
Multi-View Modeling and Pragmatics in 2020?

Position Paper on Designing
Complex Cyber-Physical Systems

Reinhard von Hanxleden1, Edward A. Lee2,
Christian Motika1, and Hauke Fuhrmann3

1 Christian-Albrechts-Universität zu Kiel, Department of Computer Science
Olshausenstraße 40, 24118 Kiel, Germany
{rvh,cmot}@informatik.uni-kiel.de

2 University of California at Berkeley, EECS Department
545Q Cory Hall, University of California, Berkeley CA 94720-1770

eal@eecs.berkeley.edu
3 Funkwerk Information Technologies GmbH

Edisonstraße 3, 24145 Kiel, Germany
Hauke.Fuhrmann@funkwerk-it.com

Abstract. Multi-view modeling refers to a system designer constructing
distinct and separate models of the same system to model different (se-
mantic) aspects of a system. Modeling pragmatics also entails construct-
ing different views of a system, but here the focus is on syntactic/prag-
matic aspects, with an emphasis on designer productivity, and the views
are constructed automatically by filtering and drawing algorithms.
In this paper, we argue that both approaches will have growing influence
on model-based design, in particular for complex cyber-physical systems,
and we identify a number of general developments that seem likely to
contribute to this until 2020. This includes notably the trend towards
domain-specific modeling and agile development, novel input devices,
and the move to the cloud. We also report on preliminary practical results
in this area with two modeling environments, Ptolemy and KIELER, and
the lessons learned from their combined usage.

1 Introduction

A question prominently asked in computer science in model-based design is what
kind of model (of computation) is particularly suitable for a given design prob-
lem. We here instead focus on the question of what view of a model might be
best for a given task. When a designer creates two different models of the same
system, e. g., one model for functional validation and another for deployment,
this is referred to this as multi-view modeling. In this paper, we take a broader

? This work was funded in part by the Program for the Future Economy of Schleswig-
Holstein and the European Regional Development Fund (ERDF).

look at multi-view modeling than that traditional interpretation, and try to ex-
trapolate recent developments, including existing products, into the mid-term
future. We target the year 2020 as a time frame when not only the basic tech-
nologies are in place (in fact, much of these technologies are in place already
today, as this paper aims to illustrate), but also have found their way into main-
stream modeling tools and practices. We do so with particular consideration of
modeling pragmatics, which refers to the practical aspects of handling graphical
system models of complex systems, encompassing a range of activities such as
editing, browsing or simulating models [8].

Contributions and Outline. We advocate in this paper to expand multi-view
modeling to constructing different model views even if they refer to the same
semantic aspects. We will argue in the following that this approach meshes well
with current trends towards agile, domain-adapted modeling, and propose to
employ usage-specific views and hybrid views. These do not only consider the
domain of an application, but also the current design activity a modeler is pur-
suing (Sec. 3). This approach has an immediate benefit for designer productivity,
and thus supports “pragmatics-aware modeling.” We also investigate what con-
sequences the trend towards “post-PC devices” and their novel user interfaces
might have on today’s modeling activities, and propose touch-based editing and
browsing to increase designer productivity (Sec. 4). Furthermore, in the context
of the increasingly pervasive “move to the cloud,” we propose an actor-oriented,
distributed tooling approach (Sec. 5). This tooling approach should foster syn-
ergies and could also support agility as addressed in Sec. 3. We conclude in
Sec. 6.

2 Background and Related Work

A graphical model is a model that can have a graphical representation, like a
Unified Modeling Language (UML) class model. A view onto the model is a
concrete drawing of the model, sometimes also diagram or notation model, e. g.,
a UML class diagram. The abstract structure of the model leaving all graphical
information behind is the semantical or domain model, or just model in short.
E. g., a class model can also be serialized as an XML tree. Hence, the model
conforms to the abstract syntax, while the view conforms to the concrete syntax.
Fig. 1 shows three different views of the same class model.

