Synthesizing Manually Verifiable Code for Statecharts

Steven Smyth
Department of Computer Science
Kiel University
Kiel, Germany
ssm@informatik.uni-kiel.de

Abstract

Statecharts are an established mechanism to model reac-
tive, state-oriented behavior of embedded systems. We here
present an approach to automatically generate code from
statecharts, with a particular focus on readability and ease of
matching the generated code with the original model. This
not only saves programming effort and reduces the error rate
compared to manual coding, but it also facilitates the task of
verifying that the code does what it is supposed to do. We
have implemented this approach for the SCCharts language
in an open-source framework. A user study confirmed that
the generated code tends to be more readable than code from
other code generators.

CCS Concepts - Software and its engineering — Source
code generation,;

Keywords statecharts, compilation, manual verification,
readability, safety-critical, DO-178

ACM Reference Format:

Steven Smyth, Christian Motika, and Reinhard von Hanxleden. 2018.
Synthesizing Manually Verifiable Code for Statecharts. In Proceed-
ings of the 5th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS ’18), November
4, 2018, Boston, MA, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3281278.3281283

1 Introduction

Software for embedded reactive systems often needs to deal
with system modes, which are commonly modeled with state
machines. Statecharts [10], as introduced by David Harel, is
a notation for visually modeling state machines with a con-
crete semantics. This allows for synthesizing code automati-
cally. Statecharts combine Mealy machines with hierarchy,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS 18, November 4, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6070-8/18/11...$15.00
https://doi.org/10.1145/3281278.3281283

Christian Motika
Philotech Systementwicklung und
Software GmbH
Hamburg, Germany
chris@motika.de

Reinhard von Hanxleden
Department of Computer Science
Kiel University
Kiel, Germany
rvh@informatik.uni-kiel.de

orthogonality, and broadcast communication. Statecharts
are an established formalism for modeling reactive systems,
which continuously react to their environment. Conceptu-
ally, time is divided into a sequence of discrete ticks. At the
beginning of each tick, the system under development (SUD)
samples its inputs from some sensors, at the end of each tick
it produces outputs that control actuators, as sketched in
Fig. 1. A reactive software system thus typically includes
a tick function, which is called once per reaction, reading
inputs and producing outputs.

Code generators for various statechart dialects are com-
monly used in industry, as maintaining large software projects
manually that involve big state machines is a tedious and
difficult task which is error prone and time consuming. Many
applications of embedded software are in the field of safety-
critical systems, such as the aerospace or automotive do-
main, where authorities [17] demand software companies
to prove verification to high- or low-level software require-
ments. Some software is generated with qualified code gen-
erators, but this is still rather the exception, and verification
is typically still a manual process. For automatically synthe-
sized parts of the code, such as state machine code, verifi-
cation can thus only be achieved if the generated code is
readable and clearly traceable to the abstract state machine
representation that implements design requirements. How-
ever, existing state machine code generators tend to focus
exclusively on qualities such as code compactness, speed or
predictable execution time. The underlying assumption is
typically that the generated code is not looked at by humans
anymore, just like one does not tend to look at the machine
code generated by a compiler.

Environment

Reactive System

Compute
Reaction

)
L

|4 An Instant / Tick (zero duration)
| N

Read Input

>|
>

Figure 1. Reactive tick computation

https://doi.org/10.1145/3281278.3281283
https://doi.org/10.1145/3281278.3281283

REBLS ’18, November 4, 2018, Boston, MA, USA

Contribution and Outline Inthe next section, we present
a collection of requirements for statechart code synthesis
for safety-critical embedded systems. Here we distinguish
semantic requirements, driven by the safety-critical nature
of our application domains, and coding requirements, driven
by the need for human code verification. In line with these
semantic requirements, we opted for the SCCharts statechart
language as a reference frame for our code generation ap-
proach; SCChart basics are covered in Sec. 3. Our core contri-
bution, a state-based compilation approach to automatically
generate code that meets the stated coding requirements,
from statecharts that fulfill the semantic requirements, is
presented in Sec. 4. To evaluate the state-based compilation
approach, we conducted a user study, presented in Sec. 5.
The study confirmed that our proposed new code genera-
tion approach produces code that is easier to understand,
which should lead to less obscurities and errors, and ease
verification compared to existing approaches. Related work
is covered in Sec. 6. A conclusion and an outlook complete
the paper in Sec. 7.

2 Requirements on Statecharts and Code
Generation

To begin with, if one wants to derive executable code for
a statechart, it must be clear what behavior the statechart
specifies. However, while the basic idea of statecharts seems
fairly straightforward, there is much room for interpreta-
tion of what their precise semantics is. Already back in 1994,
von der Beeck identified 20 different variants [22], which,
as it turned out, did not even include Harel’s originally in-
tended semantics. Since then, further Statechart dialects have
been developed, including Stateflow [9], SyncCharts [2], SC-
Charts [15], or UML State Machines [6]. Even within com-
mercially widely used UML state machines, there are various
ambiguities and “semantic variation points” [7].

2.1 Semantic Requirements

A full treatment of possible statechart semantics and a de-
tailed comparison of existing implementations is beyond the
scope of this paper. However, we state at least some minimal
semantic requirements that we consider reasonable for the
realm of safety-critical systems.

Requirement R1. The semantics shall be deterministic.

For the aforementioned tick function, this means that the
produced sequence of outputs should be fully determined by
the sequence of inputs. In particular, there should be no race
conditions due to concurrent variable accesses, and there
should be no ambiguities due to multiple simultaneously
enabled outgoing transitions from a state. This, for example,
is not necessarily fulfilled for UML statecharts, for which the
following applies: “if more than one guard evaluates to true,
then the model is illformed. In such a case, the statechart

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

semantics stipulate that only one of the transitions will be
taken, but you can’t predict which one it will be” [6].

