
Automatic Layout and Structure-Based Editing
of UML Diagrams

Hauke Fuhrmann, Miro Spönemann, Michael Matzen, and Reinhard von Hanxleden
Real-Time and Embedded Systems Group, Department of Computer Science

Christian-Albrechts-Universität zu Kiel, Germany
{haf,msp,mim,rvh}@informatik.uni-kiel.de

Abstract—Graphical modeling languages, as defined in the
UML, are appealing in their relative ease of comprehension. A
well-structured model can provide a compact representation of
complex designs. However, the development of graphical models
is still hampered by modeling tools that force the user to perform
low-level graphical editing steps, instead of focusing on the
underlying model. We here propose novel, efficient modeling
paradigms that build on an automatic layout capability, and
present a prototypical implementation in the KIELER framework
that supports a range of UML modeling tools.

I. INTRODUCTION

Model-based engineering has gained an important role for
the development of embedded systems. Graphical models are
appealing and help to provide a common base for experts from
different domains, especially if standardized like the UML.
The graphical aspect aims at introducing intuitive language
semantics and better displaying an abstraction of a system.
A two-dimensional canvas gives more freedom to clearly
present a view on a system than the one-dimensional textual
representation, either in a low-level programming language
or a high-level specification scheme. However, such freedoms
demand new design decisions from the developer, who now
has to spend effort into the graphical representation in order
to reap its benefits. Petre quotes a professional developer as
follows: “I quite often spend an hour or two just moving
boxes and wires around, with no change in functionality, to
make it that much more comprehensible when I come back to
it” [1]. One estimate from industrial users puts the time spent
with unproductive editing/formatting activities at about 30%
of overall developing time1.

In this paper we present a generic approach on interaction
mechanisms that allow to create, edit, and analyze graphical
models without the hassle of manual layouting of diagrams.
In Sec. II we discuss the context of this work and related
work. The first step is to completely automate the layouting
task in the development environment, and to offer a layout
of such quality that the developer is willing to dispense with
manual placing. We implement an open layout interface to the
Eclipse platform, link existing layout libraries and implement
or adapt algorithms. This is presented in Sec. III. The next
step is to consistently build upon the layout services and
create new interaction paradigms. As one example of such,

1L. K. Klauske (Daimler Center for Automotive IT Innovations), personal
communication, Oct. 2009.

we present structure-based editing in Sec. IV in the context
of UML editors in Eclipse. This editing scheme is based on
structural transformations on the domain model, which are
specified using a textual notation. In Sec. V we conclude and
give an outlook on future work in this area.

II. RELATED WORK

The KIEL project [2] evaluated the usage of automatic layout
and structure-based editing in the context of Statecharts. It
provided a platform for exploring layout alternatives and has
been used for cognitive experiments evaluating established and
novel modeling paradigms. However, it was rather limited
in its scope and applicability, hence it has been succeeded
by the KIELER project, the Kiel Integrated Environment for
Layout Eclipse Rich Client2, which is the context of the work
presented here. KIELER aims at enhancing the pragmatics of
graphical modeling, i. e. the way to interact with graphical
models [3], and implements generic approaches applicable for
a wide variety of graphical model types, including different
UML diagrams. KIELER integrates into the Eclipse platform,
which has a large user community in the modeling domain3.
It makes use of the projects around the Eclipse Modeling
Framework (EMF) and especially aims at providing its services
to all graphical editors created with the Graphical Modeling
Framework (GMF). The case studies applying the KIELER
approaches to UML presented in this paper are carried out on
the Papyrus UML tool suite and the UML2Tools which are both
also official part of the Eclipse Modeling project.

Model transformations are a well-established technique to
achieve consistency between model entities produced at dif-
ferent model life-cycle stages. GenGEd [4] modifies visual
languages using graph grammars and graph productions with
predefined production sequences. We here instead propose
responsive model manipulation by interactively triggering in-
place model transformations like QVT [5] or, as presented here,
Xtend from the Eclipse Model to Text (M2T) project.

