WCRT Algebra and Scheduling Interfaces
for Esterel-Style Synchronous Multithreading
Preliminary Report

Reinhard von Hanxleden
Michael Mendler
Claus Traulsen
Bericht Nr. 0807
July 8, 2008
WCRT Algebra and Scheduling Interfaces for Esterel-Style Synchronous Multithreading

Preliminary Report

Reinhard von Hanxleden
Michael Mendler
Claus Traulsen

Bericht Nr. 0807
July 8, 2008

E-mail: rvh@informatik.uni-kiel.de,
michael.mendler@uni-bamberg.de,
ctr@informatik.uni-kiel.de
Abstract. The abstractions used in system design typically limit themselves to encapsulate and guarantee functionality, not timing. Hence, it is very difficult to transfer results on timing behavior across layers, e.g., from the application level through the operating system level to the hardware level. The choice of the model of computation plays a big role in facilitating this transfer. In the realm of reactive systems, the synchronous model of computation has some appeal here, as it inherently limits the number of operations per reaction, and addresses concurrency and preemptive behavior at the language level. Recently, reactive processing architectures have been proposed as execution platform for synchronous languages, notably Esterel. Initially, these architectures were driven by the desire for high performance with low resource usage, including low power consumption. However, by now they have also demonstrated their benefits in terms of predictability. Preliminary work on worst case reaction time (WCRT) analysis has been promising—fairly simple heuristics already achieve an accuracy typically in the 30–40% range. However, these methods so far lack formal grounding, and do not exploit knowledge about signal consistency etc. To provide a formal basis for WCRT analysis, we here propose a type-theoretic, algebraic approach. This approach not only allows to verify the correctness of WCRT analyses methods, but also opens the door for more exact analyses, as it allows to capture functionality and timing precisely and to trade off precision against analysis effort.

This approach is still under development; this report presents first results on suitable interface types and the proper characterization of instantaneous nodes, delay nodes and concurrency. As a concrete application, it builds on a multi-threaded Esterel processor, the Kiel Esterel Processor (KEP).

Key words: Worst Case Reaction Time analysis, Interface Algebra, Synchronous Languages, Esterel, Multithreading, Reactive Processing, Kiel Esterel Processor
Table of Contents

1 Introduction ... 3

2 Synchronicity and Timing Predictability 3

2.1 Reactive Processing ... 3

3 A Type-Theoretic Approach to WCRT Analysis 4

4 Example of Esterel-style Multi-threading, KEP Assembler 7

5 WCRT Interfaces at Work .. 9

5.1 Introducing Interface Types ... 9

5.2 Instantaneous Behavior: Transient Nodes 13

 Weaving Paths ... 14

 Weaving Nets .. 15

 Bundling Abstractions ... 16

 Data Dependency and Degrees of Precision 17

5.3 Sequential Behavior: Delay Nodes 18

5.4 Concurrent Behavior: Fork and Join 21

6 Conclusion ... 25

A WCRT Interface Types ... 27

B Multi-threading Composition ... 30

 Multi-threading of Surface Interfaces 32

 Multi-threading of Depth Interfaces 33

 Putting it Together: Adding Fork and Join 36
1 Introduction

Reconciling performance and predictability in embedded systems is a challenge that spans all layers of hard- and software development. The use of abstraction layers, for example distinguishing the operating system (OS) layer from an application software layer above and a hardware layer below, is fundamental to computer science. However, as observed by Edwards and Lee [1], these abstractions typically limit themselves to encapsulate and guarantee functionality, not timing. Hence, even though there is a significant body of work that addresses predictability at different abstraction layers, considering for example schedulability, worst case execution times (WCET), or circuit timing, it is very difficult to transfer results across layers. However, end users are not interested in results that apply only to one layer—they care about timing guarantees for complete systems.

The choice of the model of computation—and its model of time—has a profound influence on how easy or difficult it is to provide timing guarantees across abstraction layers. From the predictability point of view, a very appealing candidate in the embedded systems domain is the synchronous model of computation [2]. This model supports deterministic timing in several ways, as further argued in Section 2. Furthermore, languages built on that model generally have a well-established formal semantics that allows reasoning about functional as well as timing properties from the ground up. In this paper, we first give an overview on how the synchronous model together with a suitable execution platform can provide system-level timing predictability, and we illustrate this with the case of multi-threaded execution of Esterel-style synchronous programs. The main contribution of this paper then is the introduction of an algebraic framework for precisely capturing WCRT characteristics for this execution approach.

2 Synchronicity and Timing Predictability

The synchronous model of computation divides physical time into a sequence of discrete ticks, or instants. The abstraction is that at each tick, outputs are synchronous with the inputs. In other words, computations take place instantaneously, interspersed with durations of inactivity between ticks. Synchronous languages generally do not permit unbounded computations within a tick. For example, the language Esterel provides a loop construct [3], but each loop iteration must include at least one tick-delimiting instruction, and the compiler must be able to verify this. This simplifies the problem of determining the maximal number of instructions per tick, which leads to the worst case reaction time (WCRT). The situation is quite different for classical imperative languages such as Java or C, which permit unbounded loops and unbounded recursion, and thus only language subsets (e.g., with statically bounded loop iterations) are amenable to WCET analyses. Another helpful characteristic of (strict) synchrony is that the statuses of signals, which are basic communication means in synchronous programs, evolve monotonically. In other words, there can be no oscillations between signal presence and absence, thus guaranteeing convergence after a finite number of computations. This contrasts, for example, with Harel’s original Statecharts dialect [4], which assumes a weaker (non-strict) form of synchrony in which computations are also assumed to not consume any time, but signal statuses are allowed to oscillate and computations within a tick are unbounded. Finally, the synchronous paradigm also supports concurrent and preemptive control flow, with a deterministic semantics regarding both functionality and timing characteristics. This again contrasts with classical imperative languages, which either do not support non-sequential control flow at all (e.g., C relegates this to the OS level, subject to run-time scheduling decisions), or support it only in a rather haphazard fashion (e.g., Java threads [5]).

2.1 Reactive Processing

Synchronous programs may be compiled into hardware or software. The traditional software design flow is to first compile the synchronous program into a classical imperative language, such as C, and to compile and run the resulting program on a standard micro processor [6]. This approach preserves the nice semantical properties of synchronous programs at a functional level.
The timing properties, however, are only partially preserved with this approach. Computations are still finite per tick, and the synthesized C-code should not have unbounded loops, for example. However, depending on the synthesis approach used, the control flow may still be rather complex and difficult to analyze (for example, computed gotos). Furthermore, standard processors typically employ various techniques that improve average execution time, at the expense of worst case execution time and predictability [7].

An alternative, more recent approach for executing synchronous programs is to run them on processors that directly support reactive control flow. This reactive processing approach builds on instruction set architectures (ISAs) that can express concurrency and preemption and preserve functional determinism [8]. There have been various proposals on how to support concurrency in reactive processing, including sequentialization [9], parallel execution [10], and, most recently, multi-threading [11, 12]. The latter one appears to be the most effective at this point, and significantly outperforms classical software-based execution strategies while using minimal resources.

In the multi-threaded reactive processing approach, a combination of static scheduling, hardware-supported context switching, and fixed machine instruction execution times assures timing determinism. This has been exploited in a compiler which translates Esterel programs into multi-threaded assembler code, and as part of the compilation process analyzes the WCRT in terms of instruction cycles [13]. The assembler code is then annotated with this WCRT, which at run time configures a hardware unit, the TickManager, which provides timing stability at the logical tick level [14]. This decouples physical system reaction times from the tick-specific computation requirements, which is for example desirable for control loop stability. Note that, as an alternative, one may still choose not to make use of the TickManager and instead let the processor run freely, i.e., start the next tick as soon as the current tick finishes. This can improve average case performance, at the expense of reaction time jitter and possibly higher power requirements. Furthermore, our experiments indicate that there is no dramatic difference between WCRT and average case reaction time (ACRT)—typically a factor of around 1.5 [13].

The WCRT analysis technique developed so far does already provide fairly promising results. A relatively simple heuristics provides an accuracy typically in the 30–40% range [13]. However, this heuristics still makes conservative and simplifying assumptions, and is not grounded in a formal timing model. We believe that such a formal model will be instrumental in the further development of these techniques to cover different processing platforms and several levels of abstraction between hardware and software layers. A semantically grounded notion of WCRT interface types will be crucial to make our techniques scale up to industrial-sized systems without losing tight control of correctness and exactness of WCRT analysis. In this paper we take first steps towards such an interface model.

3 A Type-Theoretic Approach to WCRT Analysis

Imperative synchronous programming as exemplified in Esterel, Statecharts provide predictability in terms of determinism and bounded reaction in the face of powerful language constructs for concurrency, state hierarchy, priorities, strong and weak preemption. These constructs induce sophisticated control dependencies so that WCRT analysis for such languages and processors that directly support them is non-trivial. The risk of over- and under-approximations jeopardizes the quality of WCRT analysis and thus creates a conflict between performance and predictability.

Combining performance with predictability involves a trade-off between analysis time and execution time. Optimizations in the efficiency of timing analysis are paid for by compromising the quality of timing results. Under-approximations may result in a loss of coverage and over-approximations in a loss of exactness. Thus, the system under analysis (SUA) becomes less predictable or runs at slower (virtual) clock speed. Optimizations in speed and predictability of the SUA, on the other hand, require sophisticated data-dependent analysis which are computationally expensive. This creates a direct conflict with the performance and predictability of the WCRT algorithms themselves. To strike this trade-off a scalable and modular approach towards timing analysis is called for in which precision and efficiency can be adjusted systematically in wide margins.
The existing WCRT algorithms such as [13] are neither compositional nor scalable in terms of precision. They are global analyses on the complete control-flow graph of a monolithic program. Also they run at the ground level of atomic program statements rather than hierarchical sub-systems. In this paper we propose a theory of WCRT interfaces for synchronous programming and show how it can be employed to obtain type-directed and modular WCRT analyses which

- give precise statements about exactness and coverage of timing values, supporting a variety of timing abstractions;
- are dedicated to express the implicit control flow of imperative synchronous programming languages;
- are scalable across component hierarchies and the software-hardware abstraction boundary.

As an interface theory our WCRT algebra operates on matrices of delay values characterizing whole sub-systems rather than individual nodes like existing graph-theoretic WCRT algorithms do. It combines max-plus algebra \((\mathbb{N}, \max, +, 0, -\infty) \), see e.g. [15], with Boolean logic\(^1\) to reason about implicit control-flow.

The key element of WCRT analysis is the interchange (distribution) of \(\max \) and \(+ \). In its simplest form, the WCRT is the maximum of all sums of paths delays, an expression of the form \(\max(\sum_{e \in p_1} d_{i1}, \sum_{e \in p_2} d_{i2}, \ldots, \sum_{e \in p_n} d_{in}) \) where \(p_j \) are execution paths of the system and \(d_{ij} \) the delay of path segment \(i \) in path \(p_j \). However, the number \(n \) of paths is exponential in the number of elementary nodes of a system. Practicable WCRT analyses therefore reduce the \(\max \)-of-sums to the polynomial complexity of \(\text{sum-of-maps} \) employing various forms of dependency abstraction. Unfortunately, the obvious distribution of \(\max(d_1 + e_1, d_1 + e_2, d_2 + e_1, d_2 + e_2) = \max(d_1, d_2) + \max(e_1, e_2) = \max(d_1 + e_1, d_2 + e_2) \) is exact only if we have a full set of path combinations. In general, there will be dependencies ruling out certain paths, in which case we only get conservative over-approximations, e.g., \(\max(d_1, d_2) + \max(e_1, e_2) \geq \max(d_1 + e_1, d_2 + e_1, d_2 + e_2) \). On the other hand, \(\max(d_1 + e_1, d_2 + \max(e_1, e_2)) = \max(d_1 + e_1, d_2 + e_1, d_2 + e_2) \) which eliminates one addition operation, does work in this case. The art of WCRT analysis consists in finding a judicious trade-off between forming the maximum operation early in order to aggregate data and refining dependency paths for the sake of exactness. A practicable WCRT algebra must be able to express and control this trade-off. In Sec. 5.1 we sketch a type theory which achieves this by coupling timing delays \(d \) with logic formulas \(\phi \). A pair \(d : \phi \) specifies the semantical meaning of \(d \) within the control-flow of a program. Logical operations on the formulas then go hand-in-hand with arithmetic operations on timing. E.g., suppose a schedule activates control points \(X \) and \(Y \) with a delay of \(d_1 \) and \(d_2 \) instruction cycles. If they are independent then both control points are jointly active within the maximum of both delays, i.e., \((d_1 : X) \land (d_2 : Y) \equiv (\max(d_1, d_2) : X \land Y) \). On the other hand, if reaching \(Y \) is causally dependent on having reached \(X \) first then we must take addition, i.e., \((d_1 : X) \lor (X \supset (d_2 : Y)) \equiv (d_1 + d_2 : X \lor Y) \) where \(\land, \lor \) are logical conjunction and implication, respectively. Thus, in general, the computation of paths involves functional analysis of implicit control-flow using logic reasoning rather than just following pointers in a graph (of explicit dependencies). We will illustrate this in Secs. 5.2–5.4 below by way of an extended example.

The idea of modularizing embedded systems programming and specifically synchronous programming using interfaces is not new. Mostly these interface models focus on causality issues, which amounts to dependency analysis without quantitative time. On the other hand, there exist numerous approaches to classical WCET analysis [16] but only few on WCRT analysis [14].

Logothetis, Schneider and Metzler [17, 18] have employed model checking to perform a precise timing analysis for the synchronous language Quartz, which is similar to Esterel. However, their problem is WCET since they are interested in computing the number of logical ticks required to perform a certain transformational computation, such as a primality test. Instead, in reactive system WCRT one considers how long it may take to compute a single logical tick. WCRT is an orthogonal issue to WCET and has been rarely investigated in the literature so far.

André et al. [19] employ a causally simple notion of module in the sense that no instantaneous interaction between modules is permitted. Such a model is not suitable for WCRT. Hainque et

\(^1\) To be more precise, we use a finite-valued Heyting algebra in which \(A \lor \lnot A \) is not a tautology. This difference, however, is not essential for this paper.
al. [20] use a topological abstraction of the underlying circuit graphs (or syntactic structure of Boolean equations) to derive a fairly rigid component dependency model. A component is assumed executable iff all of its inputs are available; after component execution all of its outputs become defined. The former restriction means that single-threaded execution cannot be modeled compositionally. The interface model also does not cover data dependency and thus cannot deal with dynamic schedules and does not support WCRT, either.

The causality interfaces of Lee et al. [21] are more flexible. These are functions $\delta: P_i \times P_o \rightarrow D$ associating with every pair $(i, o) \in P_i \times P_o$ of input and output ports an element $\delta(i, o) \in D$ of a dependency domain D, which expresses if and how an output o depends on input i. The domain D is a linearly ordered dioid structure $(D, 0, 1, \otimes, \oplus, <)$, where \otimes models sequential composition and \oplus is the parallel composition of dependencies, with neutral elements 0 and 1, respectively. Causality analysis is then performed by multiplication on the global system matrix describing the dependencies between any two signals. Using an appropriate dioid structure D, one can perform the analyses of [20] as well as restricted forms of WCRT. However, Lee’s interfaces cannot express the difference between an output depending on the joint presence of several values as opposed to depending on each input individually. In other words, they do not support full AND- and OR-type synchronization dependencies and hence cannot represent neither multi-threading nor multi-processing. The work reported here can be seen as an extension of Lee’s to address these deficiencies.

Similar restrictions apply to recent work [22, 23] combining network calculus [15, 24] with real-time interfaces in which sequential connection and concurrent composition operators play an analogous role to Lee’s sequential and parallel composition, respectively. On top of that, these works are concerned with the compositional modeling of regular execution patterns rather than stabilization processes that make up the components inside each execution cycle of a synchronous program. Existing interface theories [21–23], which aim at the verification of resource constraints for real-time scheduling, handle rather delicate timing properties such as task execution latency, arrival rates, resource utilization, throughput, accumulated cost of context switches, and so on. On the other hand, in those works, the dependency on data and control flow is largely abstracted. For instance, since the task sequences of Henzinger and Matic [23] are independent of each other, their interfaces do not model concurrent forking and joining of threads. The causality expressible there is even more restricted than that by Lee et al. [21] in that it permits only one-to-one associations of inputs with outputs. The interfaces of Wanderer and Thiele [22] for modular performance analysis in real-time calculus are like those of Henzinger and Matic [23] but without sequential composition of tasks and thus do not model control flow.

AND- and OR-type synchronization dependencies are important for WCRT in synchronous programming since reachability of control nodes in general depends both conjunctively and disjunctively on the presence of data. Moreover, execution may depend on the absence of data (negative triggering conditions), which makes compositional modeling rather a delicate matter in the presence of logical feedback loops. This severely limits the applicability of existing interface models. The assume-guarantee style specification [22, 23] does not address causality issues arising from feedback and negative triggering conditions. The interface automata of Alfaro, Henzinger, Lee, Xiong [25, 26] model synchronous macro-states and assume that all stabilization processes (sequences of micro-states) can be abstracted into atomic interaction labels. The introduction of transient states [27] alleviates this to some extent, but the focus is still on regular (scheduling) behavior. The situation is different, however, for cyclic systems, in which causality information is needed. The interface problem in WCRT for stabilization processes is quite a different game—it is simpler and more complex at the same time. It is simpler since we do not need sophisticated resource and timing models; in a stabilization process the only resource is time—here instruction cycles—which is only consumed once rather than in a regular pattern. It is more complex since we need to model more sophisticated synchronization effects and solve causality and full-abstraction problems due to feedback and negative dependencies. Because of the complications arising from causality issues, there is currently no robust component model for imperative synchronous programming.

Before we move on introducing our approach in the next section let us add a couple of general remarks on our philosophy. Our approach to WCRT is specification-oriented and type-theoretic. The idea we wish to stress is that timing does not have any meaning without at the same time
4. Example of Esterel-style Multi-threading, KEP Assembler

Esterel [3] programs communicate with the environment and internally via signals, which are either present or absent during one instant. Signals are set present by the emit statement and tested with the present test. They are reset at the start of each instant. Esterel statements can be either combined in sequence (;) or in parallel ([]). The loop statement simply restarts its body when it terminates. All Esterel statements are considered instantaneous, except for the pause statement, which pauses for one instant, and derived statements like halt=loop pause, which stops forever. Esterel supports multiple forms of preemption, e.g., via the abort statement, which simply terminates its body when some trigger signal is present. Abortion can be either weak or strong. Weak abortion permits the execution of its body in the instant the trigger signal becomes active, strong abortion does not. Both kinds of abortions can be either immediate or delayed. The immediate version already senses for the trigger signal in the instant its body is entered, while the delayed version ignores it during the first instant in which the abort body is started.

