
A Hard Real Time Demo for Dynamic Ticks and Timed SCCharts
Andreas Boysen, Alexander Schulz-Rosengarten, Reinhard von Hanxleden
Kiel University, Kiel, Germany, {abo | als | rvh}@informatik.uni-kiel.de

Abstract

Synchronous programming languages, such as Esterel, Lustre, SCADE or SCCharts, have been developed for designing
reactive systems. They abstract from computation times and assume that outputs are synchronous with their inputs. This
leads to a deterministic semantics, without race conditions, which makes synchronous languages particularly suitable for
safety-critical systems. However, even though synchronous languages have been designed with real-time applications in
mind, the handling of physical time is traditionally left to the execution environment. This makes e.g. the expression of
arbitrary time-outs difficult and may lead to excessive “busy waiting” computations.
The recent proposal of dynamic ticks alleviates this by making physical time a first-class citizen within the synchronous
programming model. In this paper, we explore and demonstrate the practical merits of dynamic ticks, including improved
timing accuracy and reduced computational requirements, in the context of Timed SCCharts. As demonstration platform,
we present a hardware/software platform that involves two stepper motors whose operation must be synchronized at
microsecond accuracy to avoid physical damage.

1 Introduction

Synchronous languages are well-established for the model-
ing and programming of reactive systems. In particular for
safety-critical applications, such as flight control, automo-
tive applications or in the medical sector, the deterministic
semantics and formal grounding of synchronous languages
have proven their practical value [2]. The synchronous
paradigm, which states that outputs of a system are “syn-
chronous” with their inputs, divides computations into dis-
crete “ticks” that conceptually take zero time. This is an
abstraction from reality, since the computation of one tick,
or one reaction, does of course take time. However, this
abstraction is the basis for defining a concurrent seman-
tics without race conditions, just like boolean logic gives
a well-founded, deterministic semantics to circuits that ab-
stracts from their physical implementation and actual sta-
bilization delays. Classical synchronous languages include
Esterel, Lustre and Signal [2]; more recent languages in-
clude the hybrid modeling language Zélus [3] and the stat-
echart dialect SCCharts [9], which now is used in the rail-
way domain; commercially most successful at this point
is probably SCADE [6], with its qualified compiler that is
routinely used by Airbus and other industrial players.
Clearly, synchronous languages have been developed for
real-time applications. However, unlike other languages
developed for that domain, such as Ada, traditional syn-
chronous languages do not include language features that
explicitly address physical time. Instead, time is typically
modeled by counting occurrences of input signals that de-
note the passage of a certain amount of time, or by simply
counting ticks if ticks are known to occur at a certain, fixed
frequency. This mechanism is rather crude and has practi-
cal disadvantages, as observed by Bourke and Sowmya [4].
For example, if some input signal msec1 denotes the pas-

sage of 1 millisecond and another input signal msec10 de-
notes the passage of 10 milliseconds, a timeout waiting for
10 occurrences of msec1 does not necessarily take the same
amount as another timeout that waits for one occurrence of
msec10, as the actual waiting time depends on how the the
timeouts are aligned with the timing input signals.
As von Hanxleden, Bourke and Girault have argued [10],
one limitation of the traditional synchronous setting is how
reactions are triggered. Specifically, it is traditionally the
environment that decides on when reactions are computed.
Typically, one of three options is used: 1) a time-triggered
execution, where a reaction is computed for example once
per millisecond; 2) an event-triggered execution, where re-
actions are computed whenever some input event occurs,
such as for example the press of a button; or 3) an asap ex-
ecution, where the next reaction is triggered as soon as the
previous reaction is finished. Note that the triggering mode
does not affect the synchronous scheduling of the reaction
calculation itself. Each of these options has its merits and
is fairly easy to implement, but neither of them is partic-
ularly suitable for handling precise, fine-grained real-time
requirements. However, it turns out that the synchronous
paradigm can be seamlessly extended with a fourth option
that is more amenable for real-time requirements. Specif-
ically, the recently proposed dynamic ticks [10] give the
synchronous program control not only about how it reacts
to current and past inputs, but also when the next reaction
should occur. Their proposal included a prototypical re-
alization in Esterel, and the theoretical advantages of that
approach seem rather clear. Subsequently, the concept of
dynamic ticks was incorporated in Timed SCCharts [7],
which basically augment SCCharts with clocks as used in
timed automata [1]. However, what was lacking so far was
a practical evaluation, with very tight (i. e., microsecond
scale) timing constraints, and a demonstrator with a hard

Figure 1 Demonstrator setup with annotations.

real time application, which is where this paper comes in.
The contributions and the organization of this paper are as
follows.

