Synthesizing Safe State Machines from Esterel

Steffen Prochnow

Claus Traulsen

Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universitét Kiel, Olshausenstr. 40, D-24118 Kiel, Germany

{spr, ctr, rvh}@informatik.uni-kiel.de

Abstract

Esterel and Safe State Machines (SSMs) are synchronous lan-
guages dedicated to the modeling of embedded reactive systems.
While Esterel is a textual language, SSMs are based on the graph-
ical Statecharts formalism. Statecharts are often more intuitive
to understand than their textual counterpart, and their animated
simulation can help to visualize subtle behaviors of a program.
However, in terms of editing speed, revision management, and
meta-modeling, the textual nature of Esterel is advantageous. We
present an approach to transform Esterel v5 programs into equiva-
lent SSMs. This permits a design flow where the designer develops
a system at the Esterel level, but uses a graphical browser and sim-
ulator to inspect and validate the system under development.

We synthesize SSMs in two phases. The first phase transforms
an Esterel program into an equivalent SSM, using a structural trans-
lation that results in correct, but typically not very compact SSMs.
The second phase iteratively applies optimization rules that aim to
reduce the number of states, transitions and hierarchy levels to en-
hance readability of the SSM. As it turned out, this optimization is
also useful for the traditional, manual design of SSMs. The com-
plete transformation has been implemented in a prototypical mod-
eling environment, which allows to demonstrate the practicality of
this approach and the compactness of the generated SSMs.

Categories and Subject Descriptors C.3 [SPECIAL-PURPOSE
AND APPLICATION-BASED SYSTEMS]: Real-time and embed-
ded systems; D.3.4 [PROGRAMMING LANGUAGES]: Proces-
sors—Compilers, Optimization; 1.6.5 [Model Development]: Mod-
eling methodologies

General Terms Design, Human Factors, Languages

Keywords Reactive systems, Esterel, Statecharts, Safe State Ma-
chines, SyncCharts, textual/graphical languages

1. Introduction

Reactive systems are systems that have permanent interaction with
their environment. The execution of these systems is determined by
their internal state and external stimuli. As a reaction, new stimuli
and/or a new internal state are generated. To describe the behav-
ior of reactive systems, the family of synchronous languages has
been developed, including Esterel [7], Lustre [14] and Signal [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’06 June 14-16, 2006, Ottawa, Ontario, Canada.

Copyright © 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

These languages offer numerous control flow primitives such as
concurrency and preemption that are pertinent to reactive systems,
and the synchrony hypothesis [7] gives a sound semantical basis
to these languages. As an alternative to the aforementioned, textual
languages, one may also develop reactive systems using graphical
notations, such as Statecharts. The Statecharts formalism extends
the classical formalism of finite-state machines and state transi-
tion diagrams by incorporating the notions of hierarchy, orthogo-
nality, compound events, and a broadcast mechanism for commu-
nication between concurrent components. Statecharts provide an
effective graphical notation, not only for the specification and de-
sign of reactive systems, but also for the simulation of the mod-
eled system behavior. Since the original Statecharts proposal by
Harel et al. [[15], numerous dialects of Statecharts have been devel-
oped and Statecharts have also been incorporated into the Unified
Modeling Language (UML) [18]. Today, Statecharts are supported
by several commercial tools, e. g., Matlab/Simulink/Stateflow [22],
Statemate [[15] or Rational Rose [20]. In this paper, we are partic-
ularly interested in the Safe State Machines (SSMs) [3]] dialect of
Statecharts, which is a graphical variant of Esterel.

Consequently the developer of reactive systems may choose be-
tween the textual and the graphical approach to specify systems. In
principle, they offer the same expressiveness and the same level of
abstraction. However, there are notable differences in terms of prac-
tical use, and both approaches have their advantages. To consider
just four areas, we briefly compare them in terms of comprehensi-
bility, editing speed, suitability for revision management, and the
support of meta-modeling.

Comprehensibility A commonly touted advantage of graphical
formalisms such as Statecharts is their intuitive use and the good
level of overview they provide—according to the phrase “a pic-
ture is worth more than a thousand words.” Especially for visual-
izing complex structures, Statecharts have advantages compared to
textual programming languages. Here, the one-dimensional flow of
text provides poor overview over the whole system, while State-
charts provide clustering elements such as states, hierarchy and
orthogonality to structure Statechart components. However, the
graphical modeling of realistic applications often results in very
large and unmanageable graphics, severely compromising their
readability and practical use. Textual programming languages can
represent precise details very well, while visual languages are good
for higher level context.

Editing Speed Entering textual programming code to specify a
system is very efficient. Due to the linear text flow, the insertion and
deletion of symbols and words is very simple. Regarding graphical
models, the two-dimensional nature brings some editing compli-
cations. Before inserting elements, the modeler must often “make
room” first. The deletion of elements is also tedious, because it of-
ten leaves distracting “holes.” To handle this and to produce nice
and readable graphics, adjacent elements have to be moved, while

module ABRO: module ABCRO:

input A, B, R; input A, B, R;

output O; output O;

loop loop
[await A || await B |; [await A || await B || await C |;
emit O; emit O;

each R each R

end module end module

(a) Original Esterel program (b) Extended Esterel program

Figure 1: Extending ABRO to ABCRO, Esterel versions

abcro

(a) Original SSM
(b) Extended SSM

Figure 2: Extending ABRO to ABCRO, SSM versions

respecting the relationships of interacting elements (e. g., transi-
tions, state hierarchy, concurrency).

To illustrate this point, consider the canonical ABRO exam-
ple [6], which is specified as follows: The system concurrently
waits for two input signals, A and B. When both signals have oc-
curred, the output O is emitted. This behavior is reset by the input
signal R. An Esterel program expressing this behavior is shown in
Figure[Ta] an equivalent SSM is seen in Figure 2a] Now suppose
we want to extend this example with a further accepting signal C
in parallel to the signals A and B. To extend the Esterel version
accordingly, into the program shown in Figure[Tb} we just use our
favorite text editor, move the cursor to the “|”, and type “|| await
C.” Performing the same operation on the corresponding SSM, to
obtain the SSM seen in Figure 2B} is rather more involved: we have
to enlarge the top-level state and the states ABO and AB, we have to
move the state Program_Terminated, we have to draw a new hori-
zontal line, we have to draw the new state C and its predecessor and
successor, we must draw two new transitions and label them—an
operation likely to take an order of magnitude longer than the cor-
responding textual edit. Furthermore, the result is unlikely to be as
precisely layouted as the one shown here, unless one applies further
alignment operations—provided they exist in the modeling tool in
the first place.

