
Model Order in Sugiyama Layouts

Sören Domrös1 a, Max Riepe1 b Reinhard von Hanxleden1 c

1Department of Computer Science, Kiel University, Kiel, Germany
{sdo, stu217914, rvh}@informatik.uni-kiel.de

Keywords: Sugiyama Layout, Layered Drawings, User Intentions, Model Order.

Abstract: Graph drawing algorithms traditionally consider a graph to consist of unordered sets of nodes and edges, which
may disregard information already provided by the developer. In practice, as recently argued by (Domrös and
von Hanxleden, 2022), a graph often consists of ordered sets, which have an intended model order of nodes and
edges. We present how this model order can be enforced or used as a tie-breaker, while optimizing common
aesthetic criteria. This allows the developer to control the layout of layered graphs via the model order. On the
example of SCCharts, we show that the order of nodes and edges does indeed correlate with the way people
think about a model, and how that order can be used to emphasize the semantics of a sensibly designed model.
Moreover, we suggest model order strategies to be used for control-flow and data-flow diagrams based on
expert developer feedback on SCCharts and Lingua Franca.

1 INTRODUCTION

In previous work, (Domrös and von Hanxleden, 2022)
argued to use model order—the order of the input
model—to influence the layout since common algo-
rithms usually only optimize for geometric criteria
such as backward edges, edge length, edge straight-
ness, or edge crossings.

As introductory example, Figure 1a and 1b show
two different drawings of the same small graph G,
which in the common mathematical unordered set no-
tation consists of nodes N = {n1,n2,n3} and edges
E = {(n1,n2),(n2,n3),(n3,n2)}. Throughout this
paper, we assume nodes to be ordered according to
their numbering, e. g., that n1 is “before” n2.

In Figure 1a the number of backward edges is the
same as in Figure 1b. Figure 1a is the result of a ran-
dom decision, which places n3 as a dangling node—
a node that goes against the main layout direction,
which we assume without loss of generality to be left-
to-right. Thus, we consider Figure 1a to be Obviously
Non-Optimal (ONO) violating the Nothing is Obvi-
ously Non-Optimal (NONO) principle (Kieffer et al.,
2016). Using model order, the desired Obvious Yet
Easily Superior (OYES) solution in Figure 1b empha-
sizes the control-flow and prevents the dangling node,
as now n3 is to the right of n2.

a https://orcid.org/0000-0002-8011-8484
b https://orcid.org/0000-0001-6779-2207
c https://orcid.org/0000-0001-5691-1215

As the main layout direction is left-to-right, the
layer-based Sugiyama algorithm forms vertical lay-
ers. In Figure 1c, n2 and n4 are in the same vertical
layer; in Figure 1d, n3 and n4 share the same layer.
The node n4 can be put in the same layer as n2 or n3
without increasing the edge length or size of the draw-
ing. The ordering suggests that n4 should be “after”
n3, which is not clearly represented by the layout in
Figure 1c in which the order of n3 and n4 is ambigu-
ous since n3 is above n4 but n4 is left of n3. Thus, we
consider Figure 1c to be ONO. Figure 1d solves this
problem by moving n4 to the same layer as n3.

Figures 1e and 1f also show the same graph. Here,
the vertical ordering inside a layer differs. Figure 1e is
ONO since it does not respect the order of n2, n3, and
n4 and orders them differently, although there is no
aesthetic criterion such as edge crossings that would
justify it. The OYES solution in Figure 1f places the
nodes by their ordering in the input model.

ONO drawings are a practical obstacle to the adap-
tion of automatic layout and with it modeling prag-
matics (Fuhrmann and von Hanxleden, 2010), which
embraces the best of textual and graphical modeling.
In the past, Figure 1a and 1e have been the standard
layout for SCCharts (von Hanxleden et al., 2014), a
control-flow based state-chart dialect, as a result of
a specific random seed. Since the order was scram-
bled by previous phases before crossing minimiza-
tion started and was randomized during crossing min-
imization, the developer had very limited control over

n1

n2n3

(a) ONO cycle breaking

n1 n2 n3

(b) OYES cycle breaking

n1 n2 n3

n4

n5

(c) ONO layer assignment

n1 n2 n3

n4

n5

(d) OYES layer assignment

n1

n2

n3

n4

(e) ONO crossing
minimization

n1 n2

n3

n4

(f) OYES crossing
minimization

Figure 1: All drawings are optimal in terms of number of
backward edges for cycle breaking, edge length for layer
assignment, and edge crossings for crossing minimization.
However, (a), (c), (e) violate the model order.

the layout. To nevertheless influence the layout, de-
velopers renamed or reordered the states and intro-
duced constraints to force nodes in the first or last
layer, which did not always work if multiple edges
were involved. The same applies for the data-flow
based polyglot coordination language Lingua Franca
(Lohstroh et al., 2021). Lingua Franca allows speci-
fying deterministic actors called reactors mainly con-
sisting of actions and reactions, which are event trig-
gered and execute their body consisting of code in the
desired target language.

1.1 Contribution & Outline

Section 2 briefly reviews the Sugiyama algorithm.
This paper extends the model order approach for
Sugiyama layouts proposed by (Domrös and von
Hanxleden, 2022) by adding strategies for cycle
breaking, layer assignment, and crossing minimiza-
tion to the already existing strategies for tie-breaking
model order crossing minimization. The main contri-
butions covered in the next sections are as follows:

• We propose two strategies for cycle breaking, a
tie-breaking and an enforcing model order cycle
breaking strategy (Section 3);

• We present a node promotion strategy for model
order layer assignment (Section 4);

• We present a new tie-breaking strategy and en-
forced model order strategies for crossing mini-
mization (Section 5).

Cycle Breaking

Layer Assignment

Crossing Minimization

Node Placement

Edge Routing

I0

I1

I2

I3

I4

I5

In
te

rm
e

d
ia

te
 P

ro
c
e

s
s
o

r S
lo

ts

To
p

o
lo

g
ic

a
l

G
e

o
m

e
tr

ic
a

l

Figure 2: Structure of the layered algorithm.