Consider the Esterel fragment in Figure 1a. It consists of two threads. The first thread (G) emits signals R, S, T depending on some input signal I. In any case, it emits signal U and terminates instantaneously. The thread (H) continuously emits signal R, until signal I occurs. Thereafter, it either halts, when E is present, or emits S and terminates otherwise.

The main problems when executing Esterel on standard processors are the handling of pre-emption and synchronous parallelism. The Kiel Esterel Processor (KEP) [11] handles abortion by watchers, which are executed in parallel with their body and simply set the program-counter when the trigger signal becomes present. Synchronous parallelism is executed by multi-threading. The KEP manages multiple threads, each with their own program counter and a priority. In each instruction cycle, the processors determines the active instruction from the thread with the highest priority and executes it. New (sub-)threads are initialized by the PAR instruction. The PARE instruction ends the initialization of parallel threads and sets the program counter of the current thread to the corresponding join. By changing the priorities of the threads, arbitrary interleavings can be specified; the compiler has to ensure that the priorities respect all signal dependencies, i.e., all possible emits of a signal are performed before any testings of the signal. The specific interleavings are not relevant for the WCRT analysis under multi-threading. Therefore, priority changing instructions may be treated like the padding statement nothing which has no effect on the system state other than adding a time delay. Additionally, for all parallel threads one join instruction is executed, which checks whether all threads have terminated in the current instant. If this is the case, the whole parallel terminates and the join transforms the control to the next instruction. Otherwise the join blocks. Instructions pause and halt end the execution for the current instant, the execution is resumed from the same point in the next instant.

Most instructions, like emit or entering an abort block, are executed in exactly one instruction cycle. The pause instruction is executed both in the instant it is entered, and in the instant it is resumed, to check for weak and strong abortions, respectively. Note that the halt instruction
4. EXAMPLE OF ESTEREL-STYLE MULTI-THREADING, KEP ASSEMBLER

(a) Esterel program T

\[
\begin{align*}
\% & \text{ thread } G \\
\text{present } I & \text{ then} \\
& \text{ emit } R; \\
& \text{ present } I & \text{ else} \\
& \text{ emit } S; \\
& \text{ emit } T; \\
& \text{ end present;} \\
& \text{ emit } U; \\
& \| & \text{ then} \\
\% & \text{ thread } H \\
\text{weak abort} & \text{ loop} \\
& \text{ pause;} \\
& \text{ emit } R; \\
& \text{ end loop} \\
& \text{ when } \text{ immediate } I; \\
& \text{ present } E & \text{ then} \\
& \text{ halt} \\
& \text{ end present;} \\
& \text{ emit } S; \\
& \text{ nothing;} \\
\end{align*}
\]

(b) Execution Trace

U T S R R R

(c) CKAG

(d) KEP Assembler

Fig. 1: A simple Esterel program T with its corresponding control-flow graph and the resulting KEP Assembler

is executed in one cycle. While \text{halt} and \text{loop pause} are functionally equivalent, their execution times differ. The latter has a worst case reaction time (WCRT) of 3 instruction cycles (ics) while the former only needs 1 ic.

The concurrent KEP assembler graph (CKAG, see Fig. 1c) captures the control flow, both standard control and abortions, of an Esterel program. We distinguish two kinds of edges, instantaneous and non-instantaneous. Instantaneous edges can be taken immediately when the source node is entered, they reflect control flow starting from instantaneous statements or weak abortions of delayed statements. Non-instantaneous edges can only be taken in an instant where the control started in its source node, like control flow from \text{pause} statements or strong abortions. The CKAG can be derived from the Esterel program by structural translation. For a given CKAG, the generation of KEP Assembler is straight-forward (see Fig. 1c). Most nodes are translated into one instruction, only fork nodes are expanded to multiple instructions to initialize the threads. In our example, the fork v0 is transformed into three instructions (L01 – L03).
5 WCRT Interfaces at Work

The WCRT of an Esterel program is the maximal number of instructions that are executed during one instant. WCRT differs from WCET fundamentally in that it deals with the timing of stabilization rather than iteration processes. WCRT assumes that all dependencies in the control flow are acyclic and the propagation of control is a monotonic process in which each atomic control point is only ever executed at most once. On the other hand, WCRT for Esterel-style synchronous processing must handle non-atomic control flow including features such as hierarchical and concurrent threads, priorities and preemption. In the following we sketch the basic elements of WCRT for synchronous processing and develop an algebra for modular timing analyses. This algebra is an extension and adaptation of the intuitionistic propositional stabilization theory presented in [28].

5.1 Introducing Interface Types

An execution σ is a finite and monotonically increasing sequence $\sigma = \emptyset \subseteq \sigma(0) \subseteq \sigma(1) \subseteq \sigma(2) \subseteq \cdots \subseteq \sigma(n-1)$ of sets of control signals $\sigma(i) \subseteq S$ $(0 \leq i < |\sigma| = n)$ called events. This includes the special case $n = 0$ of the empty execution $\sigma = \emptyset$. For all executions, empty or not, we refer to the initial \emptyset as $\sigma(-\infty)$. Signals S contain the control-flow labels as well as input and output signals of the program. E.g. for the program in Fig. 1c $\{L0 - L20, G0 - G3, H0 - H3, I, E, R, S, T, U\} \subseteq S$. We will also need activation controls $active(v) \in S$ for nodes v in the hierarchical decomposition of the program. An execution σ models the micro-sequence of instruction cycles (ic) which are executed within a single synchronous instant. Each step $\sigma(i) \mapsto \sigma(i+1)$ records the change of controls between two successive activations of the thread. Accordingly, the number of instructions executed by σ is the number of changes or steps $|\sigma| - 1$ rather than the number of events.

Example 1. One possible execution of the program T in Fig. 1c would be as follows. Initially, control signal $T0$ is set, so $\sigma(0) = \{T0\}$. Then the PAR and PARE instructions making up the fork node v_0 are executed in line numbers L01, L02, L03 each taking one ic. The two PAR instructions set up internal counters for thread control, which does not change the set of events in the signals of Fig. 1c, which are the signals that we are interested in. Hence, $\sigma(1) = \sigma(2) = \{T0\}$. However, after the PARE both control signals $G0, H0$ become present bringing threads G and H to life. This means $\sigma(3) = \{T0, G0, H0\}$. The next instruction could be any of the two first instructions of G or H. As it happens, the KEP Assembler Fig. 1d assigns higher priority to H so that our execution continues with wabort (node v_8), i.e., $\sigma(4) = \{T0, G0, H0, L12\}$. This brings up the pause instruction v_9. Now, depending on whether signal I is present or not the execution of pause either moves to v_{12} (weak immediate abort) or terminates. Let us assume the latter, i.e., $\sigma(5) = \{T0, G0, H0, L12\}$ which is the same set as $\sigma(4)$ but now thread H is finished up for the instant and has entered an implicitly wait state. The execution continues with the first instruction of G, the present node v_{10} at label $G0$. Since I is assumed absent, its execution effects a jump to label $G1$, i.e., $\sigma(6) = \{T0, G0, H0, L12, G1\}$. Thereafter, we run sequentially through nodes v_3, v_5, v_6, v_7 giving $\sigma(7) = \{T0, G0, H0, L12, G1, G3\}$, $\sigma(8) = \{T0, G0, H0, L12, G1, G3, L9\}$, $\sigma(9) = \{T0, G0, H0, L12, G1, G3, L9, L10\}$. Executing the final emit instruction v_7 hits the join at entry $L11$, so that $\sigma(10) = \{T0, G0, H0, L12, G1, G3, L9, L10, L11\}$. Now both threads G and H are finished. It takes one execution step of the join node v_{16} to detect this and to terminate the synchronous instant of T with the final event $\sigma(11) = \{T0, G0, H0, L12, G1, G3, L9, L10, L11\}$. Overall, we get an execution $\sigma = \sigma(0) \sigma(1) \cdots \sigma(11)$ of the outer-most main thread of T from $T0$ consisting of 11 instruction cycles.

Note that signal $L19$ is not included in the last event $\sigma(11)$ because control remains inside the pause node v_9 of T. Only in the next logical instant when T is resumed in v_9 and thread H eventually comes out at control point $L19$ (if signal I is present and E absent), then executing the join v_{16} will bring us to control point $L19$ and out of T instantaneously.

Note further that the difference $\Delta_i = \sigma(i+1) \setminus \sigma(i)$ may be an arbitrary subset of S. It may be empty as with $i \in \{1, 4, 10\}$, contain exactly one control as for $i \in \{3, 5, 6, 7, 8, 9\}$ or more as in $i = 2$. In general, Δ_i will encompass more than one signal when a thread forks into concurrent sub-threads or if other concurrent threads get executed between the two activations i and $i+1$ of the thread represented by σ.

5. WCRT INTERFACES AT WORK
A set of executions S defines a schedule. The possible schedules of a program will be specified by a scheduling type ϕ generated by the language

$$\phi ::= A \mid \text{true} \mid \text{false} \mid \phi \land \phi \mid \neg \phi \mid \phi \lor \phi \mid \phi \oplus \phi \mid \phi \parallel \phi \mid \circ \phi.$$

We write $S \models \phi$ ($\sigma \models \phi$) to say that schedule S (execution σ) validates the type ϕ. As a type, each signal $A \in S$ represents statement that "A is active (is present, has been traversed, is scheduled) in all executions of the schedule". The constant true is validated by all schedules and false only by the empty schedule or the schedule which contains only the empty execution. The type operators \neg, \lor are (intuitionistic) negation and implication. The two operators \land and \oplus are two forms of logical disjunction to encode internal and external non-determinism and \parallel, \circ are two forms of logical conjunction related to true concurrency (multi-processing) and interleaving concurrency (multi-threading), respectively. Finally, \circ is the operator to express execution delays.

We will keep matters brief and present only some essential constructions in this theory. In fact, a fragment of the language will suffice to define interface types for KEP programs as far as they are treated in this paper. To begin with, define a

- basic control type to be an expression ζ built from literals A, $\neg A$ ($A \in S$) and constants true, false using conjunction \land and disjunction \lor.

Basic control types satisfy $S \models \zeta$ iff $\sigma \models \zeta$ for all $\sigma \in S$, i.e., they express properties of individual executions. On executions, ζ behaves like a standard Boolean combination of the atomic statements A (A present throughout σ) and $\neg A$ (A absent throughout σ). For instance, $\sigma \models A \lor \neg A$ says that signal A is constant in σ, i.e., it is either present from the start, $A \in \sigma(0)$ or never becomes active, $A \notin \sigma(\sigma(0) - 1)$. Since signals which are not active initially may occur in the course of an execution the type $A \lor \neg A$ is not a tautology, i.e., $A \lor \neg A \not\equiv \text{true}$. This reveals the intuitionistic nature of negation which is crucial to handle the semantics of synchronous languages in a compositional and fully abstract way [29, 30]. For special signals like activation of nodes $\text{active}(v)$ it is safe to assume $\text{active}(v) \lor \neg \text{active}(v) \equiv \text{true}$ since these are state signals and decided at the start of every instant. Every basic control has an equivalent disjunctive normal form $\zeta = \bigoplus_i l_{ij} \lor l_{ij}$ over literals l_{ij}.

Basic controls ζ are used to specify scheduling interaction at the input and output side of a program block. When used as an output we need to express that ζ occurs delayed after some maximal number of ics, d say. We write $\sigma, d \models \zeta$ or $\sigma \models \zeta$ for this as an abbreviation of $\sigma' \models \zeta$ where $\sigma' = \sigma(d)\sigma(d+1)\cdots\sigma(\sigma(0) - 1)$ is the suffix of σ starting after d ics. Note that if the delay is larger than the length of the execution, $d > |\sigma(0)| - 1$ then this suffix is empty $\sigma' = \emptyset$ and thus $\sigma \models \zeta$ for all ζ, even $\zeta = \text{false}$ is validated. This is natural since by stepping beyond the final event within a thread’s instant an inconsistent state is reached. We will see that this may be exploited for optimizations in WCRT analysis. The limit cases are $+\infty : \text{false} \equiv \text{true}$ and $-\infty : \text{false} \equiv \text{false}$. The specification $\text{wait} = \circ \text{true} 1 : \text{false}$ is of particular interest. It says that an execution has at most one event, i.e., $\sigma \models \text{wait}$ iff $|\sigma| \leq 1$. If non-empty such an execution has reached the end of the scheduling instant and is pausing in a final event $\sigma(0) \subseteq S$. We permit wait to be used as a third constant besides true and false inside basic controls. The reaction time of an execution σ may then either be specified as $\sigma \models d : \text{wait} \lor \sigma \models d + 1 : \text{false}$ depending on whether we are interested in the number of steps or the number of events in σ.

- An output control is an expression $\psi = \circ \zeta_1 \circ \zeta_2 \circ \cdots \circ \zeta_n$ with basic controls ζ_i. $S \models \psi$ specifies that schedule S reaches at least one of the controls ζ_j after a bounded number of ics. The selection of which ζ_j is activated is expressed by \circ since it is an internal choice which is dynamically resolved during each execution. Each operator \circ stands for a possibly different delay depending on which output ζ_j is taken. In contrast to this, an output control such as $\psi = \circ (\zeta_1 \circ \zeta_2 \circ \cdots \circ \zeta_n)$ only specifies one bound for all exits ζ_j.
- An input control is an expressions $\phi = \zeta_1 \lor \zeta_2 \lor \cdots \lor \zeta_m$ where the disjunction \lor refers to the external non-determinism resolved by the environment which determines how a program block is started. There is also no delay involved which is why we do not need operator \circ. Formally, $S \models \phi$ if there is at least one ζ_i such that $S \models \zeta_i$.

5. WCRT INTERFACES AT WORK
Notice the change of quantifiers between input and output regarding executions: \(S \models \zeta_1 \lor \zeta_2 \) requires \(\exists i \in \{1, 2\} \). \(\forall \sigma \in S. \sigma \models \zeta_i \) and is an external choice whereas \(S \models \zeta_1 \oplus \zeta_2 \) is \(\forall \sigma \in S. \exists i \in \{1, 2\}. \sigma \models \zeta_i \) which expresses an internal choice.

Finally, we build (input-output) interface types for KEP program fragments as implications \(\phi \supset \psi \) between input controls \(\phi = \bigvee_{i=1}^n \zeta_i \) and output controls \(\psi = \bigoplus_{j=1}^n \xi_j \). The input controls \(\phi \) capture all the possible ways in which the program fragment can be started within an instant and the output controls sum up the ways in which it can be exited during the instant. In other words, the \(\zeta_i \) and \(\xi_j \) represent logical input and output lines of the program. Intuitively, \(S \models \phi \supset \psi \) says that whenever any set of executions from schedule \(S \) enters the program through one of the input controls \(\zeta_i \) then within some bounded number \(d_{ij} \) of ics all these executions are guaranteed to exit through one of the output controls \(\xi_j \). The bounds \(d_{ij} \) may depend on the choice of input and output control, in general. To capture the bounds we associate with each interface type a delay matrix of shape \(n \times m \). Our type specifications then become logical expressions of the form \(D : \phi \supset \psi \) consisting of an interface type \(\phi \) together with a timing matrix \(D \). The former describes the qualitative aspect of scheduling, the latter captures the quantitative part of the interface. Formally, \(\phi \supset \psi \) is a type specification for schedules \(S \) and the instrumented \(D : \phi \supset \psi \) specifies a set of executions.

Let us look at how interface types are used. Figure 2 depicts a program fragment \(T \) abstracted into a reactive box with input and output controls. The paths inside \(T \) seen in Figure 2 illustrate the four ways in which a reactive block \(T \) may participate in the execution of a logical tick: Threads may (a) pass straight through the block entering at some input control \(\zeta \) and exiting at output control \(\xi \); (b) enter through \(\zeta \) but pausing inside, waiting there for the next instant; (c) start the tick inside the block and eventually (instantaneously) leave through some exit control \(\xi \), or (d) start inside the block and never leave it during the current instant. These paths or rather sections of a path are called through paths, sink paths, source paths and internal paths, respectively.

The canonical interface type for such a block \(T \) (considering only one input control \(\zeta \) and one output control \(\xi \)) separates these different paths and associated WCRT values:

\[
T = \left(\begin{array}{c}
 d_{\text{thr}} & d_{\text{src}} \\
 d_{\text{snk}} & d_{\text{int}}
\end{array} \right) : (\zeta \lor \text{active}) \supset (\xi \lor \text{wait})
\]

If one of the paths does not exist its associated delay is set to \(-\infty\). A block \(T \) can be classified according to the paths that are executable in it, i.e., that have \(d_{\text{type}} \geq 0 \) (rather than \(d_{\text{type}} = -\infty \)) for \(\text{type} \in \{\text{thr, src, snk, int}\} \). Specifically, we call \(T \) a

- through node, if \(d_{\text{thr}} \geq 0 \), and \(N_{\text{thr}} \) the set of all through nodes
- source node, if \(d_{\text{src}} \geq 0 \), and \(N_{\text{src}} \) the set of all source nodes
- sink node, if \(d_{\text{snk}} \geq 0 \), and \(N_{\text{snk}} \) the set of all sink nodes
- internal node, if \(d_{\text{int}} \geq 0 \), and \(N_{\text{int}} \) the set of all internal nodes.

A delay node is a node with at least one non-instantaneous path, i.e., \(N_{\text{del}} = N_{\text{src}} \cup N_{\text{snk}} \cup N_{\text{int}} \). A strong delay node is a delay node without any path through, hence \(N_{\text{sdel}} = N_{\text{del}} \setminus N_{\text{thr}} \). A transient node is a through node that contains only through paths, i.e., \(d_{\text{src}} = d_{\text{snk}} = d_{\text{int}} = -\infty \). Thus \(N_{\text{trans}} = N_{\text{thr}} \setminus N_{\text{del}} \). We assume that each cyclic dependency loop in the program is broken by at least one strong delay node.

It is useful to classify the exits of a node \(T \) according to the type of path on which they can appear. We call an exit instantaneous if it can only be activated on through paths (type a) and non-instantaneous if it can be reached only by source paths (type c). The successor nodes reached by them are referred to accordingly as instantaneous successors and non-instantaneous successors of \(T \). In the KEP assembler graphs of [13] two other types of successor nodes are

![Figure 2: The four types of thread paths: through path (a), sink path (b), source path (c), internal path (d).](image-url)
distinguishes, the control successors and exit successors. Since control successors are activated either by through paths (type a) or source paths (type c) they constitute the general case from the WCR T scheduling point of view. The exit successors, which are introduced by exit-trap blocks, are activated exclusively as part of through paths. Thus, they are instantaneous successors in our terminology.