Revision Management When large repositories of textual code
are developed, evolution is well traceable. At each milestone of a
project, one can obtain revealing information about the increments
of the programming work (e. g., applying the UNIX diff utility to
compare different versions). In general, there is no such possibility
with graphical models. Even if the modeling tool stores models in
a format to which tools such as diff are applicable (ASCII), these

5.2/b exe
[11/18/2005
1039:01]

> "Blue”
># Model of type > Jp<talse>
Doc wved by >
Jhor SAT 17035
Est > END # of init.2

2/ o 2
[11/18/2005 > NODE state.d state

> ATTRIB
8c8 161c161 S

{
< [await A || await B || await C |; <l 2 Shv>
- 27c22 z
> [await A || await B |; <AT 107145 >0

> AT 197 145 s
243243

<€l

(a) diff applied to Esterel files | ;M58
[20
Sq Jo

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYY

>
>4 <
S0

20 >

v
g

(b) diff applied to SSM files (scg format,
as used by Esterel Studio)—only first 100
of 287 lines shown

Figure 3: Results of applying diff to compare ABRO with ABCRO,
alternatively using the Esterel representation and the SSM repre-
sentation

formats are not intended to be human-readable, and the relevant
information is typically buried in irrelevant data.

To illustrate, Figure 3] shows the differences (produced by diff)
between ABRO and ABCRO. For the Esterel representations, the
difference file is 4 lines long, and we can immediately deduce how
the programs differ. For the SSMs, the difference file is orders of
magnitude larger and so cluttered that it is practically worthless to
the human examiner.

Meta-Modeling One would often like to express models in a
generic fashion, at an abstraction level that is higher than what is
directly supported in the (textual or graphical) modeling language.
One trivial example is to extend ABRO from two to n signals
that are awaited. For another example, one might want to model
a distributed system communicating via some protocol with n
stations. (One such example is the Token Ring Arbiter used in
the benchmarks in Section E[. with 3, 10, 50, and 100 stations.)
It is generally rather easy to achieve this with textual languages
that have standard macro capabilities, using generic scripting or
preprocessing languages such as perl or m4, or just a powerful text
editor. Graphical languages may also have macro capabilities, but
creating a top-level system with n stations still requires manual
work for each instance.

In summary, both textual and graphical languages have their
specific domains and advantages. The traditional model-based de-
sign flow starts with the graphical entry of a system model, from
which textual programs are synthesized; however, as we argue here,
it would actually be advantageous to allow the designer to work in
the opposite direction as well.

The main contributions of this paper are:

e A synthesis mechanism that derives a graphical Statechart
model, specifically the SSMs dialect, from a textual impera-
tive programming language, Esterel (Section2);

e A set of optimization rules that transform a Statechart (SSM)
into an equivalent, but more compact Statechart (Section @)—
these rules can also be useful to Statecharts developed the
traditional way;

A discussion of how to assert the correctness of such a transfor-
mation and optimization (Section f));

e An experimental evaluation, based on an implementation of the
aforementioned synthesis and optimization mechanisms in a
modeling environment (Section [3).

Related Work

SyncCharts [1} 4], the predecessor of SSMs, have been defined
via a translation to Esterel [2], and the commercial tool Esterel
Studio generates Esterel programs from SSMs as part of its code
generation process. To our knowledge, there have been no attempts
yet to explore the other direction as we do here.

In general, there is only very limited work on synthesizing
Statecharts from textual descriptions, and the approaches that we
are aware of already assume that the textual input directly expresses
the Statechart topology as an AND/OR tree (e.g. [[16} [8]). This
already achieves the advantages of textual entry, but does not offer
the rich, concise control flow constructs available in synchronous
programming languages such as Esterel.

As discussed in Section 2] one complication arising in the trans-
formation presented here is to express Esterel’s trap mechanism in
SSMs. This situation also arises in the Esterel derivate Quartz [21]],
which does not support traps directly, see also Section[d} However,
Quartz allows to test the current configuration of a system; as we do
not have this option in SSMs, we present an alternative mechanism
based on explicit trap signals.

Regarding Statechart optimizations, there have been already
proposals for design rules that define “good” Statecharts; however,
they typically focus on checking consistency [11]] or graphical ap-
pearance, and do not attempt to systematically reduce the complex-
ity of a Statechart as we do here.

2. Transforming Esterel

Esterel is an imperative synchronous language and consists of a set
of kernel statements from which other statements are derived [5]].
In contrast to other transformations and analyses on Esterel, we
should not restrict ourself to these kernel statements, because the
derived statements give us useful information about the structure
of the program.

To aid the understanding of the transformation, let us briefly
review some Esterel basics; for a more detailed reference, see
Berry [6]. Different parts of an Esterel program communicate via
signals, which have a boolean status. Valued signals can also carry
an additional value, like an integer or real number, or a value of
user defined type. The execution of Esterel programs is based on
instants, and the execution of all statements is considered to take
zero time and to take place within an instant, except for the pause
statement, which explicitly waits for the next instant. As a conse-
quence no signal can change its status during one instant. This is
even true in the case of valued signals; multiple emissions of one
valued signal in an instant can be combined by an associative and
commutative function. The set of active input and output signals
in one instant is called event. Important features of Esterel are the
direct support of concurrency and multiple forms of preemption.
Statements can either be strongly aborted, weakly aborted, i.e.,
they are still executed during the abortion instant, or suspended,
i.e., they are frozen in this instant, but may resume later on. The
preemption can either be immediate or delayed. In the immediate
version, a statement can be preempted in the same instant it be-
comes active, while in the delayed version, it must be active for
at least one instant before it can be preempted. Another important
feature is the possibility to explicitly wait until a signal becomes
present (or absent); this can also be either immediate or delayed.
In addition to weak and strong abortion, Esterel provides traps as
an exception mechanism. Traps are declared by the trap statement,
which can optionally be augmented with one or more exception

handlers. Traps are raised by the exit statement. We will discuss
the behavior of traps in more detail in Section 4]

SSMs are a Statechart dialect with a synchronous semantics that
strictly conforms to the Esterel semantics. A procedural definition
of SSMs is given by André [3]. The basic object in SSMs is a re-
active cell, which is a state with its outgoing transitions. Reactive
cells are combined to state-transition graphs. A macro-state con-
sists of one or more state-transition graphs. Additionally, SSMs can
contain textual macrostates, which consist of plain Esterel code.
States can also have internal actions: on entry, on exit and dur-
ing. SSMs inherit the concept of signals and valued signals from
Esterel. Hence a transition trigger can consist of an event, which
tests for presence and absence of values, and a conditional, which
may compare numerical values. Characteristic for SSMs are the dif-
ferent forms of preemption, expressed by different state transition
types. Weak and strong abortion transitions as well as suspension
can be applied to macrostates. A macrostate can either be left by
an abortion, which has an explicit trigger, or by a normal termina-
tion, which is taken if the macrostate enters a terminal state. Analo-
gously to Esterel, all transitions can either be immediate or delayed,
where a delayed transitions is only taken if the source state was al-
ready active at the start of an instant. In contrast, immediate transi-
tions may be taken as soon as the state becomes active; this makes
it possible that one state is activated and deactivated multiple times
within one instant. When a state has more than one outgoing tran-
sition, a unique priority is assigned to each of them, where lower
numbers have higher priority. Weak abortions must have lower pri-
ority than strong abortions, and if a normal termination exists, it
always has the lowest priority.