• We describe a physical demonstrator, referred to as
“disk and sticks demonstrator,” or “DS demo” in
short, that is reasonably cheap and easy to implement
but embodies a hard real-time problem with scalable
timing constraints (Sec. 2).

• We present a Timed SCChart model of a DS demo
controller that illustrates the usage of dynamic ticks
and clocks (Sec. 3).

• For the DS demo, we evaluate different controller
platforms, comparing hardware (FPGA) and soft-
ware alternatives, and evaluate the effect of dynamic
ticks on reaction time, jitter and computational effort
(Sec. 4).

We present the main aspects of the DS demo here. For
more detailed information, we refer the reader to an ex-
tended report [5].

2 The Disk-and-Sticks Demonstra-
tor

Figure 1 shows an annotated image of the DS demonstrator.
While the name may suggest a link to storage devices, such
as a hard disk, the DS demo is in fact based on two stepper
motors that control the rotations of a disk and sticks.
On the left is the motor controller, in this case a Digilent
Arty A7 35 FPGA board (Sec. 4 introduces a software al-
ternative). It is connected to a 5V power supply and a sig-
nal generator to control the target speed of the system with
a square wave input signal.
The main components of the motor drivers, in the middle,
are two half-bridges to drive the coils of the stepper motors.
An important feature of the motor drivers is the current
sensing. If a motor draws too much current, an overcurrent
signal is sent to the controller. This signal is used to imple-
ment an overcurrent protection that allows the motors to be
operated with higher voltages without damage.
The motor assembly, on the right, contains two stepper mo-
tors arranged in a 90 degree angle. Figure 2 illustrates the

Figure 2 Technical drawing of the DS motor assembly.

detailed setup of the motor assembly. One motor has a disk
and the other has three sticks mounted to its shaft. If the
motors are running synchronized in an exact 3 to 5 ratio,
they can pass through each other; any deviation from that
ratio may cause a stick to hit the disk. Furthermore, the
discrete nature of stepper motor control implies that timing
errors typically do not lead to a gradual deviation from the
desired speed, but may stop or even damage a motor.

3 Modeling a DS Controller with
Timed SCCharts

Figure 3 shows the top-level SCChart running on the con-
troller board. It uses a dataflow notation to connect various
SCCharts modules handling different tasks. At the center
is the SSD component, the speed signal divider, which con-
verts the input speed into step instructions for each of the
two motors in a strict 3 to 5 ratio to avoid collisions. The
SSD component also receives inputs of the four buttons on
the controller board that can be used to calibrate the initial
positions of the disk and sticks. The preprocessing compo-
nents (mc* and ed*) debounce and capture changes in the
button signals. Each motor has its own MotorStateMa-
chine that models the state of magnetization in the motor
and allows to perform a step by (de-)activating the correct
coils in the motor. In addition to the positive or negative
magnetization of the coils, the motors need to be enabled
to perform a step. These outputs are post-processed by
an Ocp* module for each motor that handles overcurrent
events and performs a timed cooldown for each coil.
Figure 4 shows the timed SCChart performing the over-
current protection. The basic idea is to use the coil of the
motor, the H-bridge and the protection diodes as a Buck
converter where the continuous conduction mode keeps
the coils always magnetized. The power is disconnected,
via the enableOut output, for a constant time. During
this off time, the coil is discharged through the protection
diodes. The enableIn input triggers alternation between the
Wait and Power states. When the motor is powered, an
overcurrent event may occur, which triggers entering the
Cooldown state and disabling the coil. However, this tran-
sition has an additional timing constraint that only allows
this transition to be taken if at least a BLIND_TIME of

Figure 3 Top-level SCChart controller connecting multi-
ple SCCharts modules handling sub tasks.

Figure 4 Timed SCChart to handle overcurrent events.