Often we split the interface \(T\) into its two parts \(T = [T_{srf}, T_{dpt}]\), the surface interface and the depth interface

\[
T_{srf} = (d_{thr}, d_{snk}) : \zeta \supset (\alpha \xi \oplus \text{wait}) \quad T_{dpt} = (d_{src}, d_{int}) : \text{active} \supset (\alpha \xi \oplus \text{wait})
\]

By logical transformations of interfaces various optimizations can be achieved. For instance, for transient nodes we reduce \(T_{srf}\) as follows:

\[
T_{srf} \cong (d_{thr}, -\infty) : \zeta \supset (\alpha \xi \oplus \text{wait}) \cong \zeta \supset ((d_{thr} : \xi) \oplus (-\infty : \text{wait}))
\]

\[
\cong \zeta \supset (d_{thr} : \xi \oplus ((-\infty + 1) : \text{false})) \cong \zeta \supset (d_{thr} : \xi \oplus (-\infty : \text{false}))
\]

\[
\cong \zeta \supset (d_{thr} : \xi \oplus \text{false}) \quad \cong \zeta \supset (d_{thr} : \xi)
\]

\[
\cong (d_{thr}) : \zeta \supset \alpha \xi,
\]

while \(T_{dpt} = (-\infty, -\infty) : \text{active} \supset (\alpha \xi \oplus \text{wait}) \cong \text{true}\) is simply dropped. Moreover, without loss of generality we may suppose that \(T_{srf}\) is normalized so it satisfies \(d_{thr} \leq d_{snk}\) for all sink nodes \(T\). Otherwise, if \(d_{snk} < d_{thr}\) we would have

\[
(d_{thr} : \xi) \oplus (d_{snk} : \text{wait}) \cong (d_{thr} : \xi) \oplus (d_{snk} + 1 : \text{false})
\]

\[
\leq (d_{thr} : \xi) \oplus (d_{snk} + 1 : \xi)
\]

\[
\cong \max(d_{thr}, d_{snk} + 1) : \xi
\]

\[
\cong d_{thr} : \xi,
\]

where \(\phi \preceq \psi\) means that all executions satisfying \(\phi\) also satisfy \(\psi\). In the other direction, it trivially holds that \(d_{thr} : \xi \preceq (d_{thr} : \xi) \oplus (d_{snk} : \text{wait})\). Hence, whenever \(d_{snk} < d_{thr}\) the two types \((d_{thr} : \xi) \oplus (d_{snk} : \text{wait})\) and \((d_{thr} : \xi)\) are equivalent which means essentially that the sink paths are redundant and thus could be pruned. Operationally, if \(d_{snk} < d_{thr}\) then the through path \((d_{thr}) : \zeta \supset \alpha \xi\) of \(T\) dominates the WCR T while the sink path \((d_{snk}) : \zeta \supset \text{wait}\) in \(T\) cannot contribute to the longest execution. In this case we might as well assume \(d_{snk} = -\infty\), i.e., that \(T\) is not a sink node at all. The same arguments apply to the depth interfaces \(T_{dpt}\), for which we may thus assume \(d_{src} \leq d_{int}\) or otherwise \(d_{int} = -\infty\).

In general, the interface type of a program \(T\) will mention a number of controls \(\zeta_1, \zeta_2, \ldots, \zeta_m\) and \(\xi_1, \xi_2, \ldots, \xi_n\) on the input and output side for which the type would be

\[
T = D : (\zeta_1 \lor \zeta_2 \lor \cdots \lor \zeta_m) \supset (\alpha \xi_1 \oplus \alpha \xi_2 \oplus \cdots \oplus \alpha \xi_n)
\]

with a WCR T matrix \(D\) of shape \(n \times m\). The terminology above can be applied, mutatis mutandis, to such general controls. A composite program will be made up of a number of program fragments \(T_i\) each with its interface \(D_i : \phi_i \supset \psi_i\). The total specification is the logical conjunction \(\bigwedge_i D_i : \phi_i \supset \psi_i\) in WCR T type theory. The basic controls appearing in \(\phi_i, \psi_i\) describe the causal dependencies between the blocks \(T_i\). In its general form, WCR T analysis amounts to a transformation

\[
\bigwedge_i D_i : \phi_i \supset \psi_i \preceq D : \phi \supset \psi
\]

in which the individual timing interfaces are combined into a total delay matrix \(D\) for an external interface \(\phi \supset \psi\) such that \(D\) is the smallest (component-wise) matrix of values such that (2) holds. The external interface \(\phi \supset \psi\) determines the functional precision with which we are computing the WCRT of the composite system. For instance, instead of an interface like (1) which distinguishes \(m\) input and \(n\) output controls a less discriminative type \(\zeta \supset \alpha \xi\) with \(\zeta \equiv \phi \bigoplus_{i \in I} \zeta_i\).
and \(\xi = \delta \ominus \bigoplus_{j \in J} \xi_j \) might consider merely subsets \(I \subseteq \{1, \ldots, m\} \) and \(J \subseteq \{1, \ldots, n\} \) of inputs and outputs bundled into a single control. Such an interface \(\xi \supseteq \delta \xi \) which specifies only one delay value is more abstract than (1). We can trade off precision and efficiency of the WCRT analysis within wide margins by choosing different types \(\phi_i \supset \psi_i \) for the components and \(\phi \supset \psi \) for the composite program in (2).

Of course, we do not expect to get an equivalence \(\cong \) but only an inclusion \(\preceq \) in (2) if the calculation of \(D \) involves timing abstractions. In general, the right-hand side of (2) will include more executions than the left-hand side. E.g., this occurs naturally whenever the composite type \(\phi \supset \psi \) does not include all internal signals mentioned in the types \(\phi_i \supset \psi_i \). Then the right-hand side of (2) does not constrain the executions on those internal signals while the left-hand side still restricts them. Many other types of abstractions are possible as we shall see.

How is the composition (2) performed? In general, we can use any sound and complete logical calculus for WCRT type theory as described, e.g., in [28]. For our special interface types this calculus reduces to matrix multiplication in max-plus algebra \((\mathbb{N}, +, \max, 0, -\infty)\) [15] combined with logical reasoning on basic controls \(\zeta \), which is a slight generalization of Boolean algebra. We will explain this in the following sections by way of our running example from Fig. 1. More details on the semantic theory of WCRT algebra can be found in the appendix, Sec. A.

5.2 Instantaneous Behavior: Transient Nodes

Let us begin by illustrating the role of type specifications for WCRT in the single-threaded execution of transient nodes. Although in this case WCRT analysis is equivalent to computing longest paths and straight-forward even without timing interfaces, it will give a first idea of the power of types for modularization and abstraction. This will lay out the playground in which we can later deal with Esterel-style pausing, preemption, multi-threading, etc. General synchronous flow graphs live at a higher level of abstraction in which control dependencies are more implicit and thus WCRT analysis no longer identical to the longest path problem.

Our example is the sequential program \(G \) of Fig. 3 which is the fragment of Fig. 1c consisting of nodes \(v_1 \)–\(v_7 \). Each of them is a KEP assembler instruction which is entered either sequentially through its instruction number L4–L10 or through an explicit jump to a control flow label such as G0–G3. For instance, node \(v_3 \) is accessed both through its linear instruction number L6 as well as by jump to its label G1. In contrast, node \(v_4 \) is only accessed through its line number L7 while node \(v_5 \) only by jumping to its label G3. The \(\text{present} \) nodes \(v_1 \) and \(v_3 \) are tests which branch to their two successor instructions depending on the status of signal \(I \). If \(I \) is present then \(v_1 \) moves to instruction \(v_2 \) which immediately follows it and if \(I \) is absent then \(v_1 \) passes control to instruction \(v_3 \) by jumping to label G1.

Fig. 3: Control Flow \(G \) (a), Esterel (b), KEP Assembler (c).
Let us assume that each of the basic instructions present, emit, goto take 1 processor cycle regardless how it is entered or exited. Their timing interfaces are then specified as follows:

\[v_1 = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) : G0 \lor L5 \lor G1 \quad v_2 = (1) : L5 \lor L6 \quad v_3 = \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) : (L6 \lor G1) \lor L7 \lor G3 \]

\[v_4 = (1) : L7 \lor G2 \quad v_5 = (1) : G3 \lor L9 \quad v_6 = (1) : L9 \lor L10 \]

\[v_7 = (1 1) : (G2 \lor L10) \lor L11. \]

Logically speaking, the problem of WCRT for \(G \) amounts to obtaining the tightest bound \(d \) such that \(d : G0 \lor L11 \) is semantically entailed by this theory, i.e., by \(\bigwedge_{i=1}^{n} v_i \).

Weaving Paths The naive strategy would be to enumerate all paths from \(G0 \) to \(L11 \), sum up the delays on each path and then take the maximum. There are four paths \(p_1 = G0 L5 L6 L7 G2 L11, \quad p_2 = G0 G1 L7 G2 L11, \quad p_3 = G0 L5 L6 G3 L9 L10 L11 \) and \(p_4 = G0 G1 G3 L9 L10 L11 \). Each of these paths defines a sub-graph of \(G \) with specific side-inputs and side-outputs. For instance, \(p_1 \) as indicated in Fig. 4 has the side-outputs \(G1, G3 \) and side-inputs \(G1, L10 \) so that its full scheduling type is \(G0 \lor L10 \lor G1 \lor G3 \lor L11 \).

This type says that if \(p_1 \) gets activated through control edges \(G0, L10 \) or \(G1 \) then it must be terminated through one of the exits \(G1, G3 \) or \(L11 \). The timing matrix associated with this path is

\[D_1 : G0 \lor L10 \lor G1 \lor G3 \lor L11 \]

where

\[
D_1 = \begin{pmatrix}
1 -\infty -\infty \\
3 -\infty 1 \\
5 1 3
\end{pmatrix}
\]

The entries \(-\infty \) in \(D_1 \) mean that there is no causal control flow from the corresponding input to the corresponding output line. \(D_1 \) can be obtained by successively multiplying (in max-plus algebra) the timing matrices of the individual nodes traversed by \(p_1 \). We explain below in Sec. 5.2 how this is done.

At this point note that for WCRT of \(G \) we are not actually interested in the exact timing of the side-inputs, i.e., the fact that \(p_1 \) can also be executed from \(L10 \) and \(G1 \). One way to suppress this information is by pre-composing \(D_1 \) with the timing map \((0, -\infty, -\infty)^T : G0 \lor G0 \lor L10 \lor G1 \) giving

\[p_1' = D_1' : G0 \lor G1 \lor G3 \lor L11 \]

where

\[
D_1' = D_1 \cdot \begin{pmatrix}
0 \\
-\infty \\
-\infty
\end{pmatrix} = \begin{pmatrix}
1 -\infty -\infty \\
3 -\infty 1 \\
5 1 3
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
-\infty \\
-\infty
\end{pmatrix} = \begin{pmatrix}
1 \\
3
\end{pmatrix}.
\]

The type (3) stipulates that every execution which enters path \(p_1' \) through input \(G0 \) either leaves \(p_1 \) through exit \(G1 \) in at most 1 ic, through exit \(G3 \) in at most 3 ic or through \(L11 \) within no more than 5 ics. \(D_1' \) in contrast to \(D_1 \) no longer records the exact delay between particular combinations of inputs and outputs of \(p_1 \). For instance, the fact that \(L11 \) is reached in \(p_1 \) from \(L10 \) in only 1 ic of time and from \(G1 \) in at most 3 ics instead of 5, is lost. Similarly, the information that from input \(L10 \) we cannot reach output \(G3 \) at all, indicated by the entry \(-\infty \) in \(D_1 \) is not present in \(D_1' \) any more.

In talking about executions along \(p_1 \) we also assume that the path is not exited through \(G1 \) or \(G3 \). Can we suppress the references to side-outputs \(G1 \) and \(G3 \) on the right of \(\lor \) of the

![Fig. 4: The path \(p_1 \) in \(G \).](image)
scheduling type (3)? Well, not directly, because if we simply drop them the resulting scheduling type \(G_0 \supset o L_{11} \) would guarantee that all executions entering \(p_1 \) through \(G_0 \) eventually come out at \(L_{11} \). This is obviously false. However, we can fix this using negations and conjunctions. The right type is \((G_0 \land \neg G_1 \land \neg G_3) \supset o L_{11} \) which strengthens the assumption \(G_0 \) by \(\neg G_1 \land \neg G_3 \) to the effect that only executions starting in \(G_0 \) not involving \(G_1 \) or \(G_3 \) are considered. Indeed we can construct a timing for this type and justify its semantic correctness as follows: First, by purely logical reasoning on types (not involving any matrix calculations) we argue that \(D'_1 \) which has type \(G_0 \supset o G_1 \supset o G_3 \supset o L_{11} \) also must have type \((G_0 \land \neg G_1 \land \neg G_3) \supset o false \oplus o false \oplus o L_{11} \) and then compose with the sound schedule \((\neg \infty, \neg \infty, 0) : (false \lor false \lor L_{11}) \supset o L_{11} \) to obtain

\[
p_1 = D''_1 : (G_0 \land \neg G_1 \land \neg G_3) \supset o L_{11} \quad \text{where} \quad D''_1 = (-\infty, -\infty, 0) \cdot \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} = (5) \tag{4}
\]

which is the proper type specification of path \(p_1 \) without side-inputs and side-outputs. For the other paths we get in a similar fashion

\[
p_2 = D''_2 : (G_0 \land \neg L_5 \land \neg G_3) \supset o L_{11} \quad D''_2 = (4) \tag{5}
\]

\[
p_3 = D''_3 : (G_0 \land \neg G_1 \land \neg L_7) \supset o L_{11} \quad D''_3 = (6) \tag{6}
\]

\[
p_4 = D''_4 : (G_0 \land \neg L_5 \land \neg L_7) \supset o L_{11} \quad D''_4 = (5). \tag{7}
\]

The path schedules (4)–(7) can now be woven together to obtain the final result \(G = (6) : G_0 \supset o L_{11} \). First, recall that \([D_1, D_2] : (\phi_1 \lor \phi_2) \supset o L_{11} \) is the sum of \(D_1 : \phi_1 \supset o L_{11} \) and \(D_2 : \phi_2 \supset o L_{11} \). So we can combine (3)–(7) as \(D'' =_{df} [(5), (4), (6), (5)] = (5, 4, 6, 5) \) with the type

\[
D'' : \left((G_0 \land \phi_1) \lor (G_0 \land \phi_2) \lor (G_0 \land \phi_3) \lor (G_0 \land \phi_4)\right) \supset o L_{11} \tag{8}
\]

in which \(\phi_1 =_{df} \neg G_1 \land \neg G_3 \), \(\phi_2 =_{df} \neg L_5 \land \neg G_3 \), \(\phi_3 =_{df} \neg G_1 \land \neg L_7 \) and \(\phi_4 =_{df} \neg L_5 \land \neg L_7 \). We pre-compose (8) with the timing \((0,0,0,0)^T : \oplus_{i=1}^4 (G_0 \land \phi_i) \supset o (G_0 \land \phi_i)\):

\[
(5, 4, 6, 5) \cdot (0, 0, 0, 0)^T = (6) : (G_0 \land \phi_1) \oplus (G_0 \land \phi_2) \oplus (G_0 \land \phi_3) \oplus (G_0 \land \phi_4) \supset o L_{11}. \tag{9}
\]

Then consider that by distributivity \(\oplus_{i=1}^4 (G_0 \land \phi_i) \) is logically equivalent to \(G_0 \land \oplus_{i=1}^4 \phi_i \). Moreover, under single-threaded execution (and only then) the type equivalence

\[
\oplus_{i=1}^4 \phi_i = (\neg G_1 \land \neg G_3) \oplus (\neg L_5 \land \neg G_3) \oplus (\neg G_1 \land \neg L_7) \oplus (\neg L_5 \land \neg L_7) \equiv true
\]

holds in \(G \) since every execution thread must make a split decision for either exit \(L_5 \) or \(G_1 \) at node \(v_1 \) and for either \(L_1 \) or \(G_3 \) at node \(v_3 \). Hence, every thread satisfies one of the summands \(\neg G_1 \land \neg G_3 \), \(\neg L_5 \land \neg G_3 \), \(\neg G_1 \land \neg L_7 \) or \(\neg L_5 \land \neg L_7 \). Taking all together gives \(\oplus_{i=1}^4 (G_0 \land \phi_i) \equiv G_0 \land \oplus_{i=1}^4 \phi_i \equiv G_0 \land true \equiv G_0 \) and thus (9) turns into (6) : \(G_0 \supset o L_{11} \) which finally is the WCRT of graph \(G \).

Weaving Nets WCRT analysis by enumeration of paths, though sound, is of worst-case exponential complexity. A more efficient way of going about is to exploit dynamic programming techniques. In the following we illustrate this process in terms of the decomposition of \(G \) seen in Fig. 5. The strategy is to propagate WCRT information forward through \(G \) describing and composing (in this case) sub-nets \(N_1, N_2, N_3 \) rather than paths. In doing so we extend the scheduling interfaces appropriately in order to make the matrices match up:

2 For multi-threaded execution several exits may be taken in one and the same run by different threads. Also observe that, in contrast to \(\oplus \), the disjunction \(\phi_1 \lor \phi_2 \lor \phi_3 \lor \phi_4 \) is not equivalent to \(true! \) This would hold under static and deterministic scheduling in which all executions are in one of the schedules \(\phi_i \). Since the exits from statements \(v_1 \) and \(v_3 \) are data-dependent, different executions may choose different paths.
1. We obtain the scheduling type of N_1 by combining v_1 of type $G_0 \supset \circ L_5 \oplus \circ G_1$ with v_2 of type $L_5 \supset \circ L_6$. To compose them we first lift v_2 to type $L_5 \lor G_1 \supset \circ L_6 \oplus \circ G_1$ by pre-multiplying it with the embedding $(0, -\infty)^T : L_6 \supset \circ L_6 \oplus \circ G_1$ giving

$$v_2 = \begin{pmatrix} 0 \\ -\infty \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ -\infty \end{pmatrix} \cdot (1) = \begin{pmatrix} 1 \\ -\infty \end{pmatrix} : L_5 \supset \circ L_6 \oplus \circ G_1.$$

Next we combine v_2'' with $(-\infty, 0)^T : G_1 \supset \circ L_6 \oplus \circ G_1$ to give

$$v_2'' = \left[\begin{pmatrix} 1 \\ -\infty \end{pmatrix}, \begin{pmatrix} -\infty \\ 0 \end{pmatrix} \right] = \begin{pmatrix} 1 \\ -\infty \end{pmatrix} : L_5 \lor G_1 \supset \circ L_6 \oplus \circ G_1,$$

where as before $[D_1, D_2] : (\phi_1 \lor \phi_2) \supset \psi$ is the sum of $D_1 : \phi_1 \supset \psi$ and $D_2 : \phi_2 \supset \psi$. The shapes of matrices v_1 and v_2'' now connect up and we get $N_1 = v_2'' \cdot v_1$:

$$N_1 = \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} : G_0 \supset \circ L_6 \oplus \circ G_1.$$

2. Next we construct the WCRT of block $N_2 : (L_6 \lor G_1) \supset \circ G_2 \oplus \circ G_3$ by composing $v_3 : (L_6 \lor G_1) \supset \circ L_7 \oplus \circ G_3$ with $v_4 : L_7 \supset \circ G_2$. With the help of $(0, -\infty)^T : G_2 \supset \circ G_2 \oplus \circ G_3$ and $(-\infty, 0)^T : G_3 \supset \circ G_2 \oplus \circ G_3$ we extend the schedule of v_4 to become of type $(L_7 \lor G_3) \supset \circ G_2 \oplus \circ G_3$ which can then be composed with v_3 as follows:

$$N_2 = \left[\begin{pmatrix} 0 \\ -\infty \end{pmatrix} \cdot v_4, \begin{pmatrix} -\infty \\ 0 \end{pmatrix} \right] \cdot v_3 = \left[\begin{pmatrix} 0 \\ -\infty \end{pmatrix} \cdot (1), \begin{pmatrix} -\infty \\ 0 \end{pmatrix} \right] \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ -\infty \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} : (L_6 \lor G_1) \supset \circ G_2 \oplus \circ G_3.$$

3. The third step is to build $N_3 : (G_2 \lor G_3) \supset \circ L_{11}$ from $v_5 : G_3 \supset \circ L_9$, $v_6 : L_9 \supset \circ L_{10}$ and $v_7 : (G_2 \lor L_{10}) \supset \circ L_{11}$. v_5 and v_6 can be directly multiplied: $v_6 \cdot v_5 = (1) \cdot (1) = (2) : G_3 \supset \circ L_{10}$. Then we lift $v_6 \cdot v_5$ to type $(G_2 \lor G_3) \supset \circ G_2 \oplus \circ L_{10}$ and pre-multiply with v_7:

$$N_3 = v_7 \cdot \left[\begin{pmatrix} 0 \\ -\infty \\ 0 \\ 0 \end{pmatrix} \cdot (1) \cdot v_6 \cdot v_5 \right] = v_7 \cdot \begin{pmatrix} 0 \\ -\infty \\ 2 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -\infty \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix} : (G_2 \lor G_3) \supset \circ L_{11}.$$

4. If we compose the three sub-nets N_1, N_2, N_3 in sequence, our schedule of G all the way from entry point G_0 to exit L_{11} is complete:

$$G = N_3 \cdot N_2 \cdot N_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 0 \\ 0 \end{pmatrix} : G_0 \supset \circ L_{11}.$$

This is indeed the weight of the longest path p_3.

