
INSTITUT FÜR INFORMATIK

Drawing Layered Hypergraphs

Miro Spönemann, Christoph Daniel Schulze,
Ulf Rüegg, and Reinhard von Hanxleden

Bericht Nr. 1404
April 2014

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Drawing Layered Hypergraphs

Miro Spönemann, Christoph Daniel Schulze,
Ulf Rüegg, and Reinhard von Hanxleden

Bericht Nr. 1404
April 2014

ISSN 2192-6247

e-mail: {msp,cds,uru,rvh}@informatik.uni-kiel.de

An extended abstract of this work is published at the
8th International Conference on the Theory and Application of Diagrams,

Melbourne, Australia, July 2014



Abstract

Orthogonally drawn hypergraphs have important applications, e. g. in actor-oriented
data flow diagrams for modeling complex software systems. Graph drawing algorithms
based on the approach by Sugiyama et al. place nodes into consecutive layers and try
to minimize the number of edge crossings by finding suitable orderings of the nodes in
each layer. With orthogonal hyperedges, however, the exact number of crossings is not
determined until the edges are actually routed in a later phase of the algorithm, which
makes it hard to evaluate the quality of a given node ordering beforehand.

In this report, we present and evaluate two crossing counting algorithms that predict
the number of crossings between orthogonally routed hyperedges much more accurately
than previous methods. We also describe methods for routing hyperedges that span
multiple layers and for handling junction points.

i



Contents

1 Introduction 1
1.1 The Layer-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Hyperedges in the Layer-Based Approach 6
2.1 Merging Dummy Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Junction Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Counting Crossings 10
3.1 Lower Bound Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Approximating Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Experimental Evaluation 16

5 Conclusion 21

ii



1 Introduction

Embedded software domains such as the automotive, rail, or aerospace industries increas-
ingly take advantage of graphical modeling based on the actor-oriented approach [9].
Therein, data flow diagrams are used to represent software systems through actors that
receive and send data, drawn as nodes, and the data connections between them, drawn
as directed edges. However, such diagrams are only helpful as a development tool if they
are easy to understand.

The readability of diagrams is usually measured through a set of aesthetic criteria
of which the number of edge crossings is considered to be among the most important
ones [11, 17]. Both the placement of nodes and the routing of edges thus determine if
a diagram is easy to understand or not. Given that, according to Klauske [8], devel-
opers spend an estimated 25% of their time on manual layout adjustments to enhance
readability, algorithms for computing readable diagram layouts can significantly increase
developer productivity.

Actor-oriented data flow diagrams can be formalized as directed hypergraphs. A di-
rected hypergraph is a pair G = (V,H) where V is a set of nodes and H ⊆ P(V )×P(V )
is a set of hyperedges. Each hyperedge (S, T ) ∈ H has a set of sources S and a set of
targets T . For a given directed hypergraph, a layout algorithm computes an embedding
in the plane by assigning positions to all nodes and by routing edges between their end
points through the computation of bend points.

The well-known layer-based approach to graph drawing proposed by Sugiyama et
al. [15] lends itself well to drawing data flow diagrams because it emphasizes the flow
of data by placing nodes in consecutive layers on the basis of the connections between
them. However, it assumes edges between layers to be drawn as straight lines and thus
can lead to inferior layouts with orthogonal hyperedges, especially when it comes to
minimizing the number of edge crossings. This comes from the fact that the number
of crossings between straight-line edges is a bad predictor for the number of crossings
between orthogonal hyperedges in the final drawing.

Contributions. In this report, we introduce and evaluate methods to remedy these
shortcomings. We propose two methods for counting crossings that predict the number
of crossings much more accurately, as our evaluation shows. Furthermore, we propose a
method for combining the segments of hyperedges that span multiple layers to reduce
visual clutter and introduce a method for computing and drawing the junction points
of hyperedges to remove ambiguity.

Examples of actor-oriented data flow diagrams drawn with our method can be seen
in Figure 1.

1



Outline. We continue by describing the layer-based approach and by reviewing related
work. Section 2 describes the general ideas for integrating hyperedges into the layer-
based approach, including the combination of hyperedge segments and the computation
of junction points. Section 3 then focusses on how to predict the number of edge cross-
ings between orthogonal hyperedges. After an experimental evaluation in Section 4, we
conclude the report in Section 5.

1.1 The Layer-Based Approach

The main goal of the layer-based approach to graph drawing is to produce drawings
with the majority of edges pointing to the same direction. For this report, we assume
that they should point from left to right, which implies that the nodes in each layer are
placed below one another. While this is inconsistent with most of the graph drawing
literature which assumes a top-down layout, the left-to-right layout is commonly used
for data flow diagrams.

