
On the Pragmatics of Model-Based Design

Hauke Fuhrmann and Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

{haf,rvh}@informatik.uni-kiel.de
www.informatik.uni-kiel.de/rtsys/

Abstract. The pragmatics of model-based design refers to the practi-
cal aspects of handling graphical system models. This encompasses a
range of activities, such as editing, browsing or simulating models. We
believe that the pragmatics of modeling deserves more attention than
is has received so far. We also believe that there is the potential for
significant productivity enhancements, using technology that is largely
already available. A key enabler here is the capability to automatically
and quickly compute the layout of a graphical model, which frees the
designer from the burden of manual drawing. This capability also al-
lows to compute customized view of a model on the fly, which offers new
possibilities for interactive browsing and for simulation.

1 Introduction

Linguists distinguish the syntax, semantics and pragmatics of languages. To-
gether these three categories are referred to as semiotics—the study of how
meaning is constructed and understood. All three categories can be applied to
programming languages as well as natural languages. In the context of program-
ming languages, syntax is determined by formal rules saying how to construct
expressions of the language, semantics determines the meaning of syntactic con-
structs, and the pragmatics of a language refers to practical aspects of how con-
structs and features of a language may be used to achieve various objectives [1].
In this paper, we argue that the pragmatics of modeling languages deserves more
attention than it has received so far. Specifically, it appears that the practical
issues of how to create, maintain, browse and visualize effective graphical models
have been neglected in the past. This largely offsets the inherent advantages of
visual languages, makes it difficult to design complex systems, and unduly limits
designers’ productivity. Petre [2] quotes a professional developer as follows: “I
quite often spend an hour or two just moving boxes and wires around, with no
change in functionality, to make it that much more comprehensible when I come
back to it.”

Traditionally, “pragmatics” refers to how elements of a language should be
used, e. g., for what purposes an assignment statement should be used, or under
what circumstances a level of hierarchy should be introduced in a model. It is
usually not considered how the practical design activities themselves (editing,

www.informatik.uni-kiel.de/rtsys/

browsing, etc.) are performed—simply because this is usually not much of an
issue when textual languages are concerned. There may be differences in conve-
nience of use in different text editors, and integrated design environments (IDEs)
can provide various levels of support in building and maintaining large software
artifacts. However, the basic mechanics of writing or changing a line of code is
rather standard and efficient. In comparison, the mechanics of editing a graphical
model are much more involved, and it appears that there is much to be gained
in this area. Hence by “pragmatics of modeling languages” we here slightly ex-
tend the traditional interpretation of “pragmatics” to encompass all practical
aspects of handling a model in a model-based design flow, including the tradi-
tional aspect of how a model should be constructed to effectively communicate
its meaning.

There are several established fields that can provide valuable input here,
such as the area of human computer interaction, cognitive psychology, and the
graphical layout community. For example, there are fundamental practical dif-
ferences in using textual or graphical languages [1], and freeing the modeler
from the burden of manually drawing a graphical model opens the door to a
number of productivity-enhancing techniques that allow to combine the best
of both worlds [3]. Furthermore, there are already a number of paradigms well
established in software engineering that could be put to use for model-based
design processes, including the design of the modeling infrastructure itself. For
example, the state of the practice in creating a graphical model, say, a dataflow
diagram or a Statechart, is to directly construct its visual representation with a
drag-and-drop (DND) What-You-See-Is-What-You-Get (WYSIWYG) editor, and
henceforth rely on this one representation. We here propose instead to apply the
Model-View-Controller (MVC) paradigm [4] to separate a model from its repre-
sentation (view). Together with a modeling environment (the controller/editor)
capable of automatic model layout, one can thus provide flexible representations.
These views can be adapted according to specific design activities, balancing use-
ful information with cognitive complexity [5].

In this paper, we survey the different aspects of the pragmatics of graphi-
cal modeling languages. This covers a broad range of existing work, as well as
a number of observations and proposals that to our knowledge have not been
reported on before. As space is limited, we do not attempt to investigate any of
these aspects in much detail here, but rather try to cover as much ground as pos-
sible. A non-trivial question at the onset was how to organize the subject matter.
There exist extensive surveys in the area of model-based design, see for example
Estefan’s overview of model-based systems engineering methodologies [6], or the
overview of hybrid system design given by Carloni et al. [7]. An annotated bib-
liography by Prochnow et al. [8] inspects the visualization of complex reactive
systems. There exist numerous surveys on automatic graph drawing, which we
consider an essential enabler for efficient modeling [9,10]. However, we are not
aware of an existing taxonomy that focuses on the aspect of pragmatics. We
here opt for the aforementioned MVC concept as a guiding principle. For a first
overview, see Fig. 1. In some cases, it may be arguable how a certain aspect

Fig. 1. The MVC paradigm applied to the pragmatics of graphical model-based
system design.

should be classified; e. g., we here consider editing to be part of the model, but it
could also be classified as part of the controller. However, we still find the MVC
classification helpful.

This structure is also reflected in the organization of this paper, except that
we start with the view (Sec. 2), followed by the model (Sec. 3) and the controller
(Sec. 4). We conclude in Sec. 5.

Example figures in the following sections are mainly taken from different
graphical modeling tools like Mathwork’s Matlab/Simulink, Esterel Technol-
ogy’s E-Studio and SCADE and graphical editors basing on the Eclipse plat-
form. None of the tools handles pragmatics very well so far, so the images are
mainly for illustration of the concepts but not for showing the state-of-the-art
in implementation. An implementation of the concepts presented in this paper
is ongoing work in the project Kiel Integrated Environment for Layout Eclipse
Rich Client (KIELER)1.

2 The View—Representing the Model

We believe that a key enabler for efficient model handling is the capability to
automatically compute the layout of a graphical model. If one frees the user from
the burden of manually setting the coordinates of nodes and bendpoints, sizes
of boxes and positions of connection anchor points, this can open up enormous
potentials. The following section explores this further.