Model-Driven Engineering (MDE), or alternatively Model Driven Software
Development (MDSD), denotes software development processes where models are
central artifacts that represent software entities at a high abstraction level [5].
Multimodeling is the act of combining diverse models, to model, e. g., different
parts of a software system or physical systems [6]. One form of multimodeling is
multi-view modeling, as exemplified in Model-Integrated Computing (MIC) [21].

Multimodeling is also closely related to the single vs. multiple model prin-
ciple discussed by Paige and Ostroff [19]. The ISO/IEC/IEEE 42010:2011 stan-

[Re s t au r an t |Name ; S t y l e]
[Re s t au r an t]
++−∗>wa i t e r s [Waiter]
[Re s t au r an t]
++−1>che f [Chef]
[Re s t au r an t]
+−∗>[Customer]
[Waiter] s e r v e s
−>se rvedBy [Customer]
[Waiter] w a i t e r s
<∗−1>che f [Chef]

Fig. 1. Different Representations of a Class Model: Diagram, Text and Tree View
(created with yUML (http://yuml.me) and Eclipse)

dard [12], which is the latest edition of the original IEEE Std 1471:2000, Rec-
ommended Practice for Architectural Description of Software-intensive Systems,
also defines architecture views (or simply, views) to address one or more of the
concerns held by the system’s stakeholders, as no single view adequately cap-
tures all stakeholder concerns. Multimodeling is also related to aspect-oriented
modeling [22], which focusses on identifying cross-cutting concerns; a central con-
cept here are join points, which represent a concern element, i.e., an identifiable
element of the language used to capture a concern. Brooks et al. [2] have also ad-
vocated the usage of multimodeling to separate concerns during a model-based
design flow, e. g., to separate functional aspects from deployment and verifica-
tion. This is particularly relevant in the real of cyber-physical systems, which
have to consider physical deployment domains as well as the embedded control,
and whose growing complexity necessitates a clean separation of concerns. The
designer should be able to specify different aspects of the same system indepen-
dently, to allow a clean separation of concerns while keeping a model consistent.
However, multi-view modeling can be applied at different levels and in very dif-
ferent ways. For example, it can refer to the animation of a model during a
simulation, or to the alternation between graphical and textual representations,
or indeed also to the alternation between a monolithic Statechart model and an
explicitly hierarchical syntax, as discussed in this paper.

However, Brooks et al. concluded: At this point, it is still largely up to the
modeler to construct different views of the same system. How best to harness a
modeling system to assist the user with this task still seems to be a largely open
problem. While this problem still is certainly not completely solved yet, we here
argue that modeling tools in 2020 should have made significant progress towards
that goal. In fact, already today there are significant steps in that direction. To

http://yuml.me

illustrate that point, we re-use in Sec. 3 the traffic light example from Brooks et
al. [2], and present different views that are automatically synthesized.

3 Trend 1: Agile, Domain-Specific Development
Processes

The processes in software development change from static monolithic one-way
methods, which lead from an abstract specification to a concrete design, to more
agile and iterative approaches. Agile development is accompanied by a move
away from big, one-size-fits-all frameworks and languages or language families
toward Domain-Specific Languages (DSLs). E. g., the UML has evolved into such
a multitude of languages that by now, most designs and designers employ only a
subset of the UML languages or variations tailored towards specific domains, and
it is a challenge for tool providers to adequately support all languages. However,
an iterative process requires not only to go from abstract to concrete. Devel-
opers jump arbitrarily between abstraction levels, and change either abstract
specifications if they have to adapt the general system concept or details in the
implementation if one iteration’s prototype milestone needs to be finished. This
round-trip engineering does not mesh very well with today’s modeling tools.

3.1 2020 vision: Usage-Specific Views

Agile processes require agile and lean tool support and languages that are not
only tailored towards particular domains, but also towards particular design
activities. This meshes with the concept of DSLs, which are also called “task-
specific” languages [16], even if this interpretation is less common than the “(ap-
plication) domain-specific” interpretation. Note that this does not necessarily
require the invention of a host of new languages, but rather expresses that we
want to be able to switch model views according to different model usages, and
that these different views may employ different (graphical or textual) languages.
We refer to this concept as usage-specific views.