The layer-based approach accepts an abstract acyclic directed graph as its input and
produces an embedding in the plane. It is divided into three phases:

1. Layer Assignment. Nodes are assigned to layers L1, . . . , Lk such that edges point
from layers of lower index to layers of higher index. A proper layering is obtained
by inserting dummy nodes such that all edges connect nodes in consecutive layers.

2. Crossing Minimization. The nodes in each layer Li are ordered to minimize edge
crossings between Li and one of its neighboring layers (e. g. using the barycenter
heuristic). Layer sweeps are performed that iteratively minimize edge crossings
for all pairs of consecutive layers. It is in this phase that we need an algorithm for
counting edge crossings, such as the ones we introduce in Section 3.

3. Node Placement. The nodes of each layer are assigned explicit vertical positions
within the layer subject to the previously determined order. Goals can be to
minimize edge length or to minimize the number of bend points. With orthogonal
hypergraphs, it usually is the latter.

This approach is usually extended with two additional phases. A cycle elimination phase
at the beginning allows input graphs to be cyclic and tries to reverse as few edges as
possible to make the graph acyclic. Orthogonal edge routing, which is the standard for
actor-oriented data flow diagrams, can be realized by adding an additional edge routing
phase. The phase processes each pair (Li, Li+1) of consecutive layers, adding two bend
points to each edge that points from Li to Li+1, except for those where the start and
end point are at the same vertical position. This introduces either one horizontal or
one vertical and two horizontal line segments for each edge. Since the line segments
of different edges may cross, it is important to arrange the vertical segments in such
an order that the number of crossings is minimized. Algorithms for ordering vertical
segments have been proposed by Sander [12] and Baburin [1].

2



(a) Stack

(b) Token Ring

Figure 1. Two diagrams taken from the set of demo models shipping with the Ptolemy
tool [5] drawn with the methods presented in this report.

3



3

2

4

5

7

8

1

6

9

h1

h2

h3

Figure 2. Hyperedges may have cyclic dependencies in the auxiliary graph (V ∗, E∗). In
this example E∗ = {(h1, h3), (h3, h2), (h2, h1)}, hence we have a cycle h1 → h3 → h2 →
h1. No matter how the vertical line segments are ordered, the number of crossings is 4.

1.2 Related Work

To draw hypergraphs with orthogonal edges, Eschbach et al. use standard methods for
the layer-based drawing approach [7]. They give no details however on what kind of
dummy nodes and edges to create for representing hyperedges, and when to merge the
dummy nodes. A more complex solution for representing hyperedges was proposed by
Sander [13]. His representation includes a layering graph that is constructed to compute
the layer assignment, and a crossing reduction graph constructed for the crossing min-
imization phase. Furthermore, Sander represents the orthogonal routing of hyperedges
with an efficient data structure that stores horizontal and vertical line segments. Both
Eschbach et al. and Sander note that the number of crossings determined during the
crossing minimization phase is only an approximation, but give no proposals on how to
solve this problem. In this report, we present algorithms that give much more accurate
approximations.

Orthogonal edge routing with layers requires the vertical line segments of edges be-
tween each pair of layers to be ordered to obtain a minimal number of crossings. Esch-
bach et al. have shown the vertical segment ordering problem to be NP-hard for hyper-
edges, even if each hyperedge is constrained to have at most one vertical segment between
each pair of consecutive layers [7]. They proposed two heuristics for this problem, one
based on greedy assignment and one based on sifting. Sander transformed it to a cycle
breaking problem on an auxiliary graph (V ∗, E∗) [13]. Each node in V ∗ corresponds to
a hyperedge, and (h1, h2) ∈ E∗ if h1 and h2 have less crossings with each other if the
vertical segment of h1 is drawn left of that of h2 than the other way round. For instance,
the hyperedge h1 in Figure 2 has two crossings with h2 if h1 is drawn left of h2, but only
one crossing if h1 is drawn right of h2. The vertical segments can be ordered by finding a
topological order for (V ∗, E∗). However, as can be seen in Figure 2, this auxiliary graph
may have cycles, which have to be resolved using a heuristic [4]. Note that the order
and vertical positions of the nodes are fixed, since they are determined in the preceding
phases of the layer-based approach. In our implementations, we use Sander’s algorithm

4



for edge routing.
Chimani et al. replace phases 2 and 3 with upward-planarization methods resulting in

a decreased number of crossings [3]. To incorporate port constraints and orthogonality
they developed new approaches as the original methods were not applicable anymore.
Contrary to this, we present small alterations to the original algorithm which can easily
be added to existing implementations. It has not been evaluated how well the approach
of Chimani et al. works with real-world diagrams.