Section 6 evaluates the enforced cycle breaking and
crossing minimization strategies and discuses poten-
tial use cases based on developer feedback for SC-
Charts and Lingua Franca in Section 6. Section 7
presents further related work and Section 8 concludes
this paper.

2 THE LAYERED ALGORITHM

The Sugiyama algorithm, or layered algorithm, han-
dles the inherent complexity of assigning coordinates
to nodes and routes to edges by dividing the layout
problem of directed graphs into five phases: The topo-
logical phases cycle breaking, layer assignment, and
crossing minimization compute the relative position-
ing between the nodes and edges. The geometrical
phases node placement and edge routing set x and
y-coordinates of nodes and edge routes. In its im-
plementation in the Eclipse Layout Kernel (ELK) the
algorithm is further divided, as seen in Figure 2, by
adding intermediate processors between the phases
that handle pre- and post-processing (Schulze et al.,
2014).

A directed ordered graph G= (V,E) consists of an
ordered set of nodes V = 〈n1, . . . ,nk〉 and an ordered
set of pi outgoing edges for each node ni with E =
〈〈e1,1, . . . ,e1,p1〉, . . . ,〈ek,1, . . .ek,pk〉〉. As explained by
(Domrös and von Hanxleden, 2022), the edges im-
plicitly define the ordered set of ports, which are the
anchor points on the edges on the nodes and which
define the ordering between the edges. However, for
simplicity we here only use the edge order, which
we use as an equivalent to the order of the outgoing
ports, since incoming ports can be ordered by their
incoming connections. A layered ordered graph G =
(V,E,L) additionally has a layering L = 〈L1, . . . ,Lm〉
of m layers of ri nodes with Li = 〈nLi,1 , . . . ,nLi,ri

〉,
which assigns a node to exactly one layer. In-layer
edges, i. e. edges between nodes of the same layer,
are forbidden.

The layered algorithm assigns nodes to vertical
layers, as seen in the graph in Figure 1c, which
has four layers L = 〈〈n1〉,〈n2,n4〉,〈n3〉,〈n5〉〉. Such

a layered graph is proper, if edges only occur be-
tween neighboring layers. To create a proper layer-
ing, dummy nodes are added to break edges that span
multiple layers, e. g., by adding a dummy node to 〈n3〉
to break the edge from n4 to n5 into two. We define
dummy : V →{true, false} as the dummy node predi-
cate that returns true if a node is a dummy node. Fur-
thermore, we call nodes that do occur in the model
real nodes; dummy nodes that are placeholders for
edge labels are called label dummy nodes.

Furthermore, let s : E→V with e = (u,v)∈ E and
s(e) = u be the source function and t : E → V with
e = (u,v) ∈ E and t(e) = v be the target function. Let
o : V ∪E → N∪⊥ be the order function that outputs
the model order value for edges and nodes, and re-
turns⊥ for any dummy node or node without a model
order. Let indegree : V → N and outdegree : V → N
be the functions that return the number of incoming
and outgoing connections respectively.

There already exist several heuristics that opti-
mize aesthetic criteria for the different phases. We
argue that model order should be considered in the
first three topological phases, since they establish the
relative position between nodes and edges. Since all
phases should work independently of each other, we
cannot guarantee that nodes are ordered before each
phase. Therefore, the nodes and edges should be
sorted before using model order strategies, which is
the main concept of model order crossing minimiza-
tion by (Domrös and von Hanxleden, 2022).

Cycle breaking makes the input graph acyclic by
reversing edges. The problem of minimizing the num-
ber of edges that need reversing is called feedback
arc set problem (Eades et al., 1993) and is NP-hard.
Therefore, heuristics are used to reverse edges, which
sometimes rely on randomization to make decisions
if no unique optimal alternative exists.

Layer assignment creates a (proper) layered
graph from a given acyclic digraph by assigning
nodes to layers. Beginning from the sources (or
sinks), nodes are assigned to layers. These can be
optimized for aesthetic criteria such as edge length
(Gansner et al., 1993) or total layer width (Nikolov
and Tarassov, 2006). If the graph is built with a node
model order that emphasizes the layers, model order
layer assignment can form semantic grouping, as de-
tailed in Section 4.

Crossing minimization minimizes edge cross-
ings by changing the order of nodes and ports in the
same vertical layer. Crossing minimization may uti-
lize model order either as a tie-breaker, as discussed
by (Domrös and von Hanxleden, 2022), or to con-
strain nodes and edges, as proposed in Section 5.

n1n2n3

(a)

n1 n2

n3

(b)

n1 n2 n3

(c)

Figure 3: (a) The greedy cycle breaker tries to optimize the
number of backward edges and uses random decisions if no
unique solution exists. (b) The greedy model order cycle
breaker tries to optimize the number of backward edges and
uses model order if multiple optimal solutions exist. (c)
The model order cycle breaker reverses edges to nodes with
a lower model order.

3 CYCLE BREAKING

There are two basic concepts of model order during
cycle breaking. Figure 3 showcases how model or-
der can be ignored, be used as a tie-breaker, or be
enforced.

In Figure 3a the greedy cycle breaker optimizes
the number of backward edges. However, reversing
the edge from n1 to n2 instead of n2 to n1 results in
the same number of backward edges but violates the
model order.

Figure 3b solves this by using model order as a tie-
breaker. As a result n1 is placed in the layer before n2
and not the other way around.

In Figure 3c we assume that the backward edge
aesthetic criterion is disregarded in favor of order.
Such assumptions depend on the specific graphical
language in use, as seen in Section 6.2 and 6.4.

3.1 Model Order as Tie-Breaker

Many cycle breaking algorithms, such as depth-first
(Gansner et al., 1993) or breadth-first, already implic-
itly use model order. A depth-first cycle breaker be-
gins with the sources. Next, all nodes on the sources
are visited recursively, and edges that point to already
visited nodes are reversed. If model order is not taken
into account, there might be multiple solutions based
on the traversal order of the graph. Even though it
is not explicitly stated by Gansner et al., it is as-
sumed that the next nodes are visited based on the
edge model order or the node model order.