1 http://www.informatik.uni-kiel.de/rtsys/kieler

http://www.informatik.uni-kiel.de/rtsys/kieler

«Java Class»

FireDetector

setHeatBoundary ()

«Java Class»

TemperatureSensor

getSensorValue ()

setUnit ()

«Java Interface»

ISensor

getSensorValue ()

(a) UML Class
Diagram

(b) Statecharts (here
SyncCharts)

Logging

2

Actuator

1

Switch

Subsystem

in1

in2

out1

out2
Step

Ramp

Gain

2*PI

Divide

sensor3

3

sensor2

2

sensor1

1

(c) Dataflow diagrams (here Mat-
lab/Simulink)

Fig. 2. Different graphical syntaxes with different properties for their layout.

2.1 Automatic Layout

The correct use of pragmatic features, such as layout in graph-based notations, is
a significant contributory factor to the effectiveness of these representations [2].
Automatic layout has to be appealing to the user such that he or she is willing to
replace optimized manual layout with an automatically created one. Additionally
this layout capability would have to be deeply integrated into the modeling tool
and optimized for the respective graphical language syntaxes.

One must recognize that at this point, the automatic layouting capabilities
offered by modeling tools, if they do offer any capabilities at all, tend to be
not very satisfying. A major obstacle is the complexity and unclarity of this
task. What are adequate aesthetic criteria for “appealing” diagrams [11,12,13]?
Are there optimal solution algorithms or heuristics with acceptable results that
adhere to the desired aesthetic criteria? An important aspect is the usage of
secondary notation, which is specific to the modeling language used [14]. Used
properly, an automatic layout does not only provide aesthetically pleasing dia-
grams, but can also give the viewer valuable cues on the structure of a model.
For example, a standardized way of placing transition labels (e. g., “to the left in
direction of flow”) can solve the often difficult label/transition matching prob-
lem. Similarly a standardized direction of flow (e. g., “clock wise”) can give a
quick overview of the flow of information, without having to trace the direction
of individual connections.

Fig. 2 shows three examples of different graphical formalisms that pose dif-
ferent layout challenges. Unified Modeling Language (UML) Class Diagrams look
quite close to the standard graph layout problem, although sometimes hierarchy
might be added by displaying packages in the diagram. While usual relations
can be regarded as any graph edges, inheritance relations as shown in Fig. 2(a)
have a special role. They are typically drawn from top to bottom, which is a
strong constraint for the layout algorithm. So even here one needs a specialized
layout algorithm for this diagram type [15].

Statemachines fit pretty well to graph layout, but introducing hierarchy re-
quires special handling. In a diagram with hierarchy and without any inter-level
connections crossing hierarchy boundaries, the layout algorithm for a flat lay-
out can be called recursively. This was employed for Statecharts as shown in
Fig. 2(b) using the layered based Sugiyama layouter of the GraphViz library in
the KIEL project [3]. Small enhancements of the graphical syntax might have
severe consequences for the layout. Inter-level transitions, which are possible in
some Statechart dialects as UML State Machine Diagrams or Stateflow of Mat-
lab/Simulink, cannot be layouted with this approach and would require a special
handling again.

Another special class are actor oriented dataflow languages [16]. The no-
tion dataflow sometimes is used in different contexts resulting in different di-
agram syntaxes. We here consider languages usually used in the control engi-
neering domain such as Ptolemy, the Safety Critical Application Development
Environment (SCADE), or Matlab/Simulink (Fig. 2(c)). The connections denote
flows of data and two distinct connections will likely carry different data and
possibly different data types. Data are consumed by operators, and to distin-
guish the different incoming and outgoing data sources and sinks, an operator
has special input and output ports. For many operators it is very important to
specify explicitly which data flow is connected to which port because an alterna-
tion would also alternate the semantics. The example shows subtraction, division
and switch operators which are not commutative and hence need their incoming
flows exactly at the right input ports. The graphical representation also reflects
this issue by presenting specific anchor points for the connections at the border
of the operators. For the mentioned languages these ports have fixed positions
relative to the operator, usually showing the data flow from left to right by posi-
tioning inputs left and outputs right. However, some special purpose ports may
also be positioned on top or bottom of the operator, in general at pre-defined
and static locations. These port constraints induce a great complexity to the
problem and require special care such as by the approaches of Eiglsperger et al.
[17] or a modified Sugiyama layout as implemented in the KIELER project2.

Summing this up, we cannot hope for one ultimate layout algorithm that is
applicable for all languages and applications. Instead, we need a set of different
layouters to cover a wide range of language syntaxes and layout styles.

2.2 Filtering

Card et al. [18] define approaches for reducing information in a diagram: Filter-

ing, Selective Aggregation, Highlighting and Distortion. A filter simply hides a
set of objects in the diagram, to reduce the complexity of a diagram. For techni-
cal scalability issues it is often not feasible to construct and inspect models with
many objects—hundreds or thousands of nodes—but consistently working with
filters it can be. Only a small set of objects should be visible while all others are
hidden and do not consume graphical system resources. By navigating through

2 http://www.informatik.uni-kiel.de/rtsys/kieler/

http://www.informatik.uni-kiel.de/rtsys/kieler/

(a) Top-level state (b) Inner state

Fig. 3. Filtering in E-Studio, showing a part from a processor design [19]: The
composite state in the lower right corner of (a) displays only a very small part
of its inner life (b).

the model, a user reveals some parts and hides others. In order to properly work,
we need strategies to apply this automatically to free the user of the burden to
manually selecting the items to show and to hide. (This also leads to the focus
and context paradigm, see Sec. 2.4.)

Simple filters can already be found in some tools that hide objects on the
canvas while the canvas size resp. the bounding box stays the same size. Hence
only the number of elements is reduced but not the size and therefore the same
zoom level or paper size is required to display the model and there is hardly any
chance to see more of the surrounding context as before. A rather unusual way
of filtering can be used in Esterel Studio, see Fig. 3. The hierarchy mechanism in
E-Studio allows to create the relatively clearly arranged top-level diagram Fig.
3(a). However, the macrostate Watcher Kernel in the lower right reveals only a
very small part of its contents, the rest is hidden. One has to manually open the
Watcher Kernel state in a new canvas in order to see its whole extend shown in
Fig. 3(b) where a complex inner life is revealed compared to what small part of
it is shown in the parent. This feature becomes more useful in combination with
automatic layout that uses the free space gained from the filters.