Bundling Abstractions There are of course other ways of arriving at (an approximation of) the WCRT, corresponding to different network decompositions of G. It is also possible to condense the timing information by bundling the inputs and outputs of N_1, N_2, N_3 before they are composed. For instance, one might decide to compress the scheduling type of N_1 into a single entry-exit delay $N_1' : G_0 \supset \circ (L_6 \oplus G_1)$ which specifies the worst-case delay for an execution entering through G_0 to come out at L_6 or G_1, without distinguishing between threads exiting on L_6 and those exiting on G_1. This is applied also to N_2 and N_3 as indicated in Fig.6.
This compression is done algebraically by pre-composing N_1 with $(0,0) : (L7 \lor G1) \supset (L7 \oplus G1)$ which yields $N_1' = (0,0) \cdot N_1 = (0,0) \cdot (2,1)^T = (2) : G0 \supset (L6 \oplus G1)$. In the same way, we could compress N_2 and N_3 to

$$N2' = (0,0) \cdot \begin{pmatrix} 2 & 2 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} = (2) : (L6 \oplus G1) \supset (G2 \oplus G3)$$

$$N3' = (1,3) \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} = (3) : (G2 \oplus G3) \supset oL11.$$

Each of the scheduling types N_i' is a max-abstraction of the original interface N_i. This is seen from the fact that semantically $N_i \subseteq N_i'$, i.e., each execution satisfying N_i is also an execution under schedule N_i'. Thus, the timing value associated with N_i' is an upper bound of all schedules in N_i. Yet, it is not exact because N_i' is properly larger than N_i. For instance, N_1' contains an execution of duration 2 which exits on $G1$ while N_1 (exactly) states that all threads leaving through $G1$ consume no more than 1 ic. The same is true of the other sub-nets N_2' and N_3'. As a result of this imprecision the composition $N3' \cdot N2' \cdot N1' = (2) \cdot (2) \cdot (3) = (7)$ yields an approximation of G’s WCRT.

Why would we want to abstract the sub-nets in this way and lose exactness? The answer is that composing $N1'$, $N2'$, $N3'$ is more efficient since it involves only scalars rather than matrices.

Data Dependency and Degrees of Precision A full and exact WCRT specification encapsulating program G as a component would require mention of program labels $G1$, $G3$, $G2$ which are accessible from outside for jump statements. Therefore, the interface type for single-threaded scheduling of G would be

$$G = (6, 4, 3, 1) : (G0 \lor G1 \lor G3 \lor G2) \supset oL11.$$

This is still not the exact description of G since it does not express the dependency of the WCRT on signal I. If I is present then all threads must take control edges $L5$ and $L7$ rather than $G1$ or $G3$ which are blocked. If I is absent then both $G1$ and $G3$ must be taken instead. As a result the longest path $p_9 = G0L5L6G3L9L10L11$ with delay 6 is not executable. To capture this we consider signal I as just another control input and refine the WCRT scheduling type of G as follows:

$$G = (5, 5, 3, 4, 3, 1) : ((G0 \land I) \lor (G0 \land \neg I) \lor (G1 \land I) \lor (G1 \land \neg I) \lor G3 \lor G2) \supset oL11. \quad (10)$$

The inclusion of signal I in the interface has now resulted in the distinction of two different delay values 3 and 4 for $G1 \supset oL11$ depending on whether I is present or absent during the reaction. On the other hand, $G0$ split into controls $G0 \land I$ and $G0 \land \neg I$ produces the same delay of 5 ics in both cases, which is a decrease of WCRT compared to 6 : $G0 \supset oL11$ from above. Assuming that input signal I is causally stable, i.e., $I \oplus \neg I \equiv true$ it is possible to optimize the interface without losing precision: since $(G0 \land I) \oplus (G0 \land \neg I) \equiv G0 \land (I \oplus \neg I) \equiv G0 \land true \equiv G0$ the map $(0,0)^T : G0 \supset oG0 \land I \equiv o(G0 \land \neg I)$ is sound and can be used to compress the two entries of value 5 in (10) into a single value $5 = max(5,5)$ giving

$$G = (5, 3, 4, 3, 1) : (G0 \lor (G1 \land I) \lor (G1 \land \neg I) \lor G3 \lor G2) \supset oL11.$$

In the same vein, but this time without referring to stability, we could further bundle $G1 \land I$ and $G3$ into a single control with the single delay $(3) : ((G1 \land I) \oplus G3) \supset oL11$ at the same level precision.
Still, if we only ever intend to use \(G \) as a composite transient node \(G0 \supset L11 \) the typing \(G = (5) : G0 \supset L11 \) might be sufficient. The different WCRT type specifications of \(G \) are summarized in Fig. 7. Considering that \(G \) is a transient block, i.e., it does not have any delay nodes, the depth interface of \(G \) is trivial \(G_{dpt} = (\infty, \infty)^T : \text{active} \supset L11 \oplus \text{wait} \). Though trivial it will be useful when we integrate \(G \) in a fork-join block uniformly as described in the next section.

![Diagram](image)

Fig. 7: Component \(G \) and some of its WCRT Types with varying precision and conciseness.

All the operations performed above are supported by semantically sound proof rules in WCRT type theory. The logical manipulation of types often can be also done implicitly and hard-coded into the graph-theoretic search strategies that make up the cleverness of a particular WCRT algorithm. Where interface types are not used directly in the calculations they provide for a highly compositional fine-analysis which allows us to validate our WCRT algorithms in terms of precise statements about correctness and exactness. Due to their logical-symbolic nature WCRT interfaces can be applied in rather general situations which involve data and higher control-flow constructs as used in synchronous programming. Some aspects of the latter will be expounded in the following sections.

5.3 Sequential Behavior: Delay Nodes

Now we take a look at sequential control flow which initiates and terminates in \texttt{pause} and \texttt{halt} nodes. We illustrate how these are related to the scheduling types \texttt{active} and \texttt{wait}. We use the example seen in Fig. 8 which is the fragment of nodes \(v_8 \sim v_{15} \) from our running example in Fig. 1a. Nodes \texttt{wabort, emit, goto, present, nothing} are transient and specified as before in Sec. 5.2. But now the instantaneous paths are broken by the delay nodes \(v_9 \) and \(v_{13} \).

Consider the \texttt{pause} node \(v_9 \). It can be entered by two controls, the line number L12 and program label H3 and left via two kinds of exits, a non-instantaneous edge L13 and a instantaneous exit H1 (weak abortion). When a control thread enters \(v_9 \) then either it terminates the current instant inside the node or leaves through the weak abort H1 (data-dependent, if signal \(I \) is present) continuing the current instant, instantaneously. A thread entering \(v_9 \) never exits through L13 in the same instant. On the other hand, if a thread is started (resumed) from inside the \texttt{pause} node \(v_9 \) then control can only exit through L13. This suggests to specify the \texttt{pause} node by the following pair of scheduling types:

\[
(11) : (H3 \lor L12) \supset H1 \oplus \text{wait} \\
(12) : \text{active}(v_9) \supset L13
\]

The specification (11) says that if \texttt{pause} is entered through H3 or L12 it can be left through H1 or terminate (\texttt{wait}) inside the \texttt{pause}. In both cases execution takes 1 instruction cycle, either
5. WCRT Interfaces at Work

Fig. 8: Sequential Control Flow H (a), Esterel program (b) and KEP Assembler (c).

to move the program counter forward to H1 or to reach an internal wait state. Since there are no differences in the delays we could bundle the inputs $H3$, $L12$ and compress the matrix as $(1, 1)^7 : (H3 \oplus L12) \supset \circ H1 \oplus \circ \text{wait}$ or even $(1) : (H3 \oplus L12) \supset \circ (H1 \oplus \text{wait})$ without losing information over (11). Still, we could do even better and record the dependency of control on signal I, with the more precise type

$$(1, -\infty, -\infty, 1) : ((H3 \oplus L12) \land \neg I) \lor ((H3 \oplus L12) \land I) \supset \circ H1 \oplus \circ \text{wait}.$$

This separates the threads which must stop inside the pause from those which must leave via H1 due to a weak immediate abort on signal I.

The specification (12) accounts for threads starting in the pause which must necessarily pass control to L13 within one instruction cycle. This is why (12) does not include a source path of type $\text{active}(v9) \supset \circ H1$. In a similar way we can model strong or non-immediate aborts. For delayed (non-immediate) weak abort, there is no path from L12 to H1. For strong abort, the abortion cannot be taken in the instant when $v9$ is entered, thus there is no path from H3 or L12 to H1.

The halt node v_{13} in Fig. 8 (equivalent to an infinitely pausing loop pause, but faster) is not only a sink for control threads entering through L16 but it also has an internal path of length 1 (which is repeated at every instant). It is a strong delay node and specified by

$$(1, 1) : (\text{active}(v_{13}) \lor L16) \supset \circ \text{wait}.$$

Now let us determine the WCRT of G, essentially refining the strategy informally described in [13]. First, generalizing the notion of surface interfaces we define the surface reaction time of a control edge A of graph H as the (component-wise) smallest vector $A.srf$ such that $A.srf : A \supset \circ L19 \oplus \circ \text{wait}$ is derivable from the H’s WCRT theory.\footnote{In [13] this number is denoted $A.instr$ and computed for complete programs in which all paths are terminated by pause or halt nodes. Dangling exits like L19 of Fig. 8 are not considered. Also, the WCRT is defined for nodes rather than edges as we do here. These are minor differences, however.} Obviously, the value $H0.srf$ is the surface interface $H.srf$ of program H in Fig. 8 seen as a reactive box with (sole) input $H0$. Following the strategy of the WCRT algorithm of [13] the computation of $H0.srf$ proceeds by depth-first search forward from $H0$: We compose node v_8 of type (1) : $H0 \supset \circ L12$ with the

\begin{align*}
1 & -\infty \\
-\infty & 1 \\
& 1
\end{align*}

such that

$$(1, -\infty, -\infty, 1) : ((H3 \oplus L12) \land \neg I) \lor ((H3 \oplus L12) \land I) \supset \circ H1 \oplus \circ \text{wait}.$$

This separates the threads which must stop inside the pause from those which must leave via H1 due to a weak immediate abort on signal I.

The specification (12) accounts for threads starting in the pause which must necessarily pass control to L13 within one instruction cycle. This is why (12) does not include a source path of type $\text{active}(v9) \supset \circ H1$. In a similar way we can model strong or non-immediate aborts. For delayed (non-immediate) weak abort, there is no path from L12 to H1. For strong abort, the abortion cannot be taken in the instant when $v9$ is entered, thus there is no path from H3 or L12 to H1.

The halt node v_{13} in Fig. 8 (equivalent to an infinitely pausing loop pause, but faster) is not only a sink for control threads entering through L16 but it also has an internal path of length 1 (which is repeated at every instant). It is a strong delay node and specified by

$$(1, 1) : (\text{active}(v_{13}) \lor L16) \supset \circ \text{wait}.$$

Now let us determine the WCRT of G, essentially refining the strategy informally described in [13]. First, generalizing the notion of surface interfaces we define the surface reaction time of a control edge A of graph H as the (component-wise) smallest vector $A.srf$ such that $A.srf : A \supset \circ L19 \oplus \circ \text{wait}$ is derivable from the H’s WCRT theory.\footnote{In [13] this number is denoted $A.instr$ and computed for complete programs in which all paths are terminated by pause or halt nodes. Dangling exits like L19 of Fig. 8 are not considered. Also, the WCRT is defined for nodes rather than edges as we do here. These are minor differences, however.} Obviously, the value $H0.srf$ is the surface interface $H.srf$ of program H in Fig. 8 seen as a reactive box with (sole) input $H0$. Following the strategy of the WCRT algorithm of [13] the computation of $H0.srf$ proceeds by depth-first search forward from $H0$: We compose node v_8 of type (1) : $H0 \supset \circ L12$ with the
through part $(1,1)^T : L12 \triangleright o H1 \oplus \text{wait} \text{ of } v_9$'s interface given in (11) to get $(1,1)^T \cdot (1) = (2,2)^T : H0 \triangleright o H1 \oplus \text{wait}$. This reduces the computation of $H0.srf$ to that of computing $H1.srf : H1 \triangleright o L19 \oplus \text{wait}$ via $H0.srf = [H1.srf, (−\infty, 0)^T] \cdot (2,2)^T$, where $[H1.srf, (−\infty, 0)^T]$ is the lifting of $H1.srf : H1 \triangleright o L19 \oplus \text{wait}$ to type $(H1 \lor \text{wait}) \triangleright o L19 \oplus \text{wait}$ so it can be composed with $(2,2)^T$. As shown below we eventually get $H1.srf = (3,2)^T$ and thus

$$H_{srf} = H0.srf = [H1.srf, (−\infty, 0)^T] \cdot (3,2)^T = \begin{pmatrix} 2 & −\infty \\ 0 & 2 \\ \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ \end{pmatrix} : H0 \triangleright o L19 \oplus \text{wait} \text{ (14)}$$

which tells us that the longest through path $(H0 L12 H1 H2 L18 L19)$ has 5 ics and the longest sink path $(H0 L12 H1 L16)$ consumes 4 ics.

Like the surface interfaces, the depth interfaces, too, may be generalized: Each node v has a depth reaction time\(^4\) in H, $v.dpt$, which is the smallest vector m derivable such that $m : \text{active}(v) \triangleright o L19 \oplus \text{wait}$. It characterizes the maximal duration of an instant which starts inside v either leaving at exit $L19$ or terminating in the pause or halt nodes of H. It only needs to be computed for source nodes and internal nodes. For all others we have $v.d_{src} = v.d_{int} = −\infty$ which implies $v.dpt = −\infty$, too. In graph H of Fig. 8 only the pause node v_9 and the halt node v_{13} have a source or internal WCRT.

For instance, the depth interface of (13) gives delay 1 : $\text{active}(v_{13}) \triangleright o L19 \oplus \text{wait}$ for the halt. Since this internal path is the only way to start in v_{13} and eventually terminate or exit H, the depth reaction time of v_{13} is

$$v_{13}.dpt = (−\infty, 1) : \text{active}(v_{13}) \triangleright o L19 \oplus \text{wait}.$$

In contrast, the depth interface (12) of the pause node v_9 only contains a source path (1) : $\text{active}(v_9) \triangleright o L13$. All source paths $\text{active}(v_9) \triangleright o L19 \oplus \text{wait}$ of H must have this source path as their prefix. So, we must first determine the worst case delay of type $L13 \triangleright o L19 \oplus \text{wait}$, which is nothing but $L13.srf$. Again by depth-first search we get $L13.srf$ from functional composition

$$L13.srf = H3.srf \cdot (1) \cdot (1) = H3.srf \cdot (2) : L13 \triangleright o L19 \oplus \text{wait} \text{ (15)}$$

from nodes v_{10} of type (1) : $L13 \triangleright o L14$ and v_{11} of type (1) : $L14 \triangleright o H3$ together with the surface delay $H3.srf : H3 \triangleright o L19 \oplus \text{wait}$. From (11) we extract $(1,1)^T : H3 \triangleright o H1 \oplus \text{wait}$. This type specifies two ways for termination. Either directly inside the pause or continuing via $H1.srf : H1 \triangleright o L19 \oplus \text{wait}$. We can compute the latter using v_{12}'s type $(1,1)^T : H1 \triangleright o H2 \oplus o L16$ as follows: We first combine v_{13}'s surface type (1) : $L16 \triangleright o \text{wait}$ from (13) and both v_{14}'s interface (1) : $H2 \triangleright o L18$ and v_{15}'s interface (1) : $L18 \triangleright o L19$ to give

$$\begin{pmatrix} 0 \\ -\infty \\ \end{pmatrix} \cdot (1) \cdot (1), \begin{pmatrix} -\infty \\ 0 \\ \end{pmatrix} \cdot (1) = \begin{pmatrix} 2 \\ -\infty \\ 1 \\ \end{pmatrix} : (H2 \lor L16) \triangleright o L19 \oplus \text{wait}$$

and from there get

$$H1.srf = \begin{pmatrix} 2 \\ -\infty \\ 1 \\ \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ \end{pmatrix} : H1 \triangleright o L19 \oplus \text{wait}.$$

We embed this information canonically as $[H1.srf, (−\infty, 0)^T] : (H1 \lor \text{wait}) \triangleright o L19 \oplus \text{wait}$ and compose with $(1,1)^T : H3 \triangleright o H1 \oplus \text{wait}$ for the final result

$$H3.srf = [H1.srf, (−\infty, 0)^T] \cdot \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 2 \\ \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ \end{pmatrix} : H3 \triangleright o L19 \oplus \text{wait}.$$

Now we plug this into (15) and get

$$L13.srf = H3.srf \cdot (2) = \begin{pmatrix} 4 \\ 3 \\ \end{pmatrix} \cdot (2) = \begin{pmatrix} 6 \\ 5 \\ \end{pmatrix} : L13 \triangleright o L19 \oplus \text{wait}.$$

\(^4\) This number is denoted $v.next$ in [13].
Finally, the depth reaction time of \(v_{9} \) is obtained by composing \(L_{13}.srf \) with \((1): active(v_{2}) \supset \circ L_{13} \) obtaining

\[
v_{9}.dpt = L_{13}.srf \cdot (1) = (7, 6)^{T} : active(v_{9}) \supset \circ L_{19} \supset \circ \text{wait}.
\]

Having \(v_{9}.dpt \) and \(v_{13}.dpt \) available we can compute the depth interface of block \(H \): Since the instant can start in the pause node \(v_{9} \) or the halt node \(v_{13} \) the active control of \(H \) is

\[
active = active(v_{9}) \oplus active(v_{13}).
\]

So, we are looking for the smallest bound for type \((active(v_{9}) \oplus active(v_{13})) \supset \circ L_{19} \supset \circ \text{wait}\). Formally, we get this by combining \(v_{9}.dpt \) and \(v_{13}.dpt \) into the matrix \([v_{9}.dpt, v_{13}.dpt]: (active(v_{9}) \lor active(v_{13})) \supset \circ L_{19} \supset \circ \text{wait} \) and then pre-composing with \((0, 0)^{T}: (active(v_{9}) \oplus active(v_{13})) \supset \circ active(v_{9}) \oplus \circ active(v_{13})\). This gives

\[
H_{dpt} = [v_{9}.dpt, v_{13}.dpt] \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} = max(v_{9}.dpt, v_{13}.dpt) = \begin{pmatrix} 7 \\ 6 \end{pmatrix} : active \supset \circ L_{19} \supset \circ \text{wait}.
\]

In general, \(H_{dpt} \) is computed as the (component-wise) maximum over all depth reaction times for all delay nodes in \(H \). This is perfectly uniform in the interfaces of \(H \)'s nodes since we could well include all nodes into the maximum, \(max\{v_{i}.dpt | 8 \leq i \leq 14\} \), postulating \(active(H) = \bigoplus_{i=8}^{14} active(v_{i}) \). However, since \(v_{i}.dpt = -\infty \) for nodes different from \(v_{9} \) and \(v_{13} \), all nodes except the delay nodes will happily drop out of the global maximum.

