
Interactive Transformations for Visual Models∗

Ulf Rüegg, Christian Motika, Reinhard von Hanxleden
Christian-Albrechts-Universität zu Kiel
{uru,cmot,rvh}@informatik.uni-kiel.de

Abstract:
Model transformations are an essential and integral concept of Model Driven Engi-

neering (MDE). However, when using state of the art modeling tools, transformations
are typically executed silently and at once in the background. This lacks flexibility
and does not reveal any insights of the transformation process, which makes it hard to
understand and debug specific model transformation implementations.

We present a flexible concept to define arbitrary model transformations combined
with graphical visualization and user interactivity. The key idea is the integration into
a view management to obtain various possible visualizations and user interaction. In
the paper we focus on applying this concept to monolithic transformations by breaking
them up to gain tight and fine-grain control. This includes the capability of undoing
transformation steps.

To evaluate our approach, we present an Eclipse integrated visual and interactive
execution layer for model transformations. As a case study we show an example trans-
formation implementation from the synchronous textual language Esterel to SyncCha-
rts, a synchronous Statecharts dialect.

1 Introduction

To handle the complexity of software for Cyber-Physical Systems (CPSs) [LS11], Model
Driven Engineering (MDE) has recently gained attention especially within the widely used
Eclipse1 tooling environment. The main reason for this is that Eclipse is very modular,
which allows various extensions. Several mature projects build on this platform, with
the Eclipse Modeling Framework (EMF) leading the way. Model transformations are an
integral part of MDE and there is good support inside the Eclipse framework as various
Eclipse projects offer the transformation of EMF-based models.

Reasons for model transformations can be to separate concerns directly in the modeling
workflow. This allows a generative approach by adding more and more specific informa-
tion while transforming from one model instance to the other. This concept itself is used
by Eclipse projects like the Graphical Modeling Framework (GMF). Other rationales for
model transformations may be structural model changes [KPRP07], code generation and
simulation desires [MFvH10] or the synchronization between different views of a model.

∗This work was funded in part by the Program for the Future Economy of Schleswig-Holstein and the Euro-
pean Regional Development Fund (ERDF).

1http://www.eclipse.org

http://www.eclipse.org


Transformation Step Back Transformation Step Add Successor State

Figure 1: User interface of KIELER during a step-wise transformation

Typically, these transformations are executed silently and at once in the background. The
user does not gain any insight into the process of the transformation. The concrete relations
between the input model and its transformed version do get lost. Furthermore, the user has
no tight control about the transformation while it is applied. Developers of transformations
often have a hard time in debugging such model transformations or parts of them.

Contributions: We present a flexible concept to define arbitrary model transformations
combined with graphical visualization and user interactivity. In this paper we focus on
applying this concept to monolithic transformations by breaking them up into steps of a
certain granularity.

The key idea is the integration into a view management as described by Fuhrmann [FvH10]
that allows to reuse various visualization effects and to define arbitrary user-interface el-
ements. Therefore, a developer can adapt visualizations and user interaction according to
the specific use case, e. g., by allowing to execute steps, backward steps (undo), or to per-
form the overall transformation. The approach is not restricted to a certain transformation
language. While the developer has to know about the technologies he uses, the user only
needs to be familiar with the elements provided to the user-interface.

As this work is implemented as a proof of concept in the context of the Kiel Integrated
Environment for Layout Eclipse Rich Client (KIELER) project, it is based on and integrated
into the Eclipse framework and can be reused by other EMF-based projects. We illustrate
the generality of the approach with prototype implementations that combine the ideas of
interactive visual transformations with already existing generic model-view-management
implementations of the KIELER project.

Outline: Section 1.2 briefly introduces into the KIELER framework, which serves as the
context for our implementation. Section 1.3 discusses meta modeling and model transfor-
mations. Related projects are referenced in Section 1.4. In Section 2.1 we describe the



motivation and the idea of user interaction during model transformations. Section 2.2 ex-
plains the term visual transformation. Section 3 illustrates the integration in KIELER with a
case study. Section 4 shows how the presented technique can be used to enhance existing
user interaction paradigms. Section 5 concludes and gives some outlook on future work.

1.1 View Management

Fuhrmann and von Hanxleden [FSMvH10] describe the basic ideas of a view management.
It consists of three parts:

Effect: Effects are activities that can be released by the view management. Examples are
coloring of diagram elements or automatic layout.