Our transformation from Esterel to SSMs is defined with a
graph grammar, where non-terminal symbols are textual macro-
states. These are transformed into graphical macrostates, which
themselves may contain further textual macrostates. For each Es-
terel statement, one rule exists to transform it into one macrostate,
where each sub-statement becomes a substate; thus the hierarchy
of the SSM corresponds exactly to the nesting of statements in the
Esterel program. A graphical macrostate enters a terminal state if
and only if the corresponding Esterel statement terminates. Since
Esterel and SSMs are closely related, the transformation of most
language constructs is fairly straightforward. Care has to be taken
to preserve the semantics of traps, which do not have a direct
counterpart in SSMs.

We now illustrate the transformation scheme by first presenting
the transformation rules that are needed for the ABRO example and
then applying theses rules to the Esterel version of ABRO. In the
following, p and ¢ stand for arbitrary Esterel statements; de is an
arbitrary delay expression, i. e., an expression over signals plus the
additional information whether this expression shall be evaluated
immediately or in the next instant; s and ¢ are arbitrary signal and
trap names, respectively; exp is a signal value expression; ehe is
an exception handler expression, i.e., a boolean expression over
trap signals. For details on the grammar of Esterel, see the Esterel
manual [6]].

Transformation Rule 1 (module).
module
module mod_name:
input I1,...,In;
output O1,...,0m;

p
end module

An Esterel program (a “module”) starts with an interface declara-
tion. Thus, the first step of the transformation is to generate an SSM
with the same name and interface, which simply enters a textual
macrostate that contains the program body p.

Transformation Rule 2 (emit).

-

emit s(exp)

[, Is(exp)

L

The emit statement broadcasts a signal s, with an optional value
exp, and terminates instantaneously.

Transformation Rule 3 (Ioop each).

loopeach

(=)
loop

P
each de =
-

The loop p each de statement executes its body p and restarts it
whenever the delay expression de is true.

Transformation Rule 4 (simple await).

await de

simple_await

~ o)

In its simple form, await de waits until the expression de evalu-
ates to true and then terminates. The general case, not shown here,
allows to wait for different events and execute specific code de-
pending on which event occurred first.

Transformation Rule 5 (parallel).

parallel

J

The parallel operators in Esterel and in SSMs work exactly the
same. The parallel branches are executed synchronously. Note that
the parallel terminates if all its sub-statements terminate; therefore,
all contained macrostates are final.

Transformation Rule 6 (sequence).

Ead (sequence W

pl;..;pn = B
Y ——

The sequence waits for termination of one statement before it starts
executing the next statement. Note that a sequence terminates when
its last sub-statement terminates.

3

Transforming ABRO

The rules introduced so far suffice to generate an SSM for ABRO.
The first step is to apply the (module) rule to the Esterel program
that is to be transformed (Figure [E), which results in an SSM with
the same interface declaration as the Esterel program and a textual
macrostate that contains the body of the given program. Figure
shows this SSM and the subsequent stepwise transformation into an
SSM that contains no textual macro states anymore, hence no more
transformation rules are applicable. The behavior of the original
Esterel program is completely preserved in the resulting SSM; but
we also see that the generated SSM contains unnecessary hierarchy

nestings and is relatively hard to read. However, before considering
optimizations in Section[3] we first consider some of the remaining
transformation rules; due to space limitations, we do not present
the complete set of rules.

Handling Traps

Traps are a part of Esterel whose translation to SSMs is not straight-
forward. Their behavior must be simulated using local signals and
weak abortions. For each trap statement we introduce local sig-
nals for all declared exceptions, plus one new local signal traphalt.
This signal is emitted if another trap with higher priority is activated
from inside the trap scope. This is needed to assure that no excep-
tion handler is executed when an exception with higher priority is
active at the same time; our translation handles the arbitrary nest-
ing of traps. Whenever an exception is raised, all other exceptions
inside its scope that are not running in parallel to the statement that
raised the exception are deactivated. We will discuss this in detail
in Section

Transformation Rule 7 (exit).

) exit

(
exit t(exp)
= M(exp), traphalt_1,...traphalt_n
J

The exit statement raises an exception, optionally annotated with
the value of an expression, which can be used in an exception
handler. The SSM also includes signals to prevent the execution
of exception handlers with lower priority (see also Section[d). Note
that the exit state does not terminate normally, hence the simple
state that is entered is not marked as final state. The body of a trap
statement is weakly aborted when one of its exceptions is raised.
When no other exception with higher priority is active, its active
handlers are executed in parallel. When a trap with higher priority
is active at the same time, no handler is executed. A trap terminates
when its body terminates.

Transformation Rule 8 (trap).

trap

traphalt, t_1,..,t_n I

#traphalt/ =
o

<1> <3>

trap t1,..tmin .
<2>

p
handle ehe_1 do p1 #t_1or..ort_n/

H‘and\e ehe_ndopn
end trap

The trap catches exceptions which are raised inside its body. De-
pending on which exception was raised, different handlers are
executed—possibly in parallel, when multiple exception were
raised.

A requirement placed on Esterel programs is that they must not
contain instantaneous loops; i. e., the body of a loop is not allowed
to terminate instantaneously. This requirement also transfers to
SSMs; they must not contain instantaneous cycles. This causes a
complication in our transformation of traps, since replacing traps
by weak abortions can compromise the ability of a compiler (or
simulator) to establish that there are no instantaneous loops in a
given model. While for a trap the Esterel compiler analyses whether

ABRO =)

(loopeach)

ABRO

loopeach

(sequence)

R/

ABRO

loopeach

?

sequence

await A (parallel),
1l emitO (emit)
await B

&

R/

ABRO

loopeach

H

sequence

parallel

? emit

await A i |[awaite 0 _
@ @ ' ~—» (simple

await)

\)

R/

ABRO

loopeach

sequence

parallel

Figure 4: Stepwise transformation of the Esterel program ABRO
(Figure[Ta) into an equivalent SSM

it may be raised immediately or not, a weak immediate abortion is
always assumed to be potentially instantaneous. A justification for
this is that the scope of trap signals (exceptions) is confined to just
the trap, whereas weak aborts may be triggered by signals with
arbitrary scope. Consider the example shown in Figure [5a} here,
the Esterel compiler determines correctly that within the loop, a
pause statement must be executed before the exception T is raised,
and that hence the loop is not instantaneous. However, if we would
replace the trap with a weak abort, with an immediate trigger, the
compiler would claim that the loop is potentially instantaneous
and would reject the program—even though the program would be
behaviorally equivalent.

There are several possibilities to resolve this dilemma. One
approach would be to apply an analysis to weak abort blocks
with immediate triggers to determine whether the trigger signals
can possibly be emitted in the instant when the abort block is
entered; if not, we can safely replace the immediate trigger with
a delayed trigger, which would solve the problem. This, however,
would make the handling of the trap_halt signals and of traps
with multiple handlers significantly more complicated. Another
approach is based on the observation that for loops that are not
instantaneous, we can safely add a parallel thread to each loop
body that pauses for one instant (and does nothing else). This is
illustrated in the Esterel module shown in Figure [5b] which is
equivalent to the example in Figure [5a The second thread within
the loop, which just pauses for one instant and then terminates, does
not change the behavior of the program, but allows the compiler to
establish that the loop is not instantaneous, since parallel statements
terminate only (normally) if all concurrent threads have terminated.