Note on Optimization The WCRT algorithm presented in [13] is somewhat more generous about surface and depth interfaces than what we have discussed above. Here we take these interfaces to have output control \(\circ L_{19} \supset \circ \text{wait} \) distinguishing the WCRT of through and source paths ending in \(L_{19} \) from those of sink and internal paths ending in \(\text{wait} \). The algorithm [13] (implicitly by hard-coding maximum operations) merges both types of path into the single control \(\circ L_{19} \). This is sound since the types \(\circ L_{19} \supset \circ \text{wait} \) and \(\circ L_{19} \) are equivalent in the sense that every schedule well-timed for one is also well-typed for the other. For instance, we have \(d_{1} : L_{19} \oplus d_{2} : \text{wait} \preceq d_{1} : L_{19} \oplus d_{2} + 1 : \text{false} \preceq d_{1} : L_{19} \oplus d_{2} + 1 = L_{19} \preceq max(d_{1}, d_{2} + 1) : L_{19} \) and \(d : L_{19} \preceq d : L_{19} + -\infty : \text{wait} \). Provided\(^5\) \(d_{1} > d_{2} \), the optimization \(\circ L_{19} \supset \circ \text{wait} \) to \(\circ L_{19} \) does not involve any loss of precision for WCRT due to the maximum operation.

In our example program \(H \) this optimization can be exploited as follows: The surface type of \(v_{13} \) is reworked \((1) : L_{16} \supset \circ \text{wait} \cong (2) : L_{16} \supset \circ \text{false} \preceq (2) : L_{16} \supset \circ L_{19} \) which is then combined with \((2) : H_{2} \supset \circ L_{19} \) (obtained from the surface types of \(v_{14} \) and \(v_{15} \)) to give \([2], [2] = (2, 2) : (H_{2} \lor L_{16}) \supset \circ L_{19} \). This is multiplied with node \(v_{2} \)'s interface \((1, 1)^{T} : H_{1} \supset \circ H_{2} \supset \circ L_{16} \) to produce the surface type \(H_{1}.srf = (2, 2) \cdot (1, 1)^{T} = (3) : H_{1} \supset \circ L_{19} \). From there we get \(H_{3}.srf = (4) : H \supset \circ L_{19} \) and finally \(v_{9}.dpt = (7) : active(v_{9}) \supset \circ L_{19} \) without ever having to include possible paths ending in \(\text{wait} \). The reason is that these paths may be safely pruned in the search.

On the other hand, suppose the halt node \(v_{13} \) encapsulated an entire sub-system which took 100 ics to reach termination on the sink path inside (rather than just 1). Applying the same approximating optimization which replaces \((100) : L_{16} \supset \circ \text{wait} \) with \((100) : L_{16} \supset \circ L_{19} \) we would get \(H_{1}.srf = (2, 100) \cdot (1, 1)^{T} = (101) : H_{1} \supset \circ L_{19} \) and further \(v_{9}.dpt = (105) : active(v_{9}) \supset \circ L_{19} \). The latter is more faithful with respect to instantaneous paths that may be added from control point \(L_{19} \) onwards in the external context of \(G \) (specifically, parallel compositions of \(G \) with other programs) which should not be weighted with delay 105 but 7. This is actually a source of over-approximation in the existing algorithm [13]. Keeping track of the scheduling type (the difference between \(\circ L_{19} \supset \circ \text{wait} \) and \(\circ L_{19} \)) can help to control the trade-off between efficiency and precision.

5.4 Concurrent Behavior: Fork and Join

\(^5\) We used this special condition in Sec. 5.1 to normalize interfaces
Consider Fig. 9 in which the two sub-programs G and H with input controls G_0, H_0 and exits L_{11}, L_{19} have now been combined inside the concurrent fork-join block of our original example program T from Fig. 1a. As discussed in the previous sections G and H are specified by their scheduling types

$$G = \left(\frac{5}{-\infty}, -\infty \right) : (G_0 \lor \text{active}(G)) \supset oL_{11} \oplus o\text{wait}$$

(16)

$$H = \left(\frac{5}{-\infty}, -\infty \right) \land 19 : (H_0 \lor \text{active}(H)) \supset oL_{19} \oplus o\text{wait}.$$

(17)

How is multi-threading of G and H expressed? The logical conjunction $G \land H$ is not appropriate because it would say that both threads run in parallel while instead G and H are supposed to be scheduled in an interleaved fashion. For instance, the conjunction $(d_1, d_2) : oL_{11} \land oL_{19}$ of two threads producing an exit signal L_{11} and L_{19} in d_1 and d_2 number of ics, respectively, would imply that $\max(d_1, d_2) : o(L_{11} \land L_{19})$ which is correct for concurrent multi-processing while for multi-threading it should be the sum $d_1 + d_2 : o(L_{11} \land L_{19})$ instead. To capture the fact that G and H share the same processor and thus are interleaved, a new operator $G \parallel H$ on scheduling types is introduced to represent the concurrent configuration in Fig. 9. The definition of $T = G \parallel H$ is developed in Sec. B. In the following, let us sum up its basic properties in application to G and H.

Firstly, we need to extend the interfaces G and H somewhat to instrument the synchronization between them. E.g., G is strengthened to $G' = G \land (L_{11} \land \neg L_{19}) \supset o\text{wait}$ to express that thread G runs into a wait state whenever it reaches its exit control L_{11} and H is not already at its exit L_{19} ($\neg L_{19}$). Symmetrically, H is adapted to $H' = H \land (L_{19} \land \neg L_{11}) \supset o\text{wait}$. These conjunctive additions do not change the WCRT interfaces (16) and (17). They merely strengthen the behavior with regard to the exit controls L_{11}, L_{19}, wait rather than the causality between entry controls G_0, H_0, $\text{active}(G)$, $\text{active}(H)$ and these exits.

Secondly, for the source behavior of composite T we introduce a new activation control $\text{active}(T)$ which starts the threads G and H according to $\text{active}(T) \supset (\text{active}(G) \land \text{active}(H)) \oplus (\neg \text{active}(G) \land \text{active}(H)) \oplus (\text{active}(G) \land \neg \text{active}(H)) \oplus (\neg \text{active}(G) \land \neg \text{active}(H))$. This is because source paths of T can arise from any non-empty subset of source paths from the sub-threads G and H. In terms of scheduling types this is presented systematically as

$$(0, 0, -\infty)^T : \text{active}(T) \supset \text{active}(\circ\{G, H\})$$

(18)

with the abbreviation $\text{active}(\circ\{G, H\}) = o(\text{active}(G) \land \text{active}(H)) \oplus o(\neg \text{active}(G) \land \text{active}(H)) \oplus o(\text{active}(G) \land \neg \text{active}(H)) \oplus o(\neg \text{active}(G) \land \neg \text{active}(H))$. The entry $-\infty$ in (18) says that the case is excluded where T is active but $\neg \text{active}(G) \oplus (\neg \text{active}(H)$ holds, i.e., no thread is active.

Thirdly, when running the depth executions of T from delay nodes inside G and H we always assume that those threads which are not part of this depth execution have already terminated instantaneously in the previous instant and thus wait at their exits. Thus, under the global control $\text{active}(T)$ we strengthen the depth interfaces of G and H to wait at their exits whenever they are inactive. We put $G'' = G' \land (\neg \text{active}(G) \supset (L_{11} \land \text{wait}))$ and $H'' = H' \land (\neg \text{active}(H) \supset (L_{19} \land \text{wait}))$. This has an effect on the depth interfaces of G and H. We now get the immediate reaction L_{11} in case of $\neg \text{active}(G)$ and L_{19} if $\neg \text{active}(H)$. This can be accounted for in new

Note that label L_{11} and H_0 point to the same program instruction, viz. the first instruction of H. Since they encode different ways of reaching the same state of the program counter they cannot be identified. In particular, we can have H_0 active in an execution in which H has been started without L_{11} being true, viz. as long as G is not yet finished.
interfaces

\[G'' = \begin{pmatrix} 5 & -\infty & 0 \\ -\infty & -\infty & -\infty \end{pmatrix} : (G0 \lor \text{active}(G) \lor \text{active}(\neg \text{active}(G))) \supset oL11 \oplus o\text{wait} \]

\[H'' = \begin{pmatrix} 5 & 7 & 0 \\ 4 & 6 & -\infty \end{pmatrix} : (H0 \lor \text{active}(H) \lor \text{active}(\neg \text{active}(H))) \supset oL19 \oplus o\text{wait} \]

with the added third column vector \((0, -\infty)^T\) of type \(\text{active}(\neg \text{active}(G)) \supset oL11 \oplus o\text{wait}\) and \(\text{active}(\neg \text{active}(H)) \supset oL19 \oplus o\text{wait}\), respectively.

The composition of \(G'' \parallel H''\) now generates all possible interleavings of executions specified by type \(G''\) with those from type \(H''\). On the input side there are 9 possible ways of combining the three input controls \(G0 \lor \text{active}(G) \lor \text{active}(\neg \text{active}(G))\) of \(G\) with those of \(H0 \lor \text{active}(H) \lor \text{active}(\neg \text{active}(H))\) from \(H\). However, we are only interested in the surface paths activated by \(G0 \land H0\) and the depth paths activated by the combinations contained in \(\text{active}(\circ \{G, H\})\). Instead of computing \(G'' \parallel H''\), which gives too many paths, we calculate the surface interface \(T_{srf} = G_{srf}'' \parallel H_{srf}''\) and the depth interface \(T_{dpt} = G_{dpt}'' \parallel H_{dpt}''\) separately where

\[G_{srf}'' = \begin{pmatrix} 5 \\ -\infty \end{pmatrix} : G0 \supset oL11 \oplus o\text{wait} \quad H_{srf}'' = \begin{pmatrix} 5 \\ 4 \end{pmatrix} : H0 \supset oL19 \oplus o\text{wait}. \]

Notice how the entry \(-\infty\) in \(G_{srf}''\) expresses that program \(G\) does not have a sink path and thus must pass through \(L11\) instantaneously.

\[G_{dpt}'' = \begin{pmatrix} -\infty & 0 \\ -\infty & -\infty \end{pmatrix} : (active(G) \lor active(\neg active(G))) \supset oL11 \oplus o\text{wait} \]

\[H_{dpt}'' = \begin{pmatrix} 7 & 0 \\ 6 & -\infty \end{pmatrix} : (active(H) \lor active(\neg active(H))) \supset oL19 \oplus o\text{wait}. \]

Again the first column \((-\infty, -\infty)^T\) in \(G_{dpt}''\) records that \(G\) possesses neither source nor internal paths. It turns out that the interleaving \(G_{srf}'' \parallel H_{srf}''\) is the Kronecker product \(\otimes\) of the interfaces \(G_{srf}''\) and \(H_{srf}''\):

\[\left(\begin{array}{c} 5 \\ -\infty \end{array} \right) \otimes \left(\begin{array}{c} 5 \\ 4 \end{array} \right) = \left(\begin{array}{c} 5 \\ -\infty \end{array} \right) \left(\begin{array}{c} 5 \\ 4 \end{array} \right)^T = \left(10 \ 9 -\infty -\infty \right)^T \]

of type

\[(G0 \land H0) \supset (o(L11 \land L19) \oplus o(L11 \land \text{wait}) \oplus o(\text{wait} \land L19) \oplus o(\text{wait} \land \text{wait})). \]

This gives separate WCRT for all paths started in \(G0 \land H0\) in which both sub-systems have through paths \((L11 \land L19)\), one has a through path but the other pauses \((L11 \land \text{wait}, \text{wait} \land L19)\) and those in which both threads end up in a pause \((\text{wait} \land \text{wait})\). In the last three cases the composite system pauses. They can be merged by the inclusion

\[\left(\begin{array}{cccc} 0 & -\infty & -\infty & -\infty \\ -\infty & 0 & 0 & 0 \end{array} \right) : \left((L11 \land L19) \lor (L11 \land \text{wait}) \lor (\text{wait} \land L19) \lor (\text{wait} \land \text{wait}) \right) \supset o(L11 \land L19) \oplus o\text{wait}. \]

Composing this exit-abstraction (23) with (22) gives the surface interface of \(T\):

\[T_{srf} = \left(\begin{array}{cccc} 0 & -\infty & -\infty & -\infty \\ -\infty & 0 & 0 & 0 \end{array} \right) \cdot \left(\begin{array}{c} 10 \\ 9 -\infty -\infty \end{array} \right)^T = \left(\begin{array}{c} 10 \end{array} \right) : (G0 \land H0) \supset o(L11 \land L19) \oplus o\text{wait}. \]

For the depth interface of \(T\) we apply the same strategy: First we compose the two depth interfaces (20) and (21), \(G_{dpt}'' \parallel H_{dpt}''\) forming the Kronecker product of their timing matrices

\[\left(\begin{array}{c} -\infty \\ -\infty \end{array} \right) \otimes \left(\begin{array}{c} 7 \\ 6 -\infty \end{array} \right) = \left(\begin{array}{c} -\infty \\ -\infty \end{array} \right) \cdot \left(\begin{array}{c} 7 \\ 6 -\infty \end{array} \right) = \left(\begin{array}{c} -\infty -\infty 7 0 \\ -\infty -\infty 6 -\infty \end{array} \right) \]

\[\left(\begin{array}{c} -\infty \\ -\infty \end{array} \right) \otimes \left(\begin{array}{c} 7 \\ 6 -\infty \end{array} \right) = \left(\begin{array}{c} -\infty \\ -\infty \end{array} \right) \cdot \left(\begin{array}{c} 7 \\ 6 -\infty \end{array} \right) = \left(\begin{array}{c} -\infty -\infty -\infty -\infty \end{array} \right) \]

23
of type
\[
active(\{G, H\}) \supset (\circ(L11 \land L19) \oplus \circ(L11 \land wait) \oplus \circ(wait \land L19) \oplus \circ(wait \land wait)).
\]
subject to the abbreviation \(active(\{G, H\}) =_df (active(G) \land active(H)) \lor (active(G) \land \neg active(H)) \lor (\neg active(G) \land active(H)) \lor (\neg active(G) \land \neg active(H))\). Finally, the input and output controls are adjusted again: on the input side we connect with \(active(T)\) using (18) which drops the irrelevant case \(\neg active(G) \land \neg active(H)\) and on the output side we compress according to (23) which finally gives

\[
T_{dpt} = \begin{pmatrix}
0 & -\infty & -\infty & -\infty \\
-\infty & 0 & 0 & 0 \\
-\infty & -\infty & -\infty & -\infty \\
-\infty & -\infty & -\infty & -\infty \\
\end{pmatrix} \cdot \begin{pmatrix}
-\infty & -\infty & 7 & 0 \\
-\infty & -\infty & 6 & -\infty \\
-\infty & -\infty & -\infty & -\infty \\
-\infty & -\infty & -\infty & -\infty \\
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
0 \\
0 \\
-\infty \\
\end{pmatrix} = \begin{pmatrix}
7 \\
6 \\
-\infty \\
-\infty \\
\end{pmatrix} : active(T) \supset \circ(L11 \land L19) \oplus \circ(wait).
\]

This is precisely what we should expect: Since block \(G\) is transient the depth interface of \(T = G \parallel H\) is entirely determined by that of \(H\).

