by manual layout. However, current trends towards
textual DSL modeling might indicate that some people already see drawbacks
with the traditional graphical modeling. Still, the consequences should not be to
replace diagrams by text but to enhance the pragmatics of diagrams.

Loose the mental map A spontaneous fear expressed for automatic layout is
about losing the mental map that one may already have of a diagram. However,
for rather stable layouters and employing them consistently from the beginning,
the mental map can be kept very well. Conversely, for radical model changes the
value of preserving the mental map seems overrated. Experience shows that a
clean and reproducible auto layout results in more comprehensible models than
a very effort-prone manual incremental layout that tries to change as little as
possible. Especially when working with different people, maybe in different roles,
adherence to a consistent layout style may be more important than preserving
the mental map of an individual developer throughout the design process. And
as discussed in Sec. 5, incorporating the model order into the layout process may
help to align a modelers mental map with the automatically created layout.

7.2 Feedback After Usage and Lessons Learned

Get used to it—don’t want to miss it anymore Even if it may be unfamiliar
to work only with auto layout in the beginning, users get used to it. Finally they
find it hard to go back to other tools employing manual layout again. In a survey
conducted by Klauske [21] with around thirty practicioners at Daimler that
used a version of Simulink enhanced with automatic layout [23], users reported
massive time savings and expressed the wish for keeping that functionality. That
feedback was also put forward to the tool supplier.

Interactive layout overrated First, some users request ways to interactively
influence the layout, either by specific means to configure the layout algorithm

Pragmatics Twelve Years Later: A Report on Lingua Franca 19

or by simply tagging regions as “manually laid out, don’t touch!” Therefore many
configuration options have been added to the KIELER Infrastructure for Meta
Layout (KIML) including an interactive mode for some layout algorithms and
tagging regions as manual layout. While this seems to ease initial acceptance,
in the long term people often get used to full automatic layout, such that these
interactive features are only rarely used any longer.

User interface must be simple Users usually have no sense about the layout
approach of a specific layout algorithm or requirements of the tool. Therefore, the
user interface to call layout must be simple and intuitive. Otherwise, people tend
to not use it at all. One example is the first approach to the routing problem in
the Ptolemy II editor Vergil. It introduced five buttons, all changing the diagram
massively in different ways while users without any background usually did not
understand what the differences were. Therefore, the functionality was barely
adopted and required a different approach allowing a cleaner interface with only
one button. While configurability is very good and important, this tells us that
user interfaces have to be very clear and simple. They should always provide
meaningful default configurations that lead to good results if the user is not
willing to spend any efforts in understanding all customization options.

7.3 A Short Experience Report from the Railway Domain

An early adaptor in industry of SCCharts [16] and its pragmatics-aware modeling
support based on KIELER is the German railway signalling manufacturer Scheidt
& Bachmann System Technik GmbH (S&B). Just like LF, SCCharts are edited
in a textual form and get embedded into host code (Java or C++). Engineers
at S&B widely recognize the benefits of textually editing models right next to
the host code, and are accustomed to using automatically generated diagrams
for communication purposes. Typical communication tasks are documentation of
the system architecture and detailed behavior. An important use case where the
automatically synthesized, always up-to-date diagrams are particularly useful,
is the onboarding of new team members working on the SCCharts models. A
major advantage is that complex domain logic is abstracted such that it can
be read and written and understood by domain experts who are not familiar
with the host programming languages. This takes advantage of the fact that
SCChart models, like LF models, can be written and visualized before filling in
host code. This allows a good division of work where domain experts can directly
contribute domain logic as real technical artifacts, without a laborious and error-
prone manual transition of domain knowledge into code. In fact, this practical
aspect was a main driver for adopting the SCCharts tooling, and we consider this
a great success.

In the early days, the generated diagrams were quite often printed on large
“wallpapers” to collaboratively reason about design and find flaws in the im-
plementation. Bugs in the models still get analyzed mainly in static diagrams
rather manually. However, in practice is also desirable to inspect actual run time

20 R. von Hanxleden et al.

behavior, and although simulation of SCCharts is possible, the problems usually
appear when used in the complex contexts in which they are embedded in some
distributed application. Thus, the simpler the context outside of the model is,
the better are the possibilities of analyzing the behavior of the whole system.
That experience has prompted the development of a run-time debugging capa-
bility that seamlessly integrates SCCharts and host code [6]. However, this is still
rarely used because the design problems are often too timing dependent and de-
pend on the interaction of multiple distributed models, making them unlikely to
surface in debugging sessions. Instead, when a rare unexpected behavior occurs,
logged event traces of the distributed models are used to reproduce the state
transitions to find the model flaw. Thus, the S&B use case might very much
benefit from explicitly modeling the distribution of the system parts and the
messaging between them with the LF approach.

Fig. 7. A typical reactive SCChart diagram for the railway domain, illustrating label
management.