Wybrow et al. employ a visibility graph to route orthogonal hyperedges between arbi-
trarily placed nodes [18]. They present an automatic approach that routes all hyperedges
in the drawing, and a semi-automatic approach that reroutes hyperedges connected to
a node moved by the user. Edge routing algorithms integrated into the layer-based ap-
proach constrain the routing of edges to the space between each pair of layers instead of
routing them freely around the nodes, but this limitation will usually help improve the
performance.

5



2 Hyperedges in the Layer-Based
Approach

The layer-based approach to graph drawing supports regular edges between nodes, but
does not support the concept of hyperedges right out of the box. Our general approach
for representing a hyperedge thus is to replace it by regular edges, using ports to collect
the regular edges introduced for each hyperedge incident to a given node. The major
benefit of this approach is that it allows us to reuse the standard graph-based data struc-
tures and most of the algorithms employed in the layer-based drawing approach. More
precisely, the first four phases (cycle elimination, node layering, crossing minimization,
and node placement) can be performed with standard algorithms oblivious to hyper-
edges; however, as shown in Section 3 and 4, the results of the crossing minimization
phase can be improved by specializing the algorithms that count crossings.

Let (V,H) be a hypergraph and h = (S, T ) ∈ H be a hyperedge; for each v ∈ S and
each v′ ∈ T we generate an edge (v, v′). We call (v, v′) a representing edge of h and
define Eh to be the set of all representing edges of h. For instance, the hyperedge h3 in
Figure 2 would be represented by three edges (3, 4), (3, 5), and (3, 9). Furthermore, we
generate a port pw for each w ∈ S ∪ T and associate each representing edge (v, v′) with
the source port pv and the target port pv′ . All edges that are connected to the same
port of a node are regarded as representing the same hyperedge, which is a sufficient
criterion for identifying hyperedges in our representation. The representing edges of a
hyperedge may partly overlap each other in the final drawing.

Let E =
⋃

h∈H Eh; we create a drawing for (V,H) by applying the layer-based drawing
method to the graph (V,E) and then transferring the bend points of the representing
edges to their associated hyperedges. Although it is possible to extend the layer-based
approach such that the order of ports is respected according to predefined constraints
[14], in this report we assume that the ports can be freely positioned during the layout
process.

With this approach the number of representing edges of a hyperedge h = (S, T ) is
|S| · |T |. However, the methods we propose do not require that many representing edges.
The hyperedge h may be represented by a subset E ′h ⊆ Eh of representing edges. In
that case, the graph (S ∪ T,E ′h) must be connected for each h ∈ H.

2.1 Merging Dummy Nodes

If no further measures were taken, the approach of replacing hyperedges by normal
edges could lead to layouts such as the one shown in Figure 3(a), where the hyperedge

6



1
2

3

4

d1
d2

(a) Hyperedge with two dummy nodes

1
2 3

4
d'

(b) Hyperedge with one dummy node

Figure 3. The hyperedge connecting nodes 1, 3, and 4 is represented by the two edges
(1, 3) and (1, 4), split by dummy nodes d1 and d2. Merging them into one dummy node
d′ decreases the total edge length and improves readability.

2
3

41

(a) Merged, one crossing

1 2

3

4

(b) Unmerged, no crossing

Figure 4. The merging of dummy nodes of long hyperedges has an influence on the
number of crossings: (a) merging dummy nodes before crossing minimization leads to
an unavoidable crossing, while (b) merging them afterwards can avoid the crossing.

represented by the edges (1, 3) and (1, 4) is assigned two dummy nodes d1 and d2 in
the second layer in order to obtain a proper layering. As a consequence, the edges that
represent the hyperedge are unnecessarily long and arguably reduce the readability of
the drawing. This can be improved by merging adjacent dummy nodes that belong to
the same hyperedge as shown in Figure 3(b), where the dummy nodes d1 and d2 were
merged into d′.

It is possible to apply the merging of dummy nodes immediately after they have been
created (after the node layering phase), but that prevents the crossing minimization
phase from avoiding crossings caused by the hyperedges. Figure 4(a) shows an example
where the crossing minimization phase cannot avoid a crossing between the two hyper-
edges, regardless of whether the dummy node is placed above or below node 2. If the
dummy nodes were not merged until after the crossing minimization phase, the crossing
could be prevented, as Figure 4(b) shows. Depending on the priority given to the aes-
thetic criteria of edge lengths and edge crossings, the dummy node merging algorithm
should be applied either before crossing minimization (if edge lengths have a higher
priority) or after (if edge crossings have a higher priority).