To illustrate, consider the traffic light control example presented in Fig. 2,
adapted from Brooks et al. [2]. The example is shown in three variants, which
at first sight look quite different and employ different visual languages. The first
variant, shown in Fig. 2a, employs a SyncCharts [1] model, developed in the Kiel
Integrated Environment for Layout Eclipse Rich Client (KIELER)4 modeling
environment, to describe the behavior of the traffic light. As can be seen, there
are two modes of operation, Normal and Error, and for each mode the behavior
of the car light and the pedestrian light is specified. This behavioral view might
be appropriate for a first specification of the traffic light. Fig. 2c now uses a very
different language, or rather set of languages, namely a hierarchical combination
of synchronous data flow with state machines, shown in the Ptolemy II5 tool.

4 http://www.informatik.uni-kiel.de/rtsys/kieler/
5 http://ptolemy.eecs.berkeley.edu/

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://ptolemy.eecs.berkeley.edu/

This structural view (or deployment view) emphasizes what components the
traffic light consists of, namely the car light and the pedestrian light, and through
which signals they interact with the environment and with each other. However,
even though these two views use different languages that have different semantics
and may be considered different models of a traffic light, they do express the
same behavior, i. e., the semantics of these two models coincide. In fact, in this
case the Ptolemy model that underlies the structural view has been synthesized
automatically from the SyncChart model that underlies the behavioral view,
with the original purpose of simulating the SyncChart model [17]. So, one may
say that the model shown in Fig. 2c enhances the model from Fig. 2a in at least
two ways, namely with a simulation capability and by illustrating to the user
the structure of the traffic light.

A common criticism of SyncCharts (and Statecharts in general) is that they,
due to their signal broadcast semantics, have only implied, hidden signal commu-
nication links. One possible answer to this is the structural view just presented.
However, we also want to propose another, third alternative, which we will re-
fer to as hybrid view. To that end, we now examine another means to better
understand the references in a graphical model. The graphical representation
depicts the main model objects as nodes, where the containment relations can
be reflected by hierarchy in the model and containment of graphical symbols like
rectangles. Therefore, the diagram exhibits intrinsic properties, and these prop-
erties directly correspond to properties in the represented domain [10]. Explicit
connections display some other relations between the model objects. However,
there is typically a set of model attributes that is hidden in simple property
dialogs or simply represented by a label in the graphical representation. Rela-
tions between those attributes are usually not visible, such as the signal-based,
name-bound broadcast communication in a Statechart.

3.2 Dual Modeling

We propose a dynamic extension of the graphical representation by its dual
model, i. e., a graphical representation of the relations between referenced ob-
jects where this reference is not yet visualized. This dual model then results in a
hybrid view, which emphasizes multiple semantic aspects of a model at once. The
hybrid view in Fig. 2b reveals the rather simple communication of the traffic light
example. The Error state has no inter-communication, hence focus&context [20]
automatically collapses it. The structural view in Fig. 2c also shows this commu-
nication explicitly, however, the simplicity is more obvious in the hybrid view;
this may also be due to the visible hierarchy there.

The dual model methodology should not only be helpful for Statecharts, but
applies to very different types of models. References to other model parts are
quite common where an explicit graphical representation is omitted for the sake
of clarity in the original model. Two examples are:

(a) Behavioral view (SyncChart) (b) Hybrid view, revealing the communication
via signals (SyncChart with dual modeling and
focus&context filtering).

Error.CarLight

Error.PedestrianLightNormal.PedestrianLight

TRAFFIC_LIGHT

TrafficLight

Normal.CarLight

Normal

Error

(c) Structural view (hierarchical data-flow + automata, from Motika et al. [17])

Fig. 2. Traffic light example, usage-specific views.

Class diagrams The attributes of a class are presented more or less textually
including the type of the field. However, the type may also reference another
class or a data type definition node in the model. The dual model of a class
diagram would reveal the data type usages of the classes and their attributes.