Trigger: Triggers serve as event listeners and can result in released activities controlled
by the view management, i. e., effects. Examples are button, selection, or simulation
events.

Combination: Combinations connect certain triggers with effects. Special logic can be
provided. While effects and triggers are mostly predefined, combinations are often
written by developers and can be rather simple.

In the model transformation approach presented in this paper we use a view management
infrastructure to achieve a clean separation between the transformational and the visual
part. We react to the user pressing buttons monitored by view management button trig-
gers. A transformation combination reacts accordingly with certain visual transformation
effects.

1.2 KIELER and KiVi

The KIELER framework is a set of open source Eclipse plug-ins that integrate with com-
mon Eclipse modeling projects, such as GMF and especially the modeling backbone EMF.
Eclipse provides several different projects for model transformations that are already used
inside KIELER. A key enabler of KIELER is the automatic layout of graphical models. This
enables features such as structure-based editing [FSMvH10] or the synchronization be-
tween textual and graphical models [Sch11]. These features only modify the underlying
domain model and rely on an automatically synthesized or updated and arranged graphical
view of this model.

Figure 1 shows the KIELER Eclipse environment with an Esterel code editor and a graph-
ical Statechart editor during a visualized interactive transformation. Additionally, toolbar
buttons serving as the UI for interactivity during the transformation are visible at the top.

The KIELER View Management (KiVi) is the implementation of a view management and an
essential core part of the KIELER framework.



1.3 Meta Models and Model Transformations

A basic prerequisite for MDE are models that base on meta models. The latter define the
abstract syntax of models and hence allow the specification of languages as object-oriented
structure models. The Meta Object Facility (MOF) is a meta modeling framework defined
by the Object Management Group (OMG)2, which has been taken shape for the Eclipse
world as the Eclipse Modeling Framework (EMF) with its Ecore meta model language that
we use in the context of this project. The MOF defines four layers M0 to M3, where M3
corresponds to highest level of abstraction (meta-meta models). The M2 layer contains the
aforementioned meta models, M1 the concrete models, and M0 the physical, real-world
objects.

Model transformations play a key role in generative software development. They describe
the transformation of models (i. e., meta model instances) that conform to one meta model
into models which then conform to another or even the same meta model. Mens and
Gorp [MG06] specify some terminology concerning transformations. A transformation is
called exogenous if the M1 source model and the M1 target model are derived from dif-
ferent M2 meta models. Endogenous transformations base on the same M2 meta model.
They are called in-place if the source and target M1 model is the same instance. A trans-
formation rule describes how to transform a certain element of a source model into the
corresponding element in the target model.

There are several model transformation systems available today that are well integrated
into the Eclipse platform. Xpand3 realizes a model to text template based approach, Xtend
is a functional meta model extension and transformation language based on Java with
a syntax borrowed from Java and OCL, and there exist other transformation frameworks
such as QVT or ATL.

In our implementation we will use the Xtend language as it is widely used and was refac-
tored for a seamless integration into the Eclipse IDE. Additionally, its extensibility features
allow to escape to Java for sequential or complex transformation code fragments. Never-
theless, our approach is conceptually open to use any transformation language.

1.4 Related Work

With the growing importance of model transformations, much work has been devoted
to improve the definition, verification, and comprehensibility of such transformations by
providing suitable formalisms and tooling.

The Epsilon Wizard Language (EWL) [KPRP07] allows interactive in-place model trans-
formations and is integrated into EMF. So-called wizards can be applied to certain elements
of a model. Wizards specify a guard determining for which model elements they are appli-
cable, and a body defining the actual model transformation. In this approach the user must

2http://www.omg.org/spec/MOF/2.0/PDF
3http://wiki.eclipse.org/Xpand

http://www.omg.org/spec/MOF/2.0/PDF
http://wiki.eclipse.org/Xpand


select both, the single model element and the wizard to execute. No advanced automatic
layout or further visualizations can easily be used. Wizards can only be specified using
EWL. It is not possible to mix transformation technologies.