The same applies for other layout algorithms such
as the greedy cycle breaker presented by (Eades et al.,
1993) and (Di Battista et al., 1999), seen in Algo-
rithm 1, in which removeFirst is a function that re-
moves and returns the first element of a list, up-
dateNeighbors removes the edges to a node for a
given graph and node, and findMaxOutflow returns the
nodes with the highest out-in-degree difference. In
addition to the traversal order, this algorithm makes
random decisions in line 19 if the nodes have the same

Algorithm 1: greedy[ModelOrder]CB

Input: An digraph G = (V,E)
Output: An acyclic digraph

1 G′ := G,sources := /0,sinks := /0

2 for (n ∈V)
3 if (indegree(n) = 0)
4 sources ∪= n

5 if (outdegree(n) = 0)
6 sinks ∪= n

7 unprocessed := |V |
8 while (unprocessed > 0)
9 while (|sinks|> 0)

10 sink := removeFirst(sinks)

11 updateNeighbors(G′,sink)
12 unprocessed−−

13 while (|sources|> 0)
14 source := removeFirst(sources)

15 updateNeighbors(G′,source)
16 unprocessed−−

17 if (unprocessed > 0)
18 maxNodes := findMaxOutflow(G′)
19 n = choose[ModelOrder]Node(maxNodes)
20 // Reverse incoming edges
21 for (e = (v,n))
22 E := (E\e)∪ (n,v)

23 unprocessed−−

24 return G

outflow. Here chooseNode randomly chooses a node
for which all incoming edges are reversed. Applied
to real graphs, this can create ONO-cases such as Fig-
ure 1a. Here, a backward dangling node is produced
since the algorithm randomly decides to reverse the
edge from n2 to n3 and not the one from n3 to n2 as
it is suggested by the model order.

We propose that in the greedy model order cy-
cle breaker, chooseModelOrderNode returns the node
with the minimal model order o(n) instead.

In such a way every cycle breaker can use model
order as a tie-breaker while traversing ordered sets or
making random decisions.

3.2 Model Order as Constraint

If model order is enforced by reversing all edges to
a node with a lower model order, the graph becomes
acyclic. Moreover, any edge reversal that results in
an acyclic graph can be enforced, e. g., by travers-
ing the resulting tree-like structure breadth-first and
ordering the nodes such that their model order corre-
sponds the breadth-first visiting order. This gives the
modeler full control over the cycle breaking step.

A model order cycle breaker that additionally al-
lows constraining nodes to the first or last layer, which
is common for e. g. SCCharts, can be seen in Algo-
rithm 2, where c : V → {−1,0,1} is defined as fol-
lows:

c(n) =

−1, n shall be in the first layer
1, n shall be in the last layer
0, otherwise

Algorithm 2: modelOrderCB
Input: A digraph G = (V,E)
Output: An acyclic digraph

1 for (e ∈ E)
2 if (c(s(e))> c(t(e))∨ (c(s(e)) = c(t(e))∧o(s(e))> o(t(e))))
3 E := (E\e)∪ (t(e),s(e))

4 return G

The algorithm groups the nodes into nodes with
first-layer constraint, nodes without constraints, and
nodes with last-layer constraint and orders the nodes
within these groups. The order of constraints and the
order inside the constraint groups create a total order
for all nodes, which identifies the edges to reverse.

The runtime of this algorithm is in O(|E|), making
it the fastest possible cycle breaking algorithm.

In Section 6.1 we evaluate the model order cycle
breaker against the depth-first, the breadth-first, and
the greedy cycle breaker.

4 LAYER ASSIGNMENT

The effect of model order layer assignment can be
seen in Figure 1d compared to Figure 1c.

Model order layer assignment needs cycle break-
ing done by the model order cycle breaker and a
breadth-first node model order. The strategy assigns
nodes to layers such that no node has a node with a
smaller model order in a higher layer and no node
with a bigger model order in a smaller layer. The
breath-first ordering of nodes is necessary to compare
different control-flow branches. This may create ad-
ditional layers, as seen in Figure 4a and 4b.

SCCharts have one initial state (see state without a
name) and final states, hierarchy, and parallel regions
of execution, which are not shown here. Priorities on
the edges (see 1. on the edge from the initial state to
s1) express the evaluation order of their guards, which
are omitted here, and derive from the order of the out-
going transitions of a state in the textual model, hence
they represent the edge model order. The node order
in the textual model has no semantics and could be
arbitrary. However, control-flow branches are a com-
mon sight. Developers think one case of their pro-
gram, e. g., branch b1, from start to finish before im-
plementing a new one. The developer does, therefore,
only intend that nodes in b1 are before nodes in b2
and does not intend the layering shown in Figure 4b.
Thus, for SCCharts the nodes in b1 and b2 are not
comparable by model order during layer assignment.

Model order layer assignment works by doing a
trivial layer assignment beginning with the sources,
which again implicitly utilizes the model order of the
nodes or edges to traverse the nodes. As a second

Example01

s1

s2
s3

s4

s5
s6

1.

2.

3.

4.

5.

6.

-

b1

b2

(a)

Example01

s1

s2
s3

s4

s5
s6

1.

2.

3.

4.

5.

6.

-

(b)

Figure 4: Drawing of an obfuscated SCCharts model. (a)
Branches b1 and b2 are only used to infer on ordering be-
tween the nodes in them but not used to infer an alignment.
(b) Interpreting the model order as a depth-first ordering
creates an additional layer.

step in the I2 intermediate processing slot, nodes are
moved based on the model order of nodes in the next
and the current layer, as seen in Algorithm 3.