Despite its limitations, the high level of abstraction of SCCharts and the pos-
sibility to view the models as diagrams has increased productivity. Especially
textual editing next to automatic diagram generation, with diagrams that link
elements back to the textual source, facilitates rapid changes such as refactor-
ings and additions to models. In a classic what-you-see-is-what-you-get editing
approach, these operations might be considered too costly to do, which tends to
deteriorate code quality and increase technical debt on the long run. A typical,
still relatively small SCChart is shown in Fig. 7. One feature that can be seen
here is label management [42], which in this case is configured such that transi-
tion labels are shortened by introducing line breaks between triggers and actions
and between actions. As most of our SCCharts tend to have even longer labels
than in this example, label management—which also allows truncating labels at
a freely defined width—is an essential feature to keep diagrams manageable.

Pragmatics Twelve Years Later: A Report on Lingua Franca 21

One word of caution, however, about tooling in general. Fancy complex mod-
eling environments with a shiny Graphical User Interface (GUI) are nice for the
editing experience, but may be counterproductive for solving the obsolescence
problem. In industry, one needs tools that last for a long period of time. We
need to make sure that we are able to work on our technical source artifacts
for the whole life-span of our product, i. e., at least 15–20 years in the railway
domain. While it is remarkable that the Eclipse-based tooling of KIELER is in
active development and use for over a decade now, the successor generation with
web-based, cloud-ready tooling is already there, as outlined in Sec. 6. Hence, it
seems essential in practice to create modular tooling, where the core functional-
ity can be used even when the GUI originally developed is no longer technically
supported by operating systems or hardware platforms and might be replaced by
some next generation frontend. For SCCharts, this prompted the development of
a commandline tool for SCChart compilation and essential diagram generation,
while we use any additional tooling frontend as “pragmatic sugar.”

To conclude, the reception of the overall approach within the S&B engineers
is positive, despite the aforementioned complexities and caveats. We also observe
that by now several generations of additional on- and offboarding freelancers have
come to value the pragmatics-aware SCCharts tooling and thus might spread the
word in their next projects.

7.4 The Challenges Ahead

LF illustrates a comprehensive example of a pragmatics-aware modeling experi-
ence. From the fist step the modeller has an abstract visualization of the program
available that can be used to illustrate and document the model23.

From the modelling perspective, this approach can be extended to include
simulation, as in the GMOC debugging and simulation tool for LF [3] that feeds
live data into the diagram, or visualizing intermediate steps in the compilation,
such as dependencies determined by the compiler, e. g. as available in the KIELER
tool for SCCharts [49]. With the support of the LSP and Visual Studio Code,
the pragmatics-aware modeling support is also available in the latest IDEs (see
Sec. 6). We hope that the the pragmatic development idea will flourish in this
large and vibrant ecosystem.

From the documentation perspective, pragmatics-aware diagrams can im-
prove the effectiveness of static documentation and maybe ease classical certifi-
cation processes. Ongoing work automatically synthesizes diagrams for System-
Theoretic Process Analysis (STPA) [56]. The commercial EHANDBOOK tool24
uses ELK and other technologies described in this paper to serve interactive doc-
umentation for electronic control unit (ECU) software in the form of Simulink
diagrams. Web-based technologies (Sec. 6) combine the classical written doc-
umentation with embedded interactive diagrams, including dedicated views or

23 https://www.lf-lang.org/docs/handbook/overview
24 http:/www.etas.com/ehandbook

https://www.lf-lang.org/docs/handbook/overview
http:/www.etas.com/ehandbook

22 R. von Hanxleden et al.

links that navigate the reader into different locations and configurations of the
model and that support collaborative browsing.

While the fundamental concepts and technologies for pragmatics-aware mod-
eling are already realized and validated, there are still challenges ahead that need
to be addressed to further improve the usability and ultimately the acceptance
of this approach.

Finding the right abstraction level. Having support for a pragmatics-aware
modeling is one side, but creating effective views for complex models is an-
other aspect. Here, abstraction is key. Visualizing the general coordination
structure of a program, such as in LF diagrams, is probably more economic
and helpful than, e. g., generating a huge control-flow diagram that displays
all underlining machine instructions. Also, while we in this paper focussed on
synthesizing abstract views from implementation-level textual models, sys-
tem architects may want to start with abstract models as well. As mentioned
earlier, the separation of high-level coordination language and low-level host
code is one step in that direction.

Browsing complex systems. Related to the abstraction challenge, in partic-
ular large and complex models require further development of filtering and
browsing techniques. We see an approach inspired by Google Maps as a
promising direction to tackle this issue [15].

Configuring automatic layout effectively. Layout algorithms typically pro-
vide many options to influence the way the layout works and thus the aes-
thetic of the final result. In our experience, achieving very good results
for non-trivial diagram types requires an at least basic understanding of
how the underlying graph drawing algorithm works, just like crafting high-
performance software requires some basic understanding of modern compilers
and computer architectures. Also, layout documentation and configuration
guidance should be improved. Luckily, diagrams can aid in this, to interac-
tively showcase options and their effects.