Dynamic Visible Hierarchy Dynamic hierarchy is a special case of a filter
where all children of some parent object are filtered. For filters one might select
to hide items regardless of the hierarchy level to reduce the complexity, see Fig. 4
for a simple example. This corresponds to the folding features of text or XML

editors [20].

2.3 Label Management

Working with real-world applications quickly leads to the question of how to
handle long labels. Label placement is a big issue in graph drawing [21] and geog-
raphy with map feature labeling [22]. The problem is computationally intensive,

(a) Composite Box A

folded

↔

(b) Composite Box A unfolded

Fig. 4. Example for dynamic visible hierarchy, here for an actor oriented data-
flow language implemented in KIELER. This utilizes collapsible compartments
and a layer-based automatic layout algorithm supporting port constraints.

Fig. 5. Long labels prevent good layout. Here a small part of Harel’s wristwatch
example [25], converted from Esterel to Statecharts [26].

for bended edges it is NP-hard [23]. In map labeling labels are rather short—city,
street or river names—but in arbitrary Domain Specific Languages (DSLs) they
do not need to be, as Fig. 3(a) shows. We assume to have an automatic layout
algorithm that takes care of the label positioning, taking the label as is and
not changing it. There are innovative approaches changing the diagram syntax,
e. g. to replace an edge by the label itself [24] by optical scaled down distortion.
However, we do not consider such invasive changes as universal option.

Instead, we try to dynamically reduce the complexity of the label to give
the layouter better chances to find appealing layouts and to avoid difficulties as
illustrated in Fig. 5. A label filter might use different strategies, see also Table 1.
Wrapping aims to compact the label by wrapping the text while abbreviation

hides part of the text to actually shorten the length of the string. Syntactically
arbitrary labels might be handled with possibly suboptimal results. Even soft
wrapping respecting identifiers will wrap compound labels inappropriately by
not keeping related identifiers on one line. Semantical abbreviation could hide
specific token types while showing only more important ones, like operators
vs. variable/signal references. With a label manager in charge, the labels can be
dynamically displayed with different levels of detail.

Table 1. Ways to reduce label complexity temporarily. Here for a Statechart
transition label.

Original (not SignalA) and (not SignalB) / SignalC(counter)

hard
(not SignalA) and (n

ot SignalB) / Signal

C(counter)

Wrapped
syntactical

soft
(not SignalA) and (

not SignalB) / SignalC(

counter)

semantical
(not SignalA) and

(not SignalB) /

SignalC(counter)

syntactical (not SignalA) and (not Si...
Abbreviated

semantical SignalA, SignalB / SignalC

Fig. 6. Illustration for the lack of proper view management: showing the whole
system entails loosing details, windows get to small to be usable.

2.4 Focus and Context

In classical modeling environments, the user typically has the alternatives of
either seeing the whole model without any detail, or seeing just selected parts
of the model. Fig. 6, from an avionics application, shows what may happen if
one does try to see the whole system. To find a way out of this dilemma, we

(a) View with focus on state normal

↔

(b) View with focus on state error

Fig. 7. Semantical graphical focus and context in KIEL: The two large composite
states normal (a) and error (b) are only displayed in full detail when the respective
state is active. The inactive state is filtered by dynamic hierarchy and forms the
context.

note that when working with a model, it is common that there are parts of the
model of particular interest for the current operation or analysis, which we refer
to as the focus. Other objects next to it comprise the context, which might be
important information to understand the focus objects but may be displayed
with less details. This leads to a focus and context approach where filters are
employed to hide irrelevant objects [27].

Focus and Context in KIEL The Kiel Integrated Environment for Layout
(KIEL) project [3] uses a semantical graphical focus and context technique to hide
details in the context while highlighting the focus. It is semantical, because the
decision of objects to be filtered is made automatically from semantic background
information from the model [27]. The concept is used during simulation of a
Statechart diagram where the focus seems to be quite natural to state machines:
the currently active states. Hence all active simple states are displayed together
with their whole hierarchy, i. e. all ancestor states (which actually are also active).
Dynamic visible hierarchy, as presented in Sec. 2.2, is used to show all sibling
states but hide their contents. Hence, tidy diagrams are presented always with
reduced complexity as shown in Fig. 7.

During simulation the user never sees the whole diagram but only either one
of the focused views. Smooth animated morphs between the views guide the
mind of the user from one view to the other so he or she can keep the mental

map of the whole application [28].

Alternatives for Focus and Context Experience showed that KIEL’s specific
interpretation of what objects comprise the focus and which the context is not
always optimal. Sometimes it is difficult to follow the reasons of the view change,

i. e. the switch from state normal to error. Signals emitted in the collapsed state
can cause this change but are immediately hidden and hence the user cannot
follow the causal event chain. This calls for a more general approach for applying
focus and context techniques. Even for this specific DSL one can come up with
various other schemes to select the focus objects.

– One could show an intermediate step between the transition where the former
active and the new active states are focused both.

– One might decide the focus by active transitions instead of states—this could
also filter parallel regions that do not change configuration.

– The context does not necessarily must go up to the top level, but might be
limited to some number of hierarchy levels.

– Meta focus: one could specify a more abstract focus, e. g. “focus on signal
S,” which would set the concrete focus on transitions/states that reference
S

2.5 View Management

Considering diagram types other than Statecharts, it is not that obvious how to
select the focus of the diagram, because there might be no such thing as an active
state—e. g. in dataflow diagrams sometimes all operators are active in every
step—or there is no visible step-wise simulation at all—e. g. structural diagrams
such as UML class diagrams. To broaden applicability, it appears natural to
upgrade layout information and directives to “first-class-citizens.” By this we
mean that the view of a model becomes part of the state of a model, which can
be controlled by the user, the modeling tool, or the model itself. An engine for
view management could for example categorize graphical entities in focus and
context, maybe even multiple levels of context by setting different levels of detail

as denoted by Musial for UML [29]. These and other aspects of view management
are depicted in Fig. 8.