The ideas presented in this paper concern unidirectional transformations. However, there
exist approaches that allow to define bidirectional transformations. These are usually more
complex and not always desired. E. g., the re-generation of source code after changes were
made to its previously generated documentation is unwanted in most cases. One example
are Triple Graph Grammars (TGGs) [GW06], a formalism used to define the correspon-
dences between two distinct models. A triple graph consists of two graphs representing
the models and a third correspondence graph associating objects of the two models with
each other.

A bidirectional approach to fully integrate textual and graphical modeling is presented by
Schneider [Sch11]. This includes the immediate synchronization of either model upon any
changes that were made in the other model and possibly additional visualization. He also
provides an exemplary implementation by using KIELER’s SyncCharts editor and a textual
Domain Specific Language (DSL) for SyncCharts. Such a synchronization is only possi-
ble for two representations that are transferable into each other without losing contents.
However, if the synchronization is realized by using two distinct transformations for each
direction, it will be possible to use the approaches presented here.

ATL and QVT are transformation languages coming with sophisticated tooling, which pro-
vides well-known code-line based debugging mechanisms. We present concepts that allow
to debug a transformation by looking at intermediate states of the graphical model itself
instead of code lines and variable contents. Also, this allows to debug transformations
written in a language that does not have native debugging facilities.

Vanhooff et al. [VAB+07] describe concepts to decompose transformations into sub-trans-
formations and to compose sub-transformations using diverging technologies. They dis-
tinct the specification, implementation, and execution of a transformation to obtain a clear
separation of concerns. Consequently, they differentiate between the roles of a transfor-
mation specifier, developer, and assembler. It might be interesting to integrate these strict
distinctions into our progress of defining a transformation. We also aim at the reuse of
different sub-transformations by possibly new developers who, i. e., would benefit from
clear specifications.

Contrary to our use of the term visual transformation, meaning the visualization of inter-
mediate transformation results, Biermann et al. [BEK+06] present an environment allow-
ing the visual definition of model transformations by using enhanced graphs.

2 Visualized Interactive Transformations

Figure 2 shows the transformation of an Esterel program into a SyncChart, which will
be explained in further detail in Section 3.1. Ordinary transformations take the Esterel
program, apply the transformation, and return the SyncChart presented on the right hand
side of the figure. This does not reveal the relationships of a source and a target model’s



element and prevents the understanding of how the transformation works.

We aim to improve the comprehensibility and understanding of model transformations by
adding interactivity and visualizations. The interactive and the visual part of the presented
approach are addressed separately in the following, as they differ in domain dependency.

2.1 Interactive Transformations

Interactivity means the interaction of a user with the program. Using an interactive trans-
formation the user decides which part of a model to transform, at what point of time, and
to which extent, e. g., for only half the model, it should be transformed.

To provide this functionality, UI elements, e. g., buttons or keyboard shortcuts, are manda-
tory to allow the user to control the transformation. Furthermore, the overall transforma-
tion needs to be split into smaller pieces that are executable individually. As mentioned
in Section 1.3, a transformation is the complete conversion of a source model into a target
model. A transformation rule is the definition of how to convert an element of the source
model into an element of the target model. Hence, a transformation rule is just a piece of
the overall transformation and we refer to the execution of this piece as step. The possi-
ble granularity of those steps depends on the definition of the transformation rules for a
specific transformation.

Figure 3 exemplarily sketches a possible interaction of a user with a transformation. A
source model is transformed into the target model in four steps, each of which is triggered
by the user. In every step a certain transformation rule is applied, which is determined,
among others, by the current user input and/or the model state.

Certain information is necessary to execute a transformation. We divided this information
into a transformation description and a transformation context. The context contains static
information such as the files holding the transformation rules or the facilities of a certain
transformation technology to apply a transformation. The description holds dynamic in-

Transformation Optimization

Figure 2: Overall transformation of the ABRO program.



source
model

target
model

rule 1 rule 2 rule n...

Transformation rules

user input user input user input user input

step step step step
rule 2 rule 1 rule 6 rule n

Figure 3: A possible interaction of a user with a big transformation, broken up into several
transformation steps to show potential for interactivity during a model transformation

2. automatic layout

3. further visualizations

graphical 
representation

Model 1. transform Transformation
Logic

input

Figure 4: Applying visualizations after a transformation

formation such as the model elements that should be transformed and the name of the
transformation rule that should be applied in the next step.

