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Abstract: With increasing volumes of developed software and steadily growing
complexity of these systems, software engineers struggle to manually maintain the
vast amount of legacy code. Therefore, it is of interest to create a system which
supports the documentation, maintenance, and reusability of software and its legacy
code. The approach presented here automatically derives SCCharts models from C
code. These models can be used as visual documentation. By applying focus and
context methods important parts of the model can be highlighted and may grant a
better understanding of the overall software. Additionally, the models can be used
as a source to create new state-of-the-art code for various languages and platforms,
such as C code or VHDL, using code generators.
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1 Introduction

As the development rate of software in nearly every sector of the industry is reaching new highs,
software engineers struggle to manually maintain the vast amount of legacy code. Seacord et
al. labeled the alarming development that new software is outpacing the ability to maintain it
the Legacy Crisis [SPL03, Chapter 1.3]. Therefore, it is of interest to create a system which
supports the documentation, maintenance, and reusability of software systems and in particular
of its legacy code.

Model-driven software development (MDSD) is an approach which besides other goals aims
to support software modernization. Initially, it was created to develop new software, but recently
it is also used for maintaining existing software systems [IM14]. MDSD makes use of graphical
models to provide a clear overview of general concepts, core functionality, and structural com-
position of software. The represented models are created with the help of modeling languages.
Modeling languages are visual programming languages which specialize in the specification of
the requirements, the structure, the control flow, or the data flow of software systems. This is
achieved by using a high level of abstraction. Sophisticated MDSD tools do not only enable
the user to manually create models but also provide means for extracting models from source
code [Sch06].

SCCharts The Sequentially Constructive Statecharts (SCCharts) language [HDM+14] is a vi-
sual synchronous modeling language which is specialized in specifying safety-critical systems.
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int main(int a, int b) {
if (a < b) {

return 0;
}
while (a <= 0.5 ∗ b) {

a = a + 1
}
return a;
}

(a) C code that serves as
source model (b) Example extraction of the C code depicted in Listing 1a

Figure 1: SCCharts extraction example

The language uses a statechart notation [Har87] and follows a synchronous Model of Computa-
tion (MoC) that provides determinate concurrency. While SCCharts contains various extended
language features, which allow a compact representation of complex models, we here focus on
the core features of the language, namely the interface, states, transitions, and hierarchy. To
support the notion of concurrency, each state is divided into regions which can conceptually be
seen as threads. However, since the approach presented here does not yet look into concurrent
programs, all states include only one implicit control flow region. Additionally, states may con-
tain actions. For instance, an entry action is executed whenever the state is entered. Figure 1b
shows an example of a possible SCCharts representation of the C program shown in Listing 1a.
It consists of a root state named main. Input and output variables are always displayed below
the name. The state main contains five other states namely checkCondition, returnZero, while,
do and returnA. checkCondition is the initial state of its region, which can be recognized by the
bold black border. Transitions between states, which are indicated by arrows, show the possible
control flows. The trigger of a transition needs to be fulfilled in order to enable the transition. It
may be followed by a forward slash and one or multiple actions that are executed in sequential
order if the transition is enabled. A transition without a specified trigger is always enabled. In
this case, the transition label may directly begin with the slash and the action list. If a state has
multiple outgoing transitions, priorities show the order in which the triggers of these transitions
are checked. They are illustrated by a number in front of the trigger of the transition. The lower
the number, the higher the priority. Time in synchronous languages is discretized into logical
clock ticks. Solid-lined arrows represent delayed transitions. They are disabled in the tick in
which the source state got entered and, hence, consume a logical tick. Dashed arrows depict
immediate transitions, which do not consume time. A final state, which marks the end of the
enclosing region, is characterized by a double-line border. Further information on all SCCharts
features can be found elsewhere [HDM+14].

In Figure 1b, checkCondition is the initial state. The control flow of the program starts in
this state. Since the priority of the upper transition is higher than that of the lower transition, it
is checked first whether a is less than b. In this case, the final state returnZero is entered, the
entry action return = 0 is executed. Additionally, the superstate main terminates. Otherwise, the
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lower transition is taken because the empty trigger condition is always true. This leads to the
while state. Here, a is incremented as long as a is less than or equal to half of b. Finally, if this
condition is not satisfied anymore, the final state returnA is entered and the output variable return
is set to the value of a.