Requirement R2. The semantics shall be robust in that it
should not depend on details of the visual representation of the
model or the naming of model elements.

The idea is that there should be no “surprises” with changes
of semantics due to the visual representation of the model.
For example, the positioning of transitions should not af-
fect the semantics. This contrasts with, e. g., the “12 o’clock
rule” of Simulink/Stateflow, where transitions are implicitly
prioritized by their angular position relative to the source
state [9]. In Yakindu, regions are scanned “either from left to
right or from top to bottom™" (see also R3), but since regions
can generally be arranged two-dimensionally, this does not
always provide a clear ordering.

Requirement R3. The semantics shall include true concur-
rency.

This means that not only should the semantics permit
concurrent regions that both have their own, independent
state, but that these regions should also be able to react
concurrently within the same tick, and they should be able to
interact with each other. For example, if one region specifies
that some light should turn on when a door is opened, and a
concurrent region should increment an open-door counter,
then both of these actions should take place when the door
opens, not just one of them. This contrasts with, e.g., the
“virtual concurrency” implemented in Yakindu Statecharts,
where only one of these actions will take place and the choice
of action depends on the arrangement of the regions (see
R2). Similarly, it is debatable whether UML statecharts and
their run-to-completion execution model that serializes all
events is truly concurrent; at least it seems difficult to state
whether, e. g., two transitions are “simultaneous” or not.

2.2 Coding Requirements

Given a statecharts language that fulfills certain semantic
requirements, such as those stated in Sec. 2.1, we now for-
mulate a number of coding requirements that the synthesized
code should fulfill.

Requirement R4. The code shall be self-explanatory, and it
shall be easy to match the generated code with the original
model and vice versa.

This implies that the structure (topology) of model and
code should match, e. g., that for each region or (super) state
in the model there should be a corresponding piece of code.
Likewise, the naming of variables and functions in the code
should facilitate the mapping, e.g., a function that imple-
ments the behavior of some region should be named accord-
ing to the region. Furthermore, the order of declarations and

Thttps://www.itemis.com/en/yakindu/state-machine/documentation/
user-guide/sclang_statechart_language_reference

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference

Synthesizing Manually Verifiable Code for Statecharts

code segments should, as far as possible, be consistent with
any order present in the model. As discussed for R2, there is
not necessarily an obvious order of regions; but if there is
an obvious order in the model, that order should be reflected
in the code, unless there is a clear reason to change that
order, e. g., to efficiently implement a scheduling require-
ment of the model (see Sec. 4.1). Generally, names should be
rather “speaking” and not be overly abbreviated. Similarly,
the generated code should include comments that facilitate
understanding. Fulfilment of this requirement should also
support debugging of the generated code, i. e., when stepping
through the code, it should be clear what the code is doing
even without referring to the original model.

Requirement R5. The generated code shall be a safe subset
of the target language.

For example, the C language, which is still one of the most
widely used languages in particular in the embedded area,
has been designed with efficiency in mind, not robustness.
It thus includes a number of features that are considered
“unsafe” and are typically not permitted for safety-critical
applications, such as pointer arithmetic, complex macros, func-
tion pointers, break, or continue statements [11, 14].

Requirement R6. The generated code shall not rely on ex-
ternal thread support.

Conceptually, each statechart region is a thread, in the
sense of a concurrent flow unit. However, that concurrent
control flow should be managed within the tick function,
without making use of thread libraries, such as, for exam-
ple, POSIX threads. Similarly, the code should not make use
of thread-synchronizing constructs such as semaphores or
monitors. The rationale is that one wants to make the code
self-contained and in full control of scheduling decisions. In
particular, one wants to avoid non-determinism (considering
also R1) as introduced by POSIX threads or, for that matter,
Java threads [12].

3 SCCharts

There are several statechart languages that meet the semantic
requirements from Sec. 2.1, in particular the statechart vari-
ants that belong to the family of synchronous languages [3].
These include SyncCharts [2], the state machine extension
of SCADE [4], and SCCharts [15, 24]. We developed our code
generator for SCCharts, and will describe their basics in the
following. However, we would argue that much of the code
generation approach presented here could be applied to other
statechart dialects as well.

Like other synchronous languages, SCCharts separate con-
cerns of functionality and timing, and reconcile concurrency
(R3) with determinism (R1). This is achieved by assuming
zero reaction computation time, which implies that inputs
and outputs of a tick are synchronous with each other. In prac-
tice, the zero computational time abstraction means that the

REBLS ’18, November 4, 2018, Boston, MA, USA

Input

. ABthenO ———————— Root state
variables —input bool A, B
Aand B~ / output bool o I Ent.ry
Output // entry/O=false action
T
. [
variable O WaitAandB || Final
Initial — [] HandleA state
states Nin N+
@ doned /10 =true ———— Transition
Concurrent 47— ST [P = \'\: doneAll effect
regions | [-] HandleB h
Transition one " Immediate
trigger termination

transition

Figure 2. ABthenO SCCharts example

system reacts in each tick in time before the next tick starts.
Most synchronous languages are thus rather restrictive as
to what may happen within a tick, for example, by forbid-
ding “instantaneous loops.” In SCCharts, loops are permitted,
which for example facilitates the mapping of C programs
back to SCCharts [21]. However, if one wants to statically
bind the reaction time and wants to perform worst-case
reaction time (WCRT) analysis, loops must be restricted ac-
cordingly [8, 13].

