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Abstract: Model-driven development promises to ease the overall development
process of complex systems. Models provide abstract problem solutions often with-
out the need to tackle concrete technical details. However, as complexity and safety
requirements of modern systems grow, transforming text-based to graphical-based
programs does not suffice any more to create a reasonable overview. The modeler
should not be burdened with maintaining an overview over all potential conflicts
within a particular model of computation or between components of a system. They
should further be able to understand what is happening during transformation steps.
Modern modeling tools and model-based compilers should not only be sophisticated
graphical editors that produce code on demand. They should guide modelers during
the modeling process so that they can refine their models interactively.

The KIELER Compiler constructs transformation snapshots and augmented models
automatically during compilation. We demonstrate six different exemplary transient
views that can help the modeler to refine their models and to solve modeling issues,
such as causality problems in synchronous languages. While the compiler is ag-
nostic towards the meta-models of the source and target languages, the synchronous
language SCCharts serves as main example.

Keywords: Interactive Compilation, Model-based Design, Model-driven Develop-
ment

1 Introduction

As part of the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1 modeling
tools, we developed the model-based KIELER Compiler (KiCo) to demonstrate the capabilities of
our synchronous language SCCharts and transient view framework KLighD [23]. SCCharts, first
presented in 2014 [32], are a dialect of statecharts [14] with a synchronous semantics. The used
sequentially constructive semantics [33] reconciles deterministic concurrency with an impera-
tive, sequential programming style. Even though SCCharts were the initial motivation for KiCo,
it is a modular framework that is not tailored to a specific language. Hence, KiCo can be used to
compile (or process) anything. Every intermediate result is a fully functional artefact that can be

1 http://rtsys.informatik.uni-kiel.de/kieler
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inspected via state-of-the-art pragmatic modeling techniques and the compilation context itself
may change during its life cycle [30]. As an example, Fig. 1 shows the compilation chain of
the netlist-based C compilation of SCCharts within the KIELER modeling tools. The compilation
system references two other systems, SCCharts Normalization and SCG Netlist-based, with the
latter being expanded to explore the included steps. Each contained blue rectangle is an inter-
mediate and fully functional result that can be inspected. Additional color coding can help to
identify problems. KIELER uses the common set of colors, white for infos, yellow for warnings,
and red for errors.

Figure 1: Example of a KiCo compilation chain: The Netlist-based compilation. Each contained
blue rectangle is an intermediate and fully functional result that can be inspected.

Lustre to SCCharts Extended SCCharts Core SCCharts SCG

SCG Netlist-based C Code

Netlist-based Simulation C Backend

Project Setup Template Engine GCC Compiler Simulation Builder

Figure 2: Extended compilation chain that compiles Lustre programs to SCCharts and then uses
the pre-exisiting SCCharts compilation to compile to C. Afterwards, the simulation backend
prepares an appropriate simulation.

While SCCharts serves as main example throughout this paper, several other source or tar-
get languages have been implemented into KIELER. The framework initially supports other syn-
chronous languages, such as Esterel [20,25] and Lustre [12], as source. Experimentally, standard
C code can be compiled to high-level model descriptions [16]. Besides standard compilation tar-
gets, such as C and Java, KIELER supports direct code generation for hardware circuits [22, 29]
or different dialects, such as C for Arduino [17]. Since KiCo is a modular compiler, further
languages can be added to the compiler as sources or targets easily. If desired, pre-existing com-
pilation chains can then be used to proceed with the compilation. For example, the compilation
chain in Fig. 2 adds a Lustre processor to the already existing SCCharts compilation chain. This
chain can be used to compile Lustre programs to SCChart and then uses the pre-existing chain
to compile to C code. This addition can be made on the fly without restarting the IDE, because
compilation chains in KiCo are also models, which can be created and altered during run-time.
However, in practice it is often preferable to develop compiler components in a separate IDE with
defined target platform specifications and deploy KIELER releases. New compiler additions are
then also available in a lean command-line tool variant of KIELER.