Ptolemy II In Ptolemy one can define arbitrary parameters of actors. They
are represented by an unconnected node only showing the key and the

Fig. 3. A dual model for Ptolemy could show where parameters of an actor are used
(from Fuhrmann [7]).

value of the parameter. Then they get referenced by arbitrary expressions
in Ptolemy’s expression language, which is just text. They are often used to
map parameters of lower-level actors to the top-level actor. The dual model
could explicitly show which objects use which parameters. An example mon-
tage is shown in Fig. 3. Technically this would work best if the editor would
use visible hierarchy, which the Ptolemy editor Vergil does not.

Note that the structural view in Fig. 2c is also a kind of hybrid view that
combines drawings of individual model components with an overall drawing (us-
ing gray lines) of how these components are related to each other. As of to-
day, creating such drawings is again a manual, rather laborious process, which
severely compromises designer productivity and thus goes against pragmatics-
aware modeling. To do so automatically in a well-readable, compact fashion is
an interesting layout problem that we are currently investigating, which leads to
the concept of automatic layout also addressed in the next section.

4 Trend 2: Novel Input Devices

If we may believe innovation-leading companies in the field of ergonomic human-
machine interaction, we are in the decade of “post-PC devices” [13]. Improve-
ments in touch-display technology foster the success of smartphones and even

new device categories like tablet computers that convince users with intuitive
interaction paradigms. In professional environments such handheld devices or
also bigger devices like computerized white boards may assist collaboration in
team meetings and ease both the group access to data and capturing group
results. Nonetheless the modeling community maintains traditional interaction
paradigms for creating, navigating and maintaining models, notably What-You-
See-Is-What-You-Get (WYSIWYG) Drag-and-Drop (DND) freehand editing that
requires a precise instrument like the mouse.

4.1 2020 vision: Touch-based editing and browsing

To take advantage of these novel input devices and to increase designer produc-
tivity, we propose to adapt novel design entry and browsing mechanisms that are
less dependent on precise pointing devices. As a first enabling step, this requires
to enhance today’s modeling tools with reliable, high-quality automatic layout
capabilities that can arrange diagram elements in a compact, well-readable fash-
ion. As of today, visual models are traditionally drawn manually. However many
modeling tools have some auto-layout capabilities already, and the insight that
designers should be freed from the burden of doing manual place-and-route work
as part of their modeling activity slowly seems to gain acceptance. E. g., one of
the advertised new features for IBM’s Rational Software Architect includes a va-
riety of automated layout algorithms. To quote from their announcement: These
automated layouts also make it easier to understand complex models and to build
abstractions by viewing the model in a well-laid-out way. Most importantly, they
should reduce the overall amount of time you need to spend on hand-formatting
diagrams, thereby increasing your productivity and freeing more of your time for
higher-value activity.6

Note that when providing an automatic layout capability, one must also en-
sure that automatic layout does not destroy the mental map of a user when
editing a model; for example, morphing mechanisms can help here significantly.
We also acknowledge that designers, when confronted with the idea of auto-
matic layout, are often at first reluctant to defer the drawing of a model to some
algorithm that does not have any understanding of the application. As a com-
promise, there is also option of performing only incremental automatic layout,
or to provide some intentional layout capability that allows the modeler to guide
the automatic layout algorithm in certain ways. However, it is our experience
that after getting used to a tool with high-quality automatic layout capabilities,
designers are quite happy to make use of this capability, and become frustrated
whenever they have to use a modeling tool without such a capability. This pat-
tern is common whenever designers are asked to give up control of certain design
aspects, and indeed it is often advisable to provide some escape mechanism. An
analogy in the programming world is the capability of embedding assembler in
a high-level language. However, carrying this analogy further, we also observe

6 http://www.ibm.com/developerworks/rational/library/10/

whats-new-in-rational-software-architect-8/index.html

http://www.ibm.com/developerworks/rational/library/10/whats-new-in-rational-software-architect-8/index.html
http://www.ibm.com/developerworks/rational/library/10/whats-new-in-rational-software-architect-8/index.html

that today, most programmers appear to be glad to have been mostly freed from
the task of manual assembler programmer, and are happy with the results that
a compiler generates for them.