Lowering the entry barrier. Creating pragmatic concepts for new DSLs is
easier than integrating it into existing design methodologies and tools. Yet,
from a commercial and psychological perspective, low invasiveness is a cir-
cuital factor in the acceptance of these concepts. Hence, it is important
to provide low entry barriers and allow augmenting existing languages and
tools, rather than trying to replace them. For example, mode diagrams were
added to Blech [30] in a way that did not impact the existing tool chain, but
augmented it as an add-on. Again, the change into web-based technologies is
an important step in this direction. A related challenge is to provide pragmat-
ics capabilities in a way that one the one hand integrates well into existing
tools and work flows, but on the other hand is robust against technology
changes, see the obsolescence issue raised earlier. Technology-independent
standards like LSP and the aforementioned more recent GLSP might help.

Establishing a diagrammatic modeling mindset. In our experience, users
do not normally consider the automatic diagram synthesis as an option for
visualizing internal or conceptual structures of their model. Addressing this

Pragmatics Twelve Years Later: A Report on Lingua Franca 23

requires a change in the mindset of the tool developers, but we are convinced
the effort will pay off.

8 Related Work

The Interactive Programmatic Modeling proposed by Broman [2] also advocates
to combine textual modeling with automatically generated graphical views. He
argues for an MVC pattern as well, albeit with different roles for model and
controller than in our case, as for him the controller concerns the parameteriza-
tion and the model is an execution engine. He identifies several problems with
standard modeling approaches, including the model expressiveness problem, im-
plying that graphical models become less intuitive when trying to capture more
complex models. While we argue here that model complexity is actually an ar-
gument in favor of (automatically generated) graphical models, we concur with
his point that graphical models are particularly helpful when they do not aim
to capture a system in full detail, but rather provide abstractions.

The intentional programming paradigm proposed by Simonyi, in a sense,
also advocates a separation of model and view [47]. There, a developer should
start with formulating rather abstract “ìntantions” that successiveley get refined
working on a “program tree,” which can be viewed using an arbitrary and non-
permanent syntax. One may argue that we here take the inverse approach, where
the developer directly authors a (detailed) model, but gets assisted by a contin-
uously updated visual, abstract documentation.

Computational notebooks, such as Jupyter25, follow the literate program-
ming paradigm proposed by Knuth that integrates documentation and source
code [24]. They are increasingly popular in data science and are related to mod-
eling pragmatics in that they also advocate a mix of representations.

The Umple framework also follows a pragmatic approach in that it also ex-
plicitly aims to provide the best of textual and diagrammatic worlds [27]. It
allows both textual and graphical editing of UML models, and it can automati-
cally synthesize class diagrams and other diagram types, using GraphViz layouts.
However, these diagrams appear to be rather static, without further filtering/-
navigation capabilities as we propose here.

There are several approaches for extracting, and typically also visualizing,
state structures from textual sources. As mentioned in Sec. 6, the tooling for
the textual Blech language [12] allows to automatically visualize an abstracted
modal view [30]. Unlike in LF, modes are not explicit in the textual Blech source,
but must be derived from Esterel-like await statements and overall imperative
control flow. Kung et al. [26] and Sen and Mall [46] present ways to extract
state machines from object-oriented languages. They analyze the behavior of
classes and infer state machines describing the class behavior. Giomi [10] and
Said et al. [40] describe state machine extractions based on control flow to rep-
resent the program’s state space.

25 https://jupyter.org/

https://jupyter.org/

24 R. von Hanxleden et al.

Less common is the automatic synthesis of actor diagrams, as proposed by
Rentz et al. for legacy C/C++ code [37]. Ishio et al. [20] have investigated in-
terprocedural dataflow for Java programs. They propose Variable Data-Flow
Graphs (VDFGs) that represent interprocedural dataflow, but abstract from in-
traprocedural control flow. There are further tools and frameworks to reverse
engineer diagrams from C code. CPP2XMI is such a framework as used by Ko-
rshunova et al. [25] for extracting class, sequence, and activity diagrams, or
MemBrain for analyzing method bodies as presented by Mihancea [31]. UML
class models are extracted from C++ by Sutton and Maletic [52], and another
framework for the analysis of object oriented code is presented by Tonella and
Potrich [54]. Smyth et al. [48] implemented a generic C code miner for SCCharts.
The focus was to create semantically valid models from legacy C code, whereas
in modeling pragmatics, the aim typically is to synthesize graphical abstrac-
tions. However, all these tools and frameworks show the importance of reverse
engineering and presenting views to programmers.

There are several pragmatics-oriented proposals that go beyond the basics
presented here. Early on, Prochnow et al. proposed dynamic focus and context
views that highlight the run-time state of a system by presenting active regions
in detail and collapsing others [33], realized in the KIEL Integrated Environment
for Layout (KIEL) tool, a predecessor or KIELER. KIEL also included structure-
based editing, which combines WYSIWYG editing (without a textual source)
with continuous automatic layout [34]. More recent work includes the induced
data flow approach that synthesizes actor-oriented diagrams from SCCharts [55],
and interactive compilation models that visualize intermediate transformation
results, which can be helpful for users and compiler developers alike [50].