The view manager needs to listen to triggers, or events, at which it might
change between the dynamic views, showing the user some objects in the focus
and others in the context. These triggers might be user triggers, induced manu-
ally by the user, e. g. manually clicking on fold/unfold buttons at parent nodes
or manually changing the focus by selecting a different node. They could also be
system triggers, produced by the machine by some automatic analysis, seman-
tical information, progress of time (real or logical), etc. Memorized triggers can
for example be trigger annotations stored persistently with a model.

Obviously, this view manager can hardly be one monolithic application that
carries all information and is applicable for all types of DSLs and application
environments. We need a way to efficiently specify both the triggers to listen to
and the effects that shall be performed. This view management scheme (VMS)
needs to be provided by the developer, either by the application developer for
application specific schemes or by the tool creator for more general schemes
applicable for a whole DSL. For a practical user interface this VMS should be
expressed by a simple syntax, maybe close to some general purpose scripting
language. It would require expressions to

Fig. 8. Aspects of view management.

1. address different user triggers (mouse clicking, keyboard events),
2. specify custom system triggers,
3. address different system triggers,
4. address different visualization effects (folding, unfolding, filtering, layout

triggering, choose layout algorithms), and
5. address graphical diagram objects or their properties, either specific objects

(e. g. “State A”) or classes of objects (e. g. “a node of type state”) or specific
patterns of such objects.

Some of the items can be implemented using standard techniques, such as
addressing model elements. A set of predefined user triggers and visualization
effects could be provided. It is not that obvious how to specify custom system
triggers. Most of them will be very semantic-specific for a certain DSL. For
example the trigger “a state has become active” in a Statechart would require
interaction with the simulation engine and hence cannot be implemented only
with the knowledge about the certain DSL meta-model and the modeling and
visualization framework. Therefore an interface to the “outside” is required, the
respective lower level programing environment of the modeling tool.

Such a view management engine could be employed to handle the ideas of
semantical focus and context in a general way. It should also allow, via user trig-
gers, to quickly navigate manually through a model, using for example semantic

zooming and panning where one considers the structure of a model to navigate
through it. For example, one would not just change the zoom on a linear percent-

Fig. 9. Meta Layout: Multiple different automatic layout algorithms applied in
one diagram, here from left to right GraphViz layered based Sugiyama Layout,
the Zest Spring Embedder, a layered layout with radial layouter in child and
GraphViz Circo [31].

age scale as is commonly the case, but could also change the zoom by hierarchy
level.

2.6 Meta Layout

For a given graphical DSL there might be different layouts for the graphical
representation conceivable. There may be different automatic layout schemes
available, either the same algorithm but with different parametrization options,
or completely different layout algorithms. Each layout algorithm results in a
different layout style. We denote the process of selecting and combining different
already existent layout algorithms as meta layout. This should be integrated into
the view management.

Note that this is somewhat contradictory with the concept of having a normal

form [30], where models with the same domain model will have the same graph-
ical representation. The motivation for normalization is to limit ambiguity and
subjectiveness when creating or analyzing diagrams. However, it may be hard
to find one layout algorithm that provides optimal layout results for all possible
applications—even within one DSL. So we may soften the idea of normalization
by varying degrees. One could apply different layouters (1) to different models,
(2) within one model, in different hierarchy levels and (3) within one model, in
different regions of the same hierarchy level (see Fig. 9).

Layouter Choosing Strategies Having multiple layouters and different re-
gions in the diagram, a question arises: When to apply where what layout? This
is answered by layout choosing strategies.

The simplest strategy could be to let the user decide. The user manually
annotates each part of the model with the specification of which layouter should
be used. This way the user would be able to select the best layouters according
to his or her personal subjective aesthetic criteria. Additionally, the user could
consider application and system specific properties when choosing the layouters.

For a larger benefit, the modeling tool could assist in choosing the right
layouter settings by trying to optimize the layout result. The optimization cri-
teria should be provided by the user while the machine should be able to work
with them. Possible criteria are syntactic aesthetic criteria such as link cross-
ings, link lengths, diagram area, aspect ratio; semantic aesthetic criteria such
as alignment, symmetry or zoning [32,33]; prescribed development patterns ; or
model element types, e. g. graph-based vs. port-based.

3 The Model—Synthesis and Editing

A graphical model is nice to look at, but can be effort-prone to create or change.
Common editors have the paradigm of WYSIWYG DND interaction. In general it
is desirable to immediately get visualized effects of editing steps in WYSIWYG.
However, the way of interaction—DND—is the source of plenty of additional
manual editing efforts. Strictly speaking, the term drag-and-drop (DND) denotes
a specific sequence of steps including the dragging of elements. However, we will
refer to DND for all DND style editing in current modeling tools. This includes
all manual layout positioning of objects on the graphical canvas such as the
placement of nodes and edge bendpoints, moving and resizing. Even moving an
object by selecting it first and using the arrow keys on the keyboard falls into
this category.

We advocate to try to avoid the tedium induced by DND editing as much
as possible, to put back into the focus the system instead of its graphical rep-
resentation. The basic enabler is the aforementioned capability for automatic
layout (Sec. 2.1). One issue here again is the preservation of the mental map
of the modeler. In the context of model editing, there exist different schools
of thought. One direction argues that the appearance of a model after an edit
should be changed only minimally, to preserve the mental map [34]. The other
approach is to try to give models a uniform appearance, that “the same should
look the same,” proposing a normal form that is independent of the modeler
and the history of the model (see also Sec. 2.6). There the issue of mental map
preservation is addressed during the editing step by a morphing animation of
the model.

3.1 Structure-Based Editing

The idea of structure-based editing comprises only structural decisions of the
developer, which are (1) to select a position in the model topology and (2) to
select an operation to apply to the model. This changes only the structure of the
model, i. e. its topology, sometimes also referred to as the domain or semantic

model.
The graphical representation also can be updated immediately. The auto-

matic layout has to be applied to create a fresh view of the new structure of
the model after the user operation. The complexity of the model and the per-
formance of the layout algorithms determine whether it is feasible to apply the

(a) Simple state is
selected

→

(b) New successor
state added

→

(c) New state is
upgraded

→

(d) After another
upgrade

Fig. 10. Example for structure-based editing of a Statechart.

layouter after every small editing step in order to get immediate visual feedback.
Therefore we eliminate the DND style editing but possibly keep the WYSIWYG

nature of the editor. We believe that this immediate visual feedback is valuable
enough to put a premium on fast layouting algorithms, even if this might give
slightly sub-optimal results.