3.1 SCCharts Language Overview by Example

Fig. 2 shows the ABthenO example that illustrates the basic
SCCharts language features. ABthenO is the root state and
declares the interface of the SCChart: Two boolean inputs
A and B and a boolean output O. ABthenO also declares an
entry action setting O to false initially, when computation
starts. Inside ABthenO, there is just one (anonymous) region
with two states WaitAandB and doneAll. WaitAandB’s bold
border indicates that it is an initial state. Hence, when the
SCCharts starts, this will be the first active state. Further-
more, WaitAandB is a superstate, because it contains further
regions and states. Inside WaitAandB, there are two concur-
rent regions: HandleA and HandleB. Both have their own
initial states where control starts, waitA and waitB, respec-
tively. Each of these states has an outgoing transition with
a trigger that references a declared input. Whenever the in-
put becomes true and the SCChart is in the respective state,
it will take the transition to its destination state doneA or
doneB. Both are final states, visually indicated by the double
border. When a region ends up in a final state, it terminates
control. If all concurrent regions of a superstate terminate
control, a termination (“join”) transition, indicated with a
green triangle, can trigger (cf. transition from WaitAandB
to doneAll). A dashed transition line indicates that the tran-
sition can trigger immediately (in the same tick), when the
source state of the transition is entered. A solid transition
line indicates a delayed transition, which can only trigger
at the earliest in the next tick after its source state has been
entered.

The behavior of the SCChart is as follows: In the initial tick,
states ABthenO, WaitAandB, waitA, and waitB are entered

REBLS ’18, November 4, 2018, Boston, MA, USA

and the output O is set to false. Since waitA and waitB have
no outgoing immediate transitions, these states cannot be
left and inputs A and B are simply ignored. Then, in the
following ticks, if A or B are present, the SCChart reacts to
A and/or B by taking the respective transitions from waitA
to doneA and/or waitB to doneB. As soon as both doneA
and doneB have been reached, the termination transition is
taken immediately, sets the output O to true, and transitions
to state done. Here, the reaction stops but the SCChart will
remain active (does not terminate) as doneAll is not a final
state.

3.2 Extended SCCharts

ABthenO makes do with the so-called Core SCCharts lan-
guage features. SCCharts supports additional languages fea-
tures, also referred to as Extended SCCharts, including han-
dling of physical time [20]. However, Motika et al. showed
that every SCChart can be represented by a semantically
equivalent Core SCChart [15]. Hence, it is sufficient if a code
generator supports Core SCCharts to be able to compile ev-
ery model. In fact, Core SCCharts can be normalized to even
simpler, but less compact patterns to ease the downstream
compilation. However, as one goal is the preservation of the
statechart’s topology (R4), we refrain from using the normal-
ized variant for the state-based approach presented here. The
same might apply to Extended SCCharts; while compiling
away more complex features may help the compiler, it might
obscure the topology of the original model for the human.
For now, it remains future work to analyze which features
obscure the topology, and we focus on Core SCCharts in this
contribution.

3.3 Existing SCCharts Compilers

The Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER) provides an SCCharts modeling environment,
which includes the KIELER Compiler (KiCo) that provides
various compilation options, including different target lan-
guages (e. g., C, Java, VHDL). The initial SCCharts paper [24]
introduced two techniques, namely netlist-based and priority-
based compilation, which subsequently have been covered in
more detail elsewhere [15]. As these compilation approaches
adhere to the SCCharts semantics, they do meet R1, R2, R3.
They also fulfill R6. However, they do not meet R4, and at
least the priority-based compilation based on computed go-
tos does not fulfill R5 either.

4 The State-Based Compilation Approach

Driven by the coding requirements from Sec. 2.2, we de-
veloped the state-based compilation approach, of which we
now present the main principles. For full detail, we refer
to our open-source implementation in the KIELER SCCharts
modeling environment (see also Sec. 6).

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

4.1 Priority-Based Concurrency

To implement concurrency (R3) without external thread sup-
port (R6), the state-based approach adopts the concept of
node priorities from the priority-based compilation [24] with
an explicit light-weight application-level thread concept. The
basic idea is that concurrent regions are scheduled accord-
ing to a statically computed priority. The generated code
includes a dispatcher, which, within a tick, determines which
regions are eligible for execution. Among those, it dispatches
the ones with the highest priority, and keeps doing so until
no more region has any work to do in the current tick. If
there are multiple eligible regions with highest priority, there
should be a deterministic ordering of these regions, typically
given by their order in the code. Thus the code generator
may use both, priorities and the region ordering in the code,
to implement scheduling constraints given by the statechart
semantics.

There are various options on how to implement the dis-
patcher, which affect both code complexity and efficiency.
We here opted for a rather straightforward approach, which
first scans all regions that are ready to execute for their max-
imum priority, and runs them if they are ready and have that
highest priority. This appears to perform reasonably well in
most cases (see also Sec. 5), but for models with many re-
gions per superstate and many priority changes, alternative
schemes with additional data structures might be more effi-
cient. In either case, this dispatching is a comparatively very
light-weight application-level context switching mechanism,
typically much more efficient than OS threading.

Another interesting question is how the priorities are
determined. For example, if one wanted to implement the
semantics of LabVIEW statecharts, then this priority could
be assigned according to the lexical order of region names
(notwithstanding the robustness issue discussed on R2). To
implement the concurrent scheduling of Céu [19] or PRET-
C [1], which execute concurrent threads sequentially accord-
ing to their syntactic order in the program, the priority could
be assigned according to that order. Alternatively, for both
of these schemes, one could assign all regions the same pri-
ority and just generate code such that the regions appear
in the correct order. However, LabVIEW, PRET-C, and CEU
preclude back-and-forth interaction of concurrent regions
(R3). For these reasons, SCCharts adopt a different seman-
tics, namely the sequentially constructive semantics, which
schedules concurrent regions depending on how these re-
gions interact through shared data [25], meeting R3. In the
example of Fig. 3, R0 writes a variable (O2) that is read con-
currently by R1. This induces a data dependency, indicated
with a dashed arrow, and implies that RO must be executed
before R1 and, hence, receives a higher priority.