All diagrams of models in this work are created and automatically layouted with the Kiel In-
tegrated Environment for Layout Eclipse Rich Client (KIELER). KIELER is a research project
which is developed by the Real-Time and Embedded Systems Group at Kiel University. The pri-
mary objective is the enhancement of the model-based design of complex systems. By arranging
graphical components with the help of automatic layout algorithms, and consequently freeing the
user from redundant tasks, it improves the development process and maintainability [SSH13].
Besides being a platform and framework for researching and prototype development, KIELER
also includes an SCCharts editor and compiler.

Contributions The approach presented allows to create visual representations of legacy C code
automatically. On the one hand, one can take advantage of visual clues to help understand
complex software, and on the other hand this integrates well into projects where some parts are
already modeled in a graphical language. Especially in the automotive sector it is common to
have for example a mix of Simulink models and C code.

Therefore, i) meaningful and understandable patterns to describe C programs must be found.
The goal here is to enhance the overview and understandability of legacy systems. The presented
transformation ii) generates SCCharts models, a novel Statechart dialect, especially developed
for safety-critical systems. These models can be used for documentation and to generate new
code for various platforms. Hence, the main application targets for, but is not limited to, legacy
C code programs. We show iii) how we use the existing code generator of the KIELER SCCharts
implementation to generate code for different platforms, such as C or hardware circuits, from the
extraced models. Various other target platforms such as Java or VHDL, are also possible.

Outline Section 2 describes the model extraction mechanism. In particular, it shows how
the various language features of C are mapped to the language features of SCCharts. Since
the suitability of these mappings depends on the use case, we also discuss alternative ways of
depicting the program in the abstract model. Thereafter, Section 3 presents the possibilities of the
existing code generators and depicts preliminary results. We discuss related work in Section 4
and conclude in Section 5.

2 Model Extraction

In the first step, we evaluate the suitability of SCCharts to serve as model for C programs. There-
fore, the C programs have to be parsed to create an Abstract Syntax Tree (AST) (see Section 2.1).
The model extraction prototype uses model-to-model transformation techniques according to the
single-pass language-driven incremental compilation approach (SLIC) [MSH14] in Section 2.2.
Additionally, a few changes to the SCCharts visual language are adapted to the C programming
language to facilitate understandability of the extracted models.
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(b) AST of the program shown in Listing 2a

int main(int a, int b) {
if (a < b) {

a = a + b;
}
return a;
}

(a) C code example

Figure 2: Abstract Syntax Tree (AST) example

2.1 Parsing C Programs

Since KIELER is an Eclipse framework, the Eclipse C Development Tooling (CDT)1 is avail-
able. The CDT is an Eclipse project which serves as a fully functional IDE for developing
applications in C/C++. It provides a fully featured editor and additional services such as source
code navigation, static code analysis, debugging and unit tests. The CDT can parse files of C
projects that are created or imported into the Eclipse environment. The CDT parser creates an
Abstract Syntax Tree. The AST serves as the source model of the transformation. Commonly,
each node of an AST represents a construct occurring in the source code.

For example, when the C program in Listing 2a is parsed by the CDT, the AST in Figure 2b is
generated. First, the root node FunctionDefiniton defines the main function. It contains the Func-
tionDeclarator and its CompoundStatement. The FunctionDeclarator holds the name of the func-
tion, here main, and its parameter declaration. Each ParameterDeclaration defines one parameter
of the function. In this example, the Declarators a and b are present. A CompoundStatement rep-
resents a code block surrounded by curly brackets. The main function contains one compound
statement, which includes an if statement and a return statement. Both have corresponding nodes
in the AST. The subtree of the IfStatement node also contains a compound statement and the bi-
nary expression that is used for evaluating the if statement. In all expressions, IdExpressions
reference declared variables. The complete overview of possible nodes in the AST generated by

1 https://eclipse.org/cdt

ISoLA DS 2016 4 / 20



ECEASST

int main() {
int a;
int b = 4;
b = 7;
a = b − 1;
if (a == 3) {

a = a + 1;
}
int c = 2;
int d = a;
return d;
}

(a) C program illus-
trating declarations
& assignments

(b) Extracted SCChart of the C program depicted
in Listing 3a

Figure 3: Declarations and Assignments

the CDT can be found in the CDT manual1. As mentioned before, the AST serves as the source
of the subsequent model transformation to SCCharts. Its structure and the provided information
is used to identify the necessary model components and their positioning within the SCCharts
model. Therefore, the different nodes of the AST are converted one after another by traversing
the tree in depth-first order. Each node represents a model component that needs to be created.
After every node has been visited, the text-to-model transformation process is complete. The
resulting SCChart is a semantically equivalent visual representation of the original source code.