Structure-Based Editing for Graph-Based Models For DSLs that are
based on graphs we gained some experience from the KIEL project, which ap-
plies this paradigm to Statecharts. Graphically they consist of states (nodes),
transitions (edges), hierarchy and parallel regions. In this case only a small set of
different structural operations are required to create or modify the charts. For a
selected state these are only (1) create a new following state and (2) upgrade the

state, as shown in Fig. 10. For transitions the operations are only (1) transition
creation and (2) to reverse a transition. Some other “syntactic sugar” can be
provided, but nevertheless the operation set is relatively small. Other changes to
the model are done afterwards, e. g. changes of labels by filling out form fields.

This paradigm would also apply for other graph-based DSLs because the set
of affected model elements in every step is small—up to two. For node operations
one node needs to be selected, for edges there are two nodes, source and target.

Structure-Based Editing for Port-Based Models For dataflow models
with ports (cf. Sec. 2.1) the case is a bit more complex. Especially adding new
nodes requires more specification than a simple operation like “add a successor
node” can provide. In a graph-based model this operation will generally trans-
form one valid model to another valid model, because it can add a new state
and simply connect old and new state with a transition. Port-based models have
stricter connection requirements. In general there is an arbitrary set of different
kinds of operator nodes; usually this node library is also extensible by the user.
Each node has a certain interface, i. e. the set of input and output ports that
specifies how the node must be connected to other nodes. Hence a new node in
the model likely requires not only one but multiple connections which have to
be specified not only between the nodes but between specific ports. There are
different ways possible for the user interface in this case.

(a) Original situa-
tion

→

(b) After adding a node
with one initial connection

→

(c) Inputs are fully con-
nected

→

(d) After adding another
node

→

(e) Connections complete

Fig. 11. Possible structure-based editing steps in a port-based language.

In the first approach the goal is to still provide the diagram itself as the user
interface. To support incremental editing, the operation to be performed can
be divided in small incremental steps where each does not necessarily lead to a
valid dataflow model because it might be not sufficiently connected. After every
step the view manager can update the layout and some meaningful graphical
representation of the intermediate step is created. An example sequence of such
operations is shown in Fig. 11.

In this scenario, the set of operations to connect ports determines the ef-
ficiency of creating or editing models. Shortcut operations to connect multiple
ports can help to reduce the manual steps. For example the SCADE editor pro-
vides the operations connect by rank and connect by name which will intercon-
nect all inputs of one with the outputs of another selected node either by name
of the ports or successively by their rank. In SCADE this is not post-processed
with the view management, but this can give a first inspiration for the type of
connection operations that are helpful.

The operations can be hard-coded for each language or language class. Ad-
ditionally, the paradigm can be used in conjunction with model transformation
frameworks. Especially in-place transformations change the underlying domain
model by pattern matching where source and target meta-model are the same.
Hence the original model is only changed instead of transformed into another
DSL. Therefore an in-place transformation framework such as from Taentzer et
al. [35] can be used to specify the transformations while the view management
with automatic layout adds the graphical feedback to get the full WYSIWYG

experience.

3.2 Modification and Deletion

For all possibilities of model changes, the set of model operations must be aug-
mented by operations for removing nodes and connections. Additionally a set
of syntactic sugar operations should be provided to manipulate the models effi-
ciently, e. g.

– replace a node by another node of another type,
– replace a connection by a different connection type,
– redirect a connection, or
– insert a new node into one or multiple connections if the port rank fits—i. e.

break up the connection into two parts, insert the new node and connect the
input and output to the connection endpoints.

This can reduce manual steps especially by keeping attributes of the objects that
were manually set after the object creation.

Error Handling We should learn from best practices in textual programming
IDEs and try to adopt features to graphical modeling. For example the Quick Fix

feature of Eclipse allows beginners to learn textual programming—e.g. Java—
in an interactive tutorial-like way. Errors are displayed immediately with the
help of incremental continuous compiling. Additionally the UI presents a list of
possible solution operations which can be triggered by the user.

Features like this can be incorporated into graphical modeling by orchestra-
tion of different building blocks. There are generic modeling frameworks that
support model validation such as the Eclipse Modeling Framework (EMF) with
its Validation Framework3. Hence it is possible to consequently feedback the
information about the model consistency to the user. For specific DSLs there
should be a set of standard error cases provided together with a set of possible
solution operations, again supported by automatic layout of the created solution
model.

3.3 Synthesis

With an automatic layout capability, it is not only possible to change models
interactively with the developer. One can also synthesize completely new graph-
ical models, including the domain model and its graphical representation. There
are multiple scenarios where this model synthesis can be of significant benefits
and lead to innovative modeling environments.

Textual Modeling An alternative to the graphical representation of a model
still is text. Having information in a textual representation can have many ad-
vantages [1,26]. There are already well accepted approaches for textual modeling

available such as the Textual Concrete Syntax (TCS) [36] or Xtext [37], both

3 http://www.eclipse.org/modeling/emf/

http://www.eclipse.org/modeling/emf/

frameworks for Eclipse. The developer specifies the meta-model of the DSL and
the textual syntax and the framework generates parsers and textual editors.
The latter are equipped with convenient features like syntax highlighting, auto-
completion, static analysis, structure outline view, source code navigation and
folding. Textual models will be parsed into the actual domain model data struc-
tures so they can be processed like all other domain models.

The missing link is the one to a graphical model. Here, automatic layout and
view management can be used to synthesize the graphical representations from
the textual ones. This can be done in different levels of integration:

1. A graphical model is only once initialized from the text. Afterwards the
graphical model is worked on. Usually there is no way back into the textual
model; an exception here is Eclipse.

2. There is a transformation between textual model and graphical model in
both directions. This is usually denoted as round-trip engineering. Some
dedicated commercial tools support this for special DSLs, usually class dia-
grams, but this is still uncommon.