7



1
2

3

source position

target positions

(a) A hyperedge with one source and two
targets

1
2

3

incoming position

outgoing positions

(b) Orthogonal drawing with a junction
point

Figure 5. Computation of bend points and junction points for orthogonally drawn
hyperedges: (a) A hyperedge represented by two normal edges; (b) drawing with two
bend points for each representing edge and a junction point at their common incoming
position.

2.2 Junction Points

It is important to visualize the junction points of hyperedges, otherwise it can be hard
(and sometimes impossible) to distinguish them from edge crossings. The computation
of junction point positions can be integrated into the edge routing phase of the layout
algorithm. Let e be a regular edge representing the hyperedge h, and xh be the horizontal
position assigned to the vertical line segment of h by the edge routing algorithm (see
Section 1.2). Since vertical node and port positions are already fixed when the edge
routing is computed, the source position ys and target position yt of e are known. If
ys 6= yt, two bend points (xh, ys) (the incoming position) and (xh, yt) (the outgoing
position) are added to e (see Figure 5). If ys = yt, the edge e does not require any bend
points, but we still assign both an incoming and outgoing position at (xh, ys). Both of
these positions are potential candidates for junction points. Let ŷh be the highest and
y̌h be the lowest vertical bend point positions of any edge that represents h. Provided
that h is represented by more than one edge, we create a junction point (xh, y) for each
y ∈ {ys, yt} if ŷh < y < y̌h or if h contains both an incoming and an outgoing position
in y. For instance, the edge (1, d1) in Figure 3(a) has a junction point at its outgoing
position because it lies between the vertical bounds y̌h and ŷh of its hyperedge h. The
edge (2, 4) in Figure 3(b), in contrast, has a junction point at its incoming position
because (2, 3), which belongs to the same hyperedge, has an outgoing position with the
same value.

Some modeling environments, e. g. Ptolemy [5], have a concept of hypernodes (called
relation vertices in Ptolemy). Hypernodes are hyperedge junction points that are mod-
eled explicitly by the user, in contrast to junction points implicitly computed by the
modeling tool as described above. If it is acceptable to have the layout algorithm add or
remove hypernodes, a straightforward approach to optimize their number and positions
is to remove all hypernodes before layout and then create a new hypernode for each
junction point computed by the algorithm. If such a modification of the model is not

8



1
2

3

vh
hypernode

junction point

(a) Without post-processing

1
2

3
vh

(b) With post-processing

Figure 6. Treating hypernodes as regular nodes can lead to unpleasant layouts since
additional junction points are created. This can be improved by moving the hypernodes
to one of the junction points in a post-processing step.

acceptable, the hypernodes can be regarded as regular nodes in the layout algorithm.
However, this approach leads to unpleasant layouts, as Figure 6(a) shows: the hyper-
node vh requires an additional layer, and for the two edges going to the third layer an
additional junction point is added in the edge routing phase.

We propose a post-processing step to improve this situation by moving hypernodes
such that they replace junction points that have been computed during edge routing.
A hypernode vh can have both incoming edges Ei(vh) from the preceding layer and
outgoing edges Eo(vh) to the subsequent layer. If |Ei(vh)| ≤ 1 and |Eo(vh)| ≤ 1, there
is no junction point to replace, so we leave vh unchanged. Otherwise we check which
side has more edges: if |Ei(vh)| ≤ Eo(vh), we replace the nearest junction point of the
outgoing edges by vh, otherwise we do the same with the nearest junction point of the
incoming edges. An example for this procedure is shown in Figure 6(b). The additional
junction point between the second and third layer has been replaced by vh, yielding a
more concise layout.

9



3 Counting Crossings

An integral part of the layer sweep heuristic for crossing minimization is an algorithm for
counting crossings. Such algorithms usually assume that all edges are drawn as straight
lines, which is not the case for orthogonal hyperedges. A fundamental problem with
these algorithms is that the actual number of crossings does not depend only on the
order of nodes in each layer, but also on the actual routing of the edges between the
layers. This routing in turn depends on the concrete positions of the nodes, which is
unknown at the time the crossing minimization heuristics are executed. The inevitable
consequence is that those heuristics work with unreliable crossing numbers, possibly
compromising the quality of their results.