To sum up, we have established the WCRT interface of \(T = G \parallel H\) from Fig. 9 as

\[
T = [T_{xrf}, T_{dpt}] = \begin{pmatrix}
10 & 7 \\
9 & 6 \\
\end{pmatrix} : ((G0 \land H0) \lor active(T)) \supset \circ(L11 \land L19) \oplus \circ(wait).
\]

This models the concurrent composition of \(G\) and \(H\) but not yet the interface of the composite box \(T\) with \(fork\) and \(join\). These are specified as

\[
\begin{align*}
join & : ((L11 \land L19) \lor wait) \supset (\circ L20 \oplus \circ wait) \\
fork & : (T0 \lor active) \supset (\circ (G0 \land H0) \oplus \circ active).
\end{align*}
\]

The entry (4) : \(T0 \supset \circ (G0 \land H0)\) of \(fork\) includes the ics for two \(PAR\), one \(PARE\) and one \(JOIN\). Since the \(JOIN\) is always executed when at least one thread is active, its execution time is added to the \(fork\), not the \(join\). \(join\) itself is the identity matrix. Adding \(fork\) and \(join\) on the input and output side as depicted in Fig. 9 obtains

\[
T = \begin{pmatrix}
0 & -\infty & 10 & 7 \\
-\infty & 0 & 9 & 6 \\
\end{pmatrix} \cdot \begin{pmatrix}
4 & -\infty \\
-\infty & 1 \\
\end{pmatrix} : (T0 \lor active) \supset (\circ L20 \oplus \circ wait)
\]

as the WCRT for the composite program \(T\). The longest through path is exemplified by the sequence of nodes \(v_0(3)+\{v_1+v_2+v_3+v_4+v_7\}G(5)+\{v_8+v_9+v_{12}+v_{14}+v_{15}\}H(5)+v_{16}(1) = 14\). A longest sink path is \(v_0(3)+\{v_1+v_2+v_3+v_4+v_7\}G(5)+\{v_8+v_9+v_{12}+v_{13}\}H(4)+v_{16}(1) = 13\). As a maximal source path we could take \(\{G(0)+\{v_0+v_{10}+v_{11}+v_9+v_{12}+v_{14}+v_{15}\}H(7)+v_{16}(1) = 8\) and finally a possible longest internal path \(\{G(0)+\{v_0+v_{10}+v_{11}+v_9+v_{12}+v_{13}\}H(6)+v_{16}(1) = 7\).

In a practical WCRT algorithm such as the one of [13] many of the matrix multiplications shown above are executed implicitly and more efficiently in the combinatorics of traversing the program's control flow graph forming maximum and additions as we go along. This is possible only so far as control flow dependencies are represented explicitly in the graph. In general, with data-dependencies, this may be an exponential problem so that symbolic techniques are needed. The point of the above is to highlight the essential algebraic nature of WCRT analysis and the role of timing interfaces in keeping track of the semantic meaning of WCRT data for modular analysis.
6 Conclusion

We introduced an interface algebra for compositional analysis of WCRT in synchronous multi-threading. We have applied these interfaces to compute the WCRT for programs running on the Kiel Esterel Processor. The approach is very flexible: From considering all possible data, which gives an exact WCRT for the price of possible exponential computation time, to abstracting from all internal behavior, which is very fast but might lead to a large over-approximation, all levels of exactness can be applied. Even though it is still under development, the interface algebra results in tighter WCRT analysis for the KEP compared to existing algorithms. For the small example in Section 4 we computed a WCRT of 14, while the algorithm described in [13] computes an over-approximation of 16. This is due to the better handling of parallel composition. Since the interfaces are compositional, we should also be able to get a better performance for the WCRT computation itself. Furthermore, data-dependencies with arbitrary precision can be easily expressed in the interface algebra, to rule out impossible executions and get an even tighter WCRT.

Encouraged by the manual computations, we want to implement a WCRT algorithm based on the new interfaces. There are still some constructs of Esterel that cannot be directly expressed in the interface algebra so far. These are in particular exit-traps, which are a third form of abortion to express exceptions. Furthermore, in this paper we consider all abortions as immediate, which might lead to more and longer paths than actually executable. We would like to extend our interfaces to cover exit-traps and non-immediate aborts as well. A further step would be to integrate thread priorities into the interfaces, to reduce the number of considered paths. So far, abortions are handled by adding transitions to all pause nodes inside them. It might be more natural to extend the control flow graphs by hierarchy to directly express the hierarchical nature of abortions. This could also be captured by the interfaces.

So far, we use the interfaces to compute WCRTs for Esterel programs on the KEP. But this approach could as well be used for other execution platforms, which implement a similar form of synchronous multi-threading or multi-processing.

References

17. Logothetis, G., Schneider, K.: Exact high level WCET analysis of synchronous programs by symbolic state space exploration. In: Design, Automation and Test in Europe (DATE), Munich, Germany, IEEE Computer Society (March 2003) 196–203

A \hspace{1em} \text{WCRT Interface Types}

Executions and schedules are typed using logical expressions of the form $f: \phi$ consisting of an interface formula ϕ (scheduling type) together with a timing function f (scheduling bound). The canonical interfaces used in this paper (introduced in Sec. 5.1) are of the form

$$(\zeta_1 \lor \zeta_2 \cdots \lor \zeta_m) \supset (\alpha \xi_1 \oplus \alpha \xi_2 \oplus \cdots \oplus \alpha \xi_n)$$

(24)

with basic controls ζ_i and ξ_j. For these types the timing functions are essentially delay matrices of shape $n \times m$. These interfaces are particular structures in a more general theory that we shall briefly outline now. First, recall our language of types

$$\phi := A \mid true \mid false \mid \neg \phi \mid \phi \wedge \phi \mid \phi \lor \phi \mid \phi \oplus \phi \mid \phi \supset \phi \mid \phi \parallel \phi \mid \alpha \phi,$$

where $A \in S$ ranges over a set of control signals. General WCRT theory associates with every scheduling type ϕ a set of scheduling bounds or reaction bounds $\text{Bnd}(\phi)$ uniformly as follows:

$$\begin{align*}
\text{Bnd}(false) &= 1 \\
\text{Bnd}(A) &= 1 \\
\text{Bnd}(\phi \wedge \psi) &= \text{Bnd}(\phi) \times \text{Bnd}(\psi) \\
\text{Bnd}(\phi \lor \psi) &= \text{Bnd}(\phi) \times \text{Bnd}(\psi) \\
\text{Bnd}(\alpha \phi) &= (\{0\} \cup \{-\infty\}) \times \text{Bnd}(\phi) \\
\text{Bnd}(\neg \phi) &= 1 \\
\text{Bnd}(\phi \supset \psi) &= \text{Bnd}(\phi) \rightarrow \text{Bnd}(\psi) \\
\text{Bnd}(\phi \parallel \psi) &= \text{Bnd}(\phi) \times \text{Bnd}(\psi),
\end{align*}$$

where $1 = \{0\}$ is a distinguished singleton set. More generally, we use the notation \mathbb{N}_n for $n \in \mathbb{N}$ to denote the set $\{0, 1, \ldots, n-1\}$, discretely ordered. Elements of the disjoint sum $\text{Bnd}(\phi) + \text{Bnd}(\psi)$ are presented as pairs $(0, f)$ where $f \in \text{Bnd}(\phi)$ or $(1, g)$ where $g \in \text{Bnd}(\psi)$. An element $f \in \text{Bnd}(\phi)$ is a form of generalized higher-order timing matrix for schedules of shape ϕ.

Let $\sigma = \emptyset \subseteq \sigma(0) \subseteq \sigma(1) \subseteq \cdots \subseteq \sigma(n-1) \subseteq S$ be an execution. We define a sub-execution $\sigma' \subset \sigma$ to be a sub-sequence $\sigma' = \emptyset \subseteq \sigma'(0) \subseteq \cdots \subseteq \sigma'(m-1) \subseteq S$ consisting of an arbitrary number of events $\sigma'(i) = \sigma(f_i)$ of σ with a monotonic function $f: \mathbb{N}_m \rightarrow \mathbb{N}_n$. Such a sub-sequence models a sub-thread of σ which observes only a certain subset of events from σ according to when it is scheduled. We write $\sigma = \sigma_1 \oplus \sigma_2$ to express that execution σ can be partitioned into sub-executions $\sigma_1, \sigma_2 \subseteq \sigma$ such that each computation step $(\sigma(i), \sigma(i + 1))$ in σ is contained in σ_1 or in σ_2. As a degenerated case the empty execution can always be split $\emptyset = \emptyset = \emptyset$. Finally, for every $d \in \mathbb{N} \cup \{-\infty\}$ we define the delayed execution $\sigma[d, :]$ to be the sequence $\sigma[d, :] = \sigma[d] \subseteq \sigma[d+1] \subseteq \cdots \subseteq \sigma(n-1)$. If $d \geq |\sigma|$ then $\sigma[d, :] = \emptyset$ is the empty execution. If $d = -\infty$ then $\sigma[d, :] = \emptyset \sigma$, i.e., an initial empty event is added to σ.

We say that an execution σ validates a scheduling type ϕ with bound $f \in \text{Bnd}(\phi)$ written $\sigma \models f : \phi$, according to the rules

$$\begin{align*}
\sigma \models 0 : false & \quad \text{iff} \quad |\sigma| = 0 \\
\sigma \models 0 : true & \quad \text{iff} \quad \forall j \leq |\sigma| \Rightarrow A \in \sigma(j) \\
\sigma \models (f, g) : \phi \wedge \psi & \quad \text{iff} \quad \sigma \models f : \phi \text{ and } \sigma \models g : \psi \\
\sigma \models (0, f) : \phi \lor \psi & \quad \text{iff} \quad \sigma \models f : \phi \\
\sigma \models (1, g) : \phi \lor \psi & \quad \text{iff} \quad \sigma \models g : \psi \\
\sigma \models (f, g) : \phi \oplus \psi & \quad \text{iff} \quad \sigma \models f : \phi \text{ or } \sigma \models g : \psi \\
\sigma \models f : \phi \supset \psi & \quad \text{iff} \quad \forall \sigma' \subseteq \sigma. \forall g \in \text{Bnd}(\phi). (\sigma' \models g : \phi \Rightarrow \sigma' \models f : g : \psi) \\
\sigma \models (t, f) : \alpha \phi & \quad \text{iff} \quad \sigma[t, :] \models f : \phi \\
\sigma \models (f, g) : \phi_1 \parallel \phi_2 & \quad \text{iff} \quad \exists \sigma_1, \sigma_2 \subseteq \sigma. \sigma = \sigma_1 \oplus \sigma_2 \text{ and } \sigma_1 \models f : \phi_1 \text{ and } \sigma_2 \models g : \phi_2.
\end{align*}$$

One shows by induction on type ϕ that the empty execution validates all types. Similarly, for all delay times d after the end of an execution, $d \geq |\sigma|$, we have $\sigma[d, :] \models f : \phi$ for all types $f : \phi$, including $0 : false$. Validity is monotonic in the sense that as the delay time increases more and more types may become valid. Formally, if $\sigma[d, :] \models f : \phi$ then also $\sigma[d', :] \models f : \phi$ for all $d' \geq d$. More generally, truth is inherited by sub-schedules, i.e., if $\sigma \models f : \phi$ and $\sigma' \subseteq \sigma$ then $\sigma' \models f : \phi$,

27
too. The inclusion \(\sigma[d',:] \subseteq \sigma[d,/] \) for \(d' \geq d \) is a special case of this. We will sometimes write \(\sigma, d \models f : \phi \) for \(\sigma[d,/] \models f : \phi \).

Notice how \(\parallel \) captures multi-threading. An execution \(\sigma \) validates \(\phi_1 \parallel \phi_2 \) if it can be divided into two sub-executions \(\sigma_1, \sigma_2 \) each of which validates its part of the composition. In general \(\sigma_1 \) overlaps with parts of the other execution \(\sigma_j \) (\(i \neq j \)). All interleaved activities inside \(\sigma_2 \) overlapping with \(\sigma_1 \) are happening concurrently from \(\sigma_1 \)’s local point of view and can involve the simultaneous occurrence of control signals. So, although at the outermost level of a master-thread \(\sigma \) each step \((\sigma(i), \sigma(i+1)) \) involves only a single control signal, a sub-thread \(\sigma_1 \subseteq \sigma \) may well experience the occurrence of several signals in the same local instruction cycle. This is why in multi-threading (and in multi-processing for that matter) we need to consider arbitrary executions sequences \(\sigma \).

A set of executions \(S \) defines a schedule. Thus, our semantics associates with every pair \(f : \phi \) a schedule \([f : \phi] = \{ \sigma \mid \sigma \models f : \phi \} \). It is useful to view \(f : \phi \) as a specification of executions which combines a qualitative aspect \(\phi \) with the quantitative aspect \(f \in \text{Bnd}(\phi) \). The scheduling type \(\phi \) captures the abstract causal relationships between the control points and the scheduling bound \(f \) refines this chronometrically by giving concrete numeric distances and durations. The colon as a binary connective separates these concerns. Specifications may be compared naturally in terms of their executions. We write \(f : \phi \equiv g : \psi \) if \([f : \phi] = [g : \psi] \) and \(f : \phi \preceq g : \psi \) if \([f : \phi] \subseteq [g : \psi] \).

Example 2. For instance, the pair \((5, 0) : \text{false}\) specifies all executions which have at most 5 events and thus consume at most 4 cycles. The type \text{false} represents abstract termination and \((5, 0)\) measures the duration until it occurs. Note that the second component \(0 \in \text{Bnd}(\text{false}) = 1 \) in the pair \((5, 0)\) is needed for systematic reasons to deal with the general case, uniformly. It does not have any semantic meaning, however, and can be dropped systematically if needed. So, we would write \(5 : \text{false} \) instead.

The pair \(\lambda x. (12, 0) : A \sqsupset \circ B \) comprises all executions in which control point \(B \) is necessarily passed after at most 11 scheduling steps after any occurrence of \(A \). Here, the type \(A \sqsupset \circ B \) expresses a causal control flow from \(A \) to \(B \) and the bound \(\lambda x. (12, 0) \) measures the distance. Again, the arguments \(x \in \text{Bnd}(A) = 1 \) and value \(0 \in \text{Bnd}(B) = 1 \) are irrelevant in this function, whence we will write \((12) : A \sqsupset \circ B \) more compactly.

In a concrete WCRT analysis problem we are given some schedule \(S \) and a scheduling type \(\phi \) (as its specification) and ask for a stabilization bound \(f \) such that \(S \subseteq [f : \phi] \). If such a bound exists we say that \(S \) is well timed for \(\phi \) with bound \(f \), and write \(S \models f : \phi \). If we are not interested in the bound itself, we write \(S \models \phi \) to express that \(S \) is well-timed for \(\phi \), i.e., there exists \(\phi \in \text{Bnd}(\phi) \) such that \(S \subseteq [f : \phi] \). In this way each scheduling type \(\phi \) defines a class of well-timed schedules \([\phi] = \{ S \mid S \models \phi \} \) while a pair \(f : \phi \) specifies individual executions.

Because of this it is possible to use expressions \(f : \phi \) themselves as generalized “control signals” in types such as \((f : \phi) \land \psi \) or \(\circ(f : \phi) \). We simply define \(\text{Bnd}(f : \phi) = \{ f : \psi \} \) and \(\sigma \models 0 : (f : \phi) \iff \sigma \models f : \phi \).

For any given schedule \(S \) there may be infinitely many bounds under which \(S \) is well-timed for a type. We will be interested in optimal bounds. To make this formal we introduce a partial ordering \(\subseteq \) on bounds, so that \(f \subseteq g \) means \(f \) is tighter than \(g \). The ordering on \(\text{Bnd}(\phi) \) is generated by induction on type \(\phi \) from the natural ordering \(\leq \) on \(\mathbb{N} \), taking point-wise ordering on products \(\text{Bnd}(\phi) \times \text{Bnd}(\psi) \) and function spaces \(\text{Bnd}(\phi) \to \text{Bnd}(\psi) \). For disjoint unions \(\text{Bnd}(\phi) + \text{Bnd}(\psi) \) we take the discrete ordering, so that \((i, f) \subseteq (j, g) \iff i = j \) and \(f \subseteq g \). Then, a scheduling bound \(f \in \text{Bnd}(\phi) \) is exact or worst-case for \(S \) and \(\phi \), if for all \(g \in \text{Bnd}(\phi) \) such that \(g \subseteq f \) we have \(f = g \) iff \(S \models g : \phi \).

Example 3. Bounded termination can be specified by the scheduling type \(\circ \text{false} \) because for any execution \(\sigma \), the statement \(\sigma \models n : \text{false} \) says that \(\sigma \) is finite and has length at most \(n \), i.e., \(|\sigma| \leq n \). Now suppose schedule \(S_G \) is the set of all possible executions of a program \(G \). The WCRT of \(G \) then is the maximal number of steps in all executions \(\text{WCRT}(G) = \max\{ |\sigma| - 1 | \sigma \in S_G \} \). This is one less than the minimal upper bound on the length of all executions, i.e.,
WCRT(G) = \min\{n - 1 \mid \forall \sigma \in S_G, |\sigma| \leq n\} and thus the same as the optimal scheduling bound m such that \(S_G \models m + 1 : \circ false \). Specifically if \(S_G = \emptyset \), then WCRT(G) = -\infty.

If program G is not stand-alone but a program fragment then \(S_G \) is the set of all possible executions of G in arbitrary program contexts into which G is embedded. Let us suppose that G is started through control signal active and every thread entering G must leave G via a unique control point end. In that case WCRT(G) is the least upper bound on the number of cycles of any execution \(\sigma \in S_G \) between the occurrence of active and end. In other words, we want the optimal bound \(f \) such that \(S_G \models (f + 1) : active \supset end \). In this paper the unique termination point used is the global constant false. Abbreviating wait =df 1 : false we may write \(S_G \models (f) : active \supset wait \).

We have the following natural monotonicity property which says that if we relax the scheduling bound or reduce the set of schedules we are not losing well-timedness:

Proposition 1. Let \(R, S \) be schedules and \(f, g \in \mathbb{Bnd}(\phi) \) scheduling bounds for type \(\phi \) such that \(R \subseteq S \) and \(f \subseteq g \). Then, \(S \models f : \phi \) implies \(R \models g : \phi \).

On the other hand if we enlarge the schedule (i.e., include more executions) then the worst-case scheduling bound becomes larger in general and similarly if we tighten the bounds we get fewer executions satisfying the bound. A bound \(f \in \mathbb{Bnd}(\phi) \) is a uniform bound for \(\phi \) if \(S \models f : \phi \) for any schedule \(S \), written \(\models f : \phi \).

The partial ordering \((\mathbb{Bnd}(\phi), \subseteq) \) depends on the structure of a scheduling type \(\phi \) and measures the amount of WCRT information that is associated with \(\phi \). In this respect the most simple class of types is that for which \(\mathbb{Bnd}(\phi) \) is (order) isomorphic to \(\bot \). This happens precisely if \(|\mathbb{Bnd}(\phi)| = 1 \). Such types are called units since they only carry trivial timing information. An example of unit propositions are the double negated formulas. Such statements may have uniform bounds, but they do not contain any information. More precisely, it can be shown that if \(f \in \mathbb{Bnd}(\neg\neg\phi) \) and \(\sigma \models f : \neg\neg\phi \) then for all \(g \in \mathbb{Bnd}(\neg\neg\phi) \), \(\sigma \models g : \neg\neg\phi \). Thus, \(\neg\neg\phi \) either has a uniform scheduling bound or it does not; and if it does all bounds are uniform bounds. Moreover, they cannot be distinguished from each other by the relation \(\models \). Hence they might just as well all be identified. The unit types, which we denote by meta-variable \(\zeta \), are characterized syntactically as follows:

\[
\zeta ::= \text{true} \mid \text{false} \mid A \mid \zeta \wedge \zeta \mid \zeta \oplus \zeta \mid \phi \supset \zeta,
\]

where \(\phi \) is an arbitrary type. The basic controls introduced in Sec. 5.1 are a particular class of unit types. It is natural to exploit the isomorphisms \(\mathbb{Bnd}(\zeta) \cong \bot \) and identify all bounds \(f \in \mathbb{Bnd}(\zeta) \) canonically with the unique \(0 \in \bot \). In fact we may simply identify \(\zeta \) with \(0 : \zeta \) and write \(d : \zeta \) instead of \((d,0) : \circ \zeta \). Note that no non-empty execution satisfies \(\sigma \models \neg\neg\omega : A \) for any control signal \(A \) which means that timing delay \(-\infty \) can be used for non-existing control dependencies.