Algorithm 3: modelOrderNodePromotion
Input: A layered graph G = (V,E)
Output: A layered ordered graph

1 somethingChanged := false
2 do
3 for (n | !dummy(n)∧outdegree(n)> 0)
4 if (o(n) =⊥)
5 continue

6 currentLayer := LL(n)
7 if (|currentLayer|= 1∧L(n) = 0)
8 continue

9 for (v ∈ currentLayer)
10 if (o(n)< o(v))
11 continue

12 nextLayer := LL(n)+1
13 allowsPromotion := false
14 dummyLayer := true
15 for (v ∈ nextLayer)
16 if (!dummy(v))
17 allowsPromotion |= o(v)< o(n)
18 dummyLayer := false

19 else if (!allowsPromotion∧dummyLayer)
20 if (

(n,v) ∈ E∧L(longEdgeTarget(n))−L(n)≤ 2)
21 dummyLayer := false

22 if (allowsPromotion∨dummyLayer)
23 promoteNode(G,n)
24 somethingChanged := true

25 while somethingChanged;
26 return G

Here promoteNode moves a node to the next layer
while also recursively promoting connected nodes
that would otherwise end up in the same layer and
would create in-layer edges.

A real node is promoted if (1) it has a model or-
der (line 4-5), (2) it is not the only node in the first
layer (line 7-8), (3) it has the highest model order in
its layer (line 9-11), and (4) the next layer either has at
least one real node with a lower model order (line 16-
18) or (5) the next layer contains only dummy nodes
while the current node has enough space to its con-

nected real node such that it can safely be moved in
the next layer (line 19-21).

Constraint (1) is necessary since there might be
nodes that are not dummy nodes that are created by
the synthesis, which translates the model into a graph
layout problem, as it is the case for Lingua Franca
(von Hanxleden et al., 2022).

Constraint (2) makes sure that the source node
does not promote the whole graph over and over.

Constraint (3) makes sure that only the node with
the highest model order can be promoted.

Constraints (4) and (5) describe the two differ-
ent criteria for the next layer, the layer the current
node might be moved to. Either a real node with a
lower model order is in the next layer, as seen in Fig-
ure 4a for s5 and s3, or the next layer has only dummy
or dummy label nodes, as seen in Figure 5a, which
shows an Systems Theoretic Process Analysis (STPA)
control structure that is used to analyze hazardous
scenarios. Here Engine System can be moved since
Vehicle, its long edge target, which is the real node
it is connected to, is far enough away to move the
node and the label dummy without also moving Ve-
hicle. Note that Safety System could be in the layer
directly after Operator Safety, Safety System aligns
itself with Telemetry based on the model order.

Each layering can be recreated by model order by
ordering the nodes breadth-first based on their posi-
tion in their intended layer, as seen in Figure 5b.

5 CROSSING MINIMIZATION

Crossing minimization determines the vertical order
of nodes and ports inside a layer. This is done by
sweeping back and forth through the layers and re-
ordering all nodes and ports in a layer based on the
previous layer. The outcome of a layer sweep depends
on the starting configuration. Multiple runs and ran-
dom starting configurations bounded by the thorough-
ness prevent local minima. As shown by (Domrös and
von Hanxleden, 2022), it may need a high thorough-
ness to get the desired result if several starting config-
urations exist.

5.1 Pre-ordering Nodes and Edges

Domrös and von Hanxleden introduced model order
as a tie-breaker during crossing-minimization by be-
ginning the first crossing minimization runs with a
proper layered graph pre-ordered by model order in
the I2 intermediate processing slot. Moreover, they
consider order violations in addition to edge crossings
during crossing minimization.

Operator Backend Operator Safety

Telemetry

Safety System

Drive Box

Auto Box

Lidar Camera BMU IMU

Engine System Steering System

Steering sensors Engine Sensors

Vehicle

driving task

emergency

free space,
objects

lane info,
objects

charge level

charge level

yaw rate,
acceleration

yaw rate,
acceleration

torque,
angle

speed,
power

drive axle
powered wheels,
torque

restoring force

1 2

3

4

5

6

7 8 9

11 12

13 14

15

10

(a) ONO decision during layer assignment. The number of layers is minimal, however, the relationship between the different
states, which is partly expressed by model order, is lost.

Operator Backend Operator Safety

Telemetry Safety System

Drive Box Auto Box

Lidar Camera BMU IMU Engine System Steering System Steering sensors Engine Sensors

Vehicle

driving task

emergency

free space,
objects

lane info,
objects

charge level charge level
yaw rate,
acceleration

yaw rate,
acceleration

torque,
angle

speed,
power

drive axle
powered wheels,
torque

restoring force

1 2

3 4

5 6

7 8 9 10 11 12 13 14

15

(b) OYES decision during layer assignment. The actuators and sensors Lidar, Camera, BMU, IMU, Engine System, Steering
System, Steering Sensors, and Engine Sensors are in the same layer.

Figure 5: STPA control structure with downward layout direction of an autonomous vehicle1. The node model order is marked
in red to the right of each node.

n1
n2

n3

n4

n5

n6

n7

1

2

3

4

(a)

n1
n2

n3

n4

n5

n6

n7

1

2

3

4

5

(b)

n1

n2

n3

n4

n5

n6

n7

1

2

3

4

5

(c)

Figure 6: (a) Tie-breaking crossing minimization that pre-
orders nodes and edges (no crossings). (b) The node order is
enforced after pre-ordering (one crossing). (c) No crossing
minimization, only model order (three crossings).

This algorithm configuration produces results
such as Figure 6a. Since the ordered solution is
checked first and order violations can be weighted
against crossings, a solution is chosen from the cross-
ing minimization runs that has minimal edge cross-
ings with minimal ordering violations as a secondary

criterion.
(Domrös and von Hanxleden, 2022) introduced

two different ordering strategies. These strategies
serve as an initial order or as a tie-breaker during
crossing-minimization. Subsequent runs might be
randomized and are only taken if they are better than
the ordered solution.

The preferEdges approach prefers the edge model
order and only refers to the node model order if no
clear solution could be found, as it is the case for dan-
gling nodes such as n3 in Figure 1a or Figure 3b.

The nodesAndEdges approach considers nodes
and edge order by ordering nodes and edges by their
respective order and using the edge order of the con-
nected source ports in the previous layer as a fallback
if dummy nodes and real nodes are compared.