The first of these approaches has the advantage that it does not
enlarge the program; however, we opted for the second approach,
as it is conceptually simpler. Figure[5c|shows the SSM synthesized
from the Esterel example in Figure [5a] and we can see that the
macrostate corresponding to the loop contains an extra thread that
just pauses for one instant. However, to avoid excessive additions of
such parallel threads, we limit this to loop bodies where it depends
on an enclosed trap whether the loop is instantaneous or not, as is
the case in this example. These cases seem to be rare in practice, in
our benchmarks only ABCD contained such loops.

Handling Abortions

Abortions are closely related to traps, but since they can be directly
expressed in SSMs, their transformation is much simpler. Both
weak and strong abortion stop to execute their bodies when an
abortion trigger is active. Depending on which trigger is active,
different code parts can be executed.

Transformation Rule 9 (weak abort).

weakabort -

1

#haltabort/
3

weak abort

[
when

1<ns2y ©

case de_ndogn <25 n+l>
end abort

case de_1doql

de_n/

For weak abort, the body is still executed in the instant it is
aborted. This makes it possible to raise an outer trap, which has
priority over the abortion; the code that follows the weak abort
is not executed. This is assured by the haltabort signal, which is
raised by the exit statement similar to the traphalt signals.

module LOOP_WITH_TRAP:
loop
trap T in

patjtse-;_ Module_LOOP_WITH_TRAP
exi

end trap
end loop
end module

Loop34state

(a) Esterel program with

tap [T inlnleleleiiiiiiinininie—
Trap35state

Events: T_, haltTrap35_

module LOOP_WEAK_ABORT:
loop

signal T in (StatementList36state
weak abort

pause; ._’ tick / T
emit T

when immediate T

<T
. <2
end signal # haltTrap35_ \# T_
Il
pause
end loop

end module

| J

. (o) SSM synthesized for
(b) Equ}valent Esterel pro LOOP_WITH.TRAP
gram with weak abort

Figure 5: Handling of potentially instantaneous loops, introduced
by the transformation from traps to weak abortions: the loop in the
Esterel examples (a,b) is not instantaneous, which in the synthe-
sized SSM (c) is made explicit with an extra parallel thread that is
not instantaneous

Transformation Rule 10 (abort).

abort

abort

p
when

case de_1doql =

éase de_ndo gn
end abort

at e ||

In contrast, for strong abortion no exception can be raised inside
if the abortion condition is true, since the abortion body is not
executed in this case. The same holds for other statements which
are derived from strong abortion, such as loop each and every.

3. Optimization

As we have seen, the transformation produces verbose SSMs, but
they have a very regular structure. This makes it possible to obtain
a readable chart by applying some simple optimization rules. The
rules are completely syntactical and make no assumptions on the
actual execution of the SSMs, e. g., whether transitions can actually
be taken. Each rule takes one macrostate and transforms it. Neither
information about a possibly surrounding macrostate nor about any
substates is necessary. This is justified by the fact that we can
replace any macrostate by another one with the same observable
behavior.

In the following, we assume that only states which can actually
terminate, i. e., have at least one terminal state, have a normal ter-
mination transition originating from it. Similarly, a final state inside
a macrostate without a normal termination is changed to a normal
state. This constraint, imposed by Esterel Studio, assures that fi-
nal states and normal terminations always match, which makes the
chart easier to read. We also assume that states without an incom-

Flatten

4/oz

f Superfluous W

(a) A Statechart with a superfluous macrostate

f Flatten \

(b) The same Statechart, after flattening

Figure 6: Example for removal of macrostates

ing transition, which therefore are unreachable, are removed. These
conditions can easily be checked.

Flattening Hierarchy

Since the state hierarchy is increased for every nesting of Esterel
statements, the generated SSM contains usually much more hierar-
chy levels than necessary. In fact, one could also apply traditional
Statechart flattening to remove all hierarchy levels; however, this
can result in exponential state explosion. What we want to do is to
remove hierarchy levels (macrostates) if this actually reduces the
overall number of states and transitions. There are two cases where
We may remove macrostates.

The first case is that a macrostate cannot be preempted, does
not declare any local signals, variables, or history, and is not a
parallel state. This may for example be generated for sequences
(Transformation [6). Such a state can be removed and be replaced
by its internal state transition graph. The initial state is replaced by a
conditional pseudo-state, which connects all incoming transitions.

If no normal termination exists, we have to assure that the
termination conditions do not change. This is done by changing
the terminal attribute of inner states, depending on whether the
macrostate we intend to remove is itself a terminal state.

If a normal termination exists, every contained final simple state
gets an abortion which leads to the target of this normal termina-
tion, with the trigger immediate tick, where tick is a signal which
is present in each instant. Thus these transitions are always enabled.
These states, as the conditional pseudo-states that replace the initial
state, might be removed by further optimization steps. Removing
these states immediately would require further information about
the surrounding state, leading to more complex rules. For each fi-
nal macrostate, a normal termination is added, which leads to the
same state and has the same effect as the normal termination of the
surrounding state.

An example for the application of this rule can be seen in
Figure[] The state Superfluous is removed, and its initial state is
replaced by a conditional node to which the transition from state S1
leads now. The self loop is replaced by a strong abortion from S4
and a normal termination from the macrostate do something to the
same conditional. Neither S4 nor the do something state are final
anymore.

ABRO

sequence

parallel

R/

Figure 7: SSM for ABRO after unoptimized transformation (Fig-
ure |7_1|) and subsequent flattening the loopeach, await, and emit
states

The second case is that a macrostate contains only the initial
state and one further state without any transitions except the initial
one, as for example generated for emit statements (Transforma-
tion rule[2). Such a state can simply be removed. Again, the initial
state is replaced by a conditional state. Local declarations of sig-
nals and variables are assigned to the surrounding state. Normal
terminations are handled as in the first case, while other outgoing
transitions are simply redirected and get the contained state as new
source.

Applying these rules on the loopeach, await and emit states
of the SSM for ABRO from Figure [] yields the SSM in Figure[7]
which already has a readable form, but is not optimal yet.

Removing Simple States

When removing macrostates, no simple states are eliminated: the
initial state is transformed into a conditional state, and simple final
states, which are only needed to indicate termination, are changed
to transient, normal states. Both kind of states might be superfluous.
We here consider the following cases.

e If a conditional pseudo-state has just one outgoing transition,
it can simply be removed. Such states are inserted into the
chart when macrostates that only have one initial-transitions
are removed. We can use this rule to remove the conditional
states from the ABRO SSM in Figure which in this example
suffices to produce an optimal chart.

e We can also remove simple states that have no internal actions
and only one outgoing transition with trigger immediate tick
and no condition. The incoming transitions are then redirected
to the target of the unique outgoing transition.