Although KIELER is a Java project, developers do not have to implement all reasonable behav-
ior again in Java. For example, KiCo processors can also invoke external tools, such as calling
the GCC. The chain in Fig. 2 does not end on the C code generation. Once the C code has been
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generated, it is send to the GCC2, which creates a binary. Subsequently, the simulator integrated
in KIELER loads the binary and simulates the program within the IDE. Further post-processing,
such as deployment to specific hardware, is also possible. More details on the possibilities of the
model-based compiler can be found elsewhere [31].

The core of a model-based compiler are its model-to-model transformations [18]. All models
generated by these transformations can be inspected at run-time and saved. Issues, such as race
conditions in classical programming or causality problems in synchronous languages are some-
times hard to spot. Therefore, we explored appropriate processing and representations/views of
the available data. We argue that modern development tools, such as model-based compilers,
besides producing the correct result, can and should also guide the modeler to potential issues
and provide means to understand what is happening (during its transformations).

Contribution & Outline: After covering related work in Sec. 2, (1) we divide intermediate
model-based compilation results, also called snapshots, into two categories, named simple and
augmented snapshots in Sec. 3. With a focus on augmented snapshots in Sec. 3.2, (2) we give six
examples of enriched model feedback to illustrate the possibilities of instantaneous interactive
feedback while modeling. Additionally, (3) we show preliminary results gathered during the
development of the model-based SCCharts compiler in Sec. 4 and conclude in Sec. 5.

2 Related Work

If a program is rejected by a compiler, it is important to guide the user towards the problem.
Graphical languages have the advantage of intuitive visual problem reporting. However, regard-
ing synchronous languages, such as SyncCharts [3] and SCADE [10], this potential is often only
used for simulation. For SCCharts as a descendant of SyncCharts, KIELER relies on a visual
representation close to the original Statecharts introduced by Harel [14]. This graphical rep-
resentation has been proven to be intuitively understandable and is also the basis of the UML

Statecharts dialect [9].

1 x = 3
2 if (x > 0) {
3 x = x * 7;
4 }
5 y = x * 2;

1 x_3 = 3;
2 if (x_3 > 0)
3 goto <bb 3>; [0.00%]
4 else
5 goto <bb 4>; [0.00%]
6

7 <bb 3> [0.00%]:
8 x_4 = x_3 * 7;
9

10 <bb 4> [0.00%]:
11 # x_1 = PHI <x_3(2), x_4(3)>
12 y_5 = x_1 * 2;

Listing 1: A small C
program

Listing 2: Code snippet of the SSA intermediate representation in GCC

generated with the -fdump-tree-ssa option. (Example taken from
TR-1806 [31].)

For general purpose compilation, compilers also often allow to access intermediate repre-
sentations. For example, the GCC includes intermediate representation for basic blocks [2] and
optimizations in textual form. However, the accessibility and understandability is tailored to the
needs of a compiler expert. List. 2 shows an extract of the SSA representation of the C program in
List. 1. It illustrates the basic block separation (lines 7 and 10), renaming of variables (lines 1, 2,
8, 11 and 12), and placement of a Φ-function (line 11) in the partially translated code. While all

2 https://gcc.gnu.org
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information is present, without additional affiliated tools that further process these intermediate
results, the representation is arguably rarely helpful for the modeler.

Over the years, a number of modeling compilation approaches have been developed, such as
CINCO [19], a meta-level modeling tool generator, and MARAMA [13], which provides metatools
for language specification and tool creation. While these tools provide sophisticated means to
work on the artefacts in question, once a modeling step is done and the model is compiled,
there is little information or interactivity that guides the developer on what happened. Same is
true for other Statecharts modeling tools, such as Rhapsody and Simulink Stateflow. However,
we currently investigate object-oriented modeling techniques [24] that can be found in, e. g.,
Rhapsody, and how to guide modelers in these contexts.