Several authors have addressed the problem of counting straight-line crossings in lay-
ered graphs [2, 10, 16]. These methods always produce exact results for normal graphs.
Here we call these methods Straight and denote their result as cs. As noted by
Eschbach et al. [6], there are simple examples where cs is always different from the ac-
tual number of crossings c obtained after applying the usual orthogonal routing methods
(see Figure 7). In order to quantify this difference, we measured c and cs for a number
of data flow diagrams from the Ptolemy project (see Section 4). The difference c − cs
averaged −34 with a standard deviation of 190. There are some examples where the
difference amounts to extreme values: one diagram with 194 hyperedges reaches c = 269
and cs = 2216. As a general observation, the Straight methods tend to overestimate
the crossing number.

For a crossing counting method to be effective it needs to accurately predict the
number of crossings a given node order in two layers will produce. That is, the prediction
and the result need to be tightly correlated. Standard deviations as large as the ones
produced by Straight methods for orthogonal hyperedges have no tight correlation
and are thus not well suited.

Since the Straight methods all compute the same number of crossings, the results
of this report do not depend on which particular straight-line method is used. For our
experiments we implemented the method of Barth et al. [2].

For the remainder of this chapter, we concentrate on graphs with only two layers since
edges at this point of the algorithm always connect nodes in adjacent layers. It thus
suffices for cross counting algorithms to count crossings between pairs of layers—the
final crossing number is the sum of the crossing numbers of all pairs of adjacent layers.

10



1

6

3

4

2

1

6

3

4

2 5 5

(a) cs > c

1

3

52

1

3

52

4

6

4

6

(b) cs < c

Figure 7. The number of crossings cs resulting from a straight-line drawing can be (a)
greater or (b) less than the actual number of crossings c resulting from an orthogonal
hyperedge routing.

3.1 Lower Bound Method

Since counting straight-line crossings tends to yield rather pessimistic estimates when
hyperedges are involved, we assumed that a more accurate approach might be to use a
lower bound of the number of crossings.

In the following, let G = (V,H) be a hypergraph with a set E =
⋃

h∈H Eh of rep-
resenting edges and two layers L1, L2, i. e. V = L1 ∪ L2, L1 ∩ L2 = ∅, and all h ∈ H
have their sources in L1 and their targets in L2. Let π1 : L1 → {1, . . . , |L1|} and
π2 : L2 → {1, . . . , |L2|} be the permutations of L1 and L2 that result from the layer
sweep heuristic for crossing minimization.

We propose an optimistic method MinOpt and denote its result as cm. This method
counts the minimal number of crossings to be expected by evaluating each unordered
pair h1, h2 ∈ H: if any edge e1 ∈ Eh1 crosses an edge e2 ∈ Eh2 if drawn as a straight
line, h1 and h2 are regarded as crossing each other once, denoted as h1onh2. The result
is cm = |{{h1, h2} ⊆ H : h1onh2}|.

Observation 1. cm ≤ cs.

Proof. Let e1, e2 ∈ E cross each other when drawn as straight lines. There are unique
h1, h2 ∈ H such that e1 represents h1 and e2 represents h2. By definition of the
MinOpt method, h1 on h2. Hence there is a mapping α : {e1, e2 ∈ E : e1 on e2} →
{h1, h2 ∈ H : h1 on h2} that is surjective because for each hyperedge crossing there is
at least one crossing of representing edges. This implies cs = |{e1, e2 ∈ E : e1one2}| ≥
|{h1, h2 ∈ H : h1onh2}| = cm.

Observation 2. Let c be the number of hyperedge crossings in a layer-based drawing D
of G. Then cm ≤ c.

Proof. Let h = (S, T ) and h′ = (S ′, T ′) cross each other as determined by MinOpt.
Then there are v ∈ S, w ∈ T , v′ ∈ S ′, and w′ ∈ T ′ such that (v, w), (v′, w′) ∈ E
and (v, w), (v′, w′) cross each other. Without loss of generality let π1(v) < π1(v

′) and

11



π2(w) > π2(w
′). The representation D(h) of h in the drawing D must connect the

representations D(v) and D(w). This connection is not possible without crossing D(h′),
which must connect D(v′) and D(w′), since D(v′) is below D(v), D(w′) is above D(w),
and both D(h) and D(h′) are inside the area between the two layers. Consequently, each
crossing counted by MinOpt implies at least one crossing in D.

Theorem 1. Let q = |H| and H = {h1, . . . , hq}. The time complexity of MinOpt

is O
(∑q−1

i=1

∑q
j=i+1 |Ehi

| · |Ehj
|
)

. If |S| = |T | = 1 for all (S, T ) ∈ H, the graph only

consists of standard edges and the complexity can be simplified to O(|H|2).