Finally, as explained, a key enabler for the pragmatics approach presented
here is the large body of work produced by the graph drawing community. Con-
versely, pragmatics has become a significant use case that prompted advance-
ments in graph drawing [1]. Interested readers may look at the publication lists
of the ELK contributors, which include flagship venues and several disserta-
tions. However, like writing a compiler, the authoring of a graph drawing library
that works well in practice is a significant piece of engineering. Fortunately, the
contributors to ELK and other projects covered in Sec. 6 not only strived for
publishable algorithms, but also made good software engineering a priority. For
example, one of the lessons learned over the years is that one has to strike a good
balance between functionality and maintanability, and if in doubt, one should
probably favor the latter.

9 Summary and Conclusions

To recapitulate, the main driver of modeling pragmatics as presented here is to
enhance developer productivity by combining the best of the textual and visual
modeling worlds. Traditionally, visual models 1) are manually created, often in
a rather time-consuming process in particular when one wants to maintain good
readability in an evolving model, 2) have a fixed level of detail, and 3) may

Pragmatics Twelve Years Later: A Report on Lingua Franca 25

get out-of-date with respect to an implementation model. In the pragmatic ap-
proach, visual models 1) are created automatically, 2) can be customized and
apply filtering, and 3) are consistent with the model from which they are synthe-
sized. Clearly, the capability to automatically create abstract, up-to-date visual
diagrams from textual models is a boon for documentation. This encompasses
documentation in a very broad sense, where it is an integral, supportive part of
the design process itself. We postulate that whenever developers may need to
document or communicate a model aspect that cannot be readily gleaned from
looking directly at source code, a viable approach might be to automatically
generate a diagram that fits on a screen. Even though automatic graph drawing
is not a trivial process and a still a research topic in its own right, the primary
challenge in modeling pragmatics might be less the task of computing good lay-
outs, but rather to filter/abstract the model appropriately; i. e., once one knows
what to visualize, the question of how to visualize it can be answered quite well
with today’s technology.

Looking back at the story of modeling pragmatics so far, the main conclu-
sion may be that it takes some perseverence to change tools and habits, just
like it probably took quite some convincing to wean programmers off their as-
sembly writing when compilers came about. In some way, it seems a bit like
a chicken-and-egg problem; the average user is not aware of its potential, and
thus the average tool provider sees no sufficient demand for it. Also, for an ex-
isting language with existing, traditional tooling, the conversion barriers seem
significantly higher than for a newly created language without any such legacy.

However, progress seems possible, also for existing languages and tools that
already have a large user base. As exemplary point in case, consider the follow-
ing (abbreviated) exchange‚ on a Mathworks user forum26. On Feb. 23, 2012,
User K E inquired: “Is there an automatic way to rearrange a Simulink block
diagram so that it is easy to read?” Staff Member Andreas Gooser responded
March 14, 2012: “A year ago, I worked with users and developers (I called it
myself Simulink Beautifier :-)) to find out if such things are possible. I found
myself convinced that this is a non-trivial undertaking, if you try this in a generic
way, as there are too many criteria/rules.” On that, User Ben noted Nov. 14,
2012: “Mathworks should invest the energy to develop an auto-cleanup feature.
Tools like these are expected for serious and relevant 21st century software. Yes,
it is non-trivial, but take a look at National Instrument’s LabView—they’ve
implemented such a feature beautifully and it saves hours of aggravation espe-
cially if you are developing complex code.” That thread then fell silent for eight
years. However, Staff Member Anh Tran posted Jan. 31, 2020: “From MATLAB
R2019b, you can improve your diagram layout and appearance by opening the
FORMAT tab on the toolstrip and click on Auto Arrange. This command can
realign, resize, and move blocks and straighten signal lines.” We have not evalu-
ated the quality of the layout ourselves and have not heard of user feedback yet.
However, already back at the 2010 MathWorks Automotive Conference, Klauske
and Dziobek of the Daimler Center for Automotive IT Innovations (DCAITI)

26 https://www.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram

https://www.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram

26 R. von Hanxleden et al.

presented a Simulink extension for doing automatic layout that received quite
positive user feedback, from actual users and during the workshop presentation,
which makes us hopeful [21–23].

In case of LF, the situation was certainly quite different from an established
commercial tool that already has a very large user base accustomed to doing
things in a certain way. We used that chance to harness modern, state-of-the
art tooling infrastructure, building on insights won over many years in earlier
projects such as Ptolemy and SCCharts. The pragmatics-aware approach pre-
sented here, with the automatic synthesis of abstract diagrams, is part of the LF
toolchain since early on. As it turned out, while that approach of continuous,
automatic diagram synthesis is still anything but standard practice, it does not
seem to command much attention in that is basically “just there” and taken for
granted. And when somebody is unhappy with certain aspects of some specific
diagram, it is usually not an actual tool user working on some LF application, but
somebody from the “pragmatics team” themselves with a close eye on graphical
detail, who then also sets about finding a fix for it.