In our approach we provide the modeler with generic, interactive tools to orchestrate compila-
tion processes. These are divided into atomic steps that aid the modeler to refine the process and
to find errors without the need for long development cycles. The source, intermediate, target,
and additional models are presented in well-readable graphical views using transient view and
automatic layout technologies [23]. To guide the modeler, one goal is to provide meaningful
model representations in the domain of the modeler. Hence, contrary to popular compiler infras-
tructures, such as LLVM [15], which try to reach a common intermediate language as soon as
possible to maximize modularity, KiCo tries to stay in a domain meta-model as long as reasonable
to facilitate understandability.

The process systems of the KiCo can be seen as a variant of scientific workflows [7] for model-
to-model transformations combined with state-of-the-art pragmatic modeling techniques. There
are similarities in the orchestration, presentation, and the overall life cycle of these workflows,
even though KIELER is specialized in model-to-model transformations and interactivity. Equal
to the experiences gathered during the development of KIELER, Curcin et al. [7] observed an
iterative refinement process during the life cycle of a workflow. Developers review individual
fragments of the workflows to modify the functionality or to improve the performance. After the
development completes, the workflow is deployed for execution.

3 Interactive Guidance

KiCo uses interactive process systems to perform compilations [30]. They can be used to gener-
ate transformation snapshots easily and present them with or without additional information to
the modeler. A simple snapshot represents the state of the transformation chain at that particular
moment, whereas an augmented snapshot is enriched with additional information, such as model
element annotations or mappings to the original model, which basically come for free in the KiCo

framework. Each of the colored rectangles in the compilation chain example in Fig. 1 is an
inspectable intermediate model. We explored different ways of presenting the data that is gath-
ered. In Sec. 3.1 we give an example for simple snapshots and then, focus on different guidance
possibilities with augmented snapshots in Sec. 3.2. Both variants can be shown interactively by
selecting the desired interactive result or as dedicated view.

ISoLA DS+IS 2018 iv / xvii
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(a) Original model

(b) Model after the abort transformation

(c) Model in sequential controlflow form (d) Optimized controlflow form

Figure 3: Example of different unmodified transformation snapshots: LeanStrongAbort

3.1 Simple Snapshots

While transformation steps are mandatory for the desired process system to fulfill its task, they
can also guide the user without further annotations to understand a transformation stepwise.
These steps can be shown as simple snapshots on arbitrary granularity. Fig. 3 shows four different
steps of the KIELER netlist-based compilation, which overall consists of over 30 transformations.
One can see the original SCCharts model in Fig. 3a. It serves as source for the compilation.
Without going into too much details of the SCCharts language, after an initialization in the first
cycle, the program increases an integer output O in every clock cycle. As soon as an input I is
present, the counting stops immediately without increasing the counter in this cycle due to a so
called strong abort (red circle transition) and the program is terminated.

Since strong aborts are an extended language feature, the feature has to be transformed into
more simpler language constructs. Fig. 3b shows the semantically equivalent model after the
application of the abort transformation. The strong abort transition is now resolved into a normal
termination transition (green triangle transition), which triggers if the control of its source state
reaches a final state (double border). Transition priorities (with lower integers having higher
priorities) now manage the counter. If I becomes true, the control switches to the Aborted state.
Otherwise, O is incremented.

v / xvii Volume 078 (2019)
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Control
input bool free, req
output bool grant, pend
bool checkReq

Init

Pending

Check

Pause

/ pend = false

2: / checkReq = false1: req / pend = true; checkReq = true

2:1: pend && grant / pend = false

- Request

Init

Pending

Pause

/ grant = false

2:1: checkReq & free / grant = true

- Dispatch

Figure 4: Data dependencies

Eventually, the program is sequentialized into a controlflow graph that only contains assign-
ments (rectangles) and conditionals (diamonds) in the netlist-based compilation as can be seen
in Fig. 3c. The whole netlist logic is executed in every cycle, with the GO variable signaling the
(re-)start of the program. TERM is set to true if the program terminates. Values from previous
cycles can be obtained with a pre operator. The sequentialized code can further be optimized.
Fig. 3d shows the results of the copy propagation [1]. Even if not familiar with the netlist-based
compilation approach, the behaviour of the program is observable. O is set to 0 in the beginning.
It is increased in subsequent cycles managed by the guard g2 and if the input I is false. As soon
as I becomes true, the program terminates without counting O.