2.2 Visual Transformation Approach

As mentioned above, the visualization of intermediate steps of a transformation depends
on the domain. Basically, there are two cases to distinguish. First, consider endogenous
transformations with the same M2 meta models. In this case, changes inflicted by the
transformation rules can be applied incrementally to the model until the transformation is
completed. Additional visualizations, such as highlighting, can be added easily.

Second, exogenous transformations work with M1 models that differ in M2 meta models.
In this case, it is necessary to embed the notation of the source model into the target model
or vice versa. Therefore, after the execution of a transformation rule the target model
might contain notations of both meta models.

Additionally, automatic layout is mandatory when working with graphical models [FvH10].



Combination
ButtonTrigger

Transformation-
Effect

XtendTrans-
formationContext

step
step

Transformation-
Descriptor

Xtend rule

model 
elements
name 
binding

XtendFacade

current model

Figure 5: Integration of transformations into view management

A transformation rule is likely to add or remove graphical elements. Newly added elements
need to be positioned properly in the diagrams and they need to preserve the comprehen-
sibility of intermediate steps. If left to the user, this positioning will tend to be rather time
consuming and frustrating when the same elements have to be arranged manually over and
over again. This would nullify the benefits of an interactive transformation.

Figure 4 shows the integration of visualizations into the transformation process for a graph-
ical model. First, the model is transformed according to the user’s inputs. Second, auto-
matic layout is applied to the graphical representation of the model. Third, an arbitrary
number of visualizations is added. The visualizations are either defined by the transforma-
tion logic or by the user. These three points are performed after each transformation step
initiated by the user, see Figure 3.

3 Integration into KIELER

To evaluate our approach we integrated the execution of single transformation steps in
KIELER. We did this in a generic way that can be used for an arbitrary transformation. In
Section 1.2 we introduced the KiVi project, which allows the execution of Effects by
using Combinations. Figure 5 illustrates the integration of transformations in KiVi.

To describe a transformation, we introduced an ITransformationContext interface
and a TransformationDescriptor, relating to the context and descriptor men-
tioned in Section 2.1. The ITransformationContext interface has to be imple-
mented for a specific transformation technology, e. g., an XtendTransformation-
Context by using Xtend. The interface demands only an execute method which
is responsible for executing a transformation step specified by a Transformation-
Descriptor and for storing possible results.

To use the benefits of KiVi we created a TransformationEffect, which is executed
by KiVi and takes the aforementioned context and description. This allows the seamless
integration into the KiVi: Further effects can be attached, e. g., a HighlightEffect to
highlight the changed model elements.



1 public class SampleCombination extends AbstractCombination {
2
3 private static final String BUTTON = "de.cau.cs.kieler.button";
4 private ITransformationContext context;
5
6 public SampleCombination() {
7 KiviMenuContributionService.INSTANCE.addToolbarButton(this, BUTTON,
8 "Click me");
9 context = new XtendTransformationContext();

10 }
11
12 public void execute(ButtonState butState) {
13 if (butState.getButtonId() == BUTTON) {
14 // create descriptor
15 TransformationEffect effect =
16 new TransformationEffect(context, descriptor);
17 schedule(effect);
18 }
19 }
20 }

Listing 1: A Combination executing a TransformationEffect

A specific transformation can be implemented by providing a KiVi Combination, which
reacts to certain Triggers, e. g., a ButtonTrigger indicating a button click. Figure 5
illustrates that a Combination uses an unchanging context, which contains all informa-
tion necessary to execute a transformation rule. The descriptor changes from step to step
as different transformation rules are applied to different model elements.

Listing 1 presents a general example of a Combination’s implementation. In line 7 a
button labeled Click me is contributed to KiVi’s user interface and in line 9 an Xtend-
TransformationContext is created. If the contributed button is pressed by the user,
the executemethod specified in line 12ff will be called. A TransformationEffect
is constructed with context and descriptor. The effect is scheduled for the execu-
tion in line 17.

3.1 Case Study: Interactive Transformation from Esterel to SyncCharts

To evaluate our approach, we implemented two different transformations. First, a trans-
formation that synthesizes a SyncChart out of an Esterel program. The theory behind this
transformation was presented by Prochnow et al. [PTvH06]. Additionally, they presented
a transformation that optimizes the structure of a SyncChart, e. g., by removing needless
states.