Proof. The result of MinOpt is |{{hi, hj} ⊂ H : hionhj}|, which requires to check all
unordered pairs U = {{hi, hj} ⊂ H}. It is |U | = |{(i, j) ∈ N2 : 1 ≤ i < q, i <
j ≤ q}|, hence |U | =

∑q−1
i=1

∑q
j=i+1 1. Whether hi on hj is determined by comparing all

representing edges of hi with those of hj, which requires |Ehi
| · |Ehj

| steps. In total

we require
∑q−1

i=1

∑q
j=i+1 |Ehi

| · |Ehj
| steps. If for all h = (S, T ) ∈ H the constraint

|S| = |T | = 1 holds, we can imply |Eh| = 1. In this case the number of steps is∑q−1
i=1

∑q
j=i+1 1 ≤ q2, hence the complexity is O(q2) = O(|H|2).

3.2 Approximating Method

Theorem 1 shows that MinOpt has a time complexity quadratic in the number of
hyperedges. In this section we propose a second method with better time complexity,
which we call ApproxOpt. The basic idea is to approximate the result of MinOpt by
checking three criteria explained below, hoping that at least one of them will be satisfied
for a given pair of hyperedges if they cross each other in the final drawing.

Let again G = (V,H) be a hypergraph with layers L1, L2 and π1 and π2 be the
permutations of L1 and L2. We denote the result of ApproxOpt as ca.

The ApproxOpt method is based on the four corners of a hyperedge: for each h =
(Vh,1, Vh,2) ∈ H and i ∈ {1, 2}, we define the upper corners κ↑i (h) = min{πi(v) : v ∈ Vh,i}
and the lower corners κ↓i (h) = max{πi(v) : v ∈ Vh,i} (see Figure 8). We associate each

hyperedge with a virtual edge between its upper corners, E∗ = {(κ↑1(h), κ↑2(h)) : h ∈ H}.
The method consists of three steps:

1. Compute the number of straight-line crossings caused by virtual edges between
the upper corners.

2. Compute the number of overlaps of ranges [κ↑1(h1), κ
↓
1(h1)] and [κ↑1(h2), κ

↓
1(h2)] in

the first layer for all h1, h2 ∈ H.

3. Compute the number of overlaps of ranges [κ↑2(h1), κ
↓
2(h1)] and [κ↑2(h2), κ

↓
2(h2)] in

the second layer for all h1, h2 ∈ H.

The result ca is the sum of the three numbers computed in these steps. A more detailed
description is given in Algorithm 1.

12



1
2

3

(a) A hyperedge represented by two normal
edges

1
2

3

lower corners

upper corners

virtual edge

(b) Upper and lower corners

Figure 8. Illustration of the four corners defined for a hyperedge and the virtual edge
between the two upper corners. Here κ↑1(h) = 1, κ↓1(h) = 1, κ↑2(h) = 1, and κ↓2(h) = 2
(note that corners refer to node permutations, not to node labels).

Step 1 aims at “normal” crossings of hyperedges such as h1 and h2 in Figure 9. The
hyperedge corners used in Steps 2 and 3 serve to check for overlapping areas, as shown
in Figure 9(c). For instance, the ranges spanned by h4 and h5 overlap each other both
in the first layer and in the second layer. This is determined using a linear pass over the
hyperedge corners, which are sorted by their positions. The sort keys are constructed
such that the overlapping of two ranges is counted only if it actually produces a crossing:

• Corners with equal position are locally sorted by their opposite corners (second
entry in the sort key). In Figure 9(c), the lower left corner of h1 and the upper
left corner of h5 both are at position 2. But since their opposite corners are at
positions 6 and 8, respectively, the upper corner of h1 is put before the upper corner
of h5, thereby preventing the ranges of those hyperedges from being regarded as
overlapping.

• If two hyperedges have their upper and lower corners all at the same position, e. g.
h2 and h3 on the left side of Figure 9(c), the third entry ϑ(h) in the sort key is
applied in order to group these corners by their corresponding hyperedge, again
preventing an undesired overlapping of ranges.

• The fourth entry in the sort key is −1 for upper corners and 1 for lower corners.
This ensures that the upper corner is sorted before the lower corner when they are
both at the same position.

The variable d is increased whenever an upper corner is found and decreased whenever
a lower corner is found. This variable indicates how many ranges of other hyperedges
surround the current corner position, hence its value is added to the approximate number
of crossings each time a lower corner is passed.