2.2 Transforming C Code to SCCharts

There may be several ways to represent the source program. Thus, the representations presented
in the following subsections may in parts only be suggestions. To find a viable solution, several
questionnaires were handed out to university staff and students. The provided answers were
considered in the first prototype [Ols16]. However, we fine-tuned the representation of both
the extracted abstract model and the visual representation of the source program to maximize
overview and understandability. Nevertheless, SCCharts is a relatively new modeling language
and still evolves in terms of language semantics, syntax and also compilation approaches. If the
SCCharts language becomes more powerful, we expect that the number of C programs that we
can transform automatically will increase. This will be an ongoing process and we anticipate
that some the representations will change in the future. Further suggestions for improvements
are discussed in Section 5.

2.2.1 Functions

Every function of a C program is represented by a root state in the extracted SCChart. As de-
scribed in Section 1 all states in our approach only use one implicit control flow region. These
regions represent the compound statements of the functions and start with an initial state where
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(a) Simple assignment in data flow no-
tation

(b) Calculation in data flow notation
(c) Combination of control and data flow

Figure 4: Combining SCCharts with data flow notation [Uml15]

the control flow starts as soon as the enclosing state becomes active. The control flow represents
that of the C program. If the function includes further control structures with compound state-
ments, e.g., an if statement, these are represented by further superstates. Additionally, the argu-
ments of the function are declared as input variables of the corresponding type. Analogously, if
the function is returning a return value, an appropriate output variable is created. Local variable
declarations of the function in C are also declared in the declaration interface of the SCChart.
They are neither marked as input nor output.

2.2.2 Assignments

There are different ways to assign values to variables in SCCharts. To stay as close as possible
to the original code, SCCharts also uses initializations if the value is immediately assigned after
the declaration. Additionally, it is possible to assign values to variables as transition actions or as
state actions, e.g., entry actions that are executed whenever a state is entered. If the assignments
take place at the beginning of a state, bundling these assignments to entry actions facilitates the
readability. This reduces the number of overall states of the SCChart. Contrary to the stan-
dard syntax of SCCharts, which uses an extra keyword on entry actions, the entry keyword was
omitted due to the fact that entry actions are the only actions that are used. This makes the visu-
alization less verbose and increases the readability, because states with actions can be displayed
in a more compact way than transitions with actions. Consider that the entry actions are executed
in their sequential order, but after the initialization part of a declaration. Hence, dependencies
between the assignments are preserved.

In the function and declaration example in Figure 3 you can see that the SCChart displayed in
Figure 3b gets extracted from the program in Listing 3a. Hence, as described in Section 2.2.1,
the function main creates the corresponding root state main. The four variable declarations a, b,
c, and d are all visible in the interface of the root state regardless of where they were declared
in the C function. Declarations with initialization part also preserve their initialization. Further-
more, the assignment a = b - 1 is executed immediately after the function is called. Therefore,
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1 int main(int a) {
2 int b = 10, c = 6;
3 if (a > 4) {
4 a = a − 1;
5 } else {
6 a = c + 3;
7 }

8 while (a <= b) {
9 a = a + 1;

10 if (a == c) {
11 a = b ∗ 2;
12 }
13 }

14 for (int i = 0; i < b; i = i + 1) {
15 a = i ∗ 2;
16 }
17 return a;
18 }

(a) Control statements example C code

(b) Extracted control statements from the C program shown Listing 5a

Figure 5: Control statements example

the assignment is displayed as an entry action. The control of the region passes from the anony-
mous initial state to the if statement. Here, the condition is checked before the control flow can
proceed. After the compound statement of the if statement finishes, d and the return value are
set. Contrary to the assignment of 2 to c during the initialization, a cannot be assigned to d
beforehand, because this would neglect the potential increment of a in the if statement. Finally,
the program terminates.

One might argue that the different notations for assigning values might get confusing. We
chose this approach to stay relatively close to the original code and also to keep the models small
with respect to the space needed for the diagram. However, it is of course possible to only use
one notation for reasons of clarity which might result in more verbose models.