Note that the automated diagram drawing is by no means trivial, as many
rather unusable auto-layout buttons can attest to, and there is an active re-
search community that works on improving the state of the field [3]. However,
the challenge here lies not only in the fundamental drawing problem, but also in
smoothly integrating layout capabilities into the modeling tool. Here, the actor-
oriented tooling approach outlined in Sec. 5 might also help. With automatic
layout capabilities, it is possible to post-process imprecise drawing commands
into high-quality diagram drawings. For a nice illustration of this approach, con-
sider the Instaviz “pocket whiteboard,”7 which uses advanced shape-recognition
(Recog) and automatic drawing (GraphViz) capabilities. From the product de-
scription: Sketch some rough shapes and lines, and Instaviz magically turns them
into beautifully laid-out diagrams. We are not aware of hard experimental data
on the productivity of this software, but the subjective impression is that with
this approach, working with a phone-size touch-sensitive display, one is faster
to create a usable diagram than with a traditional model editor without layout
capabilities installed on a full-size PC. This is not to advocate smart phones for
productive system design, but the technologies developed there might very well
be helpful. Multi-touch displays might allow more efficient and intuitive model
manipulation and navigation than traditional pointing devices. For example,
one might borrow from the effective navigation techniques that allow to browse
photo libraries or web pages with very little screen real estate. Other examples
of such inspiring innovations are dictionary-based predictive text entry (T9) or
motion-based text entry (Swype).

4.2 Structure-based editing

Next, given a modeling platform that provides automated drawing capabilities,
we can raise the abstraction level of editing activities to work on the structure of
the model itself, rather than working on its representation. This structure-based
editing [9] does not require precise pointing any more, so for example it does not
require shape recognition. Instead, it suffices to select existing model elements
and to specify the operation to apply to it, such as “add a successor state” or
“invert transition direction”.

Such higher level, semantically oriented editing capabilities could also en-
hance traditional editing paradigms. For an example, consider the copy&paste
operation, which originally was made possible by computer-based editing, but
remains rather primitive until today. In a usual freehand editing environment,
copy&paste requires numerous enabling steps. The user has to 1. select all ob-
jects to copy, 2. call the copy operation, 3. choose a target space, 4. free space
at the target location, 5. select the target place (however, selecting an empty lo-
cation usually is not possible in most tools), 6. call the paste operation, 7. move

7 http://instaviz.com/

http://instaviz.com/

copy_paste_examples

State_to_State

S

Regions_to_States

State_to_Transition

S S

States_to_Transition

S0

A and B A and B

Fig. 4. Examples for copy&paste operations on a Statechart diagram. Each operation
is illustrated with a sequence of three states: 1) the Copy state with a selected source
to copy (e. g., state S), 2) the Paste state with the selected target (e. g., state T) into
which the source should be pasted, and 3) the Result into which Paste gets transformed.

the pasted set of objects to the new empty space and finally 8. rearrange the
surroundings such that the new objects seamlessly integrate. Especially steps
4, 7 and 8 may be arbitrarily effort-prone, and step 7 may be frustrating when
the pasted objects do not appear at the target space of step 3 and the tool
does not state explicitly about its target space policy. However, structure-based
editing employing automatic layout can improve the situation considerably [7].
The editing steps would boil down to 1. select all objects to copy, 2. call the
copy operation, 3. select a target object, and 4. call the paste operation. With
automatic layout, the user should not specify any target location, but only a
target object where the contents should be pasted. A generic transformation de-
scription should then specify how the elements are pasted into the target object
and the automatic layout would do the rest.