Note that data dependencies may lead to scheduling con-
flicts that cannot be resolved; for example, if one transition
guarded by a flag A sets a flag B, and concurrently another

Synthesizing Manually Verifiable Code for Statecharts

typedef enum { typedef struct {

TERMINATED, char I; //input Example
RUNNING char I2; input =
’ X //inp input bool |, 12
READY, char 0; //output = outout bool O. 02
PAUSING char 02; //output —_—

RO

} ThreadStatus; } 10;

)

2: 1:1/0 = true--
typedef struct { ‘ : L
ThreadStatus threadStatus; S2 el
int activePriority; | s
ContextRO contextRO; ,}’
ContextR1 contextR1; 12/ 02 =true - |
10 io; y

} ContextRoot;

void reset(ContextRoot *context);
void tick(ContextRoot *context);

REBLS ’18, November 4, 2018, Boston, MA, USA

typedef enum {
Se, // initial

typedef struct {
ThreadStatus threadStatus;

S2, StateRO activeState;
. S1 // final char delayedEnabled;
} StateRro; int activePriority;
R1 I0* io;
@ } ContextRo;
void regionRe_stateS@(ContextRO *context);
void regionRe_stateS2(ContextRO *context);
»0 || 02 vo%d r‘eg%onRB_stateSl(ContextRe *context);
” void regionRe@(ContextRO *context);
1

void stateExample(ContextRoot *context);

typedef struct {
ThreadStatus threadStatus;
T1 // final StateR1l activeState;
} StateR1; char delayedEnabled;
1 int activePriority;
I0* io;
} ContextR1;
void regionR1_stateT@(ContextR1l *context);
void regionR1_stateT1(ContextR1l *context);

typedef enum {
T0, // initial

void regionR1(ContextR1 *context);

Figure 3. Topology-preserving code-generation (see Sec. 4.2). The SCChart’s interface gets transformed into the interface 10
struct (red A); the root state creates the main root context and the functions that the environment should call, namely reset
and tick (gray B); the RO region gets transformed into the ContextRO0 struct with its accompanying functions (blue C); similarly,
R1is transformed into the ContextR1 (green D). The green dashed arrows indicate data dependencies, which influence the

scheduling order.

transition guarded by B sets flag A. In such a case, the SC-
Chart is not constructive (not causal) and rejected. This causal-
ity requirement is common in synchronous languages; it is
also found, e. g., in functional reactive programming, where
nodes are topologically sorted according to their data de-
pendencies to avoid “glitches” [5]. However, since priorities
are computed statically, constructiveness is also checked at
compile time. Hence, there are no run-time surprises. More
information on how priorities are actually computed can be
found elsewhere [24].

Unlike earlier synchronous statechart proposals, such as
SyncCharts [2], the sequentially constructive semantics of
SCCharts allows variable values to change within a reaction
and to modify variables after they have been written, as long
as the model is still deterministic. We did not state this flexi-
bility as a hard requirement and our code synthesis approach
would be applicable just as well to SyncCharts; this is not
surprising, since in a way, SCCharts can be viewed as a con-
servative extension of SyncCharts. However, in practice we
consider this flexibility to be a significant advantage, again
leading to more compact models and simpler code, which
would not be possible under the more restrictive semantics
of, e. g., SyncCharts.

4.2 Preserving Topology

The basic topology mapping is straightforward. Fig. 3 shows
how different parts of the SCCharts model get transformed
into C code. The interface of the SCChart is translated into
a dedicated 10 struct (red A). Comments are added to give
additional information about inputs and outputs. The root
state is transformed into a ContextRoot struct which holds

the interface, a ThreadStatus, and sub-contexts from enclosed
regions (dark gray B). The functions that can be called from
the environment are reset and tick. reset initializes the state
machine and is usually called at start-up. tick can then be
invoked periodically to calculate exactly one discrete tick of
the automaton. The regions inside of the root state are then
transformed similarly (blue C and green D). Each region has
a set of states, an own context struct, and a set of functions
that mimic the topology of the statechart. The details of each
are described in the following.

4.3 Thread Status

Every thread has a ThreadStatus member. It is an enum
(light gray, Fig. 3), which indicates what status this thread
has, with four different statuses, see Fig. 4. A READY thread
is ready and waits for its execution. RUNNING indicates that
the thread is currently executing. If a thread has finished its
reaction for a tick, it sets itself to PAUSING. If it ceases to
exist, it is TERMINATED and can only be re-spawned from
a higher hierarchy.”

4.4 Superstates

As explained in Sec. 4.1, the priorities are calculated stat-
ically. The concurrent data dependencies, shown as green,
dashed edges in Fig. 3, determine the priorities in this ex-
ample. Static thread priorities are set when a superstate is

2These four states are a flattened and slightly refined encoding of the en-
abled/active flags of the original SCCharts proposal [24]: disabled threads
are TERMINATED; enabled and inactive threads are PAUSING; enabled and
active threads are READY or RUNNING, depending on whether they are
currently dispatched or not.

REBLS ’18, November 4, 2018, Boston, MA, USA

e

TERMINATED

Figure 4. Thread status in priority-based concurrency

PAUSING

RUNNING

void reset(ContextRoot *context) {
context->contextR0.io = &(context->io);
context->contextR1.io = &(context->io);

context->contextR0.activeState = SO;
context->contextR0.delayedEnabled = 0;
context->contextR0.activePriority = 2;
context->contextR0.threadStatus = READY;

context->contextR1.activeState = TO;
context->contextR1.delayedEnabled = 0;
context->contextR1.activePriority = 1;
context->contextR1.threadStatus = READY;

context->activePriority = 1;
context->threadStatus = RUNNING;

Figure 5. Internal code structure of the reset function

entered. Note that the root state is a superstate with an inter-
face for the environment; any superstate inside an SCCharts
model is constructed the same way. For the root state, the
priorities are set inside the reset function, which is called
when the program is initialized. Fig. 5 shows the internals
of the reset function. Besides initializing the thread context,
the previously calculated priorities for R0 and R1 are set. As
the dependency edges in Fig. 3 indicate, RO must be executed
before R1 and, hence, receives the higher priority.