Even in a control flow orientated approach it is possible to use data flow like assignment
syntax if the reader is more familiar with this notation. This is not implemented in the current
version, but Umland [Uml15] showed how data flow notations can be combined with classical
SCCharts (cf. Figure 4). In Figure 4a a simple assignment is depicted. The value in is written to
out. Figure 4b shows the equation out = (in+ in2) ∗ in2. The combination of control and data
flow semantics could happen on region level in SCCharts as can be seen in Figure 4c. The exact
semantics of such combinations have yet to be defined. However, there already exist several
examples of mixed semantics which can serve as models. Some are discussed in the related
work in Section 4.
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int main(int a, int b) {
if (a < b) {

a = b;
} else if (a > b) {

a = b ∗ 2;
} else {

a = a + b;
}
return a;
}

(a) if-then-else in C
(b) Extracted model of the C code listed in Listing 6a

Figure 6: if-then-else example

2.2.3 Control Statements

The control flow starts at the initial state of a compound statement and proceeds straightfor-
wardly. To clarify the boundaries of control structures, every following control statement is
embedded into its own superstate. Hence, the extracted model is organized according to the con-
trol statement structure of the original model. If desired, the corresponding line numbers of the
C code can be added to all statements. However, in our experience this seems to be superfluous,
at least for small examples. Moreover, user interactions with the graphical diagram can be con-
figured such that the textual source of a specific element is selected automatically in the source
code editor. The inner behavior of control structures, which is of no importance to the reader of
the model, can be hidden by pressing the [-] symbol in the upper left corner of the region of the
respective state. This can be of further benefit to understand the essence of the depicted function
or program. Also, all control statements share similar layouts. As before, in each superstate the
control starts at the initial state. Then, the body of the particular control statement follows and,
finally, each structure has at least one final state. Optionally, a control structure may also declare
local variables and actions. Control structures of the same type closely resemble each other in
SCCharts. Here, only the enclosed components may differ, but can also be collapsed.

As an introductory example for control statements, Figure 5b presents an SCChart visualizing
the C code of Listing 5a. Again, the function and its declarations create a new SCCharts root
state. Furthermore, the function contains several control statements which also include com-
pound statements, namely if, while, and for. All of these get transformed to superstates with their
own scope and are executed in sequential order. The while statement also comprises another if
statement. You can see the nested states in the diagram in Figure 5b. We will discuss the different
control statements in detail in the following paragraphs.

if-then-else Statement The first embedded control statement in the SCChart in Figure 5b is
the if-then-else statement. The path the control flow follows is determined by the condition in
the statement. If the condition holds, the then branch is taken. Otherwise, the control follows
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the else branch. Therefore, in the SCChart, the condition of the if statement is used as trigger
of the first outgoing transition. This corresponds to the true branch. If the expression evaluates
to true, the transition is taken. The second transition does not have an explicit trigger and is
implicitly true. Since it is has a lower priority than the first transition, it is always taken in the
else case. The targets of both transitions are marked as final, so the control statement superstate
is left immediately in both cases.

Figure 7: if-then-else alternative

Figure 6b shows the extracted diagram from
the C code shown in Listing 6a. Here, the if-
then-else statement is extended by another else-
if structure. This corresponds to another nested
if statement. So, if the else branch is taken,
the control switches to the nested if statement
which is represented by another superstate. Sub-
sequently, the second if condition is checked and
the control flow proceeds accordingly.

As an alternative, Figure 7 shows another if-
else variant. Here, the nested superstates are
flattened. The different if-else cases get trans-
formed to transitions with priorities according
to the order their conditions get tested. This demonstrates that you do not have to adhere to
the structure of the AST in all cases. As the if-then-else alternative is usually more compact and
also well readable, we prefer this depiction.

while Statement The while statement from the example in Figure 5 also becomes a superstate.
The condition of the while loop is checked in the initial state. If the condition evaluates to true,
the loop continues. Otherwise, the superstate is left immediately. In the while loop in List-
ing 5a, a is incremented by one before the nested if statement, also represented by a superstate, is
checked. If it would contain another nested control statement, the nesting would also continue in
the SCChart. Remember that the user can hide inside behavior if desired. After the if superstate
finishes, the control returns to the check of the while condition.

The difference between the while statement and the do-while statement can be seen in Figure 8b
which is an SCCharts representation of the C code listed in Listing 8a. In the main function of
the C code, two loops, one while loop and one do-while loop, are executed sequentially. The
corresponding root state in the SCChart consists of two embedded superstates for the two loops
as described before. The difference between the two while loops, and the behaviors of their two
superstates, is the point in time when the loop condition is checked. In the simple while loop the
condition is checked immediately after the control enters the superstate. Contrary to this, in the
do-while loop, the body gets executed immediately and the condition is checked afterwards. In
terms of the SCCharts model, only the outgoing transition from the initial state decides whether
or not the loop is a while loop or a do-while loop.