3.2 Augmented Snapshots

We demonstrate six different views that may guide the developer in the following subsections.
Other possibilities of data processing and visualization are imaginable, especially when tailored
to specific use-cases. There is no hard limit for the compiler framework. However, the usefulness
of the processed data is tightly connected to its presentation. The guidance may be more effec-
tive if supported by transient view syntheses [23]. Nonetheless, even plain text or unmodified
artefacts may help the modeler as long as they are interactively accessible and easy to understand.

All figures show different variations of the data gathered from the compilation of the same
model with slight modifications w.l.o.g. to show the potential of the different views. The first
three views, described in Sec. 3.2.1 – 3.2.3, follow a more pro-active approach in notifying the
modeler about potential conflicts, also called causality guidance. The last three views, explained
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Control
input bool free, req
output bool grant, pend
bool checkReq

Init

Pending

Check

Pause

/ grant = true

2: / checkReq = false1: req / pend = true; checkReq = true

2:1: pend && grant / pend = false

-  Request

grant

checkReq

grant

Init

Pending

Pause

/ grant = false

2:1: checkReq & free / grant = true

-  Dispatch

grant

checkReq

grant

Figure 5: Causal dataflow

in Sec. 3.2.4 – 3.2.6, help the modeler to understand what is happening during the transforma-
tions, which we call transformation observation. Unmodified Snapshots also fall in this category.

3.2.1 Data Dependencies

Data dependencies usually govern the scheduling order of the program. Fig. 4 shows an example
SCChart with two concurrent regions. Dependencies between concurrent variable accesses can
be visualized directly in the diagram of the model, instead of showing a corresponding control
or dataflow flow graph. The data dependencies here are depicted as green dashed edges. They
can also be visualized on different granularity levels within the model or only if specific states
are selected by the user if desired. It is also possible to display all, i. e. non-concurrent, variable
dependencies and mark ineffective accesses, which can help to refine the model further.

3.2.2 Causal & Induced Dataflow

The induced dataflow view [34] shows communication between concurrent regions. It visualizes
the dataflow of the program even if the underlying model uses the control flow paradigm, such
as, e. g., SCCharts. A variant thereof, the causality dataflow view, focusses on identifying data
dependency cycles. If the source model is changed, such that conflicting values are written to the
variable grant, the dependency cycle is depicted in red, as can be seen in Fig. 5. The modeler is
now informed that a dependency cycle between concurrent regions is present and that the model
is not constructive in the sense of the underlying Model of Computation (MoC). It becomes clear
that the compiler is going to reject the program without the need to actually run the compilation
chain.

vii / xvii Volume 078 (2019)
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3.2.3 Scheduling Propagation

_g0 = _GO

Fork

_g1 = _g0

_g2 = _g1 || _g7

_g3 = _g2 && _cg2

_g4 = _g3 || _g8

_g5 = _g4 && _cg4

_g6 = _g5 || _g4 && !_cg4

_g7 = pre(_g6)

_g8 = _g2 && !_cg2

_g10 = _g0

_g11 = _g10 || _g14

_g11b = _g11

_g12 = _g11b && _cg11

_g13 = _g12 || _g11b && !_cg11

_g14 = pre(_g13)

_cg2 = req

_cg4 = pend && grant

_cg11 = checkReq & free

_g9_e1 = !_g7

_g15_e2 = !_g14

entry

grant = true

pend = true

checkReq = true

pend = false

checkReq = false

grant = false

grant = true

(a) Sequentially constructive program dependency graph

Control
input bool free, req
output bool grant, pend
bool checkReq

Init

Pending

Check

Pause

On Causal Loop!

/ grant = true

2: / checkReq = false1: req / pend = true; checkReq = true

2:1: pend && grant / pend = false

- Request

Init

Pending

Pause

On Causal Loop!

/ grant = false

2:On Causal Loop!