Thus, to conclude, we think that it certainly has helped in the case of LF
to have considered pragmatics from the start, rather than as an afterthought.
Also, as explained, some properties of LF such as its separation of coordination
language and target language make it particularly natural to automatically syn-
thesize abstract diagrams, as part of the design process and for documentation
purposes. However, we also believe that much of the underlying pragmatics con-
cepts are also transferrable to other languages and contexts. We thus conclude
this report with an open invitation to try out the approaches presented here, and
to share experiences and direct inquiries to the authors or to one of the public
message boards associated with the open-source tools presented here.

References

1. Binucci, C., Brandes, U., Dwyer, T., Gronemann, M., von Hanxleden, R., van
Kreveld, M.J., Mutzel, P., Schaefer, M., Schreiber, F., Speckmann, B.: 10 reasons
to get interested in graph drawing. In: Computing and Software Science—State
of the Art and Perspectives, Lecture Notes in Computer Science, vol. 10000, pp.
85–104. Springer (2019). https://doi.org/10.1007/978-3-319-91908-9_6

2. Broman, D.: Interactive programmatic modeling. ACM Trans. Embed. Comput.
Syst. 20(4), 33:1–33:26 (2021). https://doi.org/10.1145/3431387

3. Deantoni, J., Cambeiro, J., Bateni, S., Lin, S., Lohstroh, M.: Debugging and veri-
fication tools for LINGUA FRANCA in GEMOC Studio. In: 2021 Forum on spec-
ification Design Languages (FDL). pp. 1–8 (2021). https://doi.org/10.1109/FDL53530.
2021.9568383

4. Domrös, S., von Hanxleden, R.: Preserving order during crossing minimization in
Sugiyama layouts. In: Proceedings of the 14th International Conference on Infor-
mation Visualization Theory and Applications (IVAPP’22), part of the 17th Inter-
national Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP’22). pp. 156–163. INSTICC, SciTePress
(2022). https://doi.org/10.5220/0010833800003124

https://doi.org/10.1007/978-3-319-91908-9_6
https://doi.org/10.1007/978-3-319-91908-9_6
https://doi.org/10.1145/3431387
https://doi.org/10.1145/3431387
https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.1109/FDL53530.2021.9568383
https://doi.org/10.5220/0010833800003124
https://doi.org/10.5220/0010833800003124

Pragmatics Twelve Years Later: A Report on Lingua Franca 27

5. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. LNCS 2265, 594–597 (2002). https://doi.org/10.
1007/3-540-45848-4_57

6. Eumann, P.: Model-Based Debugging. Master thesis, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science (Jun 2020), https://rtsys.

informatik.uni-kiel.de/~biblio/downloads/theses/peu-mt.pdf

7. Eysholdt, M., Behrens, H.: Xtext: Implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion.
pp. 307–309. OOPSLA ’10, Reno/Tahoe, Nevada, USA (2010). https://doi.org/10.

1145/1869542.1869625

8. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In: Model Driven
Engineering Languages and Systems (MODELS) 13th International Conference,
MODELS 2010, Oslo, Norway, October 3-8, 2010. vol. 6394, pp. 196–210. Springer
(2010). https://doi.org/10.1007/978-3-642-16145-2_14

9. Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum
using pseudo-state feedback. Proceedings of the Institution of Mechanical Engi-
neers, Part I: Journal of Systems and Control Engineering 206(4), 263–269 (1992).
https://doi.org/10.1243/PIME_PROC_1992_206_341_02

10. Giomi, J.: Finite state machine extraction from hardware description languages.
In: Proceedings of Eighth International Application Specific Integrated Circuits
Conference. pp. 353–357. IEEE (1995). https://doi.org/10.1109/ASIC.1995.580747

11. Green, T.R.G., Petre, M.: When visual programs are harder to read than textual
programs. In: Human-Computer Interaction: Tasks and Organisation, Proceedings
ECCE-6 (6th European Conference Cognitive Ergonomics) (1992)

12. Gretz, F., Grosch, F.J.: Blech, imperative synchronous programming! In: Proc.
Forum on Specification Design Languages (FDL’ 18). pp. 5–16 (Sep 2018). https:

//doi.org/10.1109/FDL.2018.8524036

13. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages & Computing 10(4), 317–342 (1999).
https://doi.org/10.1006/jvlc.1999.0130

14. Haberland, H., Mey, J.L.: Editorial: Linguistics and pragmatics. Journal of Prag-
matics 1, 1–12 (1977)

15. von Hanxleden, R., Biastoch, A., Fohrer, N., Renz, M., Vafeidis, A.: Getting the
big picture in cross-domain fusion. Informatik Spektrum (Jul 2022). https://doi.

org/10.1007/s00287-022-01471-2

16. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., O’Brien, O.: SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. In: Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’14). pp. 372–383. ACM, Edinburgh,
UK (Jun 2014). https://doi.org/10.1145/2594291.2594310

17. von Hanxleden, R., Lee, E.A., Motika, C., Fuhrmann, H.: Multi-view modeling
and pragmatics in 2020 — position paper on designing complex cyber-physical
systems. In: Proceedings of the 17th International Monterey Workshop 2012 on
Development, Operation and Management of Large-Scale Complex IT Systems,
Revised Selected Papers. LNCS, vol. 7539, pp. 209–223. Oxford, UK (2012). https:
//doi.org/10.1007/978-3-642-34059-8_11