While MinOpt counts at most one crossing for each pair of hyperedges, ApproxOpt
may count up to three crossings, since the hyperedge pairs are considered independently
in all three steps. Figure 10(a) shows an example where MinOpt counts a crossing and
ApproxOpt counts none, while Figure 10(b) shows an example where ApproxOpt

13



Algorithm 1: Counting crossings with the ApproxOpt method

Input: L1, L2 with permutations π1, π2, hyperedges H with arbitrary order ϑ
// Step 1

for each h ∈ H do

Add (κ↑1(h), κ↓2(h)) to E∗

ca ← number of crossings caused by E∗, counted with a straight-line method

// Steps 2 and 3

for i = 1 . . . 2 do
for each h ∈ H do

Add (κ↑i (h), κ↓i (h), ϑ(h),−1)) and (κ↓i (h), κ↑i (h), ϑ(h), 1)) to Ci

Sort Ci lexicographically
d← 0
for each (x, x′, j, t) ∈ Ci in lexicographical order do

d← d− t
if t = 1 then

ca ← ca + d

return ca

counts a crossing and MinOpt counts none. Thus neither cm ≤ kca nor ca ≤ kcm hold
in general for any k ∈ N. However, as shown in Section 4, the difference between cm and
ca is rather small in practice.

Theorem 2. Let b =
∑

(S,T )∈H(|S| + |T |). The time complexity of ApproxOpt is

O(b+ |H|(log |V |+ log |H|)).

Proof. In order to determine the corners κ↑i (h), κ↓i (h) for each h ∈ H, i ∈ {1, 2}, all
source and target nodes are traversed searching for those with minimal and maximal

index πi. This takes O
(∑

(S,T )∈H(|S|+ |T |)
)

= O(b) time. The number of virtual

edges created for Step 1 is |E∗| = |H|. Counting the crossings caused by E∗ can
be done in O(|E∗| log |V |) = O(|H| log |V |) time [2]. Steps 2 and 3 require the cre-
ation of a list Ci with 2 |H| elements, namely the lower-index and the upper-index
corners of all hyperedges. Sorting this list is done with O(|Ci| log |Ci|) = O(|H| log |H|)
steps. Afterwards, each element in the list is visited once. The total required time is
O(b+ |H| log |V |+ |H| log |H|) = O(b+ |H|(log |V |+ log |H|)).

14



1
5

6

7
2

3

4

8

9

h1 h2

h3

h4

h5

(a) A hypergraph

1
5

6

7
2

3

4

8

9

(b) Representing edges

1
5

6

7
2

3

4

8

9

h1 h2

h3

h4

h5

(c) Overlapping areas

Figure 9. The hypergraph (a) can be drawn orthogonally with c = 3 crossings. The
straight-line crossing number (b) is cs = 5, the result of MinOpt is cm = 2, and the
result of ApproxOpt is ca = 4. ApproxOpt counts three crossings between h4 and
h5 (c) because the virtual edges (2, 8) and (3, 7) cross (Step 1 in Algorithm 1) and the
ranges spanned by the corners overlap both in the left layer and in the right layer (Steps
2 and 3).

1

2 4

3
h1

h2

(a) cm = 1, ca = 0

1

2

3

4

h1

h2

(b) cm = 0, ca = 1

Figure 10. Differences between the MinOpt and ApproxOpt methods: (a) cm = 1
due to the crossing of (1, 4) and (2, 3), but ca = 0 since none of the three steps of
ApproxOpt is able to detect that. (b) cm = 0 because (2, 4) crosses neither (1, 4) nor
(3, 4); ca = 1 because one crossing is detected in Step 2 of Algorithm 1.

15



4 Experimental Evaluation

Ptolemy diagrams. The Ptolemy open source project [5] contains a large number of
models for testing and demonstration in its repository.1 Ptolemy allows models to be
nested using composite actors that represent subsystems composed of other actors. Since
nested models are usually quite small, the evaluation of the methods presented in the
previous sections was performed on a transformed variant of the Ptolemy demonstration
models where all composite actors were flattened. This was done by moving their con-
tained actors to the outer hierarchy level and eliminating the composite actors. 171 of
the so obtained flattened data flow diagrams were selected for the evaluation. Diagrams
unsuitable for evaluations were left out, e. g. those with very few nodes.

Figure 1 shows two flattened Ptolemy diagrams drawn with the approaches presented
in Section 2 for merging dummy nodes and finding junction points. Note that the draw-
ing in Figure 1(a) has been done with port positioning constraints, which require further
extensions of the layer-based drawing method [14]. Furthermore, the diagrams contain
multiports, which are used to form arrays of signals connected through multiple hyper-
edges. Multiports are drawn as white arrowheads, whereas normal ports are drawn as
black arrowheads. However, multiports were treated as normal ports in our experiments,
hence all edges connected to the same multiport were regarded as being part of the same
hyperedge.