Eventually, the root state’s function stateExample is called,
depicted in Fig. 6. As with every superstate, its purpose is
to determine which contained region is allowed to run in
which order and to adjust the priorities accordingly. Hence,
at the beginning of the function, all threads that are still able
to run are set to RUNNING and are invoked sequentially
(see the red box A in Fig. 6). All threads that are still ready to
run contribute to the new priority, which is set afterwards
(blue box B). If all threads finished their execution for the
active tick, the priority is set to the maximum of the paused
threads for the next tick (green box C). Eventually, all threads
have completed their tick and the superstate checks if it must
terminate itself (gray box D). The control then returns to
the caller. Note that the code can be further optimized if a
superstate contains only one region or if the static priorities
do not change.

4.5 Regions

Every region inside a superstate gets its own context. For
each region, the context struct, an enum with the included
states, and a function for every state plus one function for

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

void stateExample(ContextRoot *context) {
int newActivePriority = @;

if (context->contextRe.threadStatus == READY) {

if (context->contextR@.activePriority == context->activePriority) {
context->contextRO.threadStatus = RUNNING;
// Call the logic code of thread RO.
regionRo(&context->contextRO);

}

if (context->contextRO.threadStatus == READY) {
if (context->contextR@.activePriority > newActivePriority) {

newActivePriority = context->contextRe.activePriority;

}

}

if (context->contextRl.threadStatus == READY) {
if (context->contextRl.activePriority == context->activePriority) {
context->contextRl.threadStatus = RUNNING;
// Call the logic code of thread R1.
regionR1(&context->contextR1);

if (context->contextR1l.threadStatus == READY) {
if (context->contextRl.activePriority > newActivePriority) {
newActivePriority = context->contextRl.activePriority;
}
}
}

// Set the new priority.
context->activePriority = newActivePriority;

// Calculate the priority for the next tick if necessary.
if (context->contextRe.threadStatus != READY &&
context->contextR1l.threadStatus != READY) {
if ((context->contextRO.threadStatus == PAUSING) &&
(context->contextR@.activePriority > context->activePriority)) {
context->activePriority = context->contextR@.activePriority;

if ((context->contextRl.threadStatus == PAUSING) &&
(context->contextRl.activePriority > context->activePriority)) {
context->activePriority = context->contextRl.activePriority;

}
}

// Check if the root state must terminate.

if (context->contextRe.threadStatus == TERMINATED &&
context->contextR1l.threadStatus == TERMINATED) {
context->threadStatus = TERMINATED;

3
}

Figure 6. Internal code structure of a superstate

stateSO]

Figure 7. Hierarchical call tree of the generated code

regionR1

[tick)—>(rootState

regionRO

the whole region is created. As before, the context contains
a thread status, and a pointer to the interface. Additionally,
it holds the active state, a flag which signals if delayed tran-
sitions are enabled, and an active priority. The functions
are named appropriately and called when the corresponding
element in the SCChart is active.

The call stack for these functions is constructed hierarchi-
cally, as depicted in Fig. 7. The environment sets the inputs

Synthesizing Manually Verifiable Code for Statecharts

void regionR@(ContextRO *context) {
/* Cycle through the states of the region as long as this thread
* is set to RUNNING. */
while(context->threadStatus == RUNNING) {
switch(context->activeState) {
case S@:
regionRO_stateSo(context);
break;

case S2:
regionRo_stateS2(context);
break;

case S1:
regionR@_stateSi(context);
break;
}
}
}

Figure 8. Internal code structure generated from a region

void regionR@_stateSo(ContextR@ *context) {

/* Transition @: immediate to final state S1

* Trigger/Effects: I / 0 =1 */

if (context->io->I) {
context->io->0 = 1;
context->activeState = S1;
context->delayedEnabled = 0;
else if (context->delayedEnabled) {
/* Transition 1: delayed to state S2
* This is the default transition, the trigger is always true. */
context->activeState = S2;
context->delayedEnabled = 0;
else {
// Wait for next tick if no transition was taken.
context->threadStatus = PAUSING;

}
}

-

—~

Figure 9. Internal code structure generated from a state

and calls the tick function to compute the reaction for one
tick. The tick function then calls the root state’s function
stateExample. As the root state includes the two regions
regionR0 and regionR1 in the example, their functions are
called next. Each region function is then responsible for call-
ing the active state functions. Note that the order in which
the regions are executed depends on their priority and can
be interleaved.

As stated before, the superstate function calls the func-
tions responsible for the regions in the correct order. Such a
function is straightforward, as shown in Fig. 8. The region
code is looped as long as the thread status is RUNNING. The
contained switch block selects the correct function for the ac-
tual state and calls it. A reaction inside of a state function can
set the thread status to READY, PAUSING, or TERMINATED
to yield, so that the region while loop will be left. READY
means that the thread releases its control so that another
thread can continue. This happens when the priority of a
thread changes. PAUSING signals that the thread finished
its reaction for this tick. Paused threads will be set to READY
at the beginning of the next tick. TERMINATED indicates
that the region has reached a final state and is terminated
until invoked again from a higher hierarchy.