To illustrate, Fig. 4 presents some possible copy&paste operations for State-
charts. Each transformation rule has to consider the copy sources (labeled “S” in
Fig. 4), i. e., the selected elements which get copied, and the copy targets (“T”).
For Statecharts these objects may be states, regions, and transitions, and each

set may be of arbitrary size. A good example is “copy multiple states to one tran-
sition”. In a usual freehand editor, this is not possible and would do nothing. As
implemented in KIELER, the transformation 1. cuts the target transition into
two transitions, 2. adds a new state in-between both transitions, and 3. adds the
selected nodes into a new region of the new state. Other similar transformations
are possible, which the toolsmith would have to define according to experience
in the context of the given DSL. Selecting multiple target objects is a fast way
to replicate objects multiple times.

As a word of caution, these copy&paste effects go considerably beyond what
designers are familiar with today. Also, some of these effects are probably needed
only rarely, such as the “copy transitions to transitions”. Still, extending the
copy&paste paradigm in this fashion may significantly increase productivity,
and is yet another example of the possibilities for harnessing automatic layout
towards pragmatics-aware modeling.

5 Trend 3: The Move to the Cloud

Activities traditionally done locally become increasingly distributed and are
moved to “the cloud.” For example, to generate the class diagram drawing in
Fig. 1, we did not install a UML tool, but visited a web page and pasted the tex-
tual description of the diagram into a text box. Not having to undergo lengthy
installation procedures and always having a current tool version at one’s disposal
is appealing. We believe that this applies in particular to the world of MDE with
its typically quite complex tool environments, and this also applies to other
cloud-benefits such ease of design sharing (leading to model mashups) and de-
signer mobility (consider google docs etc. that are already commonly integrated
into mobile OSs such as Android). As another example, National Instruments’
LabVIEW Web UI Builder is a cloud-based Rich Internet Application (RIA),
which is hosted by Amazon Web Services and is basically a light-weight version
of LabVIEW that allows to interface with hardware and/or web services. Simi-
larly, NI offers a cloud version of a compiler that deploys LabVIEW models onto
an FPGA. This application can be very compute-intensive, and there is a large
variety of possible compilation targets; both factors make it attractive to move
away from the local desktop into the cloud.

There already exist standards for web service interfaces, e. g., the Web Ser-
vices Business Process Execution Language (WS-BPEL) [18] to describe business
process activities as web services. However, such (mostly syntactic) standards
are not enough, as they still exhibit semantic ambiguities that hamper tool com-
patibility. And, as Lapadula et al. state, the design of WS-BPEL applications is
difficult and error-prone also due to the presence of such intricate features as
concurrency and race conditions, forced termination, [etc.] [14].

5.1 2020 vision: actor-oriented, cloud-based modeling tools

The idea of actor-oriented modeling is to break down complexity by decompos-
ing a system into actors that communicate through well-defined interfaces [4].

The components interact not via control flow (such as a method-call in object-
oriented design), but via data. This approach sidesteps many difficulties in the
design of complex systems and supports the clean handling of concurrency [15].

We here claim that many of the arguments for actor-oriented design also
apply to the modeling tools, and that this aligns well with the cloud-computing
infrastructure already in place. This would not only make modeling tools more
robust and versatile, but would also allow toolsmiths to focus on particular
services, such as simulation or visualization, and not on having to re-develop
everything else that is needed for a complete design environment. This would
also go hand in hand with the trend towards more agile, customized design
processes described earlier.

An interesting initiative in this regard is the ModelBus [11], which is built
upon Web Services and follows a Service Oriented Architectures (SOA) ap-
proach. ModelBus provides an interaction pattern in order to enable model
sharing in a distributed and heterogeneous model-driven development process.
In comparison, actor-oriented design of modeling tool does not necessarily entail
model sharing, but model sharing could be combined with the actor-oriented
approach advocated here.

5.2 Example of a service: simulation

For example, as explained in Sec. 3, the KIELER modeling environment leverages
Ptolemy as simulation engine. This is currently implemented by first transform-
ing a KIELER model into a Ptolemy model. Then a Ptolemy instance is run
in the background that processes simulation requests coming from KIELER and
communicates simulation data back for proper visualization in KIELER.