1www.smartload-project.de

www.smartload-project.de

n1

n2 n3

n4

2

3

1

(a)

n1

n2 n3

n4

2

3

1

(b)

n1 n2 n3

n4

2

3

1

(c)

Figure 7: Different pre-ordering strategies for crossing min-
imization (I2 slot) visualized by omitting crossing mini-
mization. (a) Edge order orders nodes and edges. Node
order is used as a secondary criterion. (b) Edge order orders
the edges and the dummy nodes. Node order orders the real
nodes. (c) Edge order orders dummy nodes. Node order
orders real nodes and edges.

Additionally, we propose the preferNodes ap-
proach that orders real nodes by model order, dummy
nodes—as before—by their connected source ports,
which are already ordered by node model order, and
edges by their long edge target node’s model order.
The different strategies can be seen in Figure 7. Fig-
ure 7a and Figure 7c do not change during crossing
minimization, since they are already optimal in terms
of edge crossings. Crossing minimization reduces the
crossing in Figure 7b resulting in the ordering de-
picted in Figure 7a.

As already described in Section 3.2, the model or-
der can also be interpreted as a constraint resulting in
the following strategies.

5.2 Constraining Node Model Order

If we constrain the real nodes in each layer, many
node positions for dummy nodes, which define the
relative routes of edges, are still feasible without com-
promising the node model order. Crossing minimiza-
tion is edge-centric and often disregards the node or-
der in favor of the edge order if the initial solution is
not crossing minimal. Therefore, a special crossing
minimization strategy is necessary.

A crossing minimization strategy, such as the
barycenter heuristic (Sugiyama et al., 1981) or the
median heuristic (Di Battista et al., 1999), can take
the model order into account if it does layer sweeps
and applies a strategy to order a bipartite graph—here
the barycenter heuristic—such that it does not change
an ordering if it is already optimal. The model order
and the barycenter values form a partial and a total or-
der on the nodes. Therefore, transitive orderings have
to be taken into account and a sorting algorithm that is
order preserving such as insertion sort has to be used.

As seen in Figure 6b, constraining the nodes cre-
ates additional crossings compared to Figure 6a but
always maintains the node model order. Note that this
approach might not find the optimal solution (edge 5
on top) in terms of edge crossings, since it is still lim-
ited by the used starting configurations.

Constraining only edges, as presented in this sec-
tion for the nodes, constraints all parts of the graph
except source nodes. Therefore, this strategy is dis-
cussed as part of the no crossing minimization ap-
proach.

5.3 No Crossing Minimization

For many models, crossing minimization might not
be necessary if nodes and edges are already pre-
ordered. Enforcing model order by pre-ordering
nodes and edges with the preferEdges, nodesAnd-
Edges, or preferNodes approach without doing cross-
ing minimization at all is a viable solution.

If the edge order is enforced, it defines the order
of the nodes and ports if a graph has only one source
and no dangling source nodes are created. This is the
case for SCCharts where each region must have ex-
actly one initial state and all states must be reachable.
If multiple sources are present, the node model order
is used as a secondary criterion. This is enough to
create any edge or node order inside a layer if the
order of nodes and edges has no semantics. Since
the pre-crossing minimization sorting strategy pref-
erEdges fulfills these criteria, edge order can create a
layout by sorting nodes and edges with this strategy
and not doing crossing minimization at all, as seen
in Figure 7a. This makes it compatible with the en-
forced cycle breaking and layer assignment breadth-
first node order constraint.

If the node order should be enforced, the prefer-
Nodes pre-crossing minimization sorting strategy is
used while also omitting crossing minimization. This
results in a layout such as Figure 7c. Since this or-
dering depends on the long edge target nodes, it may
be conflicting with a breadth-first node order. Since
it is, therefore, not compatible with cycle breaking’s
and layer assignment’s constructive breadth-first or-
dering constraint, it cannot be used to create any given
layout, as seen in Figure 4a. If one would order the
states breadth-first 〈init,s1,s2,s5,s3,s6,s4〉 to create
the layering 〈〈init〉,〈s1,s2,s5〉,〈s3,s6,s4〉〉, the edge
ordering would be different and create crossings if en-
forced, e. g., between the edge from s5 to s6 and the
initial state to s3.

The nodesAndEdges strategy should only be used
for a no crossing minimization approach if node and
edge order are not conflicting. Otherwise, edge cross-
ings are created as the one in Figure 7b.

For complicated models, we advise using cross-
ing minimization since moving edges and nodes in
the textual model—while an automatic solution is
available—can control their placement but doing this
manually on a regular basis is tiresome.

6 DISCUSSION

Before discussing what strategies can be used effec-
tively in which scenario, we summarize the model or-
der strategies for Sugiyama layouts with their respec-
tive slot in the algorithm:

Phase 1: Cycle breaking.
greedy model order cycle breaking Optimize

for backward edges but use model order as a
tie-breaker.

model order cycle breaking Edges are reversed by
model order such that edges always point to a
node with a higher model order.
Phase 2 and intermediate slot I2: Layer assign-

ment and post-processing.
model order layerer Promote nodes by model order

after a simple long edge layering beginning from
the sources.
Intermediate slot I2: Crossing minimization pre-

processing.
preferEdges Order nodes and edges before crossing

minimization primarily based on the edge order.
(Domrös and von Hanxleden, 2022)

nodesAndEdges Order nodes by node order and
edges by edge order before crossing minimiza-
tion. (Domrös and von Hanxleden, 2022)

preferNodes Orders nodes and edges before cross-
ing minimization primarily based on the node or-
der.
Phase 3: Crossing minimization.

weighting Include weights for node and edge order
additionally to edge crossings that rate the cross-
ing minimization runs. (Domrös and von Hanxle-
den, 2022)

enforce node order Instead of pure barycenter-
based crossing minimization, the node order
primarily determines the ordering.

no crossing minimization Pre-ordering nodes and
edges is sufficient; the crossing minimization step
does nothing.
In the following we discuss these strategies de-

pending on their usage for SCCharts and Lingua
Franca. A study on cycle breaking for SCCharts,
quantitative analysis, and feedback of expert SCCha-
rts and Lingua Franca developers serves as a basis for
this. The feedback was collected in multiple itera-
tions during weekly developer meetings, while ver-
ifying the extracted information on existing models.
We recommend a similar process when considering
model order for other languages to identify desired or-
der and ordering conventions in the textual and graph-
ical model.