for Statement The last control statement shown in Figure 5 is the for statement. The standalone
variant is depicted in Figure 9b. As in the other control statements, a for statement also becomes
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int main(int a, int b) {
while (a < b) {

a = a ∗ 2;
b = b − 1;
}
do {

a = a + b;
} while (a < 42);
return a;
}

(a) while loops in C
(b) Extracted model of the C code depicted in Listing 8a

Figure 8: while example

int main(int a, int b) {
for (int i = 1; i <= a; i++) {

b = b + b;
}
return b;
}

(a) for loop in C

(b) Extracted model of the C code shown in Listing 9a

Figure 9: for example

a superstate and resembles a while loop. However, the for loop gets a dedicated counter variable
which is declared at the beginning of the superstate and initialized with the corresponding value.
The condition of the for loop is checked similarly to the condition of the while loop. Additionally,
the last assignment in the body of the for loop modifies the counter variable. Again, the superstate
is left as soon as the condition evaluates to false.

switch Statement The switch statement allows to combine cases of a conditional expression.
However, due to the infamous fall-through semantics this is also a common C pitfall. Single
switch cases may be merged inadvertently if a break statement was forgotten. When extracting
the C code presented in Listing 10a in the actual approach, the SCCharts representation is the
one depicted in Figure 10b. The fall-through from case 1 to case 2 becomes obvious. All other
cases use the break statement to leave the switch at once. Even if the example gets bigger with
arbitrary break statements, this is a nice example how the automatic graphical representation of
the program helps to understand the semantics of the legacy C code.
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int main(int a) {
int b;
switch(a) {
case 1:

b = 0;
case 2:

b = a;
break;

case 3:
b = 1
break;

default:
b = 5;
}
return b;
}

(a) switch state-
ment in C (b) Extracted model of the C code depicted in Listing 10a

Figure 10: switch example

2.2.4 Function Calls

Representing function calls in SCCharts may depend on the compilation approach. Consider the
C program listed in Listing 11a. A first straightforward approach performing a macro expansion
is depicted in Figure 11b. Similar to the control statements presented before, the function call
gets its own superstate. When the state of the called function add is entered, the arguments a and
b are copied to local variables x and y. These variables are used for internal computations. After
the sum of the two integer values is assigned to the local return variable, the value is copied to
the variable sum. Even though the visual feedback for the user shows the detailed behavior of
the program, the approach leads to problems with multiple calls of the same function as each
function call will be translated to its own superstate. All of these states would contain the same
information which would lead to an inflated SCChart. As a result, the generated C code from
the SCChart would also contain duplicated code blocks. Consequently, this approach does not
scale. Also, the actual semantic information that a call to a function happened is lost in this
representation.

The second approach presented in Figure 11c makes use of reference states. A reference state
in SCCharts references another SCChart and becomes active under the usual rules. However, the
selected compilation approach decides how the referenced state is handled in the downstream
compilation. For example, referenced SCCharts can also be expanded as explained before. Nev-
ertheless, if the selected compilation approach supports actual function calls (e.g., when gener-
ating code for software) then the code generation is also able to treat the called SCChart as a
separate function without duplicating its code. The function add is added as a second root state
to the SCChart as already suggested in Section 2.2.1. The reference state Call maps the argu-
ments a and b to the input variables x and y of the referenced state. Additionally, the variable
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int main(int a, int b) {
int sum;
sum = add(a,b);
return sum;
}

int add(int x, int y) {
return x + y;
}

(a) Example of a func-
tion call in C

(b) Function call included via macro expansion

(c) Referenced call notation in SCCharts

Figure 11: Function call example

sum is mapped to the output return of referenced state add. Here, we use the SCCharts function
call syntax, which resembles the call-by-reference syntax of C with the ampersand prefix (&).
However, since SCCharts uses explicit inputs and outputs in interfaces, the variable binding is
determined by the parameter order. The ampersand prefix merely serves as visual hint. The
return value of the function is also given back in this way. Moreover, this solution does also
support the expand/collapse features of common superstates. Even though each function call
still has its separate state, its inner behavior can be hidden if desired. Hence, collapsing chains
of function calls can also help to increase the overall overview.

By default, SCCharts generated programs do not acquire more memory dynamically at run-
time. Hence, this approach cannot handle arbitrary recursive function calls. However, if the
recursive depth is obtainable statically or if the generated code is able allocate more memory
during runtime, this approach works in principal. Also, the visualization of referenced SCCharts
could be used to inspect such programs as can be seen in Figure 12a. Nevertheless, the recursive
nature may be expanded infinitely.
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(a) Possible recursive call visualization

Figure 12: Example of a recursive function call

3 First Results

In the second step, we used the extracted models and the already existing KIELER SCCharts tool
chain to automatically generate C code. To validate the feasibility of the approach, regression
tests were executed and compared to the source models. Section 3.1 briefly introduces the used
code generation method. Section 3.2 illustrates the approach based on a Fibonacci program.