Proposition 2. The type operators \(\wedge \), \(\oplus \) and \(\parallel \) correspond to the arithmetic operations \(\min \), \(\max \) and \(+ \), respectively. More precisely, the values \(\min(d_1,d_2) \), \(\max(d_1,d_2) \) and \(d_1 + d_2 \) are the optimal scheduling bounds such that

\[
d_1 : X \wedge d_2 : Y \preceq \min(d_1,d_2) : (X \oplus Y) \cong \min(d_1,d_2) : (X \lor Y)
\]
\[
d_1 : X \wedge d_2 : Y \preceq \max(d_1,d_2) : (X \land Y)
\]
\[
((d_1 : X) \land (X \supset wait)) \parallel ((d_2 : Y) \land (Y \supset wait)) \preceq d_1 + d_2 : X \land Y
\]
\[
(d_1 : X) \land (X \supset (d_2 : Y)) \preceq d_1 + d_2 : X \land Y
\]
\[
d_1 : X \oplus d_2 : Y \preceq \max(d_1,d_2) : X \oplus Y.
\]

A somewhat larger but still rather special class of types are the formulas for which \(\mathbb{Bnd}(\phi) \) is canonically order-isomorphic to a Cartesian product of numbers, i.e., to \(\mathbb{N}^n \) for some \(n \geq 0 \). Here, by canonically order-isomorphic we mean that \(\mathbb{Bnd}(\phi) \cong \mathbb{N}^n \) can be derived by the natural
isomorphisms of partial orderings \(\mathbb{N}^\mathbb{N} \cong \mathbb{N} \), \(\mathbb{N} \times \mathbb{N} \cong \mathbb{N}^{k+n} \), \(\mathbb{N} + k \cong nk \), \(n + k \cong n + k \), \(n \to k \cong k^n \), \(n \to \mathbb{N}^\mathbb{N} \cong \mathbb{N}^\mathbb{N} \) alone. This implies that, for instance, the well-known (dove-tailing) bijection between \(\mathbb{N} \) and \(\mathbb{N}^\mathbb{N} \) does not count as canonical. The scheduling types \(\phi \) with \(\text{Bnd}(\phi) \cong \mathbb{N}^\mathbb{N} \) are called elementary. Elementary formulas are referred to by \(\theta \) and generated by the grammar

\[
\theta ::= \theta \land \phi \mid o \zeta \mid \phi \lor \theta,
\]

where \(\zeta \) is a unit and \(\phi \) is \(o \)-free. Note that every unit type is elementary. Elementary scheduling types are of special interest since \(\text{Bnd}(\phi) \) is a lattice and its elements first-order objects, \(i.e. \) vectors of natural numbers. The following Proposition 3 provides the basis for WCRT analysis:

Proposition 3. Let \(\theta \) be an elementary type and \(S \) a schedule such that \(S \) is well-timed for \(\theta \). Then, the set \(\{ f \mid S \models f : \theta \} \) ordered by \(\subseteq \) is (non-empty and) a complete lower semi-lattice.

Prop. 3 implies the existence of unique worst-case stabilization bounds for elementary scheduling types. More precisely, it says that for every schedule \(S \) we have a worst-case reaction bound relative to any scheduling type \(\phi \) by putting \(\text{WCRT}(S, \phi) = \bigcap \{ f \mid S \models f : \phi \} \). As a degenerate case we have \(\text{WCRT}(S, \phi) = -\infty \) if \(S = \emptyset \).

The WCRT analyses suggested in this paper are implementations of scheduling bounds for elementary types \(\theta \) of the form

\[
\theta \equiv \bigvee_{i \in I} \zeta_i \supset \bigoplus_{k \in K} o \xi_k \quad \zeta_i \equiv \bigoplus_{j \in J_i} x_{ij} \quad \xi_k \equiv \bigoplus_{l \in L_k} y_{kl},
\]

where \(x_{ij} \) and \(y_{kl} \) are min-terms of literals over control signals \(S \). The set of scheduling bounds for such \(\theta \) are canonically order-isomorphic to \(\mathbb{N}^{[K] \times |I|} \) which can be understood as \(|K| \times |I| \) timing matrices relative to the base controls \(\zeta_i \) and \(\xi_k \). The logical conjunction of these interfaces in a fixed set of base controls corresponds to matrix multiplications in max-plus algebra \((\mathbb{N}, +, \max, 0, -\infty) \). Furthermore, using logical reasoning on base controls \(\zeta_i, \xi_j \) we can massage the semantics of timing matrices very much like we do with base transformations in ordinary linear algebra. This equally tight as uniform combination of timing algebra and logical reasoning is the key to expressing timing abstractions and distinguishes our WCRT algebra from previous work on component interfaces such as [21].

B. Multi-threading Composition

This section explains how the operator \(\parallel \) is used to express multi-threading and also fills in some technical details supporting the developments in Sec. 5.4.

In multi-threading we need to enforce termination of threads. There must be some means of expressing that a schedule does not lock up inside a thread which has reached a certain exit point but rather hands over to some other thread. In fork-join blocks this may be either a concurrent sibling thread or the parent thread. Stopping can in fact be specified by the special type \(\text{wait} =_{df} 1 : \text{false} \) which is satisfied on singleton intervals, \(i.e., \sigma \models \text{wait} \iff |\sigma| \leq 1.\)

Take the example in Fig. 10 (b): If \(T_1 \) reaches its exit control \(Y_1 \) then \(T_1 \) is finished and yields back to the scheduler, \(i.e., \) either to thread \(T_2 \) or the parent thread which means leaving the join through \(Y \). This yielding of \(T_1 \) to \(T_2 \) is specified by the scheduling type \((Y_1 \land \neg Y_2) \supset \text{wait} \). Any execution \(\sigma \) of \(T_1 \) satisfying \(\sigma \models (Y_1 \land \neg Y_2) \supset \text{wait} \) which reaches control point \(Y_1 \) in some cycle \(i \) must either include \(Y_2 \) in the very next cycle \(i + 1 \) or terminate, \(i.e., \) \(Y_1 \) occurs in the last control event of \(\sigma \). Formally, \(\sigma \models (Y_1 \land \neg Y_2) \supset \text{wait} \iff \forall i < |\sigma| - 1. Y_1 \in \sigma(i) \implies Y_2 \in \sigma(i + 1) \).

Now, consider the type

\[
\phi_1 \parallel \phi_2 =_{df} o Y_1 \land (Y_1 \land \neg Y_2) \supset \text{wait} \parallel o Y_2 \land (Y_2 \land \neg Y_1) \supset \text{wait}.
\]

Note the expression \(\neg X \supset \text{wait} \) means that \(X \) has a down-time of at most 1 ic. The combination \(\neg (X \lor X) \supset \text{wait} \) means that \(X \) oscillates with 1 ic period.
B. MULTI-THREADING COMPOSITION

and assume $\sigma \models (d_1, d_2) : \phi_1 \parallel \phi_2$ and $d_1, d_2 \geq 1$. Then, by definition, there are sub-executions $\sigma_i \subseteq \sigma$ with $\sigma = \sigma_1 + \sigma_2$ such that $\sigma_i \models d_i : \phi_i$ for $i, j \in \{1, 2\}$ and $i \neq j$. Let us look at σ_1 which is the sub-execution in which thread T_1 is executed, satisfying $\sigma_1 \models d_1 : \phi_1$. The other case $\sigma_2 \models d_2 : \phi_2$ is perfectly symmetric. First, $\sigma_1 \models d_1 : \circ Y_1$ says that after maximal delay d_1 (taken relative to σ_1, not σ) σ_1 will activate the exit control Y_1 of T_1. Second, $\sigma_1 \models 0 : ((Y_1 \land \neg Y_2) \land wait)$ makes sure that when Y_1 appears then either σ_1 terminates or Y_2 appears in the very next cycle. Thus, the execution σ passes through Y_2 or continues outside of σ_1 (in σ_2) no later than immediately in the next cycle after T_1 has reached Y_1. The same applies to the sub-execution $\sigma_2 \models d_2 : \phi_2$ with delay d_2. Since the total execution $\sigma = \sigma_1 + \sigma_2$ is fully covered by σ_1 and σ_2 we conclude that σ must reach the conjunction of Y_1 and Y_2 within $d_1 + d_2$ ics\(^8\), i.e.,

$$\sigma \models d_1 + d_2 : \circ(Y_1 \land Y_2).$$

(26)

Let us see in more detail why this must be true. First, if σ is not longer than $d_1 + d_2$ then (26) holds trivially. Hence, suppose σ comprises at least $d_1 + d_2 + 1$ ics, i.e., $|\sigma| \geq d_1 + d_2 + 1$. It is easy to see that then at least one of the executions σ_i must contain at least $d_i + 1$ cycles. For otherwise, if both $|\sigma_1| \leq d_1$ and $|\sigma_2| \leq d_2$ then $|\sigma| \leq |\sigma_1| + |\sigma_2| - 1 \leq d_1 + d_2 - 1$ which is a contradiction. The subtraction of 1 here is due to the fact that σ_1 and σ_2 form a transition cover of σ, and the number of transitions of an execution is one less than its length.

Consider the case that $|\sigma_1| \geq d_1 + 1$. Since $\sigma_1 \models d_1 : \circ Y_1$ we know that after a maximal delay d_1 the schedule σ_1 will activate the exit control Y_1, i.e., $\sigma_1, i_1 \models 0 : Y_1$ for some $i_1 \leq d_1 \leq |\sigma_1| - 1$. Further, because of $\sigma_1 \models (Y_1 \land \neg Y_2) \land wait$, we either have $i_1 = |\sigma_1| - 1$ or $Y_2 \notin \sigma_1(i_1 + 1)$. The latter implies that $\sigma_1, i_1 + 1 \models Y_1 \land Y_2$ and thus (26) because $i_1 + 1 \leq d_1 + 1 \leq d_1 + d_2$.

Thus it remains to look at the former case in which we conclude $|\sigma_1| = d_1 + 1$. Thus, schedule σ_2 must have length $|\sigma_2| \geq |\sigma| - |\sigma_1| + 1 = |\sigma| - d_1 \geq d_2 + 1$. By an argument analogous to above, $\sigma_2 \models d_2 : \circ Y_2$ and $\sigma_2 \models ((Y_2 \land \neg Y_1) \land wait)$ give us $Y_2 \in \sigma_2(j_2)$ for some $j_2 \leq d_2 \leq |\sigma_2| - 1$ such that either (i) $j_2 = d_2 = |\sigma_2| - 1$, or (ii) $Y_1 \in \sigma_2(j_2 + 1)$. Again, (ii) yields (26) immediately because then $\sigma_2, j_2 + 1 \models Y_1 \land Y_2$ and $j_2 + 1 \leq d_2 + 1 \leq d_1 + d_2$.

Now what if (i) is true? Consider the absolute cycle times i and j in the global schedule σ which correspond to the relative indices i_1 and j_2 in the sub-executions σ_1 and σ_2, respectively. Recall that for these indices we have $\sigma, i \models 0 : Y_1$ and $\sigma, j \models 0 : Y_2$. By transition cover $\sigma = \sigma_1 + \sigma_2$ and we must have $j - j_2 \leq |\sigma_1| - 1$ and $i - i_1 \leq |\sigma_2| - 1$. From this is follows that $max(i, j) \leq max(|\sigma_2| + i_1 - 1, |\sigma_1| + j_2 - 1) = max(d_1 + 1 + d_1 - 1, d_1 + d_2 - 1) = d_1 + d_2$. This proves (26). Since our argument is symmetric in σ_1 and σ_2 we have thus proven (26) whenever $|\sigma_1| \geq d_1 + 1$ for some $i = 1, 2$.

One can show in fact that the sum $d_1 + d_2$ is the best uniform delay d such that $\sigma \models (d_1, d_2) : \phi_1 \parallel \phi_2$ implies $\sigma \models d_1 + d_2 : \circ(Y_1 \land Y_2)$ for arbitrary executions σ. More precisely, one can show that for any number $d < d_1 + d_2$ we can find an execution such that $\sigma \models (d_1, d_2) : \phi_1 \parallel \phi_2$ but

Fig. 10: Interleaved concurrent threads T_1, T_2 (a) and composite system T with both join and fork (b).
\n---

\(^8\) Recall that ics is a time unit short for 'instruction cycle'
\(\sigma \neq d : \circ(Y_1 \land Y_2) \) (see also Prop. 2). Of course, this is the WCRT for the joint instantaneous execution of \(T_1 \) and \(T_2 \) under multi-threading ignoring signal cross-dependencies.

To keep matters concise we introduce the derived operator

\[
\phi_1 \|_{X,Y} \phi_2 =_{df} (\phi_1 \land ((X \land \neg Y) \supset wait)) \| ((\phi_2 \land ((Y \land \neg X) \supset wait))
\]

with bounds \(\text{Bnd}(\phi_1 \|_{X,Y} \phi_2) =_{df} \text{Bnd}(\phi_1) \times \text{Bnd}(\phi_2) \) such that \(\sigma \models (f, g) : \phi_1 \|_{X,Y} \phi_2 \) iff \(\sigma \models (f, g) : (\phi_1 \land ((X \land \neg Y) \supset wait)) \| ((\phi_2 \land ((Y \land \neg X) \supset wait)) \).

Multi-threading of Surface Interfaces

Let us further assume each thread inside a fork-join has (at most) one instantaneous entry \(X_i \) and one instantaneous exit control \(Y_i \) and is specified by its surface WCRT interface:

\[
T_{1,srf} = (d_1, e_1)^T : X_1 \supset (oY_1 \oplus \text{wait}) = X_1 \supset (d_1 : Y_1 \oplus e_1 : \text{wait})
\]

\[
T_{2,srf} = (d_2, e_2)^T : X_2 \supset (oY_2 \oplus \text{wait}) = X_2 \supset (d_2 : Y_2 \oplus e_2 : \text{wait}).
\]

The single entry \(X_i \) is justified since there are no inter-level transitions which would enter a thread from outside the concurrent block. There may be inter-thread dependencies between concurrent threads, though, but we ignore these for the moment. As explained above, if there are several instantaneous exits \(Y_{ik} \) in a thread \(T_i \) then these are assumed to have been bundled into a single exit \(Y_i = \oplus_k Y_{ik} \), which simply amounts to forming the maximum as we have seen. Moreover, without loss of generality we may suppose that the \(T_i \) are normalized so that we have \(d_i \leq e_i \) for all sink nodes.

The surface interface of \(T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} \) (the system seen in Fig. 10 (a) without fork or join) is given by the smallest \(d, e \) such that

\[
T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} \leq X_1 \land X_2 \supset d : (Y_1 \land Y_2) \oplus e : \text{wait}.
\]

To obtain these the timing interface \(T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} \) is transformed in context\(^9\) \(X_1 \land X_2 \) as follows:

\[
X_1, X_2 \vdash T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} = (X_1 \supset (d_1 : Y_1 \oplus e_1 : \text{wait})) \|_{Y_1,Y_2} (X_2 \supset (d_2 : Y_2 \oplus e_2 : \text{wait}))
\]

\[
= (true \supset (d_1 : Y_1 \oplus e_1 : \text{wait})) \|_{Y_1,Y_2} (true \supset (d_2 : Y_2 \oplus e_2 : \text{wait}))
\]

\[
= (d_1 : Y_1 \oplus e_1 : \text{wait}) \|_{Y_1,Y_2} (d_2 : Y_2 \oplus e_2 : \text{wait})
\]

\[
\leq ((d_1 + d_2) : (Y_1 \land Y_2) \oplus (d_1 + e_2) : (Y_1 \land \text{wait}) \oplus (e_1 + d_2) : (\text{wait} \land Y_2) \oplus (e_1 + e_2) : (\text{wait} \land \text{wait}))
\]

where we exploit Prop. 2 and the equivalence \((true \supset \phi) \equiv \phi \). This type adds up all possible ways in which the through paths and sink paths of \(T_1 \) and \(T_2 \) may interleave. The underlying arithmetic operation is the Kronecker product of the surface interfaces

\[
\begin{pmatrix} d_1 \\ e_1 \end{pmatrix} \otimes \begin{pmatrix} d_2 \\ e_2 \end{pmatrix} = \begin{pmatrix} (d_1 \cdot d_2)^T \\ (e_1 \cdot d_2)^T \end{pmatrix} = (d_1 + d_2 d_1 + e_2 e_1 + d_2 e_1 + e_2)^T
\]

The type \(Y_1 \land Y_2 \) specifies the cases where each block \(T_i \) executes a through path from \(X_i \) to \(Y_i \) which amounts to a through path of \(T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} \). The types \(Y_1 \land \text{wait} \) and \(\text{wait} \land Y_2 \) cover the interleaving of a through path in one block with a sink path in the other and finally \(\text{wait} \land \text{wait} \) types the executions in which both blocks eventually pause through sink paths. Since a single pausing thread forces the whole fork-join block to pause we get that in all cases except the first one, the composition \(T_{1,srf} \|_{Y_1,Y_2} T_{2,srf} \) pauses, i.e., it executes a sink path. This is reflected

\(^9\) Proving an (in-)equation \(\phi \leq \psi \) in the context \(X_1 \land X_2 \), i.e., \(X_1 \land X_2 \vdash \phi \leq \psi \) amounts to proving \(\phi \leq \psi \) using the equations \(X_1 \equiv true \) and \(X_2 \equiv true \) (which are equivalent to equation \(X_1 \land X_2 \equiv true \).
by the (in)equations $Y_1 \land \text{wait} \preceq \text{wait}$, $\text{wait} \land Y_2 \preceq \text{wait}$, $\text{wait} \land \text{wait} \equiv \text{wait}$ which we can use to condense the type of $T_{1,srf} \parallel Y_1, Y_2 \parallel T_{2,srf}$ into

$$
T_{1,srf} \parallel Y_1, Y_2 \parallel T_{2,srf} \preceq \left(\max(d_1 + e_2, e_1 + d_2, e_1 + e_2) \right) : X_1 \land X_2 \supset (\circ(Y_1 \land Y_2) \circ \text{wait})
$$

(27)

considering that $x \text{wait} \circ y \text{wait} \equiv \max(x, y) \text{wait}$ in general. This means that the desired through WCRT of T is $d = d_1 + d_2$ and the sink WCRT $e = \max(d_1 + e_2, e_1 + d_2, e_1 + e_2)$.