REBLS ’18, November 4, 2018, Boston, MA, USA

Table 1. Lines of code for the different trials: netlist-based,
priority-based, state-based without comments, and state-
based with comments

Lines of code \ Netlist \ Prio \ State w/o \ State w/

Header 34 39 55 129

Source 52 104 154 226

Overall 86 143 209 355
4.6 States

The reactions happen inside the state functions. Fig. 9 de-
picts the source code of the state S0. Here, for every outgoing
transition it is checked whether or not the transition is eligi-
ble to fire. Therefore, the delay status and the trigger of all
transitions are checked in order of their transition priorities.
S has two such transitions: One immediate transition with
index 1 to S1 with | as trigger, and one delayed transition
with index 2 without trigger to S2. According to the tran-
sition index, the function first checks if | is true. If so, the
reaction of that transition is executed: The output O is set
to true and the control is handed over to S1 while setting
the delayed flag to false. If the transition cannot fire, it is
checked if the delayed transition is eligible to run. If so, the
control is transferred to S2. If no transition can be taken,
the thread is set to PAUSING to signal the reaction’s end for
this tick. Note that extended information of the transitions
and their reactions are annotated as comments by the code
generator. These comments are also added to the header file
where the function declarations are stored. While it is still
necessary to validate the source code inside the source files,
the transition reactions can also be seen inside the header
files to support readability.

5 Evaluation

The goal of the presented approach was to create well-readable
code, which should ease verification. To validate this, we con-
ducted a user study that compares the code generation to

other approaches. The participants were given code from

three different code generators to compare in different ways.

Further, they were asked to reverse-engineer the original

statechart from it, explained further in Sec. 5.1. Results of

the study are presented in Sec. 5.2, followed by executable

sizes and execution times in Sec. 5.3.

5.1 Set-Up

24 students participated in the study. All students were given
a short 5 min introduction to the semantics of SCCharts, but
without information on how the different code generators
work or what kind of source they produce. For every code
generation approach, the participants should inspect the au-
tomatically generated source code without having seen the
original source model. They should then draw the model
from which the model was generated. Here, the students

REBLS ’18, November 4, 2018, Boston, MA, USA

State w/ State w/

State w/o ‘ State w/o

0 5 10 15 20 1 2 3 4 5
State-based time State-based confidence

(a) Mean time (min) of the state- (b) State-based mean confidence
based trials (1=low, 5=high)

Figure 10. Mean time and confidence of the state-based
compilation trials with vs. without comments regardless of
trial ordering

were asked to draw as many characteristics of the SCCharts
as possible, which were states, regions, transitions, the inter-
face, and the labels of the states and regions.

There was a time limit of 20 min per trial, but a trial could
be finished prematurely. For each trial, the SCCharts were
similar to the example shown in Fig. 3. There were four trials
that were presented in different orderings to each partici-
pant: Netlist-based compilation, priority-based compilation,
state-based compilation without comments, and state-based
compilation with auto-generated comments. The different
sizes in lines of code, including comments, between the trials
can be seen in Tab. 1. The overall program code that needs
to be understood by the study’s participants grows with
each trial with 86 lines for the netlist-based, 143 lines for the
priority-based, and 209 and resp. 355 lines for the state-based
approach. The drawn SCCharts were checked for their cor-
rectness. Additionally, we measured the participant’s time
needed and asked them to give a confidence rating between
1 (very unsure) to 5 (very sure) for each trial.

5.2 Case Study Results

As the participants got all trials in different order, we first
wanted to know if the order in which they got the two state-
based trials matters. As Fig. 10 shows, the mean time (Fig. 10a)
and the mean confidence (Fig. 10b) of the two state-based tri-
als are nearly identical even though the participants got the
two trials in different ordering. Hence, for the comparison
of the different compilation approaches, we do not differen-
tiate between the state-based approaches with or without
comments, but whichever the participant worked on first
(indicated by State I and State II respectively).

Time & Confidence Fig. 11 depicts the overall time and
confidence results of all trials. Despite shorter programs w.r.t.
lines of code as shown in Tab. 1, the trials with the netlist-
based and priority-based generated codes almost always
needed the full amount of time (see Fig. 11a). Even the first
state-based trial only needs 14 minutes in the mean although
the code is up to four times larger. Once accustomed to the
structure of the code, the second trial of the state-based
code-generation can be done in under 10 minutes mean.

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

Of course it is also possible get a training effect with the
netlist- or priority-based compilation, but we argue that it
is inherently more difficult and with larger models or in
some other cases, e. g., strongly optimized netlists, maybe
even impossible to reach same result in time and confidence
compared to the state-based compilation.

Analogously to the time ratings, the confidence rises with
the state-based approach. While the netlist-based code seems
to be difficult to understand, the priority-based compilation,
being closer bound to the structure of the program, scores
better. The state-based compilation, which maps the topology
of the statechart nearly one-to-one, always scores a mean
sure or better rating, even though the participants did see
that kind of code before.

Correctness As stated in Sec. 5.1, we also checked for the
correctness of the drawn SCCharts. The results are shown
in Fig. 11. In the evaluation, we split the ratings into func-
tional correctness (Fig. 11c), which says if the model behaves
semantically correct, and correctness of appearance (Fig. 11d),
which rates if the model’s graphical appearance resembles
the original model. In the case study, this mainly concerns
state and region labels. While superfluous syntax, e. g., tran-
sient states, is not per se incorrect, it can impair the overview
of the model. Hence, we added a second rating to Fig. 11d
with deductions for superfluous syntax.

The functional correctness results almost mirror the confi-
dence ratings. The participant’s models for the netlist-based
compilation were 40% correct. For the priority-based compi-
lation they reached 70%, and the state-based compilations
were with 90% almost correct without prior knowledge of
the SCChart.

The correctness of appearance results are similar. Many
of the graphical elements, which include for example labels
of regions, states, and variables, are transformed and par-
tially lost during the netlist-based and priority-based compi-
lation. In the second evaluation with the point deductions,
the priority-based approach score worse, because the partic-
ipants drew many transient states that mimic the program
control flow which are not necessary and did not resemble
the original model even if the model is semantically correct.
The topology-preserving state-based compilation keeps most
of these elements with their names in the final code and also
uses them to auto-generate appropriate comments.