If a simple state has only one incoming and one outgoing tran-
sition that both have the same trigger and condition, it can be
removed and the transitions be combined to one. This rule can
only be applied if both transitions are delayed. Hence the in-
coming transition may not originate at an initial or conditional
pseudo-state, since such transitions are always immediate. Fur-
thermore, the state where the transitions originates must be a
simple state without any internal actions.

e In SSMs, simple final states may neither have outgoing tran-
sitions, nor any internal actions. Thus, they only indicate the
termination of the state and do not specify any further behav-
ior. Therefore, all simple final states of a macrostate are inter-
changeable and can be replaced by one.

module reincarnation :
input a, b, ¢, d;
output v := 1 : combine integer
with *;
Module_reincarnation
loop
weak abort ¢ /v@) 1
emit v(2);
loop StatementList55state
await
case a do .
emit v(3
case imnEeZiiate b do V@
emit v(5);
halt . > #d/v(11
end await [::Da A
end loop <2 <1>
when #b /()
case c do
emit v(7)
case immediate d do
emit v(11);
halt
end weak abort (b) Synthesized SSM
end loop
end module

(a) Esterel source

Figure 8: Transformation of the reincarnation example [3]

The iterative application of these simple rules on the generated
charts produces in most cases well readable, relatively small charts.
For the ABRO example from Figureﬂ_EI, the automatically synthe-
sized SSM is, after optimization, identical to the SSM shown in
Figure [2a] except for the naming of states. As another example
consider Figure[8] where the Esterel code generated for the reincar-
nation example from André [3] is transformed back to its original,
terse SSM.

Note that even though these rules are motivated by the transfor-
mation from Esterel, they are general enough to be useful for SSMs
in general. Unnecessary hierarchy and superfluous simple states
can also be found in manually created charts. Especially novices
tend to produce unnecessary large models with needless states, for
example by splitting trigger and effect into separate transitions. An
application of an optimization rule to a “real” SSM, which was not
generated from Esterel but modeled by hand, can be seen in Fig-
ure 9] In fact, in the original model, the modeler did not introduce
an explicit immediate tick, even though he intended the states to
be transient.

4. Correctness of the Transformation

Both the transformation and the optimization were tested with
various Esterel programs. While this gave good confidence in the
transformation process, it does not prove the correctness in general,
due to the possible complex interaction between the sub-statements
of an Esterel statement. It has to be shown that the behavior of the
generated SSM is equivalent to the behavior of the original Esterel
program. It follows a sketch of an informal correctness proof. First,
let us exclude traps from our considerations.

Esterel without Traps

For the Esterel kernel language, the control flow can only rest at
explicit pause statements. Hence a configuration of an Esterel pro-
gram is a set of currently active pause statements, called registers
in this context. For the Esterel kernel language without traps, the
behavioral equivalence can be proven by structural induction over
all Esterel programs, giving a bi-simulation between the active reg-
isters of the Esterel program and the active states of a stable config-
uration of the constructed macrostate, i.e., a configuration which
can occur at the end of an instant.

(Statechart

tick / error

) f tatechart W

(a) A Statechart with unnecessary, transient states

(b) Statechart after removing the transient states b, d, and f

Figure 9: Example for removing transient states

Since both Esterel programs and SSMs are fully deterministic,
both can be executed in lock-step. For each register of the Esterel
program, exactly one non-final simple state is generated. When-
ever this state is active, the corresponding register of the Esterel
program is also active. When a simple final state is active, the Es-
terel statement that corresponds to the macrostate has terminated,
hence no register in it is active anymore. Most non-kernel statement
preserve this correspondence. The expansion of halt, sustain, and
await contain pauses. Accordingly their transformation into SSMs
produces exactly one non-terminal state.

The loop each and every statements contain registers which
are not directly expressed in the SSM. Instead of waiting in an
explicit simple state, the termination of the included macrostate is
not caught by a normal termination. For assessing correctness, both
can be expressed by equivalent SSMs, which contain explicit states
that are entered after the termination of the substate. These states
correspond exactly to the registers of the Esterel program.

A little more involved is the behavior of suspend. The usual
kernel statement suspend p when S executes p in the first instant
regardless of the status of S. Therefore, a register inside the sus-
pend statement is active whenever the suspend statement itself is
active. This does not affect the bi-simulation. The statement sus-
pend p when immediate S corresponds to await immediate not
S; suspend p when S. The await contains an extra register which
might be active even if p is not active. In the SSM, both behav-
iors can be modeled by a suspend transition of the macrostate. If
this transition is tagged immediate, this might lead to a macrostate
which is active, even though no substate in it is active. There is no
simple state that corresponds to the new pause register. For the cor-
rectness proof, we would generate different SSMs for immediate
and delayed suspension, where the immediate suspension contains
an extra simple state, which waits for the absence of the trigger sig-
nal, before it starts the substate. The behavior of this macrostate is
equivalent to the one we actually generate in the transformation.

Traps

Raising an exception stops the execution of the control-flow of the
current thread; however, all concurrent threads finish their execu-
tion for the current instant. This makes it possible that multiple,
different traps are raised in the same instant. When multiple traps
are raised inside a trap scope, only the handler of outermost trap
is executed. If, however, a trap is raised in parallel to another trap-
declaration, both handlers may be executed in the same instant.
Expressing traps in SSMs is similar to expressing traps by local
signals and weak abort in the Esterel program, which is not trivial
for the general case. This situation also arises, for example, in the
Esterel derivate Quartz [21]], which does not support traps directly,
but weak and strong abortion. In contrast to signals, for exceptions
it is important where they are raised, see also Figure [I0a] Even
though in this example the exception T1 is active in any case, the
second exit T1, which is guarded by |, determines the output of

module Parallel_Traps :
input |;
output O;
trap Tlin

exit T1

I
trap T2 in
exit T2 || present | then exit T1 end
end trap;
emit O
end trap
end module
(a) Esterel version
— Module_Parallel_Traps
ist37state
- Trap4lstate
ist42state
haltTrap36.
#haltTrapa1_ <>
@— /7L . =15 #T1
L af s 2 @)
|/ T1., haltTrap41. D@
g
(b) SSM version

Figure 10: Example for transformation of nested traps into an SSM,
illustrating the problems of replacing traps by signals

signal O. Therefore, it is in general not possible to replace each
trap by only one local signal.

First, let us consider how this problem is handled in the con-
text of Quartz. Since it is possible in Quartz to test which pause
statements are active, preconditions on each raising of a trap can
be computed. These preconditions can be used in an abort state-
ment that replaces the trap, to test whether traps with higher pri-
ority were raised inside. Thus, the trap determines which exits are
relevant for it. We use a different approach, which assigns extra
signals to trap that indicate that their handler may not be executed,
because a trap with higher priority was raised inside. The informa-
tion for which traps the halt signal must be emitted is assigned to
each exit statement.

We have also to show that the combination of macrostates de-
rived from trap and exit statements behave correctly. First we no-
tice that the macrostate derived from exit does not terminate. This
assures that no statements later in a sequence are executed, while
statements in parallel branches are executed normally. In the Es-
terel semantics, the raising of exceptions is usually encoded by
their depth, i. e., the number of trap declarations between the point
where an exception is raised, and its declaration. When an excep-
tion is raised, this depth (42, since 0 and 1 are used to encode nor-

SSM Esterel Studio _@ KIEL _@ KIEL opélénl\;[z’ed

Figure 11: End-to-end validation of the transformation: From Es-
terel Studio SSMs to Esterel to KIEL SSMs

mal termination and pause) is returned as completion code. This
code is passed to the surrounding statements until it reaches a trap.
Here the completion code is examined. If it is greater than 2, which
indicates that it is not the corresponding trap, it is decreased. If it
has reached the corresponding trap, this value has reached 2; the
handler of this trap is executed. This scheme is exactly preserved
by our transformation, which sends a halt signal for all traps be-
tween the exit statement and the corresponding trap statement. In
the SSM example shown in Figure[T0b} the traphalt41_ signal de-
termines whether the macrostate for the inner trap terminates and
the O is emitted.