1: checkReq & free / grant = true

-  Dispatch

(b) Propagated scheduling data

Figure 6: Scheduling propagation

Nonetheless, if desired or if constructivity is still not determined, programs can be compiled.
Information gathered during compilation can be propagated back to the original model to provide
reasonable feedback. On this level, complex scheduling relationships are simply displayed as
annotations [30]. The problematic cyclic variable access, which was introduced in Sec. 3.2.2, is
shown to the modeler within the model.

The compiler (or expert thereof) can detect the dependency cycle in the program dependency
graph of the program, which is depicted in Fig. 6a. The complete scheduling information, which
is needed during compilation anyway, is accessible interactively in a readable way. It can be
used by experts to solve complex scheduling issues. The dependency cycle is depicted as cyclic
dashed edge in the example. However, the modeler is informed via propagation in the original
model on the right side in Fig. 6b. Once notified, the issue can be fixed easily without the need
to dive deep into the compilation chain.
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entry

_g7 = pre(_g5)

_g7 = _GO || _g7

_cg2 = req

_g3 = _g7 && _cg2

_g14 = pre(_g4)

_g14 = _GO || _g14

_g2 = _g7 && !_cg2

_cg11 = checkReq & free

_g12 = _g14 && _cg11

_g8 = _g3 || _g2

_cg4 = pend && grant

_g3 = _g8 && _cg4

_g5 = _g3 || _g8 && !_cg4

_g4 = _g12 || _g14 && !_cg11

exit

_g7

pend = false

_g3

pend = true

checkReq = true

_g14

grant = true

_g2

checkReq = false

_g12

grant = true

_g3

pend = false

CP: _g1 / _GO

CP: _g10 / _GO

CP: _g11b / _g11

CP: _g11b / _g11

SRA: _g2 / _g7

SRA: _g2 / _g7

SRA: _g11 / _g14

SRA: _g2 / _g7

SRA: _g8 / _g2

SRA: _g11 / _g14

SRA: _g8 / _g2

SRA: _g4 / _g8

SRA: _g5 / _g3

SRA: _g5 / _g3 SRA: _g4 / _g8

SRA: _g11 / _g14

SRA: _g6 / _g5

SRA: _g13 / _g4

true

true

true

true

true

true

Figure 7: Transformation snapshots

3.2.4 Transformation Snapshots

Every intermediate step of the transformation chain can be preserved as intermediate snapshot
model by the transformations and enriched with individual annotations [18, 30]. In the exam-
ple shown in Fig. 7, different classical optimizations, such as copy propagation (CP) [1] and
smart register allocation (SRA) [6], annotate which nodes were modified by their processes. The
framework handles the mapping between model elements automatically. Hence, it is not neces-
sary for the compiler developer to keep track of these changes manually. They can simply add
annotations to specific model elements, e. g., graph nodes in the example, programmatically in
their optimization. The annotations will be attached automatically to the appropriate visualiza-
tion of the selected nodes.

3.2.5 Automatic Element Tracing

The compiler framework keeps track of the transitive model element relations [22]. Hence, the
relation between the elements of arbitrary intermediate models of the compilation chain can be
made visible. In the example shown in Fig. 8, the nodes of the final model of the netlist-based
compilation [18] are mapped back to the original model.

Displaying all relationships at once can be confusing. Hence, the user can select points of
interest by clicking on the elements. Fig. 9 shows a smaller program with a transitive element
tracing over three transformation steps. Here, the final model represents a hardware circuit. The
paths that lead to the creation of single gates can be inspected easily.

ix / xvii Volume 078 (2019)



Guidance in Model-based Compilations

Control
input bool free, req
output bool grant, pend
bool checkReq

Init

Pending

Check

Pause

/ pend = false

2: / checkReq = false1: req / pend = true; checkReq = true

2:1: pend && grant / pend = false

- Request

Init

Pending

Pause

/ grant = false

2:1: checkReq & free / grant = true

- Dispatch

entry

_g7 = pre(_g5)

_g7 = _GO || _g7

_cg2 = req

_g3 = _g7 && _cg2

_g14 = pre(_g4)