One might as well move this simulation capability to a server that com-
municates through a standardized interface, e. g., based on XML. A non-trivial
question here is what kind of information should be communicated. Tradition-
ally, one is interested in the input/output behavior of the simulated component,
and this is what most APIs (if tools have APIs for this purpose at all) offer.
However, when using such a simulation service from within a modeling tool, one
typically would like to know about the internal states of the simulated system
as well. For example, the Ptolemy-SyncChart does communicate to KIELER the
current state of the simulation; however, a modeler would typically also like to
know which transition was taken to get to that state, which is not communi-
cated. KIELER does remember the previous state, which can help to deduce the
taken transition—but not if there are multiple transitions between the previous
state and the current state. Conversely, one may not want to execute complete,
externally visible reaction steps at once, but would like finer control over the
simulation.

The lesson to be learned from there is that modeling frameworks should have
open simulation interfaces, both for exporting and for importing simulations.
These interfaces should not be limited to the externally visible behavior of the
system under development (SUD), but should also include internal information
that might be of interest to the modeler.

5.3 Example of a service: automatic layout

As another example of a possible service to be provided in the cloud, KIELER

provides layout capabilities to Ptolemy. A non-trivial issue there was to find a
suitable user interface to access the auto-layout capabilities. E. g., initially, the
user interface consisted of five buttons of different functionality. This proved too
complicated to handle for the uninitiated. The current interface has just one
button, which lead to much better user acceptance. The deeper reason for the
initially too complicated user interface for the automatic layout was that

As is customary for today’s editors, Ptolemy’s graphical Vergil editor was
not developed with externally provided automatic layout in mind. E. g., after
the modeler has placed the nodes of a model, Vergil uses some heuristic to auto-
matically route edges. This is a certain help to the human layouter, but conflicts
with automatic layout, which needs control of both the node and the edge place-
ment. The solution was to enhance Vergil to consider layout-annotations added
by the KIELER layouter to the Ptolemy model.

Another issue turned out to be hyper edges. The Ptolemy way of connecting
more than two actors is to add a relation node to the model, and adding a
connection from each of the to-be-connected actor to the relation node. From
the perspective of a generic layout algorithm, however, the relations look just
like another actor. This typically leads to less compact layouts than would result
from hyper edges that would directly connect the actors.

The lesson to be learned there is that editors should be developed with auto-
matic layout in mind, and should provide simple interfaces to these. As a notable
example in this direction, one of the five stated objectives of the Eclipse Graphiti
project proposal was to provide the ability to use any existing layout algorithms
for auto layouting a diagram8. There are further issues not discussed here, such
as hyper edges, the handling of comments, and the efficient incorporation of lay-
out results into a model (as it turns out, this is often more time consuming than
the actual layout computation) [7].

A further issue was the handling of comments. Traditionally, comments are
text boxes placed (manually, like everything else) at some convenient location
in the visual model. These comments might refer to the whole diagram, e. g., to
provide a general description or to identify the author. Often, however, comments
refer to specific model elements. This reference is usually not anchored in the
model itself, but only implicit in the spatial proximity of the comment to the
referenced model element. This proximity usually gets lost when applying an
automatic layout to the diagram. The lesson learned there was that comments
should be anchored to model elements. This is already possible e. g. in Eclipse
GEF.

6 Conclusions and Outlook

MDE, or software and systems engineering in general, keeps to be challenged by
increasingly complex and powerful applications. In the past, this has fostered the

8 http://www.eclipse.org/proposals/graphiti/

http://www.eclipse.org/proposals/graphiti/

development of similarly complex and powerful modeling tools and processes,
often with little regard for the practical needs and limitations of the human
developer.

We here advocate an approach that focuses on the different, concrete design
activities of the developer and provides practical support for these activities.
This proposal is driven mostly by the authors’ experience in the design of cyber-
physical systems, but we expect that much of this is of relevance beyond CPS
design as well. Key aspects here are the tool-supported creation of different views
for these different activities, and pragmatic-aware model interaction paradigms.
We sketched a vision, or at least fragments thereof, of how this approach might
benefit from and provide support for a selection of current technological trends,
and where this approach might lead to until the end of this decade. As it turns
out, we here drew less from the established MDE community and more from
other communities and from industry trends. So, a general conclusion might be
that there is much innovation out there from which the MDE community could
and should benefit from in the near future.