The graph layout problem is studied by a large research
community, which has developed a wide variety of different
layout algorithms [6], [7], [8]. Such algorithms have been
implemented in commercial tools such as yFiles (yWorks
GmbH) and ILOG JViews [9] as well as non-commercial

2http://www.informatik.uni-kiel.de/rtsys/kieler
3http://www.eclipse.org/modeling/



(a) The default GMF layout

(b) Manually arranged layout, taking much time and not consistently
following notation guidelines

(c) The layout provided by OGDF, with manually improved label positioning

Fig. 1. Layout comparison for an EMF class diagram.

tools such as Graphviz [10] and Zest, which is part of the
Eclipse Graphical Editing Framework (GEF). A variant of the
hierarchical layout algorithm [11] is also integrated in GMF (the
Arrange All button that appears for GMF diagrams); however,
that integration lacks flexibility and the resulting layouts are
not useful in many cases, as seen in Fig. 1a.

The Open Graph Drawing Framework (OGDF) is a C++
class library that contains sophisticated graph algorithms for
automatic layout [12]. Among these is a specialized algo-
rithm for class diagrams [13], which should not be drawn
with plain layout algorithms because of the different notation
standards for the edge types association, generalization, and
dependency. Other approaches for layout of class diagrams
have been proposed by Eiglsperger [14], Seemann [15], and
Eichelberger [16].

III. AUTOMATIC LAYOUT

Our approach to automatic layout of graphical diagrams is
best described as meta layout: instead of forcing the user to
accept a fixed layout algorithm, we offer a flexible interface
that allows to set different layout options for each diagram,

or even for each part of a diagram. These options include the
selection of a specific layout algorithm, which in turn can be
contributed using Eclipse extension points.

A. General Procedure

Diagram editors in the Eclipse GMF are structured with the
Model-View-Controller (MVC) paradigm: the model is built on
an EMF structure that stores the semantic data, the view consists
of figures that are used to draw the actual diagram, and the
controller consists of a set of edit parts that are assigned to
the model elements in order to control their visualization and
editing. By exploiting the standardized structure of these edit
parts, we are able to derive an annotated graph from any GMF
diagram editor at run time. Since diagram elements may be
hierarchically structured, the resulting graph G is a compound
graph G = (V,H,E) with a set of vertices V , a set of
inclusion edges H , and a set of adjacency edges E [17].
The inclusion graph (V,H) must form a tree, where each
inclusion edge (v1, v2) ∈ H is interpreted as v1 contains v2.
The annotations that are attached to the elements of G are
either layout options to select and configure layout algorithms



or layout results such as the coordinates and size of each
element.

We apply the following procedure to layout GMF diagrams:
1) Derive a compound graph G from the structure of

edit parts of the diagram and add layout options as
annotations.

2) Recursively perform the layout on the inclusion tree of
G, starting with the leaves, considering the individual
layout algorithm associated with each inner vertex of the
inclusion tree. The resulting object positions are attached
as annotations.

3) Apply the layout results that are attached to the elements
of G to the respective edit parts of the diagram.

This procedure allows to extend any graph layout algorithm
to compound graphs, furthermore we gain the flexibility of
applying different algorithms on the layers of the inclusion
tree. However, for compound graphs where adjacency edges
may connect vertices from different hierarchy levels, e. g. UML
state machines, this procedure does not perform well, as
it cannot take into account these cross-hierarchy edges. A
compound graph layout algorithm is required for these cases
[17], [18].

B. Extension Points and Interfaces

Eclipse extension points consist of an XML schema doc-
ument that defines an interface which can be extended by
Eclipse plug-ins. Such an extension is expressed in the XML
format, but can be edited with an intuitive user interface in
Eclipse. With this extension point mechanism we open the
automatic diagram layout to several contributions:

• Plug in new layout algorithms.
• Define new layout options and specify which options can

be handled by each layout algorithm.
• Define diagram types and set default layout algorithms

for each type.
• Configure default layout options for parts of specific

diagram editors.
The contributed layout algorithms and layout options can be
selected and changed at run time using an Eclipse view, as
seen in Fig. 2.