18. Harel, D., Rumpe, B.: Meaningful modelling: What’s the semantics of “semantics”?
IEEE Computer 37(10), 64–72 (2004). https://doi.org/10.1109/MC.2004.172

https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/peu-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/peu-mt.pdf
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1007/978-3-642-16145-2_14
https://doi.org/10.1007/978-3-642-16145-2_14
https://doi.org/10.1243/PIME_PROC_1992_206_341_02
https://doi.org/10.1243/PIME_PROC_1992_206_341_02
https://doi.org/10.1109/ASIC.1995.580747
https://doi.org/10.1109/ASIC.1995.580747
https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1006/jvlc.1999.0130
https://doi.org/10.1006/jvlc.1999.0130
https://doi.org/10.1007/s00287-022-01471-2
https://doi.org/10.1007/s00287-022-01471-2
https://doi.org/10.1007/s00287-022-01471-2
https://doi.org/10.1007/s00287-022-01471-2
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1007/978-3-642-34059-8_11
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172

28 R. von Hanxleden et al.

19. Hoffmann, B., Minas, M.: Defining models—meta models versus graph grammars.
In: Ninth International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT 2010). Electronic Communications of the EASST, vol. 29.
Berlin, Germany (2010). https://doi.org/10.14279/tuj.eceasst.29.411

20. Ishio, T., Etsuda, S., Inoue, K.: A lightweight visualization of interprocedural data-
flow paths for source code reading. In: Beyer, D., van Deursen, A., Godfrey, M.W.
(eds.) IEEE 20th International Conference on Program Comprehension (ICPC).
pp. 37–46. IEEE, Passau, Germany (Jun 2012). https://doi.org/10.1109/ICPC.2012.

6240506

21. Klauske, L.K.: Effizientes Bearbeiten von Simulink Modellen mit Hilfe eines spez-
ifisch angepassten Layoutalgorithmus. Ph.D. thesis, Technische Universität Berlin
(2012)

22. Klauske, L.K., Dziobek, C.: Improving modeling usability: Automated layout gen-
eration for Simulink. In: Proceedings of the MathWorks Automotive Conference
(MAC’10) (2010)

23. Klauske, L.K., Schulze, C.D., Spönemann, M., von Hanxleden, R.: Improved lay-
out for data flow diagrams with port constraints. In: Proceedings of the 7th
International Conference on the Theory and Application of Diagrams (DIA-
GRAMS ’12). LNAI, vol. 7352, pp. 65–79. Springer (2012). https://doi.org/10.1007/
978-3-642-31223-6

24. Knuth, D.E.: Literate programming. Comput. J. 27(2), 97–111 (1984). https://doi.
org/10.1093/comjnl/27.2.97

25. Korshunova, E., Petković, M., van den Brand, M.G.J., Mousavi, M.R.: CPP2XMI:
Reverse engineering of UML class, sequence, and activity diagrams from C++
source code. In: 13th Working Conference on Reverse Engineering (WCRE’06).
pp. 297–298. IEEE Computer Society, Benevento, Italy (Oct 2006). https://doi.

org/10.1109/WCRE.2006.21

26. Kung, D., Suchak, N., Gao, J.Z., Hsia, P., Toyoshima, Y., Chen, C.: On object
state testing. In: Proceedings Eighteenth Annual International Computer Software
and Applications Conference (COMPSAC 94). pp. 222–227. IEEE (1994). https:

//doi.org/10.1109/CMPSAC.1994.342801

27. Lethbridge, T.C., Forward, A., Badreddin, O., Brestovansky, D., Garzon, M., Alja-
maan, H., Eid, S., Husseini Orabi, A., Husseini Orabi, M., Abdelzad, V., Adesina,
O., Alghamdi, A., Algablan, A., Zakariapour, A.: Umple: Model-driven develop-
ment for open source and education. Science of Computer Programming 208,
102665 (2021). https://doi.org/https://doi.org/10.1016/j.scico.2021.102665

28. Liu, J., Eker, J., Janneck, J.W., Lee, E.A.: Realistic simulations of embedded
control systems. IFAC Proceedings Volumes 35(1), 391–396 (2002). https://doi.

org/10.3182/20020721-6-ES-1901.00553

29. Lohstroh, M., Menard, C., Bateni, S., Lee, E.A.: Toward a Lingua Franca for
deterministic concurrent systems. ACM Transactions on Embedded Computing
Systems (TECS), Special Issue on FDL’19 20(4), Article 36 (May 2021). https:

//doi.org/10.1145/3448128

30. Lucas, D., Schulz-Rosengarten, A., von Hanxleden, R., Gretz, F., Grosch, F.J.:
Extracting mode diagrams from Blech code. In: Proc. Forum on Specification and
Design Languages (FDL ’21). Antibes, France (Sep 2021). https://doi.org/10.1109/