3.1 Netlist-Based Code Generation

Figure 13 illustrates the downstream netlist-based compilation approach [HDM+14, SMH15] of
the KIELER SCCharts implementation. When extracting the model from the AST example in
Listing 2a the existing code generation approach of the KIELER SCCharts implementation then
generates a Sequentially Constructive Graph (SCG) which is a control flow graph representation
of the given program. The SCG is partitioned into basic blocks as can be seen in Figure 13a.
From these blocks a new netlist in form of an SCG can be synthesized. The netlist of the example
is depicted in Figure 13b. The assignments in the black nodes correspond to the activating guards
of the basic blocks, here g0, g1, and g2. GO is the start signal of the program and is true in the
first clock tick. The assignments that are guarded by the blocks are depicted as red nodes. The
different colored arrows illustrate different kinds of dependencies. All dependencies enforce an
order: the source of a link must precede the target. The colors decode the semantic reason of
these orderings. Brown colored links mean that this expression depends on the result of another
expression. Red colored links say that this node is guarded by the source of the link. Blue colored
links depict sequential control flow dependency. Finally, when generating sequentialized code, a
schedule obeying these dependency constraints can be found if the given program is sequentially
constructive, meaning it does not have any causality issues under the sequentially constructive
MoC (SC MoC) [HDM+14].
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(a) SCG divided into
basic blocks, each with
separate guards

(b) Generated netlist in SCG
form (c) Sequentialized SCG

Figure 13: Illustration of the netlist-based code generation approach of the KIELER SC-
Charts implementation.

Figure 14: Generated
circuit (optimized)

The netlist-based approach can be used to synthesize software and
also hardware [MSH14, RSM+16]. The corresponding circuit can au-
tomatically be created and is displayed in Figure 14. However, the
netlist-based approach does not handle instantaneous loops, unlike the
priority-based approach [HDM+14]. In fact, the size and structure of
the model and the choice of target platform usually determine which
compilation method promises best results. However, in the case of
model generation, the choice of the compilation approach also deter-
mines parts of the model. For example, a loop may not be generated
instantaneously if the target of the compilation chain is a circuit. Here,
the synchronous MoC provides tools which allow us to create circuits, but it requires that at least
one transition in the loop must be marked as delayed to consume time. For future SCCharts
versions we could imagine a dynamic transition type that decides if it is delayed or immediate
during compile time after the compilation approach is set.

3.2 Full Example

We validated the correctness of functionality within a discretized timing environment typical for
synchronous languages [PEB07]. We are able to generate (simulated) circuits out of C programs
with the restriction that loops are not instantaneous. However, the transformation automatically
marks transitions as delayed if required. This section discusses the extraction and code genera-
tion process to both, software and hardware.

The C program in Listing 15a calculates the nth Fibonacci number. It was extracted according
to the approach explained in Section 2. The extracted SCChart is shown in Figure 15b. At first,
the argument check is performed. If an argument is provided, the function calls the atoi system
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1 int main(int argc, char∗∗ argv) {
2 int a, b;
3 if (argc>0) {
4 a = atoi(argv[0]);
5 } else {
6 a = 0;
7 }
8 b = fib(a);
9 return b;

10 }

11 int fib(int n) {
12 int fl = 0, fh = 1;
13 if (n<=1) { fh = n; }
14 else {
15 for (int i=2; i<=n; i++) {
16 int tmp = fh;
17 fh += fl;
18 fl = tmp;
19 }}
20 return fh;
21 }

(a) Fibonacci in C

(b) Extracted SCChart of the Fibonacci C program in Listing 15a

Figure 15: Full Fibonacci example

function and converts the string into an integer which is then stored in a. Otherwise, a is set to
0. Subsequent to the argument check, the Fibonacci function fib is invoked. As described before,
this reference is expandable and the structure of this function can be explored immediately. fib
consists of an if statement and a for loop. As explained earlier in Section 3.1, the transition
in the for loop may be delayed or immediate depending on the selected compilation approach.
Eventually, the program returns the requested Fibonacci number.