6.1 Model Order Cycle Breaking in
SCCharts

We analyzed 265 SCChart models using the greedy
(see Algorithm 1), the breadth-first, the depth-first,
and the model order cycle breaker (see Algorithm 2)
and the nodesAndEdges crossing-minimization pre-
ordering. The textual models were created without
model order influencing the drawing. Instead, the
greedy cycle breaker optimized backward edges, the
layering optimized for minimum edge length, and the
crossing minimization optimized the number of edge
crossings.

Only 47 of these SCChart graphs resulted in
unique solutions for all algorithms. Eight selected
graphs were rated by 27 participants based on their
first impression, crowdedness, ability to follow edges,
state grouping based on perceived semantics deduced
from state names, and final impression on a Likert
scale. On average the model order cycle breaking
returned the best results before the depth-first, the
breadth-first, and the greedy cycle breaker. Partici-
pants rated the clear edge routes and state grouping
as their primary incentive for their decisions. Other
factors mentioned are that the initial state should be
in the first layer and the final state be in the last, sym-
metry, edge crossings, no dangling nodes, and under-
standable and readable node labels, which is partly
based on the compactness of the graph.

The greedy algorithm performed worst, mainly
because state grouping is only randomly created with
this approach and because dangling nodes seem to
disturb the flow of the diagram (see n3 in Figure 1a).

The breadth-first approach created compact draw-
ings with fewer layers but more edge crossings.
Sometimes, however, it is rated above average if the
breadth-first order creates thematic state groups as
seen in Figure 8. Here, the second layer holds all sta-
tionary states (stretched, stopped, and contracted) and
the third all intermediate states (stretching and con-
tracting). Although many edge crossings are created,
half of the participants preferred this solution. The
second half heavily disliked the drawing because of
the introduced edge crossings. This effect occurred
for all participants regardless of their prior knowledge
in computer science or graph drawing.

To summarize: The node model order between
connected nodes should be utilized during cycle
breaking since the analyzed models show that the de-
veloper desires the same ordering in the diagram. Us-
ing this, control-flow loops introduce the backward
edge just at the end of the loop, where it seman-
tically fits best. Further analysis revealed that the
few exceptions are copy-pasted models and models

Figure 8: Different cycle breaking strategies compared.
From top to bottom: breadth-first cycle breaker, greedy
cycle breaker, model order cycle breaker, depth-first cycle
breaker.

with changed ordering with the hope to influence the
layout. This can be generalized to control-flow lan-
guages that model connections explicitly. Therefore,
we propose to use the model order cycle breaker for
such languages. Furthermore, we see that, as already
explained in Section 4, a breadth-first node model
order is uncommon in SCCharts models and hence
probably also in other languages that model control-
flow. However, it can be used to create any desired
layering if necessary.

6.2 Model Order Crossing
Minimization in SCCharts

As mentioned earlier, edges in SCCharts are num-
bered by their priorities. The placement inside the
diagram has no semantics, therefore, their drawing or-
der can be freely chosen. Expert developer feedback
revealed that although a correct ordering is helpful, it
should be overridden if the drawing can be simplified
by reducing the edge crossings. The order of nodes it-
self is less relevant and should be disregarded in favor
of edge order.

The layered algorithm should, therefore, apply the
preferEdges crossing minimization pre-processing
and weight node and edge order violation as, e. g., one
tenth as important as edge crossings (Domrös and von

0
5

10
15

20

E − wE N − wN
● ●

C
ro

ss
in

g
D

iff
er

en
ce

(a) Edge crossing difference

−
20

20
60

10
0

E − wE N − wN

● ●

E
dg

e
Le

ng
th

 D
iff

er
en

ce

(b) Edge length difference

Figure 9: The preferEdge/preferNodes (E/N) approach
without crossing minimization compared to the crossing
minimization approach (wE/wN) with node and edge order
violation weights during crossing minimization. The edge
crossing difference is cut off at 20 crossings to increase the
readability.

Hanxleden, 2022). For complete control over the lay-
out the model order layer assignment and preferEdges
without crossing minimization should be used, since
it can recreate any layout given a breadth-first node
model order.

The same conclusions can be drawn for other
control-flow languages for which the drawing order
of edges or ports and nodes has no semantics.

6.3 Model Order without Crossing
Minimization

We evaluated 357 SCCharts with at least 3 states and
more than 3 edges between them created by students
during lectures and projects between 2014 and 2022.
The results can be seen in Figure 9.

When using preferNodes without crossing mini-
mization, 151 models are different compared to the
solution that uses pre-ordering and crossing mini-
mization with a node and port order violation weight
of 0.1. When using preferEdges, only 127 are dif-
ferent. We see very few models that create many ad-
ditional edge crossings. Edge crossings tend to get
induced primarily when models are particularly com-
plicated, relied on copy and paste during creation, or
model order had no effect on the layout during their
creation. For the preferEdges approach, 75% of all
models create at most one additional crossing. For
preferNodes, 75% of all models create up to two ad-
ditional crossings. For both approaches the median
is 0, which emphasizes that most models are already
layouted optimally by just following the model order.
Since model order did not affect the creation on these
models, we expect that this number will only increase
in the future, which will be evaluated in future work.

The edge length only gets significantly worse for
the same big, not carefully designed models men-
tioned earlier. For other graphs it increases on average

1 . . .
2 main reactor {
3 logical action a:char*;
4 physical action b:char*;
5
6 reaction (startup)→ a {=. . .=}
7 reaction (a)→ b {=. . .=}
8 reaction (b)→ a {=. . .=}
9

10 }

(a) Textual Lingua Franca
model visualizing the com-
mon ordering of actions and
reactions.

reactionOrder

1

2

3
P

L

(b) Enforcing the
model order is only
sensible if the tex-
tual model intends
its ordering.

reactionOrder

1 2 3L P

(c) A better solution using the greedy model order cy-
cle breaker.