For diagram editors that are directly generated by GMF
the automatic layout can be used without any modification.
The extension points mentioned above are optional and can
be extended to customize the default behavior of layout
algorithms for each editor. However, some editors contain
changes of the GMF code that inhibit our layout interface from
detecting them properly, e. g. the Papyrus GMF editors, which
contain multiple diagrams in one editor and switch between
them using tabs. For such cases another extension point can
be used to add some bridge code that enables the automatic
layout for the respective editors.

C. Algorithms and Limitations

Contributions of the Graphviz and Zest layout algorithms
for our layout interface are already available, so that nice
drawings can be created for a large number of diagram types.

Fig. 2. The layout of a diagram can be customized in the Layout view, here
a Statechart with compound graph layout.

Figs. 3a and 3b show the result of automatic layout for a use
case diagram and an activity diagram. The first layout follows
an energy-based approach proposed by Kamada and Kawai
[19], while the second layout follows a layer-based approach
proposed by Sugiyama, Tagawa, and Toda [11], [20].

Despite the success of such graph drawing algorithms, some
kinds of diagrams cannot be handled by their basic variants,
but impose special constraints on their drawings. Data flow
diagrams for embedded systems design, for example, require
all edges to be connected to specific ports of their source and
target nodes. The development of algorithms for the layout of
such diagrams is a topic of ongoing research [21], and one
implementation is included in KIELER.

The UML also contains diagrams that need special treatment:
class diagrams contain associations, generalizations, and de-
pendencies, with different graphical notations. Fig. 1b shows
a class diagram with manually arranged layout, which was
very effort prone, took many iterations and hours to get to it,
and still does not completely follow the notation guidelines.
However, spending the efforts, the result is quite compact.
Hence we do not claim that automatic layout always reveals
better results, but it will always have a much better cost-
benefit ratio than manual layout, and it enables new interaction
methodologies as the one presented in the next section.

Since there already exist graph drawing libraries with spe-
cialized algorithms for class diagrams, it is one of our goals
to create an interface to these tools. Fig. 1c shows a class
diagram with an adapted topology-shape-metrics layout [22],
[13], which is far more readable than the layout of the same
diagram shown in Fig. 1a and compares well to Fig. 1b with
the manual layout.

The meta layout approach presented in this section is
implemented in KIELER, and all figures in this paper are real
screen shots of diagrams processed with it.



Student

Financial Institution

Grade Administrator

Instructor

Post Office

Registrar

Researcher

Obtain student grantObtain student loan

Reimburse course fees Pay fees

Drop out of school Graduate from school

Distribute transcripts

Distribute fee schedule

Enroll in seminar

Drop seminar

Attend seminar

Finish seminar

Apply for grant

Distribute information to students

Distribute schedules

Input student marks

Print teaching schedule

Teach seminar

«extend»

«extend»
«extend»

(a) A use case diagram with Neato layout

Activity

reset buffer

process command monitor status

startup

shutdown

got command

status donecommand done

is complete

no command

rerun

startup

got command no command

command done status done

is complete

rerun

shutdown

(b) An activity diagram with Dot layout

Fig. 3. Papyrus diagram examples with different Graphviz layout methods.

⇒
Fig. 4. State Machine: Insertion of a hierarchical composite state.

IV. STRUCTURE-BASED EDITING

In this section we first look at the standard state-of-the-
practice editing process, and then present alternative ap-
proaches.

A. Drag-and-Drop Editing Process

In the Drag-and-Drop (DND) editing process, applying an
editing schema generally involves the following action se-
quence [2]: (1) If needed, create free space (e. g. move
existing elements or expand hierarchical ones). (2) Focus on a
diagram element and interact with a modification tool (e. g. a
toolbar, palette, or menu). (3) Apply the editing schema. (4) If
needed, rearrange the modified diagram to improve readability.
Steps 1 and 4 may consume much time depending on the
current diagram context, in particular when modifying existing
diagrams.