This transformation at the Esterel level can be easily extended
to compound statements. Therefore, also for weak abortion a halt
signal is needed. This halt signal is only emitted from inside an
abortion. Observe that the exit that is used to implement the trap
has always depth 2, i. e., no traphalt signal needs to be emitted by
a weak abortion.

Since a strong abortion suppresses the execution of its sub-
statements in an instant where the abortion trigger is active, it
can neither emit a halt signal, nor terminate in such an instant.
Therefore, no halt signal is needed for strong abortion or statements
like every and loop each, which are based on it.

Correctness of Optimizations

It remains to show that the behavior of the SSM is not changed
by the optimizations. Since the optimizations consist of iteratively
applied single rules, it suffices to argue that applying one rule does
not change the behavior of a chart.

Obviously, the removal of superfluous normal terminations, un-
reachable states, and the conversion of final states into normal
states, when no corresponding normal termination exists, does not
change the behavior. The only crucial part in omitting hierarchy is
that no signal declaration may be moved outside a self-loop. This is
due to so called schizophrenia [3]); each activation of a macrostate
in one instant creates new local signals. Since we prohibit explicitly
the removal of macrostates that contain outgoing transitions and lo-
cal signals, the behavior of schizophrenic signals is preserved.

The merging of final simple states is justified by the restriction
on SSMs that a final state may neither have any on exit or during
action nor outgoing transitions. Therefore, different final simple
states are indistinguishable. Similarly, two simple states with the
same outgoing transitions are merged only when the two states
are indistinguishable. Then the correctness follows directly from
the semantics of count-delayed transitions. The correctness of the
removal of pseudo-states and simple states with trigger immediate
tick and without a condition is straightforward.

Experimental validation

In addition to the theoretical considerations above, the transforma-
tion and optimization process and its implementation can be vali-
dated experimentally applying a round-trip tool chain that employs
Esterel Studio’s Esterel synthesis capabilities, see Figure[TT] Start-
ing with SSMs developed with Esterel Studio, one can employ Es-
terel Studio’s Esterel code generator. From the resulting Esterel
code, our transformation generates an equivalent SSM. After op-
timization, the round-trip produces SSMs corresponding to those
starting the round-trip. When starting from well-written SSMs, they
tend to be identical.

File View Layout Checking Optimize Help

[F % MacroStep & MicroStep % Reset trace step: 242 rewind | stop | step backward | step forward play fast-forward
Tree View i £
Module_reincarnation
[Module_reincarnation (ORState) c/w7)
@ (nia) L <>
¢ (O statementists6state (ORStal
@ (nitiay StatementList56state
@]
o @
(@]
[v(2)
#d /v(11) '
._. @ T -
<1>
<2
#b /V(5)
Q

[Simulator Log | Browser Log | Input Events | State Properties | Transition Properties |
Signals/Variables I Input Signals 4 Qutput Signals

i
[Simulator 2] cleartivatect: StatementListS6state

[Simulator 2] executing: StatementList5 6state—(# o w(11))-> #0924
[Simulator 1] cell: #948#StatementLists6state returned 0
[Simulator 2] activated: #992#, configuration: #992#

[Simulator 1] cell: #992# retumed 2

[Simulator 1] potential

[Simulator 2] value of signal v is 11550

Mictostep completed Kit file createdyloaded

Figure 12: Screen-shot of KIEL—simulating the SSM synthesized
from the Esterel module reincarnation (see Figure

Similarly, one may perform a round-trip synthesis at the Esterel
level, synthesizing a given Esterel program into an SSM with Kiel
Integrated Environment for Layout (KIEL), and then synthesizing
the same SSM into Esterel using Esterel Studio. We did this for all
of the transformation rules individually, using dummy expressions
for sub-statements. Due to Esterel Studio’s rather elaborate Es-
terel synthesis the resulting Esterel programs were not identical
to the original programs (e.g., they contained a lot of spurious
nothing statements), but they could relatively easily be proven to
be equivalent [[17] using the Structural Operations Semantics rules
of Esterel’s constructive behavioral semantics [S].

5. Implementation in KIEL

The KIEL tool is a prototypical modeling environment that has
been developed to explore novel editing, browsing and simulation
paradigms in the design of complex reactive systems [[19]. A cen-
tral enabling capability of KIEL is the automatic layout of State-
charts, which computes bottom-up layouts at each hierarchy level
using GraphViz [12]]. KIEL employs a generic concept of State-
charts, which can be adapted to specific notations and semantics,
and it can import Statecharts that were created using other mod-
eling tools. The currently supported dialects are those from Este-
rel Studio and from Matlab Simulink/Stateflow [22]]. KIEL also
provides an editor to create Statecharts from scratch or to modify
imported Statecharts, and it provides a simulator. KIEL simulates
the behavior of imported Statecharts according to the semantics of
their original modeling tool. The automatic layout is also used to
present different Statechart views for each Statechart configuration.
Based on these views KIEL animates the simulation with a dy-
namic focus-and-context representation. KIEL’s built-in graphical
editor also harnesses the layout capabilities for accelerated edit-
ing, for editing speeds close to textual editing. Figure[I2]presents a
screen-shot of KIEL as it simulates an SSM that has been synthe-
sized (including automatic layout) from an Esterel module. KIEL
is implemented in Java and is based on the Model View Controller
(MVC) concept.

In KIEL we implemented the SSM synthesis and optimization
described in Sections [2]and 3] As an alternative to import a State-
chart from another tool or to editing a Statechart using the built-

Table 1: Experimental Results of SSM Synthesis

Model Esterel ~ Safe State Machines Time
Before Optimization After Optimization

[y @ @ § sl

Py < 510 z =A g = E

3 3 25 2 285 = 2 =

o] =t ” = =1 » = 2 = S

S B g 87 o B g 57 o & & E

3 < 2 SE 3 & £ 58 =z & 5 3

% Z ‘B —_ 2 < Z ‘B - g I~ G =)