1 . . .
2 main reactor {
3 a = new Accelerometer();
4 dx = new Display(row = 0);
5 dy = new Display(row = 1);
6
7 timer t(0, 250 msec);
8 . . .

(d) Textual accelero-
meter display Lingua . . .

8 . . .
9 state count:int(0);

10
11 reaction(t)→ a.trigger {=. . .=}
12 reaction(a.x, a.z)→
13 dx.message {=. . .=}
14 reaction(a.y)→
15 dy.message {=. . .=}
16 }

(e) . . . Franca model, au-
thored by Edward A. Lee.

AccelerometerDisplay

a : Accelerometer
trigger

x

y

z dx : Display
message

dy : Display
message(0, 250 msec)

1
2

3

(f) A Lingua Franca model of an accelerometer display, au-
thored by Edward A. Lee.

Figure 10: Textual and graphical Lingua Franca models.
The startup node is drawn as a cycle, a timer as a clock,
an action as a triangle, reactions as an arrow shape with a
number, and reactors as rounded rectangles.

only slightly.
These results emphasize that node and edge model

order is in most cases intended by the SCCharts devel-
oper and should, therefore, be respected in the draw-
ing, as also reported by (Domrös and von Hanxleden,
2022).

6.4 Model Order in Lingua Franca

Lingua Franca models are data-flow based, as seen in
Figure 10. Even though the textual order of reactors,
reactions, actions, and timers, is interchangeable, they
are usually grouped by category, e. g., first all action
then all reactions, as seen in Figure 10a, 10d and 10e.

Not every node has a model order. In Figure 10a,
the round startup node is not explicitly modeled. It is
created when the textual model is synthesized into a
view model, which creates the graph. Here, the dia-

gram synthesis takes care of giving the startup node
the correct order inside the list of view model nodes.
For the startup node this question is easy, since it is
the entry point of execution and should, therefore, be
the first node. For other nodes this is not trivial and
has to be done with care, especially if model order is
used as a constraint. Therefore, it is a valid option to
not give these nodes a model order. If this is the case,
cycle breaking may ignore them, which works as long
as no cycles are created by them, and crossing mini-
mization sorts them by their incoming connections.

6.4.1 Cycle Breaking in Lingua Franca

Since nodes are ordered by convention only in-
side their respective category, the model order cy-
cle breaker performs badly, as seen in Figure 10b.
Declaring the actions (line 3 and 4) before the reac-
tions (line 6-8) results in backward edges from the re-
actions to the actions. The greedy model order cycle
breaker should be used instead to get a drawing with
minimal backward edges that creates a deterministic
solution, as seen in Figure 10c. Minimizing the back-
ward edges is especially important for Lingua Franca,
since they have to be routed around the nodes since
outgoing edges are always on the right of a node and
incoming edges always on the left side. As seen in
Figure 10b, backward edges create, therefore, dummy
nodes routing the output backward and the input for-
ward, which increases the clutter, makes edges harder
to follow, and may increase the size of the drawing.

The model order cycle breaker can still be used
if the textual convention is disregarded to be able to
use model order to constrain the drawing. This is also
the only use case for model order layer assignment
for Lingua Franca. Additionally, the diagram can be
configured assigning model order only to reactions,
to reactions and reactors, or to everything, since each
might be the intended behavior.

6.4.2 Crossing Minimization in Lingua Franca

In contrast to other data-flow languages, Lingua
Franca deems the order of connected edges as unim-
portant, as reported by expert developers, since the
edges can be identified by port labels and not relate to
real hardware. Hence, changing the port order from x
y z to x z y in Figure 10f is viable to reduce the number
of crossings.

Enforcing the node order inside a layer improves
orientation in complex models such as Figure 11.
Here, the order of the Ghosts pinky, blinky, inky, and
clyde is maintained.

Doing no crossing minimization often proved to
be ineffective, since edges are not explicit and many

PacMan

controller : GameController
ghost_sprites

pacman_sprite

tick

wall_list

gate

block_list

score

game_over

player : Player
wall_list

gate_list

icon

sprite

icon_name

pinky : Ghostwall_list

gate_list

icon

tick sprite

icon_name

blinky : Ghost

wall_list

gate_list

icon

tick

sprite

icon_name

inky : Ghost

wall_list

gate_list

icon

tick sprite

icon_name

clyde : Ghost

wall_list

gate_list

icon

tick sprite

icon_name

display : Display
moving_sprites

static_sprites

game_over

score

icon_name

tick

icon

Figure 11: The PacMan Lingua Franca model, which contains the ghosts pinky, blinky, inky, clyde in that order.

dummy nodes are created to route backward edges.
Model order could be inferred for dummy nodes such
that an implicit ordering could be calculated with
other means than the connection to a previous layer,
which is evaluated as part of future work on model
order. Currently, it is solved by greedily switching
edges and nodes in a one-pass algorithm instead of
doing crossing minimization.

7 FURTHER RELATED WORK

(Gansner et al., 1993) state that even cyclic graphs
have an edge direction based on their graph input that
represents their natural direction. They do, however,
only conclude that depth-first cycle breaking is prefer-
able to other approaches and do not use the model
order—which they implicitly already do for travers-
ing nodes and edges—for cycle breaking.

(Nikolov and Tarassov, 2006) propose two node
promotion algorithms that are applied after a longest-
path-layering, which is also the starting point for the
model order layerer. Instead of considering the order-
ing, the algorithms minimizes the layer width while
also considering dummy nodes. Their algorithms op-
timize the edge length and edge density but utilize
node promotion similar to our approach.