3. The tightest integration perfectly synchronizes textual and graphical repre-
sentation. Hence the user sees two different views and every change in either
of the views automatically updates the other view. So working in the views
is interchangeable even for small steps. This paradigm has been explored in
KIEL for Statecharts and is applicable for other DSLs as well.

To increase the integration further, text and graphics could be mixed in one
view. If there is a textual representation for single graphical objects, there could
be two different views of the graphical model. One view displays all graphical
entities while the other exchanges one of the objects with a text box containing
the textual representation of only this model part.

Scalable Models Model synthesis can be applied together with scripting tech-
niques to create complex and large models according to predefined and parametriz-
able patterns. Scripts of different flavors could be applied just like scripts, macros

or templates in textual languages. This leads to scalable models, as investigated in
Ptolemy [38]. In this case the scripts that configured the model creation process
are in the same graphical syntax as the models themselves. More sophisticated
automatic layout techniques could enhance the graphical results. This approach
could be applied more generally for arbitrary DSLs and combined with an ap-
propriate user interface.

Pattern-Based Modeling Development patterns are a common technique
in software engineering. When creating behavior diagrams such as Statecharts
or dataflow models, one should model common tasks in a common way. This
naturally leads to patterns for graphical modeling [39,40]. Examples are patterns
for error handling, sequencing or loops—depending on the DSLs, many more
can be identified. Graphical modeling environments could support the usage of
pattern-based development in various ways.

– Design patterns can be highlighted in a model [41].
– A specific pattern can be chosen by the user and parametrized to be added

to a graphical model.
– The view management should support user defined automatic layout schemes

according to a given pattern. If in a state diagram a loop should be modeled,
this could correspond to a pre-defined graphical positioning of the nodes, e. g.
in a circle or in a sequence with one back transition.

– Analysis of the model could detect certain patterns for standard operations
such as graph transformations [35,42]. Additionally it should be able to lay-
out existing patterns to given pattern layout schemes.

A simple user interface is necessary so even beginners and intermediates can
quickly start to employ patterns in their development.

Product Lines Another use case for proper view management and/or model
synthesis are product lines. Here, a set of closely related products is offered,
where each product likely differs only by some specialization or configuration
from the others. For textual programs, the source code comprises all features,
whereas the build process configures different target products with different fea-
tures deactivated. This could be analogous to the use of pre-processor macros
in textual languages, where e. g. an #ifdef macro can hide parts of the program
source.

A graphical model can also serve as a master model for a product line. To
investigate one of the target products and further processing, the final product

model should be accessible as any other model. To avoid the maintenance of mul-
tiple models, the product model should be synthesized from the master model
and comprise only the elements necessary for the features of the product. This
means omitting certain model objects of the master or configuration of scalable
model parts. In certain cases this can be augmented by static analysis to iden-
tify the required model parts automatically, e. g., by deactivating superfluous
outputs.

3.4 Multi-View Modeling

So far we were considering multiple views only within the same DSL in order
to change the levels of detail in certain circumstances to get the best trade-off
between overview and details. One can drive the idea of multi-view modeling
further by defining completely different views instead of only manipulating the
focus and context configuration.

The term multimodeling is referred to employing multiple modeling seman-
tics in one single model [43]. For example mixing different semantics such as
synchronous data flow with state machines and discrete events or others is a
preeminent feature of the Ptolemy modeling framework. This still keeps only
one view on the same model, although the model itself is of very heteroge-
neous character. However, one can for example establish semantical equivalence

(a) Statechart model (b) Ptolemy model

Fig. 12. From Statecharts to Ptolemy: both models implement the same behav-
ior [43].

between Statecharts and mixed synchronous reactive and state machine mod-
els [43]. Hence for the same semantics, there exists a Statechart and a Ptolemy
model that implements that behavior. This means for the same semantical be-
havior there exist multiple different graphical representations, each with their
advantages and disadvantages. Considering the example in Fig. 12, one might
argue that the Statechart model is more compact, but the Ptolemy model makes
further information explicit, notably the information flow. We could exploit the
equivalence by transforming a Statechart into a Ptolemy model or vice versa—at
least for suitable Ptolemy subsets. The disadvantage would be that we still have
two completely different models including two different domain models. Both
models could be transformed only as whole in a global transformation of all
model parts.

An alternative could be to keep only one common domain model and on top
of that create two different graphical representations, one for Statecharts and
one for Ptolemy. This would be always applicable where one model part can
be expressed in multiple ways. Then the model part could have multiple com-
pletely different views. The major benefit would be that the different graphical
representations could be interchanged in any hierarchy level resulting in a mixed
graphical model. The different views could be handled by the view management
just as the other views proposed above.

4 The Controller—Interpreting the Model

Sophisticated static analyses can determine properties of a model, for example
causality issues for dataflow models [44]. If such an analysis determines certain

Fig. 13. Dual Model for Statecharts: Two parallel controllers communicate via
broadcast. The dataflow is displayed as an overlay of the original control flow
graphical representation.

properties of a set of model elements, it can be used as a trigger for the Meta
Layouter in order to get a visual feedback of the analysis. Especially a catego-
rization of model elements in two sets can be interpreted as a categorization into
focus and context objects.

4.1 Dual Modeling

The graphical representation depicts the main model objects as nodes, where
the containment relations can be reflected by hierarchy in the model. Explicit
connections display some other relations between the model objects. However,
there is typically a set of model attributes that is hidden in simple property
dialogs or simply represented by a label in the graphical representation. Relations
between those attributes are usually not visible.

We propose a dynamic extension of the graphical representation by its dual

model, i. e. a graphical representation of the relations between referenced objects
where this reference is not yet visualized. We again examine the example of
Statecharts. The dual model of a Statechart is a graph where the transition
labels are the nodes and the relations between guards and actions form the
connections. The graph shows which transition produce triggers and which ones
read those triggers. It makes explicit how the broadcast communication is used
by showing the flow of data and signals in the model. By graphically overlaying
the original graphical representation with its dual model, we reuse the same
graphical view in order to keep the mind map within the user, as illustrated in
Fig. 13.