As mentioned in Section 2.1, some considerations are necessary prior to implementing
each of the two transformations. The next two sections present these considerations as
well as the implementation of an exemplary transformation rule for both, the Esterel to
SyncCharts transformation and the SyncCharts optimization.

The Statecharts formalism, proposed by David Harel, is a well known approach for mod-
eling control-intensive tasks. Statecharts extend Mealy machines with hierarchy, par-



(a) Input

1 Void rule(State s, EveryDo e):
2 let r = new Region:
3 let initS = new State:
4 let everyS = new State:
5 let initT = new Transition:
6 let everyT = new Transition:
7
8 initializeRule(s, e) ->
9

10 // setup states
11 s.regions.add(r) ->
12 r.states.add(initS) ->
13 r.states.add(everyS) ->
14 initS.setIsInitial(true) ->
15
16 // init transitions
17 initT.setType(WEAKABORT) ->
18 everyT.setType(STRONGABORT) ->
19 initT.connectTrans(initS, everyS) ->
20 everyT.connectTrans(everyS, everyS) ->
21
22 // add triggers
23 initT.addTriggerToTrans(e.delay) ->
24 everyT.addTriggerToTrans(e.delay) ->
25
26 // recursive
27 finalizeRule(everyS, e.statement)
28 ;

(b) Xtend transformation rule

initS

everyS

initT

everyT

s

(c) Transformed

Figure 6: Transformation of the every statement

allelism, signal broadcast, and compound events. SyncCharts [And96] are the natural
adoption of Statecharts to the synchronous world. The imperative, textual language Es-
terel [Ber99] is based on the same synchronous model of time as SyncCharts. An example
of an Esterel program and a SyncChart is given in Figure 6a and Figure 6c, respectively.

3.1.1 Transformation from Esterel To SyncCharts

The Esterel to SyncCharts transformation presented by Prochnow et al. [PTvH06] uses
atomic transformation rules to convert each available Esterel statement into an equivalent
SyncCharts state. This atomic characteristic can be leveraged to specify the granularity of
a step. Therefore, the smallest step that a user can perform is the transformation of one
single Esterel statement.

As the source (Esterel) and the target (SyncCharts) M2 meta model differ, this transfor-
mation can be classified as exogenous. Hence, a new notation has to be introduced. Sync-
Charts offer so-called textual macro states, which are states containing arbitrary text. We
use these as container for the Esterel code. It does not require any changes to the meta
model, seems natural, and sustains a good overview. See Figure 6a for an example. Other
notations are possible, for instance, using a placeholder in a SyncCharts macrostate saying
that the state still contains Esterel elements.



1 Boolean ruleXapplies(State s):
2 !s.isSimpleState() && hasMultipleSimpleFinalSubStates(s) ? true : false
3 ;
4
5 Void ruleX(State s):
6 let finals = s.collectSimpleFinalSubstates():
7 let first = finals.first():
8 finals.withoutFirst().bendIncomingTransitionsTo(first) ->
9 finals.withoutFirst().removeState()

10 ;

Listing 2: Example optimization rule removing multiple simple, final states

(a) Input (b) First Step (c) Second Step

Figure 7: Optimization of a SyncChart

Figure 6 shows the Xtend implementation of the transformation of the Esterel statement
every. The input shown in Figure 6a is transformed by the transformation rule in Fig-
ure 6b into the result annotated with references to the Xtend elements shown in Figure 6c.
In lines 2–6 of the transformation rule, all necessary new SyncCharts elements are created,
e. g., initS is the newly created initial state, see the annotation in Figure 6c. The new el-
ements are configured and the transitions are connected to their states in lines 11–24. The
inititalizeRule call, seen in line 8, is responsible for removing the Esterel code
and for naming the SyncCharts state according to the Esterel statement. Line 27 shows
the finalizeRule which makes sure that further Esterel statements are processed cor-
rectly, in this case the nothing statement.

3.2 Optimization of the SyncChart

The optimization of SyncCharts was presented by Prochnow et al. [PTvH06] as a post
processing of the Esterel to SyncCharts transformation, which initially creates several su-
perfluous SyncCharts elements, e. g., additional hierarchy levels. As can be seen in Fig-
ure 2, the optimized result removes hierarchy levels that made the SyncCharts harder to
understand than necessary. The optimization does not change any semantics but refines
the structure of a SyncChart. Hence, it can also be applied independently of the Esterel to
SyncCharts transformation.