E g § E5 & 2 § $5 2 2 & g

3 & £ £@m O & £ @ O 4 £ o
ABRO 7 12/8 12 32 457 8/4 8 20 286 0.63 861 56
SCHIZOPHRENIA 10 13/9 14 36 3.60 4/3 6 13 130 0.36 838 81
REINCARNATION 25 27117 28 72 2.88 52 6 13052 0.18 642 83
JACKY1 27 31/19 33 83 3.07 11/5 12 28 1.04 0.34 913 93
RUNNER 55 3924 42 105 191 21/11 25 57 1.04 054 725 160
TOKENRING3 79 77/61 91 229 290 15120 38 73 092 032 733 278
GREYCOUNTER 82 211/148 254 613 748 42/50 106 198 241 032 789 593
ABCD 101 231/130 250 611 6.05 78/41 97 216 214 0.35 943 731
TOKENRING10 247 245/194 294 733 297 43/62 122 227 092 0.31 1267 736
MEJIA 555 374/246 414 1034 1.86 127/76 181 384 069 037 3085 1266
TCINT 687 475/285 543 1303 190 163/81 221 465 0.68 036 3382 1310
ATDS-100 948 961/558 1092 2611 275 352/184 504 1040 1.10 040 7046 2760
Ww 1088 342/228 386 965 0.89 102/85 177 364 033 038 4470 1053
TOKENRING50 1207 1205/954 1454 3613 299 203/302 602 1107 092 031 6608 8148
TOKENRING100 2407 2405/1904 2904 7213 3.00 403/602 1202 2207 092 031 20910 25528
MCA200 7269 5159/3931 5947 15037 2.07 179/925 1794 2898 0.40 0.19 61510 100594

optimized
SSM

KIEL

CEC expanded CEC Esterel
Esterel AST

Figure 13: Tool chain transforming Esterel

in graphical editor, the modeler may simply import an Esterel
v5 program, which is transformed on the fly into a SSM and
can then also be saved as SSM. Figure [T3] shows the tool chain
used in KIEL. When importing an Esterel program, KIEL first
employs the Columbia Esterel Compiler (CEC) [10] to perform
the expansion of sub-modules. Then the CEC is used again to
transform the code into an Extensible Markup Language (XML)
formatted Abstract Syntax Tree (AST) representation. We process
this using Java XML extensions and apply the transformation rules
of Section [2] to produce the topology of the synthesized SSM.
The KIEL auto-layouter augments this topology with graphical
layout information, with numerous configuration options regarding
the appearance of the synthesized SSM. The whole process is in
general not noticeably slower than importing an already existing
Statechart from another tool. As a final step, we may apply the
optimization rules specified in Section [3] This is typically done
all at once, but if the user wishes to trace the effect of individual
optimization rules, one may also perform the optimizations step-
by-step. After each step, a new SSM layout is computed.

To assess the efficacy and efficiency of KIEL, Table [I] presents
experimental results for transforming various Esterel benchmarks,
most of them are taken from the Estbench Esterel benchmark
suite [9] and the CEC distribution [10]]. The table compares the size
of Esterel code with the complexity of the corresponding synthe-
sized SSMs. Lines of Code denote the overall size of the (module
expanded) Esterel code. The Graphical Elements category char-

acterizes the graphical complexity of the resulting SSM models
before and after applying the optimization. We observe that as the
degree of complexity of the resulting chart increases, the ratio be-
tween these increases as well, which is desirable to minimize the
number of graphical elements. The element-wise reduced State-
chart is more compact and has less overhead and redundancy; the
optimization often reduces the Statechart by a factor of three or
more. Hence, in our experience a synthesized, optimized Statechart
generally is very readable and comprehensible. As an example
of intermediate size, Figure [T4]shows the component “mode selec-
tion” of the canonical wrist watch example [9}115]. This component
contains 38 states, 29 pseudo-states and 62 transitions, hence a total
of 129 graphical elements.

To quantify efficiency, the Transformation times indicate how
long it takes to load, expand, parse and transform an Esterel pro-
gram. The computation times were measured on a PC with Linux
0OS, an 2.6 GHz AMD Athlon 64 processor and 2 GB of RAM. For
large models, this time becomes noticeable, but typically takes at
most a couple seconds. Similarly, the time to compute the opti-
mized SSM version is less than three seconds for most of the bench-
marks considered here. Only the optimization of the industrially
sized example MCA200 takes about 100 seconds.

6. Conclusions and Further Work

Embedded devices are proliferating, and their complexity is ever
increasing. Statecharts are a well established formalism for the de-
scription of the reactive behavior of such devices. However, there is
evidence that the current use of this formalism is reaching its limits
for development. The larger a model description becomes, the less
traceable and manageable it gets. A well-established alternative for
specifying reactive systems are textual approaches. To benefit from
the general ease of handling textual programs as well as from the
intuitiveness of graphical languages, it can be useful to transform
one to another. Another motivation for doing so could be the de-
sire to separate structure and layout—akin to, for example, the use

ist80state

| WATCH_MODE_COMMAND

Eert WATCHAND SET WATCR WODE FaTrntE

!

0 LL / WATCH.AND_SET_WATCH_MODE.

LR

| TOGGLE.24H_MODE.COMMAND -

haltTrap8s._

/ UL/ ENTER_SET WATCH_MODE COMMAND

w / NEXT_WATCH_TIME_POSITION_COMMAND

- 13 SET_WATCH_COMMAND -

ist120state

® . 5, g LSTART.SToP counap .

- “ R -

/

1 STOP_ALARM_BEEP_COMMAND

Trap130state

ist131state

1 ALARM_MODE_COMMAND

ist137state

® LL/ ALARM.AND_SET_ALARM_MODE
® . e, @/ TocLECHYE comn .
n

o— @ . @ LIoscis A comuno -

(UL ENTERSET_ALARM_HODE.COMMAND) UL/ EXIT.SETALARN_AGDE.COMNAND

ist155state

w / NEXT_ALARM_TIME_POSITION_COMMAND

- w® | SET_ALARM_COMMAND -

haltTrap130.
=

ALARM_AND_SET_ALARM_MODE_

= 0

Figure 14: The component “mode selection” of the wrist watch example

of a document processing system (such as I5TEX) that produces a
nicely typeset document that adheres to certain formatting guide-
lines from an ASCII source. Such a system lets the author focus on
the contents of the document without worrying too much about the
layout.

We have presented such a transformation for the case of SSM
dialect of Statecharts, using Esterel as input language. The trans-
formation consists of derivation rules, whose application to Esterel
statements performs the successive synthesis of SSMs. The trans-
formation is accompanied by optimizations, which are applicable
after the initial transformation, to reduce the complexity of SSMs.
While different Statechart dialects employ different execution se-
mantics and the synthesis of Statecharts must respect the subtleties
of the semantics, we expect that the transformation and optimiza-
tions presented here could be adapted to Statechart dialects other
than SSMs.

We have experimentally validated the transformation and opti-
mizations and have argued their correctness here, albeit informally.
We have implemented the transformation in KIEL, and prelimi-

nary experience with this tool indicates the practicality of the ap-
proach. A central enabling capability is the automated layout of
Statecharts to place the synthesized objects. Experimental results
are very promising regarding the transformation efficiency. Espe-
cially the automatic layout of Statecharts is a promising basis for
similar work synthesizing and displaying Statecharts.

We intend to improve our optimization process and to add
further rules, for example to remove redundant signals due to the
transformation of the Esterel trap statements. Note, however, that
it is not always obvious what really constitutes an optimization. For
example, one might argue that macrostates should be preserved if
they have an outgoing transition and multiple final states, as was for
example the case in the SSM shown in Figure [} in this example
each final state results in an additional transition, and the Write
Things Once principle might be violated for the transition labels.
Hence in general it is desirable to allow the selective enabling of
individual optimization rules.