In the computation of the sink WCRT e it is useful to distinguish between sink and non-sink nodes. Provided at least one system T_1 or T_2 is a (normalized) sink node satisfying $d_1 \leq e_1$, one can simplify $e = \max(d_1 + e_2, e_1 + d_2, e_1 + e_2) = \max(d_1, e_1) + \max(d_2, e_2)$. Thus, in this case, we simply take the maximum of instantaneous and sink paths in each block separately and add them up. If none of T_1 or T_2 is a sink node ($e_1 = e_2 = -\infty$) we get $e = \max(d_1 + e_2, e_1 + d_2, e_1 + e_2) = -\infty$, i.e., $T_1 \parallel Y_1, Y_2 \parallel T_2$ is not a sink node either. This suggest the following simple WCRT strategy on normalized surface interfaces: We always compute the sink WCRT as

$$
eq \max(d_1, e_1) + \max(d_2, e_2).
$$

Then, if we find $d = d_1 + d_2 \geq e$, we normalize and put $e = -\infty$. This is very useful since $e = \max(d_1, e_1) + \max(d_2, e_2)$ is compositional and thus more efficient than the general $e = \max(d_1 + e_2, e_1 + d_2, e_1 + e_2)$ from (27).

Another potential optimization arises if both T_1 and T_2 are sink nodes with $d_i \leq e_i$. Then, $\max(d_1 + e_2, e_1 + d_2, e_1 + e_2) = e_1 + e_2$. Thus, for sink interfaces, the instantaneous WCRT for concurrent blocks can be calculated separately for the through paths and sink paths. The Kronecker product reduces to coordinate-wise addition

$$
\left(\begin{array}{c}
\frac{d_1}{e_1}
\end{array} \right) \otimes \left(\begin{array}{c}
\frac{d_2}{e_2}
\end{array} \right) = \left(\begin{array}{c}
\frac{(d_1) \cdot (d_2)}{(e_1) \cdot (e_2)}
\end{array} \right) = \left(\begin{array}{c}
\frac{d_1 + d_2}{e_1 + e_2}
\end{array} \right)
$$

which might be exploited for parallelization of WCRT analyses.

Multi-threading of Depth Interfaces The specification for $T_{1,srf} \parallel Y_1, Y_2 \parallel T_{2,srf}$ was built from the surface interfaces of $T_{1,srf}$ and $T_{2,srf}$ which only cover through paths and sink paths. To get the full picture the concurrent composition still needs to include the source paths and internal paths that make up the depth interface $\text{active} \supset (\circ(Y_1 \land Y_2) \circ \text{wait})$. Let us look at them now. The interface types of $T_{1,dpt}$, $T_{2,dpt}$ for source and internal paths are, respectively,

$$
T_{1,dpt} = (s_1, t_1)^T : \text{active}_1 \supset (\circ(Y_1 \land \text{wait}) = \text{active}_1 \supset (s_1 : Y_1 \land t_1 : \text{wait})
$$

$$
T_{2,dpt} = (s_2, t_2)^T : \text{active}_2 \supset (\circ(Y_2 \land \text{wait}) = \text{active}_2 \supset (s_2 : Y_2 \land t_2 : \text{wait}).
$$

As before we may assume that internal nodes (i.e., those for which $t_i \neq -\infty$) satisfy $s_i \leq t_i$ since otherwise the internal paths would not contribute to the critical path starting in block T_i and we could replace t_i by $-\infty$ without changing the WCRT.

Obviously, to obtain a source path $\text{active} \supset (\circ(Y_1 \land Y_2)$ which leaves the system instantaneously we need to interleave the source paths from T_1 and T_2 and take into account that only one of the threads has paused while the other has terminated instantaneously at exit control Y_i. In general, for every nonempty subset of pausing threads we calculate the interleaving of their source paths, while assuming that all other threads are already terminated instantaneously, contributing nothing.

Unfortunately, we cannot simply put the depth types $T_{1,dpt}$ and $T_{2,dpt}$ in parallel as before, say

$$
T_{1,dpt} \parallel Y_1, Y_2 \parallel T_{2,dpt} \\
= \text{active}_1 \supset (s_1 : Y_1 \land t_1 : \text{wait}) \parallel Y_1, Y_2 \parallel \text{active}_2 \supset (s_2 : Y_2 \land t_2 : \text{wait}) \\
\preceq \text{active}_1 \land \text{active}_2 \supset (s_1 + s_2) : (Y_1 \land Y_2) \land \max(t_1 + s_2, s_1 + t_2, t_1 + t_2) : \text{wait}.
$$

33
B. MULTI-THREADING COMPOSITION

The reason is that if a source path, say from T_1 has WCRT $s_1 = -\infty$, i.e., if T_1 is not a source node, then the overall source WCRT of T would come out as $s_1 + s_2 = -\infty + s_2 = -\infty$ even if T_2 is a source node with $s_2 \geq 0$. In other words, in T_1 would block the execution of the source node T_2. Instead, the right source WCRT would be s_2. This is the delay we get if T_2 starts from its pause and block T_1 has been instantaneously terminated in the previous clock cycle and is waiting at the exit control Y_1 rather than an internal pause node (from which it would never reach exit Y_1 because $s_1 = -\infty$). The key observation is that source-paths in a concurrent composition are not composed conjunctively like the through-paths but disjunctively as seen in the following table:

<table>
<thead>
<tr>
<th>$active_1 \supset \circ Y_1$</th>
<th>$active_2 \supset \circ Y_2$</th>
<th>$active_1 \land active_2 \supset \circ (Y_1 \land Y_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1 \geq 0$</td>
<td>$s_2 \geq 0$</td>
<td>$s_1 + s_2$</td>
</tr>
<tr>
<td>$s_1 = -\infty$</td>
<td>$s_2 \geq 0$</td>
<td>s_2</td>
</tr>
<tr>
<td>$s_1 \geq 0$</td>
<td>$s_2 = -\infty$</td>
<td>s_1</td>
</tr>
<tr>
<td>$s_1 = -\infty$</td>
<td>$s_2 = -\infty$</td>
<td>$-\infty$</td>
</tr>
</tbody>
</table>

To implement this disjunctive behavior we might try to coerce $-\infty$ to 0 before we add the paths as in $\max(0, s_1) + \max(0, s_2)$. However, this would give us a source WCRT of 0 in case $s_1 = s_2 = -\infty$ which is not correct. For if none of the blocks T_1 and T_2 is a source node their composition T should not be a source node either.

The right way to combine the source paths of concurrent blocks T_1, T_2, \ldots, T_n is to take the maximum over all possible ways in which some subset of blocks are started ($active_i$) from an internal pause while the other blocks already wait at their exit controls Y_i. The degenerated case where all blocks are at their exits Y_i must be excluded since no source path of the composition T can start in this way. Any path which reaches $Y_1 \land Y_2 \land \cdots \land Y_n$ would have left the block T instantaneously in the previous logical tick.

To achieve this composition we activate the source paths of T not with $active \supset (active_1 \land active_2)$ but with

$$active \supset (active_1 \oplus active_2) \land (active_1 \land -active_1) \land (active_2 \land -active_2).$$ \hspace{1cm} (28)

This says that once the fork-join block is $active$ at least one block T_i executes a source path ($active_1 \oplus active_2$) and also that in those executions the activation controls behave as constants ($active_i \land -active_i$), i.e., they are either switched on or switched off, throughout. The right-hand side of type (28) is equivalent to listing all the possible cases

$$active \supset (active_1 \land active_2) \oplus (active_1 \land -active_2) \oplus (-active_1 \land active_2)$$ \hspace{1cm} (29)

in which one block is activated and all others are switched off. Note however that this expansion (29) is exponential in the number of concurrent blocks, in contrast to (28) which is linear. In general, for blocks T_1, T_2, \ldots, T_n (28) would be

$$active \supset ((\oplus^n active_i) \land \bigwedge_{i=1}^n (active_{i=1} \oplus -active_i)).$$

The other measure to take is to instrument the parallel composition $T_1 || Y_1, Y_2 \ T_2$ so that the source paths of an activated block T_i do not get preempted by the other block T_j if it is not active, too. To make inactive blocks wait at their join we strengthen their specification as follows:

$$T_i^* = df T_i \land ((active \land -active_i) \supset (Y_i \land wait)).$$ \hspace{1cm} (30)

The type $(active \land -active_i) \supset (Y_i \land wait)$ adds to T_i waiting configurations specified by $Y_i \land wait$ whenever the parallel composition in which T_i is part of is activated $(active)$ but T_i itself is not $(\neg active_i)$. The type $Y_i \land wait$ consists of singleton events in which control Y_i is present. The conjunction $Y_i \land wait$ simulates T_i waiting at its exit Y_i.

34
Now we put the two blocks in parallel in all three activation contexts (29) using the approximation \(\phi \land \text{wait} \leq \text{wait} \) and \(x: \phi \oplus y: \phi \leq \max(x, y): \phi \):

\[
\text{active, active}_1, \text{active}_2 \vdash T^*_1 \parallel Y_1, Y_2 T^*_2 = (s_1: Y_1 \oplus t_1: \text{wait}) \parallel Y_1, Y_2 (s_2: Y_2 \oplus t_2: \text{wait}) \\
\leq (s_1 + s_2): (Y_1 \land Y_2) \oplus (s_1 + t_2): (Y_1 \land \text{wait}) \oplus \\
(t_1 + s_2): (\text{wait} \land Y_2) \oplus (t_1 + t_2): (\text{wait} \land \text{wait}) \\
\leq (s_1 + s_2): (Y_1 \land Y_2) \oplus \max(t_1 + s_2, s_1 + t_2, t_1 + t_2): \text{wait}
\]

(31)

\[
\text{active, active}_1, \lnot \text{active}_2 \vdash \\
(T^*_1 \parallel Y_1, Y_2 T^*_2) = (s_1: Y_1 \oplus t_1: \text{wait}) \parallel Y_1, Y_2 (Y_2 \land \text{wait}) \\
\leq s_1: (Y_1 \land Y_2) \oplus t_1: (Y_2 \land \text{wait}).
\]

(32)

\[
\text{active, \lnot active}_1, \text{active}_2 \vdash \\
(T^*_1 \parallel Y_1, Y_2 T^*_2) = (Y_1 \land \text{wait}) \parallel Y_1, Y_2 (s_2: Y_2 \oplus t_2: \text{wait}) \\
\leq t_2: (Y_1 \land \text{wait}) \oplus s_2: (Y_1 \land Y_2).
\]

(33)

Finally, we sum up (31)–(33) under \text{active} as specified in (28), or equivalently (29):

\[
\text{active} \vdash T^*_1 \parallel Y_1, Y_2 T^*_2 \leq (s_1 + s_2): (Y_1 \land Y_2) \oplus \max(t_1 + s_2, s_1 + t_2, t_1 + t_2): \text{wait} \oplus \\
\quad s_1: (Y_1 \land Y_2) \oplus t_1: (Y_2 \land \text{wait}) \oplus \\
\quad t_2: (Y_1 \land \text{wait}) \oplus s_2: (Y_1 \land Y_2) \oplus \\
\leq \max(s_1, s_2, s_1 + s_2): (Y_1 \land Y_2) \oplus \\
\max(t_1 + s_2, s_1 + t_2, t_1 + t_2): \text{wait},
\]

again using \(\phi \land \text{wait} \leq \text{wait} \), \(x: \phi \oplus y: \phi \leq \max(x, y): \phi \), as well as associativity, commutativity of \(\oplus \). This shows that \(s = \max(s_1, s_2, s_1 + s_2) \) is the source WCRT of \(T^*_1 \parallel Y_1, Y_2 T^*_2 \) and \(t = \gamma \max(t_1, t_2, t_1 + s_2, s_1 + t_2, t_1 + t_2) \) the internal WCRT.

Regarding the source WCRT \(s \), this is what we wanted: The WCRT \(s = \max(s_1, s_2, s_1 + s_2) \) for source paths of \(T \) is the sum of all non-\(\infty \) source paths of the sub-blocks \(T_1 \) and \(T_2 \). If all source paths are \(-\infty \) then the source WCRT of \(T \) is \(-\infty \), too, and \(T \) is not a source node. A simple way to compute \(s \) this is by iterative monotonic update: initialize \(x_0 \leftarrow -\infty \) and then for each source WCRT \(s_i \) of block \(T_i \) take \(x_{i+1} \leftarrow s_i + \max(0, x_i) \).
Next, consider the internal WCRT \(t = \max(t_1, t_2, t_1 + s_1 + t_2, t_1 + t_2) \). Let us see how this could be transformed into a sum-of-maxx. Obviously, \(t = -\infty \) iff both \(t_1 = -\infty \) and \(t_2 = -\infty \), i.e., if the composition is an internal node iff one of the blocks is internal. Suppose one of the blocks, say \(T_1 \), is internal, whence \(t_1 \geq 0 \). By normalization we may assume \(s_1 \leq t_1 \). We claim that the internal WCRT \(t \) can also be determined by the sum-of-max expression

\[
t' =_{df} \max(0, s_1, t_1) + \max(0, s_2, t_2)
\]

if at least one of \(T_1, T_2 \) is an internal node and otherwise \(t = -\infty \). First observe that because of \(t_1 \geq 0 \) and \(s_1 \leq t_1 \) the first summand of \(t' \) reduces to \(\max(0, s_1, t_1) = t_1 \), so that \(t' = t_1 + \max(0, s_2, t_2) = \max(t_1, t_1 + s_2, t_1 + t_2) \) invoking the distributive law \(x + \max(y_1, y_2) = \max(x + y_1, x + y_2) \). Now if \(t_2 = -\infty \) then \(t' = t \) is easily shown since \(t' = \max(t_1, t_1 + s_2, t_1 + t_2) = \max(t_1, t_1 + s_2) \) and also \(t = \max(t_1, t_2, t_1 + s_2, s_1 + t_2, t_1 + t_2) = \max(t_1, t_1 + s_2) \) due to \(x + (-\infty) = -\infty \). In the other case, both \(t_1 \geq 0 \) and \(t_2 \geq 0 \) so we have \(t_2 \leq t_1 + t_2 \) and \(s_1 + t_1 \leq t_1 + t_2 \). Then both \(t_2 \) and \(s_1 + t_2 \) can be added to the sums of \(t' \), whence \(t' = \max(t_1, t_1 + s_2, t_1 + t_2) = \max(t_1, t_1 + s_2, s_1 + t_2, t_1 + t_2) = t \) as desired. The calculations are symmetric in \(t_1 \) which means that if one of the blocks is internal then the internal WCRT can indeed be computed by \(t = \max(0, s_1, t_1) + \max(0, s_2, t_2) \) as claimed.

Putting it Together: Adding Fork and Join Observe that the surface interface \(T_1 \parallel Y_1, Y_2 \parallel T_2 \) does not change if we replace \(T_i \) by \(T_i^* = T_i \land \theta_i \) where \(\theta_i =_{df} (active \land \neg active_i) \supset (Y_i \land wait) \). We have

\[
T_1^* \parallel Y_1, Y_2 \parallel T_2^* \leq \left(\begin{array}{c} d \\ e \end{array} \right) : X_1 \land X_2 \supset (\circ(Y_1 \land Y_2) \oplus \circ wait)
\]

with \(d = d_1 + d_2 \) and \(e = \max(d_1, e_1) + \max(d_2, e_2) \) (subject to normalization). This is because the conjunctive additions \(\theta_i \) in the latter over the former do not affect the behavior under input controls \(X_i \). In general, \((T_1 \parallel T_2) \preceq \psi \) implies \((T_1^* \parallel T_2^*) \preceq \psi \) since \((T_1 \land \theta_1) \parallel (T_2 \land \theta_2) \) is a subset of executions of \(T_1 \parallel T_2 \). Also, we do not lose exactness since every longest path execution of \(T_1 \parallel T_2 \) which violates \((d', e')^T : \psi \) for \(d' < d \) or \(e' < e \) do not (need to) involve the active control and thus are also executions of \(T_1^* \parallel T_2^* \).

On the other hand, we have the depth interface

\[
T_1^* \parallel Y_1, Y_2 \parallel T_2^* \leq \left(\begin{array}{c} s \\ t \end{array} \right) : active \supset \circ(Y_1 \land Y_2) \oplus \circ wait,
\]

with \(s = \max(s_1, s_2, s_1 + s_2) \) and \(t = \max(0, s_1, t_1) + \max(0, s_2, t_2) \) (subject to normalization as described above). Putting both interfaces together yields

\[
T_1^* \parallel Y_1, Y_2 \parallel T_2^* \leq \left(\begin{array}{c} ds \\ et \end{array} \right) : ((X_1 \land X_2) \lor active) \supset (\circ(Y_1 \land Y_2) \oplus \circ wait).
\]

Up to this point we have captured the interleaved execution of threads \(T_1 \) and \(T_2 \) without the fork and join nodes. This is visualized in Fig. 10 (a) where the horizontal bars denote the concurrent synchronization of \(T_1 \) and \(T_2 \) at entry and exit controls. In particular it indicates that the combined entry and exit are \(X_1 \land Y_2 \) and \(Y_1 \land Y_2 \), respectively, and that thread \(T_i \) yields when reaching \(Y_i \). As depicted in Fig. 10 (b) we add the fork and join nodes which have the types

fork

\[
\begin{pmatrix}
4 & -\infty \\
-\infty & 1
\end{pmatrix}
: (X \lor active(T)) \supset (\circ(X_1 \land X_2) \oplus active)
\]

The specification (4) : \(X \supset \circ(X_1 \land X_2) \) of fork includes the ics for two PAR, one PARE and one JOIN. The entry (1) : \(active(T) \supset \circ active \) takes care of the execution of join on all source and
internal paths of T. Since the join is always executed when at least one thread is active, we add the execution time to the fork and not to the join node. Finally we arrive at
\[
\begin{pmatrix} 0 & -\infty \\ -\infty & 0 \end{pmatrix} \cdot \begin{pmatrix} d & s \\ e & t \end{pmatrix} \cdot \begin{pmatrix} 4 & -\infty \\ -\infty & 1 \end{pmatrix} = \begin{pmatrix} d & s \\ e & t \end{pmatrix} \cdot \begin{pmatrix} 4 & -\infty \\ -\infty & 1 \end{pmatrix} = \begin{pmatrix} d + 4s + 1 \\ e + 4t + 1 \end{pmatrix}
\]
as the WCRT for the composite fork-join block T with canonical interface : $\langle X \lor \text{active} \rangle \supset \langle \oplus Y \oplus \text{wait} \rangle$. Note that we do not need to re-normalize. If $d \leq e$ then $d + 4 \leq e + 4$ and if $s \leq t$ then $s + 1 \leq t + 1$.