An editing schema itself consists of another set of low-
level editing steps. For a UML State Machine diagram, the
schema to “add a composite state with initial contents” uses
the following steps to achieve the result shown in Fig. 4: (A)
add a new composite state (in the Eclipse UML2Tools editor
it already contains a region), (B) add a transition connector
from original to new composite state, (C) add an inner initial
state, (D) add an inner state, (E) add a connector from initial
to new state.

Especially for introduction of composite elements, which do
not make sense without any contents, the number of low-level
steps is considerable.

B. The Transformational Approach

In order to avoid manual execution of all these steps,
we propose an interactive transformational approach on the
domain model, i. e., the semantic structure, in contrast to the
graphical information, which in some editors is stored in a
different model.

Listing 1 shows an in-place transformation in Xtend that
specifies the editing scheme of Fig. 4 discussed above. It is
a pure semantical model transformation and does not involve
graphical information.

The structure-based editing approach proposed in this paper
uses transformations as the above (or other transformation
languages such as QVT) hand in hand with automatic layout
of the corresponding graphical representation of the model
as presented in Sec. III. The user interface of the resulting
integrated development environment (IDE) provides a set of
predefined transformations that are suitable to create and
modify models through a toolbar, context menu, or keyboard
shortcuts. Due to the application of automatic layout of the
corresponding diagram, the manual editing action sequence
from above is boiled down to: (1’) Focus a graphical model
element for modification or augmentation, (2’) apply an editing
transformation. The cleanup steps (1) and (4) from above
vanish as well as the low-level sub-steps of the editing scheme
itself (A)-(E).

C. Approaching the UML

As the Eclipse modeling project contains an open UML meta
model, which is used by different graphical editor implemen-
tations such as the UML2Tools or Papyrus, transformations
can simply be defined for this meta model to be re-used in
multiple graphical editors. Structure-based editing has been
explored for the KIELER SyncCharts editor (a synchronous
Statecharts dialect); the editing schemes defined for Sync-
Charts can already be transferred to similar UML state ma-



⇒
(a) Insertion of a successor action

SendObjectAction
Target

Request

SendSignalAction
Target

AcceptEventAction

OpaqueAction

CallBehaviorAction CallOperationAction
Target

CreateObjectAction
Result

⇒ ⇒ ⇒ ⇒
⇒⇒⇒

(b) Toggling transformation between different action classes

Fig. 5. Activity diagram transformations.

chine transformations. Other diagram types can be supported
with corresponding transformations, e. g. activity diagrams,
for which Fig. 5a shows a simple example. In principle, all
UML diagram types are supported; in practice, however, this
approach is feasible for those diagrams for which suitable
automatic layout algorithms are provided, as discussed in
Sec. III-C.

D. Object Class Transformations

The transformations so far are quite straight-forward and
for Statecharts editing implemented in KIELER the number of
transformations is clear and small.

For the UML meta model the situation is rather different.
It extensively uses class hierarchy to express different object
refinements. For example, in an Activity model there is the
class Action which has the different subclasses OpaqueAction,
CallAction, InvocationAction, SendSignalAction, CallOpera-
tionAction and CallBehaviorAction. All metamodel classes
have a graphical representative with slight differences and
a creation tool in the palette (which makes palettes of UML
editors usually quite crowded). There are two major drawbacks
of this approach: (1) If a developer inserts any of the above
actions and then later realizes that a different class would be
more appropriate, the object instance has to be exchanged
completely. (2) To provide a sufficient set of transforma-

Listing 1. Xtend transformation for insertion of a composite state
Void createComposite(State originalState):
let compState = new State:
let initState = new State:
let simpleState = new State:
let innerRegion = new Region:
let oTrans = new Transition:
let iTrans = new Transition:
let parentRegion = originalState.container:
parentRegion.transition.add(oTrans) ->
oTrans.setSource(originalState) ->
oTrans.setTarget(compState) ->
compState.region.add(innerRegion) ->
innerRegion.subvertex.add(initState) ->
innerRegion.subvertex.add(simpleState) ->
innerRegion.transition.add(iTrans) ->
iTrans.setSource(initState) ->
iTrans.setTarget(simpleState);

tions for structure-based editing, one would require similar
transformations for each of the classes. E. g. the “insertion
of a successor action” in Fig. 5a, which is shown for an
OpaqueAction, would require a similar transformation rule for
all other Action classes.