FDL53530.2021.9568375

31. Mihancea, P.F.: Towards a reverse engineering dataflow analysis framework for
Java and C++. In: Negru, V., Jebelean, T., Petcu, D., Zaharie, D. (eds.) 2008
10th International Symposium on Symbolic and Numeric Algorithms for Scientific

https://doi.org/10.14279/tuj.eceasst.29.411
https://doi.org/10.14279/tuj.eceasst.29.411
https://doi.org/10.1109/ICPC.2012.6240506
https://doi.org/10.1109/ICPC.2012.6240506
https://doi.org/10.1109/ICPC.2012.6240506
https://doi.org/10.1109/ICPC.2012.6240506
https://doi.org/10.1007/978-3-642-31223-6
https://doi.org/10.1007/978-3-642-31223-6
https://doi.org/10.1007/978-3-642-31223-6
https://doi.org/10.1007/978-3-642-31223-6
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/WCRE.2006.21
https://doi.org/10.1109/WCRE.2006.21
https://doi.org/10.1109/WCRE.2006.21
https://doi.org/10.1109/WCRE.2006.21
https://doi.org/10.1109/CMPSAC.1994.342801
https://doi.org/10.1109/CMPSAC.1994.342801
https://doi.org/10.1109/CMPSAC.1994.342801
https://doi.org/10.1109/CMPSAC.1994.342801
https://doi.org/https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/10.3182/20020721-6-ES-1901.00553
https://doi.org/10.3182/20020721-6-ES-1901.00553
https://doi.org/10.3182/20020721-6-ES-1901.00553
https://doi.org/10.3182/20020721-6-ES-1901.00553
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1109/FDL53530.2021.9568375
https://doi.org/10.1109/FDL53530.2021.9568375
https://doi.org/10.1109/FDL53530.2021.9568375
https://doi.org/10.1109/FDL53530.2021.9568375

Pragmatics Twelve Years Later: A Report on Lingua Franca 29

Computing (SYNASC). pp. 285–288. Timisoara, Romania (Sep 2008). https://doi.
org/10.1109/SYNASC.2008.7

32. Morris, C.W.: Foundations of the theory of signs, International encyclopedia of
unified science, vol. 1. The University of Chicago Press, Chicago (1938)

33. Prochnow, S., von Hanxleden, R.: Comfortable modeling of complex reactive sys-
tems. In: Proceedings of Design, Automation and Test in Europe Conference
(DATE ’06). Munich, Germany (Mar 2006). https://doi.org/10.1109/DATE.2006.243970

34. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG.
In: Proceedings of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS ’07). LNCS, vol. 4735, pp. 635–649.
IEEE, Nashville, TN, USA (Oct 2007). https://doi.org/10.1007/978-3-540-75209-7

35. Ptolemaeus, C.: System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley, CA (2014), http://ptolemy.org/books/Systems

36. Reenskaug, T.: Models – Views – Controllers (Dec 1979), Xerox PARC technical
note

37. Rentz, N., Smyth, S., Andersen, L., von Hanxleden, R.: Extracting interactive
actor-based dataflow models from legacy C code. In: Basu, A., Stapleton, G.,
Linker, S., Legg, C., Manalo, E., Viana, P. (eds.) Diagrammatic Representation
and Inference, 12th International Conference, DIAGRAMS ’21. LNCS, vol. 12909,
pp. 361–377. Springer International Publishing (Sep 2021). https://doi.org/10.1007/
978-3-030-86062-2_37

38. Roestenburg, R., Bakker, R., Williams, R.: Akka In Action. Manning Publications
Co. (2016)

39. Rüegg, U., Lakkundi, R., Prasad, A., Kodaganur, A., Schulze, C.D., von Hanxle-
den, R.: Incremental diagram layout for automated model migration. In: Pro-
ceedings of the ACM/IEEE 19th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS ’16). pp. 185–195 (2016). https:

//doi.org/10.1145/2976767.2976805
40. Said, W., Quante, J., Koschke, R.: On state machine mining from embedded control

software. In: 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). pp. 138–148. IEEE (2018). https://doi.org/10.1109/ICSME.2018.

00024
41. Schneider, C., Spönemann, M., von Hanxleden, R.: Just model! – Putting auto-

matic synthesis of node-link-diagrams into practice. In: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’13).
pp. 75–82. San Jose, CA, USA (Sep 2013). https://doi.org/10.1109/VLHCC.2013.6645246

42. Schulze, C.D., Lasch, Y., von Hanxleden, R.: Label management: Keeping complex
diagrams usable. In: Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC ’16). pp. 3–11 (Sep 2016). https://doi.org/

10.1109/VLHCC.2016.7739657
43. Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with

port constraints. Journal of Visual Languages and Computing, Special Issue on
Diagram Aesthetics and Layout 25(2), 89–106 (2014). https://doi.org/10.1016/j.jvlc.
2013.11.005

44. Seibel, A.: personal communication (Oct 2017)
45. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–

25 (Sep 2003). https://doi.org/10.1109/MS.2003.1231146
46. Sen, T., Mall, R.: Extracting finite state representation of Java programs. Software