Related to the field of optimizing Statecharts is the definition of
design guidelines regarding “good” Statecharts, and the definition

of robustness checks that indicate likely modeling errors, similar
to lint in the context of C programming. Consider again the exam-
ple in Figure[9] where the modeler had (needlessly) split transition
triggers and actions and (accidentally) introduced delays. The ab-
sence of a trigger, and hence the implicit waiting for the next in-
stant, is seldom really wanted by a modeler. A syntactical checker
might produce a warning for those states and advise the modeler to
insert explicit immediate tick triggers—which would then permit
the subsequent merging of transitions. We are currently investigat-
ing such robustness checks, which we consider to be a valuable
augmentation of the optimizations presented here.

Finally, we plan to explore augmentations to the transforma-
tion presented here that support the modeling of complex systems.
Statecharts allow to reduce the size of individual charts by “collaps-
ing” a macrostate in the chart where it is referenced, and describ-
ing the internal structure of the collapsed macrostate on a separate
sheet. It has been our experience with the transformation presented
here that the compactness of the synthesized Statecharts and the
nature of the resulting design flow—the user does not have to edit
the Statechart itself—allow to present more detail on a single sheet
than is possible with Statecharts created manually. For example,
we feel that the “mode selection” Statechart presented in Figure[T4]
is still fairly readable; however, one probably would not have cre-
ated such a Statechart manually, simply because graphical editing
of Statecharts of this size is rather tedious. Nonetheless, for very
complex models it might still be desirable to collapse macrostates
to keep the individual Statechart readable. For example, one proba-
bly would not want to inspect the complete wrist watch in full detail
at once (unless one has a very large screen or prints on large paper).
For visualizing complex models during simulation, the KIEL tool
already supports a dynamic focus-and-context representation that
automatically collapses inactive macrostates [[19]]. Alternatively, it
would be possible to enrich the Statechart synthesis procedure with
customizable rules on when macrostates should be expanded and
when they should be collapsed.

Acknowledgments

Lars Kiihl has performed the implementation of the transforma-
tion presented here, Mirko Wischer and the rest of the KIEL de-
velopment team have also contributed. Charles André has been a
valuable discussion partner on this subject and has suggested im-
provements to earlier versions of this paper. We also thank the Jan
Lukoschus, Gunnar Schaefer, Jan Téubrich and the anonymous re-
viewers for their helpful comments.

References

[1] ANDRE, C. Representation and Analysis of Reactive Behaviors: A
Synchronous Approach. In Computational Engineering in Systems
Applications (CESA) (Lille (F), July 1996), IEEE-SMC, pp. 19-29.

[2] ANDRE, C. SyncCharts: A Visual Representation of Reactive
Behaviors. Tech. Rep. RR 95-52, rev. RR (96-56), 13S, Sophia-
Antipolis, France, Rev. April 1996.

[3] ANDRE, C. Semantics of S.S.M (Safe State Machine). Tech. rep.,
Esterel Technologies, Sophia-Antipolis, France, Apr. 2003. available
at http://www.esterel-technologies.com, in the download
section.

[4] ANDRE, C. Computing SyncCharts reactions. Electronic Notes in
Theoretical Computer Science 88 (Oct. 2004), 3—19.

[5] BERRY, G. The Constructive Semantics of Pure Esterel. Draft Book,
1999.

[6] BERRY, G. The Esterel v5 Language Primer, Version v5_91. Centre
de Mathématiques Appliquées Ecole des Mines and INRIA, 06565
Sophia-Antipolis, 2000.

[7] BERRY, G., AND GONTHIER, G. The Esterel Synchronous Pro-

gramming Language: Design, Semantics, Implementation. Science
of Computer Programming 19, 2 (1992), 87-152.

CASTELLO, R., MILI, R., AND TOLLIS, I. G. A Framework for the
Static and Interactive Visualization for Statecharts. Journal of Graph
Algorithms and Applications 6, 3 (2002), 313-351.

[9] Estbench Esterel Benchmark Suite. http://wwwl.cs.columbia.
edu/~sedwards/software/estbench-1.0.tar.gz

[10] EDWARDS, S. A. CEC: The Columbia Esterel Compiler. http:
//wwwl.cs.columbia.edu/~sedwards/cec/,

[8

[t}

[11] FLORENTZ, B., MUTZ, M., AND HUHN, M. Avoiding unpredicted
behaviour of large scale embedded systems by design and application
of modelling rules. In Proceedings of the 2004 First International
Workshop on Model, Design and Validation (Nov. 2004).

[12] GANSNER, E. R., AND NORTH, S. C. An open graph visualization
system and its applications to software engineering. Software—
Practice and Experience 30, 11 (2000), 1203-1234.

[13] GUERNIC, P. L., GOUTIER, T., BORGNE, M. L., AND MAIRE, C. L.
Programming real time applications with SIGNAL. Proceedings of
the IEEE 79, 9 (Sept. 1991).

[14] HALBWACHS, N., CASPI, P., RAYMOND, P., AND PILAUD,
D. The synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE 79, 9 (September 1991), 1305-1320.

[15] HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI,
M., SHERMAN, R., SHTULL-TRAURING, A., AND TRAKHTEN-
BROT, M. STATEMATE: A Working Environment for the Develop-
ment of Complex Reactive Systems. IEEE Transactions on Software
Engineering 16, 4 (Apr. 1990), 403—414.

[16] JAFFE, M. S., LEVESON, N. G., HEIMDAHL, M. P. E., AND
MELHART, B. E. Software requirements analysis for real-time
process-control systems. IEEE Transactions on Software Engineering
17,3 (Mar. 1991), 241-258.

[17] KUHL, L. Transformation von Esterel nach Esterel Studio.
Diplomarbeit, Christian-Albrechts-Universitit zu Kiel, Institut fiir
Informatik und Praktische Mathematik, Sept. 2005.

[18] OBJECT MANAGEMENT GROUP. Unified Modeling Lanugage—
UML Resource Page. http://www.uml.orgl

[19] PROCHNOW, S., AND HANXLEDEN, R. V. Comfortable Modeling
of Complex Reactive Systems. In Design, Automation and Test in
Europe 2006 (DATE’06) (Miinchen, March 2006).

[20] RATIONAL SOFTWARE. Rational rose technical developer.
http://www-306.ibm.com/software/awdtools/developer/
technical/|

[21] SCHNEIDER, K. Embedding imperative synchronous languages
in interactive theorem provers. In Conference on Application of
Concurrency to System Design (ACSD) (Newcastle upon Tyne, UK,
June 2001), IEEE Computer Society, pp. 143-156.

[22] THE MATHWORKS. Stateflow—Design and simulate event-driven
systems. http://www.mathworks.com/products/stateflow/.

http://www.esterel-technologies.com
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www.uml.org
http://www-306.ibm.com/software/awdtools/developer/technical/
http://www-306.ibm.com/software/awdtools/developer/technical/
http://www.mathworks.com/products/stateflow/

	Introduction
	Transforming Esterel
	Optimization
	Correctness of the Transformation
	Implementation in KIEL
	Conclusions and Further Work