_g14 = _GO || _g14

_g2 = _g7 && !_cg2

_cg11 = checkReq & free

_g12 = _g14 && _cg11

_g8 = _g3 || _g2

_cg4 = pend && grant

_g3 = _g8 && _cg4

_g5 = _g3 || _g8 && !_cg4

_g4 = _g12 || _g14 && !_cg11

exit

_g7

pend = false

_g3

pend = true

checkReq = true

_g14

grant = false

_g2

checkReq = false

_g12

grant = true

_g3

pend = false
true

true

true

true

true

true

Figure 8: Automatic element tracing

Figure 9: Automatic element tracing of selected elements

3.2.6 Built-in Code Mapping

Generated target code can be annotated directly in the original model if supported by the chosen
code generator. For example (see Fig. 10), SCCharts’ state-based code generation creates one
function for each state besides other functions. These final code fragments can be shown directly
in the original model. As shown in the figure, the generated source codes of each state function
are attached as comment nodes to the state in the original model.
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Control
input bool free, req
output bool grant, pend
bool checkReq

Init

Pending

Pause

static inline void regionDispatch_statePause(DispatchContext *context) {
  if (context->delayedEnabled) {
    context->delayedEnabled = 0;
    context->activeState = INIT;
  } else {
    context->threadStatus = PAUSING;
    context->activePriority = 1;
  }
}

static inline void regionDispatch_stateInit(DispatchContext *context) {
  context->iface->grant = 0;
  context->delayedEnabled = 0;

context->activeState = PENDING;
}

static inline void regionDispatch_statePending(DispatchContext *context) {
  if (context->iface->checkReq & context->iface->free) {
    context->iface->grant = 1;
    context->delayedEnabled = 0;
    context->activeState = PAUSE;
  } else {
    context->delayedEnabled = 0;
    context->activeState = PAUSE;
  }
}

...
2.

1.

- Dispatch

Init

Check

Pause

Pending

static inline void regionRequest_statePause(RequestContext *context) {
  if (context->delayedEnabled) {
    context->delayedEnabled = 0;
    context->activeState = INIT2;
  } else {
    context->threadStatus = PAUSING;
    context->activePriority = 2;
  }
}

static inline void regionRequest_statePending(RequestContext *context) {
  if (context->iface->req) {
    context->iface->pend = 1;

context->iface->checkReq = 1;
    context->delayedEnabled = 0;
    context->activeState = CHECK;
    context->activePriority = 0;
    context->threadStatus = READY;
  } else {
    context->iface->checkReq = 0;
    context->delayedEnabled = 0;
    context->activeState = CHECK;
    context->activePriority = 0;
    context->threadStatus = READY;
  }
}

static inline void regionRequest_stateCheck(RequestContext *context) {
  if (context->iface->pend && context->iface->grant) {
    context->iface->pend = 0;
    context->delayedEnabled = 0;
    context->activeState = PAUSE2;
    context->activePriority = 2;
  } else {
    context->delayedEnabled = 0;
    context->activeState = PAUSE2;

context->activePriority = 2;
  }
}

static inline void regionRequest_stateInit(RequestContext *context) {
  context->iface->pend = 0;
  context->delayedEnabled = 0;
  context->activeState = PENDING2;
}

2.

1.
...

2.

1.

-  Request

Figure 10: Built-in code mapping

4 Preliminary Results

Since the development of SCCharts started in 2014, the language and its KIELER implementation
have been used in teaching and in recent years also in industrial context. We handed out extensive
questionnaires on the language and tooling during this time. First results of the surveys are
summarized in the SCCharts: The Railway Report published in 2015 [27]. It shows the ratings
of the participants of the railway project at our department at the Kiel University. Goal of the
project was to use the model-based approach to model a railway controller that controls eleven
trains concurrently on a model railway demonstrator. The report showed that SCCharts and the
tooling can compete with other predominant languages, such as C or Java, or the synchronous
language Esterel [4], in this context. It showed also that there is still room for improvements,
especially when it comes to debugging and curing causality issues. Since then, 127 students,
including participants from external departments, and 8 professionals at the Synchron Workshop
in Bamberg 2016 returned a survey. Their feedback helped us to improve our modeling tools
steadily. The final summary including all survey results is published as technical report [26].