1500ns has passed since entering the Power state. This
blind time has its origin in the parasitic induction of the
resistor used to measure the current.
Using the clock construct, an extended feature provided
by Timed SCCharts, this timeout is straightforward to ex-
press. The clock delay is reset when the Power state is
entered, and is compared with BLIND_TIME in the pred-
icate of the transition to Cooldown. When the H-bridge is
activated, the coil is still charged and the current flowing
through the coil tries to flow to the ground through the re-
sistor. However, the parasitic inductance of the resistor is
not yet charged and blocks the current flow. This leads to a
brief voltage spike until the inductance is overcome. This
voltage spike would unnecessarily trigger a transition into
the Cooldown state and would repeat itself until the coil is
completely discharged. The length of the blind time de-
pends of the parasitic induction. When in the Cooldown
state, the coil stays disabled for 10,000ns (OFF_TIME)
and then returns either to Wait or Power, depending on
Cooldown. This is again modeled with the delay clock.
The off time has to be selected based on the speed of the
H-bridge, overcurrent detection, the coil, and the possible
current change during a PWM cycle.

Figure 5 Comparison of reaction time between FPGA
and Raspberry Pi with asap and dynamic tick environment
(logarithmic scale).

4 Dynamic Ticks in HW and SW

As software-based alternative to the FPGA-based con-
troller shown in Figure 1, an alternative controller board,
based on a Raspberry Pi model 3B, connects to the same
motor driver interface. KIELER [8] was used to compile
the SCCharts controller into either VHDL, for the FPGA
board, or C code, for the Raspberry Pi. The FPGA board
itself serves as logic analyzer to capture the data. This ap-
proach has the disadvantage that the logic analyzer and the
controller share the same 100MHz clock when measuring
the FPGA. Hence, the FPGA-based motor controller has an
advantage of up to 10ns in reaction time; these 10ns were
added to the analysis results to display worst case behavior
of the used implementation.
A first experiment measured the reaction time of the tick
function at 400 steps per second and 5V motor supply volt-
age. The reaction time is measured as the delay between
the input of the function generator and the resulting output
change. Hence, it includes the tick calculation time and
the offset caused by the environment. These quantitative
evaluations were performed with for controlling one step-
per motor in isolation, outside of the DS demo, to avoid
possible damage to the demonstrator. The results are pre-
sented in Figure 5. The horizontal red line indicates the
reaction time that allows safe operation with correct over-
current protection. The dynamic tick environment on the
FPGA has a constant reaction time, since there are no two
events close enough together to influence each other. The
asap environment, on the other hand, has a variance from
1 to 2 calculation times. This is because the events can
occur at any time, even during an active tick calculation,
adding the remaining calculation time to the reaction time.
The Raspberry Pi controller performs worse, as expected
for a general purpose processor with an Linux operating
system. Despite that, the most obvious difference to the
FPGA-based controller are the outliers in the reaction time.
These outliers are caused by the kernel and have a calcu-
lation time that is up to 10 times bigger than their aver-
age. In the asap environment the variance is again higher,
since events usually occur during the tick calculation. A
real-time kernel and isolation of the controller process on a

Figure 6 Comparison of jitter in the actual off time be-
tween the between FPGA and Raspberry Pi with dynamic
ticks (logarithmic scale).

single core are measures that would reduce the number of
outliers, but cannot remove them.
The dynamic and asap operation modes also differ signifi-
cantly in the number of ticks computed, since asap triggers
“superfluous” reactions without output change. At one ro-
tation per second, corresponding to 400 steps per second,
the asap mode executes about 1.25× 107 ticks/sec on the
FPGA, and, depending on the synthesis approach, between
65,000 and 260,000 ticks/sec on the Raspberry Pi. The
dynamic mode requires about 1000 ticks/sec on both plat-
forms.
In a second experiment we measured the timing precision
of the overcurrent protection by capturing the actual off
time produced by the Cooldown state. The results are plot-
ted in Figure 6. This test is performed by setting the motor
speed to 0 in a motor state that powers both coils, with a
supply voltage of 10V and a current limit at 0.5A. Hence
the overcurrent protection of both coils constantly triggers.
The length and variance of the off times are used to mea-
sure the reaction time jitter. The FPGA timing is perfect
with the exception of a few outliers. The maximal outliers
are less than one tick calculation time bigger than the ex-
pected value. These outliers are created by an overcurrent
event that is less than one tick calculation prior to the tim-
ing event. The results of the Raspberry Pi show outliers
that are too long, similar to the previous test, and outliers
with off times too small. These early reactions are indi-
rectly created by the slow outliers. If a long tick calculation
time puts calculations behind the real-time, the calculations
try to catch up with the real-time, resulting in shortened
off-times.