The dual model methodology should not only be helpful for Statecharts, but
applies to very different types models. References to other model parts are quite

common where an explicit graphical representation is omitted for the sake of
clarity in the original model.

4.2 Dynamic Behavior Analysis

We usually distinguish the structure and the behavior of a model. To validate
behavior, it is common practice to employ simulations prior to physical deploy-
ment. Therefore we employ DSLs with known specified semantics such that the
models can be executed.

Simulation Management Employing the meta layouter during testing gives
us the same benefits as for simple manual browsing, as interesting parts can be
put into the focus while the context is still visible. Additionally, a simulation
run gains a new dimension: time. Hence there might be times where nothing of
relevance happens and other points in time with interesting events. The problem
is to determine “interesting” parts and times during simulation.

Therefore we propose to extend the meta layout view management by simula-

tion management. It defines an additional set of system events for triggering view
management effects and additional effects for manipulating simulation time.

Both simulation triggers and effects are highly dependent on the language
semantics. Hence a simulation manager is usually only applicable for a small set
of DSLs.

Visual Breakpoints Simulation triggers are customizable conditions over in-
ternal states and variables of the simulation. Hence both the specification and
the interpretation of those triggers require access to the semantics of the model
and the simulation engine. The triggers cause effects, on the one hand usual
view changing effects, such as graphical focus change events, on the other hand
simulation effects that alter the behavior of simulation time, such as simulation
pause or stop.

A simulation manager should allow to specify visual breakpoints, the combi-
nation of a specific target view with the condition under which this view will be
shown and possibly the suspension of the simulation to give time for analysis
of the situation. A properly configured simulation manager knows what “inter-
esting” items are, both in time and model objects. So during simulation a user
always gets to see the right parts of interest without any manual user interaction;
no manual navigation actions are required.

An example for dataflow diagrams is shown in Fig. 14. Here a focus is set to
one actuator and all components in the dataflow towards that actuator. Other
components are filtered. This results in tidy diagrams that illustrate specific
aspects, e. g. for analyzing Actuator B. During a simulation run, the respective
view could be shown, whenever some specific value is received by one of the
actuators. The way of actually displaying the data is another issue but could be
integrated into the diagram. The dynamic focus and context technique imple-
mented in KIEL for Statecharts (cf. Sec. 2.4) could be implemented in a straight

(a) Original controller (b) All dependencies of Actuator A,
two sub-controllers and only Sensor

A

(c) Dependencies of Actuator B (d) Dependencies of Actuator C, which are
all prior inputs

Fig. 14. View Management in a dataflow language for some embedded controller
with three sensors and three actuators.

forward fashion by adding simulation events for every state change and setting
the set of focus objects to the the active states.

Simulation Tracking and Control It is common practice to show (highlight)
the current state of a system. In some areas, it is also common to show the
current change of state (e. g., a transition in a Statechart). There are natural
extensions that one could consider, such as showing the recent past (e. g., the
last n states), or the possible future (states that might be reachable in the next
n steps, this would require some kind of static/dynamic analysis).

A desirable feature is to be able to not just run a simulation and to stop it
at certain points, but also to step backwards again. This tape recorder paradigm

has already been integrated into some modeling tools, e. g., Statemate [25].

5 Conclusions

We have presented an overview of different aspects of modeling pragmatics. A
guiding principle has been the model view controller paradigm, which has been
quite successful in software engineering and which we believe has much to offer
in the world of model based design as well.

We consider automatic layout of the graphical representation to be one of
the basic key enablers for good pragmatics. We build upon layouters by dynamic
filters that reduce the complexity of diagrams and focus and context as a special
case of such filters. A view management engine organizes different dynamic views
synthesized with filters in order to assist the user in seeing the “interesting” parts

of the model. We extend the view management by meta layout, which plays with
different layout styles even within different parts of one graphical model in order
to get optimal layout results.

With these building-blocks we support a set of use-cases in the modeling
process that will help us to cope with very large model instances. For creation
and modification we propose structure-based editing to free the user of many
manual effort prone tasks. Auto-layout enables graphical model synthesis and
opens the door for perfectly synchronized textual and graphical representations,
scalable models, pattern-based modeling and support for product lines.

This survey cannot hope to be complete in any way. What we do hope to
achieve is to raise the level of awareness about the importance and possibilities
of modeling pragmatics in general. In a way, this paper might thus be regarded
as a (partial) road map for possible future developments in modeling pragmatics.

References

1. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages and Computing 10(4) (1999) 317–342

2. Petre, M.: Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Communications of the ACM 38(6) (June 1995) 33–44

3. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG.
In: Proceedings of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’07), Nashville, TN, USA (October
2007)

4. Reenskaug, T.: Models – Views – Controllers. Technical report, Xerox PARC
technical note (December 1979)

5. Kopetz, H.: The complexity challenge in embedded system design. Research Re-
port 55/2007, Technische Universität Wien, Institut für Technische Informatik,
Treitlstr. 1-3/182-1, 1040 Vienna, Austria (2007)

6. Estefan, J.: Survey of model-based systems engineering (MBSE) methodologies,
Rev. B. Technical report, INCOSE MBSE Focus Group (May 2008)

7. Carloni, L., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.: Languages and
tools for hybrid systems design. Foundations and Trends in Design Automation
1(1) (2006) 1–204

8. Prochnow, S., von Hanxleden, R.: Visualisierung komplexer reaktiver Systeme –
Annotierte Bibliographie. Technical Report 0406, Christian-Albrechts-Universität
Kiel, Department of Computer Science, Kiel, Germany (June 2004)

9. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: An annotated bibliography. Computational Geometry: Theory and Appli-
cations 4 (June 1994) 235–282

10. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

11. Coleman, M.K., Parker, D.S.: Aesthetics-based graph layout for human consump-
tion. Software – Practice and Experience 26(12) (December 1996) 1415–1438

12. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Information Visualization 1(2) (2002) 103–110

13. Völcker, J.: A quantitative analysis of Statechart aesthetics and Stat-
echart development methods. Diploma thesis, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science (May 2008)
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jovo-dt.pdf.

14. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
A ‘cognitive dimensions’ framework. J. Visual Languages and Computing 7(2)
(June 1996) 131–174

15. Gutwenger, C., Jünger, M., Klein, K., Kupke, J., Leipert, S., Mutzel, P.: A new
approach for visualizing UML class diagrams. In: SoftVis ’03: Proceedings of the
2003 ACM Symposium on Software Visualization, New York, NY, USA, ACM
(2003) 179–188

16. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers 12

(2003) 231–260
17. Eiglsperger, M., Fößmeier, U., Kaufmann, M.: Orthogonal graph drawing with

constraints. In: SODA ’00: Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SIAM (2000) 3–11

18. Card, S.K., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization:
Using Vision to Think. Morgan Kaufmann (January 1999)

19. Tiedje, M., Traulsen, C.: Designing a reactive processor with Esterel v7. In: Pro-
ceedings of the Workshop on Model-Driven High-Level Programming of Embedded
Systems (SLA++P’08), Budapest, Hungary (April 2008)

20. Leung, Y., Wilson, G.: WinFold: a folding editor for collaborative writing. Com-
munications, 1999. APCC/OECC ’99. Fifth Asia-Pacific Conference on Commu-
nications and Fourth Optoelectronics and Communications Conference 2 (1999)
1073–1078 vol.2

21. Dogrusöz, U., Kakoulis, K.G., Madden, B., Tollis, I.G.: On labeling in graph
visualization. Inf. Sci. 177(12) (2007) 2459–2472

22. van Dijk, S., van Kreveld, M., Strijk, T., Wolff, A.: Towards an evaluation of quality
for names placement methods. International Journal of Geographical Information
Systems (2002)

23. Kakoulis, K.G., Tollis, I.G.: On the edge label placement problem. In: GD ’96:
Proceedings of the Symposium on Graph Drawing, London, UK, Springer-Verlag
(1997) 241–256

24. Wong, P.C., Mackey, P., Perrine, K., Eagan, J., Foote, H., Thomas, J.: Dynamic
visualization of graphs with extended labels. In: INFOVIS ’05: Proceedings of the
Proceedings of the 2005 IEEE Symposium on Information Visualization, Washing-
ton, DC, USA, IEEE Computer Society (2005) 10

25. Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE Transactions on Software Engineering
16(4) (April 1990) 403–414

26. Prochnow, S., Traulsen, C., von Hanxleden, R.: Synthesizing Safe State Machines
from Esterel. In: Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES’06), Ottawa, Canada
(June 2006)

27. Köth, O., Minas, M.: Structure, Abstraction, and Direct Manipulation in Diagram
Editors. In: DIAGRAMS ’02: Proceedings of the Second International Confer-
ence on Diagrammatic Representation and Inference, London, UK, Springer-Verlag
(2002) 290–304

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jovo-dt.pdf

28. Branke, J.: Dynamic graph drawing. In Kaufmann, M., Wagner, D., eds.: Drawing
Graphs: Methods and Models. Volume 2025 of Lecture Notes in Computer Science.
Springer Verlag (2001)

29. Musial, B., Jacobs, T.: Application of focus + context to UML. In: APVis ’03: Pro-
ceedings of the Asia-Pacific symposium on Information visualisation, Darlinghurst,
Australia, Australia, Australian Computer Society, Inc. (2003) 75–80

30. Prochnow, S., von Hanxleden, R.: Comfortable modeling of complex reactive sys-
tems. In: Proceedings of Design, Automation and Test in Europe (DATE’06),
Munich, Germany (March 2006)

31. Schipper, A.: Layout and Visual Comparison of Statecharts. Diploma
thesis, Christian-Albrechts-Universität zu Kiel (December 2008)
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf.

32. Kosak, C., Marks, J., Shieber, S.: Automating the layout of network diagrams
with specified visual organization. Transactions on Systems, Man and Cybernetics
24(3) (March 1994) 440–454

33. Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Proceedings of Graph Drawing Symposium, Di Battista, G. (ed). Volume 1353
of Lecture Notes in Computer Science., Springer Verlag (1997)

34. Castelló, R., Mili, R., Tollis, I.G.: A framework for the static and interactive
visualization for statecharts. Journal of Graph Algorithms and Applications 6(3)
(2002) 313–351

35. Biermann, E., Ehrig, K., Khler, C., Kuhns, G., Taentzer, G., Weiss, E.: Graphical
Definition of In-Place Transformations in the Eclipse Modeling Framework. In:
Model Driven Engineering Languages and Systems, Lecture Notes in Computer
Science. Volume 4199/2006., Springer Berlin/Heidelberg (2006) 425–439

36. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE ’06: Proceedings of the 5th In-
ternational Conference on Generative Programming and Component Engineering,
New York, NY, USA, ACM (2006) 249–254

37. Efftinge, S., Voelter, M.: oAW xText: A framework for textual DSLs. In: Eclipse
Summit Europe, Esslingen, Germany (October 2006)

38. Feng, T.H., Lee, E.A.: Scalable models using model transformation. In: 1st Inter-
national Workshop on Model Based Architecting and Construction of Embedded
Systems (ACESM

B). (September 2008)
39. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)
40. Douglass, B.P.: Real-time Design Patterns: Robust Scalable Architecture for Real-

time Systems. Addison-Wesley (2003)
41. Peters, A.K.: Musterbasiertes Layout von Statecharts. Masters thesis, Univer-

sität Hamburg, Falkultät für Mathematik, Informatik und Naturwissenschaften,
Department Informatik (June 2008)

42. Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformation
in the formal specification of model interpreters. Journal of Universal Computer
Science 9(11) (2003) 1296–1321

43. Brooks, C., Cheng, C.H.P., Feng, T.H., Lee, E.A., von Hanxleden, R.: Model en-
gineering using multimodeling. In: Proceedings of the 1st International Workshop
on Model Co-Evolution and Consistency Management (MCCM’08), a workshop at
MODELS’08, Toulouse (September 2008)

44. Zhou, Y., Lee, E.A.: Causality interfaces for actor networks. ACM Transactions
on Embedded Computing Systems (TECS) (April 2008) 1–35

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf

	On the Pragmatics of Model-Based Design
	Hauke Fuhrmann and Reinhard von Hanxleden