An excerpt from the results can be seen in Fig. 11. The ratings show distinct groups of partic-
ipants in chronological order from left to right in each category. The survey’s symbol indicates
the kind of the associated project. A diamond marks a railway project, which we consider a
medium-size project for students spanning a whole semester. A circle indicates a Mindstorms
project with several smaller tasks usually solvable in one to two weeks. A square stands for
a synchonous lecture at our department, a triangle marks an external project, and a crossed
square marks the survey conducted during the Synchron Workshop in 2016. The first group
represent the ratings of the railway participants from 2014. The crossed square results are the
ratings of the workshop professionals. As they only got a short version of the survey, they only
have results in some categories.

Fig. 11a shows the rating results of the model creation and debugging capabilities. The dis-
crepancy between small and large models was rated more extreme in the larger railway projects.

xi / xvii Volume 078 (2019)
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Small models creation Large model creation Small model debugging Large model debugging
hardly usable

advanced

ok

professional

(a) Model creation and debugging

Code generation Understanding semantics User interface Documentation Support
hardly usable

advanced

ok

professional

(b) Tooling and support

Figure 11: Survey ratings (from TR-1904 [26])

Naturally, what was seen as a large model, differs within the project groups. However, all par-
ticipants agreed that debugging, particularly of large models, is hard and remains the Achilles’
heel of SCCharts and perhaps model-based development in general. However, the relative trends
indicate that the tooling improved over time and we plan to focus even more on usability, main-
tainability, and debugging features.

Fig. 11b shows several aspects of the KIELER tooling. The code generation was rated worse
in the first two Mindstorms projects, which can be attributed to the resource limitations of the
used Real-Time Operating System (RTOS). In later versions, several optimizations [5, 31] were
added to make larger models executable on RTOSs with limited resources. All ratings of the un-
derstanding semantics question are above average. The tooling provides clear representations of
the features in use and illustrates the processes involved during model creation and compilation
in a comprehensible way. The rating of the user interface nearly stayed the same in all projects.
Although documentation improved over time, this is still another weak spot of the SCCharts
project. Despite the fact that the documentation and examples got expanded before the last iter-
ation of the embedded systems class, the latest improvements do not seem to have a big impact
on the ratings and are not enough to give a better than ok impression. Better ways of presenting
the actual state of the project should be explored and implemented in the future. Naturally, the
in-house projects scored better in the support ratings.

The report [26] gives more details on different languages comparisons and discusses the tool-
ing ratings in more detail.
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5 Conclusion

SCCharts and the SCCharts tooling are governed by evolutionary processes. The language, the
technology, and the ways to model efficiently in KIELER will change. However, regardless of
technological changes, we believe that the concept of strong interactive developer guidance will
prevail and help modelers to develop more efficiently. We humbly advise model-based tool
developers to adhere to the principles presented earlier:

Guidance The modeler should not be burdened with maintaining an overview over all potential
conflicts, but should be assisted with finding solutions to these. Modeling tools should
provide transient views automatically while the modeler works on their model.

Observation The modeler should be able to understand what is happening during transforma-
tions/compilations. Intermediate results, automatic mappings and meaningful annotations
facilitate understandability and ease manual verifications.

Both principles, regardless of the concrete views in use, help to refine the source model, which
in turn creates more refined dedicated views. For SCCharts, we depicted this cycle in the accom-
panying poster, which can be seen in Appendix A.

As future work, we want to evaluate further by which means the tooling can be improved to
help the modeler and whole developer teams even more. For example, a new code-generation
approach for verification is currently under evaluation [28]. We also investigate new user front-
end technologies, such as combined web/desktop application possible via frameworks such as
electron3. A first front-end based on the Theia framework has already been developed [8, 21].
It supports model-based compilation via KiCo using the Language Server Protocol (LSP) and
can be used as web and desktop application. Especially, debugging model-based programs is a
greater concern as the survey evaluation showed. Based on work by Grimm towards debugging
SCCharts [11], new possibilities to debug model-generated code during run-time execution are
also under investigation.
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The modeler should not be burdened with maintaining an overview 
over all potential conflicts, but should be assisted with finding 
solutions to these. Modeling tools should provide transient views 
automatically while the modeler works on their model.