5 Wrap-Up

The DS demo has achieved its objective of being a clear
demonstration of reactive system programming with a syn-
chronous language, in this case Timed SCCharts, and the
potential merits of using dynamic ticks. With the FPGA-
based controller, the DS demo was operated successfully
with up to 100 stick/disk crossings per second. This cor-
responds to 1200 RPM for the disk. With 400 steps per
rotation, and at least 10 ticks per step due to the sam-

pling/synchronization logic, this corresponds to 80,000
ticks per second, or 12.5 µs per tick. At this speed, each
tick requires stable and precise timing in the microsecond
range. The dynamic tick environment facilitates such pre-
cise reactions and the FPGA provides a fast and jitter-free
execution platform. The Raspberry Pi, as expected, has
a lower performance and occasionally misses steps due to
outliers in the reaction time. These interruptions are not
only limiting the maximal possible RPM, but are already
audible at lower speeds.
There are several avenues for future work, including im-
proved hardware synthesis that allows higher clock rates
and software solutions with reduced operating system dis-
turbances.

6 Literature
[1] R. Alur and D. L. Dill. A theory of timed automata. Theo-

retical Computer Science, 126:183–235, 1994.
[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L.

Guernic, and R. de Simone. The Synchronous Languages
Twelve Years Later. In Proc. IEEE, Special Issue on Em-
bedded Systems, volume 91, pages 64–83, Piscataway, NJ,
USA, Jan. 2003. IEEE.

[3] T. Bourke and M. Pouzet. Zélus: a synchronous language
with odes. In Proceedings of the 16th international confer-
ence on Hybrid systems: computation and control, HSCC
2013, pages 113–118, Philadelphia, PA, USA, Apr. 2013.

[4] T. Bourke and A. Sowmya. Delays in Esterel. In
SYNCHRON’09—Proceedings of Dagstuhl Seminar 09481,
number 09481 in Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum (IBFI),
Schloss Dagstuhl, Germany, 22–27 Nov. 2009.

[5] A. Boysen, A. Schulz-Rosengarten, and R. von Hanxleden.
An FPGA-based Demonstrator for Dynamic Ticks. Tech-
nical Report 2001, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, Feb. 2020.

[6] J. Colaço, B. Pagano, and M. Pouzet. SCADE 6: A for-
mal language for embedded critical software development
(invited paper). In 11th International Symposium on Theo-
retical Aspects of Software Engineering TASE, pages 1–11,
Sophia Antipolis, France, Sept. 2017.

[7] A. Schulz-Rosengarten, R. von Hanxleden, F. Mallet,
R. de Simone, and J. Deantoni. Time in SCCharts. In Proc.
Forum on Specification and Design Languages (FDL ’18),
Munich, Germany, Sept. 2018.

[8] S. Smyth, A. Schulz-Rosengarten, and R. von Hanxleden.
Towards interactive compilation models. In Proceedings
of the 8th International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA
2018), volume 11244 of LNCS, pages 246–260, Limassol,
Cyprus, Nov. 2018. Springer.

[9] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth,
M. Mendler, J. Aguado, S. Mercer, and O. O’Brien. SCCha-
rts: Sequentially Constructive Statecharts for safety-critical
applications. In Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI
’14), pages 372–383, Edinburgh, UK, June 2014. ACM.

[10] R. von Hanxleden, T. Bourke, and A. Girault. Real-time
ticks for synchronous programming. In Proc. Forum on
Specification and Design Languages (FDL ’17), Verona,
Italy, Sept. 2017.

	Introduction
	The Disk-and-Sticks Demonstrator
	Modeling a DS Controller with Timed SCCharts
	Dynamic Ticks in HW and SW
	Wrap-Up
	Literature