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: Step-wise transformation and optimization of the ABRO program

Like the transformation from Esterel to SyncCharts, the optimization of SyncCharts is
defined by a collection of transformation rules, also called optimization rules. Each rule
can be applied to a SyncCharts state which meets certain criteria. To illustrate, the inner
macro state in Figure 7a contains two simple, final states, one of which is not necessary.
Hence, the optimization rule connects the transitions to one of the final states and removes
the other final state. In Listing 2, lines 5–10, a possible Xtend implementation realizing
this optimization is presented. The criterion to apply this optimization rule is the existence
of a macro state that contains more than one simple, final state. We defined this as a
predicate, seen in lines 1–3 of Listing 2.

The visualization of intermediate steps is straightforward. Both the source and the target
model base on the SyncCharts meta model. Hence, it is an endogenous in-place transfor-



mation and no new notation has to be introduced. We specify the execution of a single
optimization rule as a step and present the modified and automatically layouted SyncChart
as intermediate step.

Figure 7 shows the successive execution of two optimization rules. First, the previously
mentioned rule removing multiple simple, final states is applied. The intermediate result
is shown in Figure 7b. Second, the superfluous inner macro state is removed yielding the
SyncChart presented in Figure 7c. A further optimization would remove the transition
with the higher transition number as it is never taken.

3.2.1 Example: Transforming ABRO

Figure 8 shows the transformation of the ABRO program, the Hello World of the syn-
chronous world, including all intermediate steps. Steps (a)–(h) transform Esterel state-
ments into equivalent SyncCharts elements. Step (i)–(l) optimize the SyncChart’s struc-
ture by removing unnecessary hierarchy levels, e. g., (j)–(k), or by combining transitions,
e. g., (k)–(l).

The order of the transformation steps is not necessarily fixed. It can be changed by the user
by selecting certain states interactively. Starting from step (e) not only (f) can be the next
intermediate result but also (g). This can be achieved by providing further information to
the transformation logic. In our implementation this information is the selection of the
Parallel State of (g).

Additionally, the order of the transformation steps can be changed by the user later on.
Figure 1 shows the UI that allows the user to go steps backwards and to select another
continuation point to proceed the transformation.

Comparing (h) and (l), the importance of the SyncCharts optimization becomes clear as
(l) is smaller and easier to understand.

The example shows that the step-wise transformation reveals more information than the
direct transformation from (a) to (l). User interaction can take place between arbitrary
transformation steps allowing to change the order of the transformation steps or to perform
steps backwards. Thus, the user’s comprehensibility is improved and he can focus on steps
he is interested in.

4 A View Management Approach to Structure-Based Editing

As another practicability evaluation we will use structure-based editing which is presented
by Fuhrmann et al. [FSMvH10] as a means to simplify the manual editing process of
graphical models.

The main concept of structure-based editing is to provide predefined model transforma-
tions for common editing tasks, see Figure 9 for three examples. The first transformation
adds a successor state S1 to the existent state S. The other two transformations make S1
a macro state and add a region to the state S1. With traditional editing paradigms the user



Add
Successor
State

Make
Composite
State

Add Region

Highlight

Highlight

Highlight

Figure 9: Possible editing proceeding using KSBasE

would have to enlarge the macro state, add a new state, and connect the two states with a
new transition. With structure-based editing the user just selects the S state and executes
the predefined transformation by using a context menu or a keyboard shortcut.

In the KSBasE4 framework developed by Matzen this approach is integrated into the KIELER
environment and already provides a convenient way to add new predefined model trans-
formations for arbitrary meta models. The approach presented in this paper, leveraging
view management concepts, now allows to further interact with modified or created model
elements during runtime. We re-implemented the structure transformations seen in Fig-
ure 9 as a proof of concept, by using KiVi and the ideas presented above. This allows
to apply further visualizations to created or modified model elements. E. g., Figure 9 in-
dicates the highlighting of newly created states. Predefined model transformations can
be contributed to the Eclipse user interface via a Combination and be executed as
a TransformationEffect. Furthermore, it is possible to apply visualizing effects
upon an executed transformation by using a Combination.