Following the code generation approach explained in Section 3.1, a sequentialized netlist is
generated for the Fibonacci program. Hence, two SCGs for both functions, main and fib, are
created. The netlist representation of both SCGs can be seen in Figure 16. The SCG for the
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Figure 16: Generated netlist of the extracted SCChart depicted in Figure 15b

main function calls the SCG of the fib function. As the netlist-based approach is designed for
both, software and hardware, the computation is logically clocked, meaning that the actual com-
putation of the Fibonacci integer n requires n clock cycles. Nonetheless, it is possible to create
both new code (see Figure 17a) and a circuit (see Figure 17b) with the same approach. The
clocked computation of the Fibonacci example can be seen in Figure 18. We chose C as target
language, because we wanted to compare the source and the target code directly. Of course,
other languages are possible as well. Additionally, if not interested in the hardware synthesis,
the previously mentioned priority-based approach can also be used for code generation. Usually,
this code is more readable than the generated netlist.

Figure 18: Clocked com-
putation of the Fibonacci
number

In the hardware circuit the guard expressions are enclosed in the
same manner as the basic blocks in the SCG. Activated blocks en-
able the calculations of the assignments they guard. To preserve the
values of the variables between clock ticks, values must be saved
in registers. Additionally, a static single assignment version of the
SCG has to be created for the circuit to allow multiple variable as-
signments within one clock tick. The different versions of a variable
are indexed in Figure 17b. The TERM is set to true permanently as
soon as the calculation terminates. Alternatively, it is also possible to only send the TERM signal
for a single clock tick. This would require fewer hardware gates. As before in the SCCharts vi-
sualization, the graphical diagram of the model also gets synthesized and layouted automatically
instantaneously.

ISoLA DS 2016 16 / 20



ECEASST

1 typedef struct {
2 char GO;
3 char g7;
4 ...
5 } TickData1;
6

7 void reset1(TickData1 ∗d) {
8 d−>pg12 = 0;
9 d−> GO = 1;

10 d−> TERM = 0;
11 }
12

13 void tick1(TickData1 ∗d) {
14 tickLogic1(d);
15 d−> GO = 0;
16 d−>pg12 = d−>g12;
17 }

18 void tickLogic1(TickData1 ∗d) {
19 d−>g7 = d−> GO;
20 if (d−>g7) {
21 d−>fl = 0;
22 d−>fh = 1;
23 }
24 d−> cg7 = d−>n <= 1;
25 d−>g8 = d−>g7 && d−> cg7;
26 if (d−>g8) {
27 d−>fh = d−>n;
28 }
29 d−>g13 = d−>pg12;
30 d−>g10 = d−>g7 && !d−> cg7;
31 if (d−>g10) {
32 d−> fib int local i = 2;
33 }
34 d−>g11 = d−>g13 || d−>g10;

35 d−> cg11 =
36 d−> fib int local i <= d−>n;
37 d−>g12 = d−>g11 && d−> cg11;
38 if (d−>g12) {
39 d−> fib int local tmp = d−>fh;
40 d−>fh = d−>fh + d−>fl;
41 d−>fl = d−> fib int local tmp;
42 d−> fib int local i =
43 d−> fib int local i + 1;
44 }
45 d−>g9 = d−>g11 &&
46 !d−> cg11 || d−>g8;
47 if (d−>g9) {
48 d−>ret = d−>fh;
49 d−> TERM = 1;
50 }
51 }

(a) Generated C code of the netlist in Figure 16 (excerpt of the fib function)

(b) Generated hardware circuit of the netlist in Figure 16

Figure 17: Possible out-of-the-box compilation targets for the Fibonacci example in Figure 15
in the KIELER SCCharts tools

4 Related Work

There are several model-based development or documentation tools that cover parts of our topic.
The SCCharts language, which is a dialect of Harel’s Statecharts [Har87], was specifically

developed for safety-critical systems. The KIELER (Kiel Integrated Environment for Layout
Eclipse Rich Client) lets the user edit SCCharts with a textual description, from which KIELER
then automatically creates a visual representation in the familiar Statechart syntax. This auto-
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matic layout allows the user to concentrate on the modeling problem without the need to handle
tedious layouting tasks. The automatic layout is also an enabler for the model synthesis from C
code presented here.

The Advanced Simulation and Control Engineering Tool (ASCET)2 by ETAS GmbH is a
product family for the model-based development of embedded automotive software. The main
application area of ASCET is the modeling of and the code generation for safety-critical systems
such as electronic control units (ECUs) for vehicles. The EHANDBOOK3 also allows to extract
visual models from C code and employs automatic layout for that. However, their representation
is rather low level, data-flow oriented and based on a flat program dependence graph [FOW87].
In comparison, our visualization based on SCCharts is more control oriented and preserves high-
level control constructs such as loops by making use of SCCharts hierarchy.