Acknowledgement

We thank the participants of the workshop and the reviewers for their very
valuable comments.

References

1. André, C.: Computing SyncCharts reactions. Electronic Notes in Theoretical Com-
puter Science 88, 3–19 (Oct 2004)

2. Brooks, C., Cheng, C.H.P., Feng, T.H., Lee, E.A., von Hanxleden, R.: Model en-
gineering using multimodeling. In: Proceedings of the 1st International Workshop
on Model Co-Evolution and Consistency Management (MCCM’08), a workshop at
MODELS’08. Toulouse (Sep 2008)

3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: An annotated bibliography. Computational Geometry: Theory and Ap-
plications 4, 235–282 (Jun 1994)

4. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(1), 127–144 (Jan 2003)

5. Estefan, J.: Survey of model-based systems engineering (MBSE) methodologies,
Rev. B. Technical report, INCOSE MBSE Focus Group (May 2008)

6. Fishwick, P.A., Zeigler, B.P.: A multimodel methodology for qualitative model
engineering. ACM Trans. Model. Comput. Simul. 2, 52–81 (Jan 1992)

7. Fuhrmann, H.: On the Pragmatics of Graphical Modeling. Dissertation, Christian-
Albrechts-Universität zu Kiel, Faculty of Engineering, Kiel (2011)

8. Fuhrmann, H., von Hanxleden, R.: On the pragmatics of model-based de-
sign. In: Foundations of Computer Software. Future Trends and Techniques for
Development—15th Monterey Workshop 2008, Budapest, Hungary, September 24–
26, 2008, Revised Selected Papers. LNCS, vol. 6028, pp. 116–140 (2010)

9. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In: Proceedings
of the ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’10). LNCS, vol. 6394, pp. 196–210. Springer
(Oct 2010)

10. Gurr, C.A.: Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues. Journal of Visual Languages & Computing 10(4), 317–342 (1999)

11. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with ModelBus.
In: Workshop Future Trends of Model-Driven Development (2009)

12. ISO/IEC JTC 1/SC 7: Systems and software engineering — architecture descrip-
tion. ISO/IEC FDIS 42010, working document ISO/IEC JTC 1/SC 7 N (2011),
http://www.iso-architecture.org/

13. Jobs, S.: Apple special event, keynote speech (Mar 2011)
14. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea, D.,

Zavattaro, G. (eds.) Coordination Models and Languages, LNCS 5052. pp. 199–215
(2008)

15. Lee, E.A.: The problem with threads. IEEE Computer 39(5), 33–42 (2006)
16. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Computing Surveys 37(4), 316–344 (Dec 2005)
17. Motika, C., Fuhrmann, H., von Hanxleden, R., Lee, E.A.: Executing domain-

specific models in Eclipse (2012), in preparation
18. OASIS WSBPEL TC: Web Services Business Process Execution Language Version

2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (Apr
2007)

19. Paige, R., Ostroff, J.: The single model principle. Journal of Object Oriented Tech-
nology 1, 2002 (2002)

20. Prochnow, S., von Hanxleden, R.: Statechart development beyond WYSIWYG.
In: Proceedings of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS’07). LNCS, vol. 4735, pp. 635–649.
IEEE, Nashville, TN, USA (Oct 2007)

21. Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4), 110–
111 (Apr 1997)

22. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger,
W., Kapsammer, E.: A survey on UML-based aspect-oriented design modeling.
ACM Comput. Surv. 43(4), 28:1–28:33 (Oct 2011), http://doi.acm.org/10.1145/
1978802.1978807

http://www.iso-architecture.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://doi.acm.org/10.1145/1978802.1978807
http://doi.acm.org/10.1145/1978802.1978807

	Multi-View Modeling and Pragmatics in 2020