& Systems Modeling 15(2), 497–511 (2016). https://doi.org/10.1007/s10270-014-0415-3
47. Simonyi, C.: The death of computer languages, the birth of intentional program-

ming. Tech. Rep. MSR-TR-95-52, Microsoft Research (Sep 1995)

https://doi.org/10.1109/SYNASC.2008.7
https://doi.org/10.1109/SYNASC.2008.7
https://doi.org/10.1109/SYNASC.2008.7
https://doi.org/10.1109/SYNASC.2008.7
https://doi.org/10.1109/DATE.2006.243970
https://doi.org/10.1109/DATE.2006.243970
https://doi.org/10.1007/978-3-540-75209-7
https://doi.org/10.1007/978-3-540-75209-7
http://ptolemy.org/books/Systems
https://doi.org/10.1007/978-3-030-86062-2_37
https://doi.org/10.1007/978-3-030-86062-2_37
https://doi.org/10.1007/978-3-030-86062-2_37
https://doi.org/10.1007/978-3-030-86062-2_37
https://doi.org/10.1145/2976767.2976805
https://doi.org/10.1145/2976767.2976805
https://doi.org/10.1145/2976767.2976805
https://doi.org/10.1145/2976767.2976805
https://doi.org/10.1109/ICSME.2018.00024
https://doi.org/10.1109/ICSME.2018.00024
https://doi.org/10.1109/ICSME.2018.00024
https://doi.org/10.1109/ICSME.2018.00024
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1109/VLHCC.2016.7739657
https://doi.org/10.1109/VLHCC.2016.7739657
https://doi.org/10.1109/VLHCC.2016.7739657
https://doi.org/10.1109/VLHCC.2016.7739657
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1007/s10270-014-0415-3
https://doi.org/10.1007/s10270-014-0415-3

30 R. von Hanxleden et al.

48. Smyth, S., Lenga, S., von Hanxleden, R.: Model extraction for legacy C programs
with SCCharts. In: Proceedings of the 7th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA ’16), Doctoral
Symposium. Electronic Communications of the EASST, vol. 74. Corfu, Greece (Oct
2016). https://doi.org/10.14279/tuj.eceasst.74.1044, with accompanying poster

49. Smyth, S., Schulz-Rosengarten, A., von Hanxleden, R.: Guidance in model-based
compilations. In: Proceedings of the 8th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA ’18), Doctoral
Symposium. Electronic Communications of the EASST, vol. 78. Limassol, Cyprus
(Nov 2018). https://doi.org/10.1007/978-3-030-03418-4_15

50. Smyth, S., Schulz-Rosengarten, A., von Hanxleden, R.: Towards interactive com-
pilation models. In: Proceedings of the 8th International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA 2018).
LNCS, vol. 11244, pp. 246–260. Springer, Limassol, Cyprus (Nov 2018). https:

//doi.org/10.14279/tuj.eceasst.78.1098

51. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics
11(2), 109–125 (Feb 1981). https://doi.org/10.1109/TSMC.1981.4308636

52. Sutton, A., Maletic, J.I.: Mappings for accurately reverse engineering UML
class models from C++. In: 12th Working Conference on Reverse Engineering
(WCRE’05). pp. 175–184. IEEE Computer Society, Pittsburgh, PA, USA (2005).
https://doi.org/10.1109/WCRE.2005.21

53. Taylor, C.: What has WYSIWYG done to us? The Seybold Report on Publishing
Systems 26(2) (Sep 1996)

54. Tonella, P., Potrich, A.: Reverse Engineering of Object Oriented Code. Springer
Science+Business Media, Inc., New York, NY, USA (2005). https://doi.org/10.1007/
b102522

55. Wechselberg, N., Schulz-Rosengarten, A., Smyth, S., von Hanxleden, R.: Augment-
ing state models with data flow. In: Lohstroh, M., Derler, P., Sirjani, M. (eds.)
Principles of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of
his 60th Birthday. pp. 504–523. LNCS 10760, Springer International Publishing
(2018). https://doi.org/10.1007/978-3-319-95246-8_28

56. Young, W., Leveson, N.G.: An integrated approach to safety and security based on
systems theory. Commun. ACM 57(2), 31–35 (2014). https://doi.org/10.1145/2556938

https://doi.org/10.14279/tuj.eceasst.74.1044
https://doi.org/10.14279/tuj.eceasst.74.1044
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola16-poster.pdf
https://doi.org/10.1007/978-3-030-03418-4_15
https://doi.org/10.1007/978-3-030-03418-4_15
https://doi.org/10.14279/tuj.eceasst.78.1098
https://doi.org/10.14279/tuj.eceasst.78.1098
https://doi.org/10.14279/tuj.eceasst.78.1098
https://doi.org/10.14279/tuj.eceasst.78.1098
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1109/WCRE.2005.21
https://doi.org/10.1109/WCRE.2005.21
https://doi.org/10.1007/b102522
https://doi.org/10.1007/b102522
https://doi.org/10.1007/b102522
https://doi.org/10.1007/b102522
https://doi.org/10.1007/978-3-319-95246-8_28
https://doi.org/10.1007/978-3-319-95246-8_28
https://doi.org/10.1145/2556938
https://doi.org/10.1145/2556938