5 Conclusions and Outlook

In this paper we presented an approach which enriches model transformations by inter-
activity and visualization. This aims primarily at improving comprehensibility for both
users and developers. Our approach allows user interaction during model transformations
and visualization of intermediate steps of such transformations. The seamless integration
into KiVi leaves opportunities for extensions for interaction as well as for visualization. As
an illustrating case study we presented the Esterel to SyncCharts transformation and the
SyncCharts optimization. We showed how the concepts can be applied to other existing
use cases where model transformations are used, such as the structure-based editing.

We plan to perform further evaluations, including usability tests, of the presented use
cases and further domains. Concerning KiVi we aim to improve the possibilities to con-
tribute to the user interface and implement a framework which allows the user to define
Combinations during runtime, e. g., by using a scripting language. Likewise it would
be possible to define new interactive model transformations on-the-fly.

4http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KSBasE

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KSBasE


References

[And96] Charles André. SyncCharts: A Visual Representation of Reactive Behaviors. Technical
Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France, Rev. April 1996.

[BEK+06] Enrico Biermann, Karsten Ehrig, Christian Köhler, Gnther Kuhns, Gabriele Taentzer,
and Eduard Weiss. Graphical Definition of In-Place Transformations in the Eclipse
Modeling Framework. In Model Driven Engineering Languages and Systems (MoD-
ELS’06), LNCS, volume 4199/2006, pages 425–439. Springer Berlin/Heidelberg,
2006.

[Ber99] Gérard Berry. The Esterel v5 Language Primer, 1999. ftp://ftp-sop.inria.fr/meije/
esterel/papers/primer.ps.

[FSMvH10] Hauke Fuhrmann, Miro Spönemann, Michael Matzen, and Reinhard von Hanxleden.
Automatic Layout and Structure-Based Editing of UML Diagrams. In Proceedings of
the 1st Workshop on Model Based Engineering for Embedded Systems Design (M-BED
2010), Dresden, March 2010.

[FvH10] Hauke Fuhrmann and Reinhard von Hanxleden. Taming Graphical Modeling. In Pro-
ceedings of the ACM/IEEE 13th International Conference on Model Driven Engineer-
ing Languages and Systems (MoDELS’10), volume 6394 of LNCS, pages 196–210.
Springer, October 2010.

[GW06] Holger Giese and Robert Wagner. Incremental Model Synchronization with Triple
Graph Grammars. In Proc. of the 9th International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’06), pages 543–557. Springer Verlag,
2006.

[KPRP07] Dimitrios S. Kolovos, Richard F. Paige, Louis M. Rose, and Fiona A.C. Polack. Bridg-
ing the Epsilon Wizard Language and the Eclipse Graphical Modeling Framework. In
Modeling Symposium, Eclipse Summit Europe, 2007.

[LS11] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. Lulu, 2011.

[MFvH10] Christian Motika, Hauke Fuhrmann, and Reinhard von Hanxleden. Semantics and
Execution of Domain Specific Models. In 2nd Workshop Methodische Entwicklung
von Modellierungswerkzeugen (MEMWe 2010) at conference INFORMATIK 2010, GI-
Edition – Lecture Notes in Informatics (LNI), Leipzig, Germany, September 2010.
Bonner Köllen Verlag.

[MG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electronic
Notes in Theoretical Computer Science, 152:125 – 142, 2006. Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT 2005).

[PTvH06] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing Safe
State Machines from Esterel. In Proceedings of ACM SIGPLAN/SIGBED Confer-
ence on Languages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa,
Canada, June 2006.

[Sch11] Christian Schneider. On Integrating Graphical and Textual Modeling. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, February
2011.

[VAB+07] Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen, and E Berbers. Uniti:
A unified transformation infrastructure. In In ACM/IEEE 10th International Confer-
ence on Model-Driven Engineering Languages and Systems (MoDELS 2007, 2007.

ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps

	Introduction
	View Management
	KIELER and KiVi
	Meta Models and Model Transformations
	Related Work

	Visualized Interactive Transformations
	Interactive Transformations
	Visual Transformation Approach

	Integration into KIELER
	Case Study: Interactive Transformation from Esterel to SyncCharts
	Transformation from Esterel To SyncCharts

	Optimization of the SyncChart
	Example: Transforming ABRO


	A View Management Approach to Structure-Based Editing
	Conclusions and Outlook