Doxygen4 is a tool for generating software reference documentation. Doxygen can also pro-
duce graphs that give an overview of certain software aspects, such as call graphs and inheritance
graphs. However, it cannot generate full models that capture the detailed software behavior.

Visual Paradigm5 by Visual Paradigm International is a cross-platform modeling and man-
agement tool for IT systems. Its range of application reaches from modeling of software and
databases to code generation and up to creating business process models. It also supports round-
trip engineering for Java and C++ code which is also one of our goals.

ExplorViz [FWWH13] is a monitoring tool for providing live trace visualization of the com-
munication in software systems. It is able to give the user an overview of the flow of commu-
nications, but does not grant insight to the actual behavior of a function. A model-to-text code
generation is not possible. Hence, the model-based compilation of KIELER is more suitable for
maintaining the legacy code of a software system, rather than monitoring it.

A number of modeling environments allow to synthesize code from visual models. The Safety-
Critical Application Development Environment (SCADE) Suite6 product by Esterel Technolo-
gies is a model-driven software development tool for creating safety-critical embedded soft-
ware. It is based on the formally defined synchronous data-flow programming language Lus-
tre [HCRP91] and offers both control-oriented and data flow modeling styles. SCADE offers a
certified code generator. However, it cannot synthesize graphical models from textual code.

Ptolemy II7 is an open-source software for developing and simulating actor-oriented models.
Actors are defined as software components. They execute concurrently and communicate with
each other through message passing via interconnected ports. Additionally, Ptolemy II enables
C code generation from actor models. The .c-file is created by connecting specific template files
for the different actors. The resulting C code serves as a template for further processing.

Edwards [Edw05] presents a comprehensive overview of the challenges of synthesizing hard-
ware from C and discusses a number of approaches. He also mentions the difficulty of handling
loops. As discussed, the synchronous model of computation, as embodied by SCCharts, allows
to handle loops rather naturally by making use of the notion of a synchronous tick. In the ab-
sence of concurrency, we merely have to ensure that each control flow loop contains at least one
delayed transition.

2 http:/www.etas.com/ascet
3 http:/www.etas.com/ehandbook
4 http://www.doxygen.org

5 https://www.visual-paradigm.com
6 http://www.esterel-technologies.com/products/scade-suite
7 http://ptolemy.eecs.berkeley.edu/ptolemyII
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5 Conclusion

To summarize, the automatic extraction of C programs to models in a statechart notation is
feasible. The extracted models can be used for technical documentation. However, finding “a
best” visual representation for these models does not seem to be trivial even when considering
only existing elements of the statechart dialect. Even when only considering function calls,
assignments, and a couple of control statements, there are many different possibilities to display
the model. A good balance between compactness, overall overview, and simplicity has yet to be
found and may be impossible in a general manner. Nevertheless, extracted models of complex
legacy code can help to understand and maintain these systems.

We implemented a C extractor for the synchronous language SCCharts. Hence, besides using
the automatically generated and layouted diagrams for documentation, the already existing code
generation chain can be used to create new code of the legacy program for different platforms,
including hardware circuits. Again, deciding for one best-fit may not be possible and depends on
the use case. This also influences the graphical notation of the statechart if one wants to preserve
the semantics of the language as the different transition semantics of SCCharts show.

Future Work As future work, using alternative code generation approaches such as the priority-
based compilation approach of the KIELER for software, the timing restrictions on loops should
not be necessary anymore. However, this approach cannot be used to create hardware cir-
cuits [HDM+14]. Additionally, at the moment supported C programs are limited to ANSI C
without pointers and structs. Lifting these restrictions to process a significantly wider range of
legacy C programs is work in progress. Moreover, to validate the correctness and to evaluate
the efficiency of our approach, we want to compare original C programs with their correspond-
ing automatically generated counter-parts. Therefore, we need to extend our code base and the
KIELER implementation to accept arbitrary test cases. Furthermore, as the KIELER tool suite
and the included downstream compilation improves (e.g., more target platforms and improved
language and development features), all advantages automatically become available for already
extracted and yet to be extracted models. Finally, to evaluate the graphical representation and
the ability to serve as a suitable documentation language, further user case-studies must be con-
ducted. Especially when extracting larger programs, the readability of SCCharts and the usability
of the existing tools should be studied further.
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