The modeler should be able to understand what is happening 
during transformations. Intermediate results, automatic mappings 
and meaningful annotations facilitate understandability and ease 
manual verifications.

The data dependency view shows dependencies between 
different variable accesses to the same variable. Usually they 
govern the scheduling order of the program. The dependencies 
can be visualized on different granularity levels in the model. 

The induced dataflow view [4] shows communication between 
concurrent regions. It visualizes the datafow of the program; 
even if the underlying model uses the control flow paradigm. A 
variant thereof, the causality dataflow view, focusses on 
identifying data dependency cycles. If the source model is 
changed, such that conflicting values are wrien to the variable 
grant, the dependency cycle is depicted in red. 

Gathered information can be propagated back to the original
model to provide reasonable feedback. Here, complex scheduling
relationships are simply displayed as annotations [3].

Every intermediate step of the transformation chain can be 
preserved as intermediate snapshot model by the 
transformations and enriched with individual annotations [1, 3]. 
The framework handles the mapping automatically. In the 
example, different classical optimizations, such as copy 
propagation (CP) and smart register allocation (SRA), annotate 
which nodes were modified by their process.

The compiler framework keeps track of the transitive model 
element relations [2]. Hence, the relation between the elements 
of arbitrary intermediate models of the compilation chain can 
be made visible. In the example the nodes of the final model of 
the netlist-based compilation [1] are mapped back to the 
original model. 

Generated target code can be annotated directly in the original 
model if supported by the chosen code generator. For example, 
SCCharts' state-based code generation creates one function for 
each state (besides other functions) [5].

static inline void regionRequest_statePending(RequestContext *context) {
  if (context->iface->req) {
    context->iface->pend = 1;
    context->iface->checkReq = 1;
    context->delayedEnabled = 0;
    context->activeState = CHECK;
    context->activePriority = 0;
    context->threadStatus = READY;
  } else {
    context->iface->checkReq = 0;
    context->delayedEnabled = 0;
    context->activeState = CHECK; 
    context->activePriority = 0;
    context->threadStatus = READY;
  }
}

static inline void regionRequest_stateInit(RequestContext *context) {
  context->iface->pend = 0;
  context->delayedEnabled = 0;
  context->activeState = PENDING2;
}

static inline void regionRequest_stateCheck(RequestContext *context) {
  if (context->iface->pend && context->iface->grant) {
    context->iface->pend = 0;
    context->delayedEnabled = 0;
    context->activeState = PAUSE2;
    context->activePriority = 2;
  } else {
    context->delayedEnabled = 0;
    context->activeState = PAUSE2;
    context->activePriority = 2;
  }
}

static inline void regionRequest_statePause(RequestContext *context) {
 if (context->delayedEnabled) {
   context->delayedEnabled = 0;
   context->activeState = INIT2;
 } else {
   context->threadStatus = PAUSING;
   context->activePriority = 2;
 }

}

static inline void regionDispatch_stateInit(DispatchContext *context) {
  context->iface->grant = 0;
  context->delayedEnabled = 0;
  context->activeState = PENDING;
}

static inline void regionDispatch_statePending(DispatchContext *context) {
 if (context->iface->checkReq & context->iface->free) {
   context->iface->grant = 1;
   context->delayedEnabled = 0;
   context->activeState = PAUSE;
 } else {
   context->delayedEnabled = 0;
   context->activeState = PAUSE;
 }

}

static inline void regionDispatch_statePause(DispatchContext *context) {
  if (context->delayedEnabled) {
    context->delayedEnabled = 0;
    context->activeState = INIT;
  } else {
    context->threadStatus = PAUSING;
    context->activePriority = 1;
  }
}
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