As an alternative, one could provide only a small set of
transformations for one specialization of an abstract class,
e. g. only for OpaqueActions. These rules suffice to create
the basic graphical structure of the diagram employing au-
tomatic layout. Then another set of transformations would be
responsible to change the concrete class of a model object. To
reduce the number of transformations and user interface items,
one single conditional transformation could toggle between all
different subclasses of a given class. For the Action example,
the sequence is shown in Fig. 5b.

Such toggling transformations free the developer of two
manual tasks next to exchanging the class itself: First, copy
all common attributes from the old class instance to the new
one, and second, fix all incoming and outgoing connections.
In this example we see that it is not always possible to the
full extent when classes have different types of connections
and ports.

For example, the creation of a new CallOperationAction
would come down to the steps: (1) focus an existing action, (2)
call the “insertion of a successor action” and (3) call the toggle
transformation twice. It is up to the toolsmith to find a good
trade-off between the number of transformations provided for
a language and how directly specific editing schemes should
be supported. However, especially the toggle transformations
are a real benefit not only for pure structure-based editing, but
also for any DND editing, where in general changing object
classes requires a lot of manual steps.

E. Implementation

The benefits of structure-based editing in general have been
evaluated in the KIEL project for Statechart models. KIELER
implements the approach for general GMF based editors in
Eclipse. Once a set of model transformations has been defined
for the metamodel of a specific graphical editor, they can be
made available as operations in the user interface by using an
Eclipse extension point. Thus the technical effort to connect
this editing approach to new editors is kept minimal. For a
new Domain Specific Language (DSL) the toolsmith provides



(1) a set of semantical model transformations (e.g. a file with
Xtend transformations) and (2) a few plug-in configurations
which are done via XML according to an Eclipse extension
point. The latter configures names and places (menu, toolbar,
popup) of transformations in the user interface.

While currently the specification of structure-based edit-
ing transformations is provided statically and loaded during
Eclipse startup, we also experiment with user interfaces to
dynamically create, save and share new transformations at tool
run-time in order to give tool users themselves the ability to
customize the user interface.

V. CONCLUSION AND OUTLOOK

We presented a flexible interface for automatic layout of
graphical diagrams in Eclipse, and proposed a novel editing
paradigm that builds on this layout capability. Our approaches
build on standardized Eclipse technology, thus minimizing
the effort of applying them to new graphical editors. The
layout can be easily customized and be extended by other
layout algorithms and layout options. By applying model
transformation directly on the domain model and performing
automatic layout on the transformed model, we are able to
define structure-based operations, which can be triggered from
the user interface. This promises a significant increase in
designer productivity.

The UML with its graphical notation is a good application
for the structure-based editing paradigm, and in this paper
it has been shown which kind of model transformations can
potentially help in editing UML diagrams. What is left as future
work is the definition of a concrete set of transformations
on the UML metamodel and the evaluation of the resulting
structure-based editing operations in the context of actual de-
velopment projects that employ the UML. The same approaches
can be applied to other graphical languages for model-based
engineering, e. g. Statecharts and data flow languages such as
Simulink (The MathWorks), SCADE (Esterel Technologies), or
Ptolemy II [23].

Structure-based editing is just one example of a new inter-
action scheme that consistently builds upon automatic layout
of graphical models. Another approach, textual modeling with
synchronization to a graphical diagram, is also a current topic
of research. Since many developers are more skilled in editing
with the keyboard only, this could further reduce the efforts of
creating and maintaining models. Furthermore, there are other
aspects next to editing that benefit of the automatic placement,
e. g. navigation/browsing of models and analysis of models
during simulations. Resulting improvements are dynamically
created graphical views that can display models in different
levels of details and present only model parts that are relevant
to the user for the specific context under which the model is
currently investigated. This topic is also subject of ongoing
research under the term view management [3].