The result suggests that there is some room for improve-
ment even with the state-based approach. The participant’s
unfamiliarity to the subject may play a role here, because a
commented header (cf. Fig. 3) is arguably enough to score
a 100% correctness of appearance rating. Hence, we will
investigate this further.

Note that in practice w.r.t. verification, the source state-
chart is most-likely known. We argue that close to perfect
correctness is feasible (at least for small model sizes), be-
cause the untrained participants were able to score a 90%

Synthesizing Manually Verifiable Code for Statecharts

State Il |

State Il
State | State |
Prio Prio
Netlist Netlist
0 5 10 15 20 1 2 3 4 5
Time Confidence

(b) Mean confidence of all trials
(1=low, 5=high)

(a) Mean time (min) of all trials

(c) Mean functional correctness
of all trials

REBLS ’18, November 4, 2018, Boston, MA, USA

State w/ State w/ }

State w/o State w/o 1
Prio Prio
Netlist Netlist

0 02 04 06 08 1
Appearing correctness

0 0.2 04 06 08 1
Functional correctness

(d) Mean correctness of appear-
ance (light: deductions)

Figure 11. Mean time and confidence of all trials.

source Hier-
1 archy ‘ ‘
R Statbased
both f—— ABRO = Prio
4 m Netlist
comments ‘ ABO ‘
0 2 4 6 8 0 0.5 1 1.5 2 25

Comment's Influence Tick execution time

Figure 12. Comment’sin- Figure 13. Mean tick execution
fluence rating time (ps)

(resp. 80%) rating without knowledge of the SCChart. We
plan to conduct another study that solely focuses on verifi-
cation to confirm this. The second study should also include
more complex models.

Code Comments In the trial on the state-based approach
with comments, we further asked the participants to rate
the influence of the comments towards their drawings (see
Fig. 12) from 1 (“I looked only at the comments”) to 5 (‘I
looked only at the source code”). Again, we separated the
results in two groups. The results of the group who got the
state-based pattern without comments first are depicted in
dark blue. The results of the group with the comments first
are shown in light blue. While there is a peak in both groups
at the “T looked more on the comments” rating, we feel that
there is not enough data to support that claim yet, especially,
as the results in Fig. 10 and Fig. 11 do not show significant
distinctions between the two state-based trials. Overall, the
variant with the comments got a slightly better confidence
and functional correctness rating, whereas the appearance
rating is slightly worse. However, the survey sample size is
too small to conclude from this slight differences.

5.3 Run-Time Results

Fig. 13 shows a preliminary runtime evaluation for small
models. While the state-based approach is only marginally
slower at models with little concurrent communication (see
ABO and ABRO), a slow down is measurable for models with
more concurrency (see Hierarchy with five communicating
concurrent regions) due to the traversal through the call

stack. We will further investigate this on possible optimiza-
tions, such as an optimized call stack traversal or simplified
code generation for superstates.

6 Related Work

As discussed in Sec. 2, there exist numerous statechart di-
alects, and most of them can be synthesized into code, but
typically not such that it meets our stated requirements. For
example, SyncCharts [2] can by synthesized into Esterel,
for which in turn various approaches exist to generate C
code [16]. These have also inspired the original code syn-
thesis approaches for SCCharts, but like them suffer from
poor traceability back to the original model. One aim of the
state-based synthesis approach is to generate code in such
a way as a programmer would have written it manually.
The generated code has similarities to the state-machine pat-
tern advocated when programming directly in C/C++/Java.
Samek discusses how to code UML Statechart in C/C++ [18],
von Hanxleden presents an approach to implement Sync-
Charts in C [23]. For SCADE [4], a synchronous modeling
language that also includes statecharts, there exists a quali-
fied code generator. The emphasis there is qualification of
the tool itself, not of the generated code. However, we could
envision that the traceability offered by the state-based code
synthesis approach presented here would also be an enabler
for qualification of the compiler and additionally eases de-
bugging on the target.

7 Conclusion and Outlook

We have presented a new code synthesis approach for state-
charts, the state-based approach, with the aim of producing
code that lends itself to human inspection and verification.
This should facilitate model-driven software development
for safety-critical applications, by minimizing the time from
specification to qualified code. One guiding principle was to
create code as a human programmer would have written it,
including self-explanatory names and sufficient commenting.
We have presented our code generation approach fulfilling
requirements R1-R6 in the setting of SCCharts, which pos-
sess properties such as determinism, true concurrency, and

REBLS ’18, November 4, 2018, Boston, MA, USA

the possibility of sequentially evolving variable values within
a reaction.

Based on the presented results, we plan to conduct a sec-
ond study to evaluate the suitability of the state-based ap-
proach w.r.t. concrete verification steps. The second study
should include more complex models. Moreover, we want to
improve efficiency of the generated code. Further, we plan
to study extended SCCharts features w.r.t. their impact to
obscure topology and enhance them accordingly. We also
consider the generation of truly parallel code for multi-core
processing, although at this point it is not clear how well that
will lend itself to qualification for safety-critical applications.

Acknowledgment

This work was supported by the German Science Foundation
(DFG HA 4407/6-2 and ME 1427/6-2) as part of the PRETSY
project.

References

[1] Sidharta Andalam, Partha S. Roop, and Alain Girault. 2010. Determin-
istic, predictable and light-weight multithreading using PRET-C. In
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’10). Dresden, Germany, 1653-1656.

[2] Charles André. 2004. Computing SyncCharts Reactions. Electr. Notes
Theor. Comput. Sci. 88 (2004), 3-19.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. 2003. The Synchronous
Languages Twelve Years Later. In Proc. IEEE, Special Issue on Embedded
Systems, Vol. 91. IEEE, Piscataway, NJ, USA, 64-83.