Several solutions exist to constrain node and edge
order via absolute or relative constraints (Böhringer
and Paulisch, 1990; Waddle, 2001; Mennens et al.,
2019). Even though enforced model order can repli-

cate any layout by breadth-first order, it is not an al-
ternative to using constraints but rather one additional
instrument to constrain nodes and edges. Since lay-
out constraints need a reference layout and, therefore,
two layout runs, the first layout run can use model or-
der and the second one can evaluate the constraints
and move nodes. This tends to create the desired lay-
out with fewer constraints if the model order is sen-
sible, since the model order produces a stable initial
layout, which is most likely already desired. Since
model order layer assignment requires an often not
existing breadth-first model order, constraints can be
used instead to force nodes in the correct layers.

8 CONCLUSION AND OUTLOOK

We presented a full overview on model order strate-
gies for Sugiyama layouts. Moreover, we suggest
strategies that are applicable to control-flow graphs
and data-flow graphs based on developer feedback,
studies, and quantitative analysis.

Future work on this topic goes in several direc-
tions.

Model order currently assumes that the given lin-
ear textual ordering can be applied to all elements.
Since this is not the case for Lingua Franca, the given
model order strategies should also be able to handle
different model order groups that represent different
kinds of semantic elements.

During cycle breaking and layer assignment, all

nodes are expected to have a model order or to be
dummy nodes. In practice this might not always be
the case, as shown on the example of Lingua Franca.
As part of future work, the algorithm should infer the
model order of these nodes.

Lingua Franca proposes another additional use
case in form of hyperedges, which are currently
treated as normal edges. Future work should investi-
gate what special treatment might be required to apply
model order to more general graphs.

Lingua Franca does not explicitly model edges but
rather ports. Future work should investigate whether
the port and edge order, which are handled equiv-
alently in SCCharts, need to be distinguished for
Lingua-Franca-like languages by having on explicit
order for input ports.

(Purchase, 1997) found that user performance
increased from drawings from medium symmetric
drawings to fully symmetric drawings. Since the na-
ture of model order and the grouping it creates relates
to the way symmetry allows us to quickly access a
model, part of future work should focus on whether
model order is also more effective if everything or
nearly everything is ordered.

Since the model order tends to produce more sta-
ble layouts than randomized solutions, its relation to
the mental map should be investigated, as it is deemed
as one of the most important aspects of graph draw-
ing (Purchase et al., 2006). In particular, it should be
investigated whether the mental map, which is repre-
sented by the textual and graphical model, is empha-
sized using model order in an interactive scenario.

REFERENCES

Böhringer, K.-F. and Paulisch, F. N. (1990). Using con-
straints to achieve stability in automatic graph layout
algorithms. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 43–
51, New York. ACM.

Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G.
(1999). Graph Drawing: Algorithms for the Visual-
ization of Graphs. Prentice Hall.

Domrös, S. and von Hanxleden, R. (2022). Preserving or-
der during crossing minimization in sugiyama layouts.
In Proceedings of the 14th International Conference
on Information Visualization Theory and Applications
(IVAPP’22), part of the 17th International Joint Con-
ference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP’22),
pages 156–163. INSTICC, SciTePress.

Eades, P., Lin, X., and Smyth, W. F. (1993). A fast and
effective heuristic for the feedback arc set problem.
Information Processing Letters, 47(6):319–323.

Fuhrmann, H. and von Hanxleden, R. (2010). On the prag-
matics of model-based design. In Proceedings of the
15th Monterey Workshop 2008 on the Foundations
of Computer Software. Future Trends and Techniques
for Development, Revised Selected Papers, volume
6028 of LNCS, pages 116–140, Budapest, Hungary.
Springer.

Gansner, E. R., Koutsofios, E., North, S. C., and Vo, K.-
P. (1993). A technique for drawing directed graphs.
Software Engineering, 19(3):214–230.

Kieffer, S., Dwyer, T., Marriott, K., and Wybrow, M.
(2016). HOLA: human-like orthogonal network lay-
out. IEEE Trans. Vis. Comput. Graph., 22(1):349–
358.

Lohstroh, M., Menard, C., Bateni, S., and Lee, E. A. (2021).
Toward a Lingua Franca for Deterministic Concurrent
Systems. ACM Transactions on Embedded Computing
Systems (TECS), 20(4):Article 36.

Mennens, R. J., Scheepens, R., and Westenberg, M. A.
(2019). A stable graph layout algorithm for processes.
In Computer Graphics Forum, volume 38, pages 725–
737. Wiley Online Library.

Nikolov, N. S. and Tarassov, A. (2006). Graph layering by
promotion of nodes. Discrete Applied Mathematics,
154(5):848–860.

Purchase, H. C. (1997). Which aesthetic has the greatest
effect on human understanding? In Proceedings of the
5th International Symposium on Graph Drawing (GD
’97), volume 1353 of LNCS, pages 248–261. Springer.

Purchase, H. C., Hoggan, E. E., and Görg, C. (2006). How
important is the “mental map”? – an empirical in-
vestigation of a dynamic graph layout algorithm. In
Proceedings of the 14th International Symposium on
Graph Drawing (GD ’06), volume 4372 of LNCS,
pages 184–195. Springer.

Schulze, C. D., Spönemann, M., and von Hanxleden, R.
(2014). Drawing layered graphs with port constraints.
Journal of Visual Languages and Computing, Special
Issue on Diagram Aesthetics and Layout, 25(2):89–
106.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man and Cy-
bernetics, 11(2):109–125.

von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S.,
Mendler, M., Aguado, J., Mercer, S., and O’Brien,
O. (2014). SCCharts: Sequentially Constructive
Statecharts for safety-critical applications. In Proc.
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI ’14), pages
372–383, Edinburgh, UK. ACM.

von Hanxleden, R., Lee, E. A., Fuhrmann, H., Schulz-
Rosengarten, A., Domrös, S., Lohstroh, M., Bateni,
S., and Menard, C. (2022). Pragmatics twelve years
later: a report on lingua franca. In International Sym-
posium on Leveraging Applications of Formal Meth-
ods, pages 60–89. Springer.

Waddle, V. (2001). Graph layout for displaying data struc-
tures. In Proceedings of the 8th International Sympo-
sium on Graph Drawing (GD ’00), volume 1984 of
LNCS, pages 98–103. Springer.