REFERENCES

[1] M. Petre, “Why looking isn’t always seeing: Readership skills and
graphical programming,” Communications of the ACM, vol. 38, no. 6,
pp. 33–44, Jun. 1995.

[2] S. Prochnow and R. von Hanxleden, “Statechart development beyond
WYSIWYG,” in Proceedings of the ACM/IEEE 10th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS’07), Nashville, TN, USA, Oct. 2007.

[3] H. Fuhrmann and R. von Hanxleden, “On the pragmatics of model-based
design,” in Proceedings of the 15th International Monterey Workshop
on Foundations of Computer Software, Future Trends and Techniques
for Development (2008), ser. LNCS (to appear), Budapest, 2010, also
available as Technical Report 0913, Christian-Albrechts-Universität zu
Kiel, Department of Computer Science, May 2009.

[4] R. Bardohl, “GenGEd – a visual environment for visual languages,”
Science of Computer Programming, Special Issue of GraTra ’00, 2002.

[5] Object Management Group, “MOF 2.0 Query/Views/Transformation
RFP,” Apr. 2004, http://www.omg.org/docs/ad/02-04-10.pdf.

[6] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[7] M. Kaufmann and D. Wagner, Eds., Drawing Graphs: Methods and
Models, ser. LNCS. Berlin, Germany: Springer-Verlag, 2001, no. 2025.

[8] M. Jünger and P. Mutzel, Graph Drawing Software. Springer, Oct.
2003.

[9] G. Sander and A. Vasiliu, “The ILOG JViews graph layout module,” in
GD 2001: Proceedings of the 9th International Symposium on Graph
Drawing, ser. LNCS, vol. 2265. Springer-Verlag, 2002, pp. 469–475.

[10] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software—Practice and
Experience, vol. 30, no. 11, pp. 1203–1234, 2000.

[11] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109–125, Feb. 1981.

[12] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and
M. Schulz, “The Open Graph Drawing Framework,” Poster at the 15th
International Symposium on Graph Drawing (GD07), Sydney, 2007.

[13] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel,
“A new approach for visualizing UML class diagrams,” in SoftVis ’03:
Proceedings of the 2003 ACM Symposium on Software Visualization.
New York, NY, USA: ACM, 2003, pp. 179–188.

[14] M. Eiglsperger, “Automatic layout of UML class diagrams: A topology-
shape-metrics approach,” Ph.D. dissertation, Faculty of Information and
Cognitive Science, Eberhard-Karls-Universität Tübingen, 2003.

[15] J. Seemann, “Extending the Sugiyama algorithm for drawing UML
class diagrams: Towards automatic layout of object-oriented software
diagrams,” in Proceedings of the 5th International Symposium on Graph
Drawing (GD ’97), ser. LNCS, vol. 1353. Springer, 1997, pp. 415–424.

[16] H. Eichelberger, “Aesthetics and automatic layout of UML class di-
agrams,” Ph.D. dissertation, Bayerische Julius-Maximilians-Universität
Würzburg, 2005.

[17] K. Sugiyama and K. Misue, “Visualization of structural information: au-
tomatic drawing of compound digraphs,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 21, no. 4, pp. 876–892, Jul/Aug 1991.

[18] G. Sander, “Layout of compound directed graphs,” Universität des
Saarlandes, FB 14 Informatik, 66041 Saarbrücken, Tech. Rep. A/03/96,
Jun. 1996.

[19] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Information Processing Letters, vol. 31, no. 1, pp. 7–15, 1989.

[20] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A technique
for drawing directed graphs,” Software Engineering, vol. 19, no. 3, pp.
214–230, 1993.

[21] M. Spönemann, H. Fuhrmann, R. von Hanxleden, and P. Mutzel, “Port
constraints in hierarchical layout of data flow diagrams,” in Proceedings
of the 17th International Symposium on Graph Drawing (GD’09), ser.
LNCS, vol. 5849. Springer, 2010, pp. 135–146.

[22] R. Tamassia, G. D. Battista, and C. Batini, “Automatic graph drawing
and readability of diagrams,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 18, no. 1, pp. 61–79, 1988.

[23] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity—the Ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, Jan
2003.