[4] Jean-Louis Colago, Bruno Pagano, and Marc Pouzet. 2017. SCADE
6: A formal language for embedded critical software development
(invited paper). In 11th International Symposium on Theoretical Aspects
of Software Engineering TASE. Sophia Antipolis, France, 1-11.

[5] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In 15th European
Symposium on Programming (ESOP ’06). Vienna, Austria, 294-308.

[6] Bruce Powel Douglass. 1999. UML Statecharts. Embedded Systems
Programming (Jan. 1999), 22-42.

[7] Harald Fecher, Jens Schonborn, Marcel Kyas, and Willem P. de Roever.
2005. 29 New Unclarities in the Semantics of UML 2.0 State Machines.
In ICFEM (LNCS), Vol. 3785. Springer, 52-65.

[8] Insa Fuhrmann, David Broman, Reinhard von Hanxleden, and Alexan-
der Schulz-Rosengarten. 2016. Time for Reactive System Model-
ing: Interactive Timing Analysis with Hotspot Highlighting. In Pro-
ceedings of the 24th International Conference on Real-Time Networks
and Systems (RTINS ’16). ACM, New York, NY, USA, 289-298. https:
//doi.org/10.1145/2997465.2997467

[9] Grégoire Hamon. 2005. A denotational semantics for Stateflow. In
EMSOFT 05: Proceedings of the 5th ACM International Conference on
Embedded Software. ACM Press, New York, NY, USA, 164-172.

[10] David Harel. 1987. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8, 3 (June 1987), 231-274.

Steven Smyth, Christian Motika, and Reinhard von Hanxleden

[11] Les Hatton. 1995. Safer C: Developing Software for in High-Integrity
and Safety-Critical Systems. McGraw-Hill, Inc.

[12] Edward A. Lee. 2006. The Problem with Threads. IEEE Computer 39, 5
(2006), 33-42.

[13] Michael Mendler, Reinhard von Hanxleden, and Claus Traulsen. 2009.
WCRT Algebra and Interfaces for Esterel-Style Synchronous Process-
ing. In Proceedings of the Design, Automation and Test in Europe Con-

ference (DATE °09). Nice, France.
[14] MISRA. 2013. MISRA C:2012: Guidelines for the Use of the C Language

in Critical Systems. Motor Industry Research Association.

[15] Christian Motika. 2017. SCCharts—Language and Interactive Incre-
mental Implementation. Number 2017/2 in Kiel Computer Science
Series. Department of Computer Science. Dissertation, Faculty of
Engineering, Christian-Albrechts-Universitat zu Kiel.

[16] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. 2007.
Compiling Esterel. Springer.

[17] Leanna Rierson. 2013. Developing Safety-Critical Software: A Practical
Guide for Aviation Software and DO-178C Compliance. Taylor & Francis
Inc.

[18] Miro Samek. 2008. Practical UML Statecharts in C/C++Event-Driven
Programming for Embedded Systems. Newnes.

[19] Francisco Sant’Anna, Roberto Ierusalimschy, Noemi de La Rocque Ro-
driguez, Silvana Rossetto, and Adriano Branco. 2017. The Design
and Implementation of the Synchronous Language CEU. ACM Trans.
Embedded Comput. Syst. 16, 4 (2017), 98:1-98:26.

[20] Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Frédéric
Mallet, Robert de Simone, and Julien Deantoni. 2018. Time in SCCharts.
In Proc. Forum on Specification and Design Languages (FDL ’18). Munich,
Germany.

[21] Steven Smyth, Stephan Lenga, and Reinhard von Hanxleden. 2016.
Model Extraction for Legacy C Programs with SCCharts. In Proceedings
of the 7th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA °16), Doctoral Symposium
(Electronic Communications of the EASST), Vol. 74. Corfu, Greece. With
accompanying poster.

[22] Michael von der Beeck. 1994. A Comparison of Statecharts Variants.
In Formal Techniques in Real-Time and Fault-Tolerant Systems (LNCS),
H. Langmaack, W. P. de Roever, and J. Vytopil (Eds.), Vol. 863. Springer-
Verlag, 128-148.

[23] Reinhard von Hanxleden. 2009. SyncCharts in C—A Proposal for
Light-Weight, Deterministic Concurrency. In Proc. Int’l Conference on
Embedded Software (EMSOFT "09). ACM, Grenoble, France, 225-234.

[24] Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven
Smyth, Michael Mendler, Joaquin Aguado, Stephen Mercer, and Owen
O’Brien. 2014. SCCharts: Sequentially Constructive Statecharts for
Safety-Critical Applications. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’14). ACM,
Edinburgh, UK, 372-383.

[25] Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Bjorn
Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer,
Owen O’Brien, and Partha Roop. 2014. Sequentially Constructive
Concurrency—A Conservative Extension of the Synchronous Model
of Computation. ACM Transactions on Embedded Computing Systems,
Special Issue on Applications of Concurrency to System Design 13, 4s
(July 2014), 144:1-144:26.

https://doi.org/10.1145/2997465.2997467
https://doi.org/10.1145/2997465.2997467
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola16-poster.pdf

	Abstract
	1 Introduction
	2 Requirements on Statecharts and Code Generation
	2.1 Semantic Requirements
	2.2 Coding Requirements

	3 SCCharts
	3.1 SCCharts Language Overview by Example
	3.2 Extended SCCharts
	3.3 Existing SCCharts Compilers

	4 The State-Based Compilation Approach
	4.1 Priority-Based Concurrency
	4.2 Preserving Topology
	4.3 Thread Status
	4.4 Superstates
	4.5 Regions
	4.6 States

	5 Evaluation
	5.1 Set-Up
	5.2 Case Study Results
	5.3 Run-Time Results

	6 Related Work
	7 Conclusion and Outlook
	References