We executed our drawing algorithm once for each crossing counting algorithm on each
of the selected Ptolemy diagrams. For each execution, the actual number of crossings in
the final diagram as well es the number predicted by the cross counting algorithm were
measured. The results can be seen in Figure 11(a). The important observation is that
the average number of actual crossings is reduced by 23.6% when using MinOpt and
by 23.8% when using ApproxOpt instead of Straight. These differences of mean
values are significant: the p-values resulting from a t-test2 with paired samples are 4.5%
for MinOpt and 4.0% for ApproxOpt.

A more detailed view on the experimental results is shown in Table 1. The average
results of the three counting methods are given for each of the three executions, even if
they have not been used in the layer sweep heuristic for crossing minimization during
that execution. The table reveals that the accuracy of the counted number of crossings,
|c − cm| and |c − ca|, is consistently better with the two methods proposed here com-
pared to the accuracy |c − cs| obtained with the straight-line method. This does not
only apply when comparing the mean values of these differences, but also their standard

1http://ptolemy.eecs.berkeley.edu
2In short, a t-test determines the probability p that test results are mere coincidence. Results with
p ≤ 5% are generally considered significant.

16

http://ptolemy.eecs.berkeley.edu


(a) Ptolemy graphs, c̄ ≈ 18.75 (b) Random graphs, c̄ ≈ 1628

Figure 11. Average number of crossings when the crossing minimization phase uses
the given crossing counting algorithm (light), and average number of crossings predicted
by that algorithm (dark).

deviations: the Straight method leads to more extreme difference values (cf. the ob-
servation mentioned in the beginning of Section 3). Furthermore, the difference |cm−ca|
of the results of the MinOpt and ApproxOpt methods is relatively low, averaging
about a third of the total crossing number. This confirms that ApproxOpt yields a
good approximation of MinOpt.

The layer sweep heuristic for crossing minimization uses the predicted number of
crossings only to compare two possible node orderings with each other. Therefore the
predicted values as such are not relevant in this context, but rather their comparison:
given two node orderings π1, π2, corresponding predictions cp,1, cp,2, and actual numbers
of crossings c1, c2, a good prediction must meet

σ(cp,1 − cp,2) = σ(c1 − c2) , (4.1)

where σ : R → {0, 1,−1} is the sign operator. With the Straight prediction Equa-
tion 4.1 is met in 55% of the cases comparing the values obtained in the three algo-
rithm executions for each graph, which lead to three comparisons per graph (Executions
Es / Em, Es / Ea, and Em / Ea). MinOpt and ApproxOpt performed correctly in
65% and 72% of the comparisons, respectively. These drastic improvements of the ratio
of correct comparisons (p-values < 10−6 with a t-test) in the context of the layer sweep
heuristic explain why the two proposed methods lead to fewer crossings in the actual
drawings compared to the straight-line method.

More details on the correctness of comparisons are given in Table 3. It can be seen that
the correctness rates are extremely different depending on which execution results are
compared and which subset of graphs is considered. Each comparison involves two node
orderings π1, π2 and actual numbers of crossings c1, c2. In general, when constrained to
graphs where c1 < c2, each prediction method M yields high correctness rates if π1 was
determined based on M , but low correctness rates if π2 was determined based on M .
If c1 > c2 an inverse tendency is observed. For instance, when comparing results made

17



with the Straight method (Execution Es) with results made with the MinOpt method
(Execution Em), Straight has a correctness rate of 74% for graphs with c1 < c2 (i. e.,
where the Straight method yields better results than the MinOpt method), but only
8% for graphs with c1 > c2. This difference is not surprising; the better the drawing
created with a particular method is, the higher is the probability that the predictions
made by that method were correct.

Random graphs. We performed a second experiment with randomly generated bipar-
tite graphs with 5 to 100 nodes and 2 to 319 hyperedges each. The algorithms for
counting crossings always operate on pairs of consecutive layers, which are bipartite
subgraphs, hence the specialization of the experiment to bipartite graphs is valid. We
performed the same measurements as for the Ptolemy diagrams, the results of which
are shown in Figure 11(b). They confirm the general observations made before. The
average number of actual crossings is reduced by 5.6% when using MinOpt and by
4.6% when using ApproxOpt instead of Straight. Although the relative difference
of mean values is lower compared to the Ptolemy diagrams, their significance is much
higher: in both cases p < 10−31. The observations stated for the results shown in Table 1
also apply to the measurements made with the random graphs, of which mean values
and standard deviations are shown in Table 2.

With respect to Equation 4.1, 34% of the comparisons made with the Straight
prediction were correct, while MinOpt and ApproxOpt performed correctly in 71%
and 68% of the cases, respectively. It is worth noting that the rate of correct comparisons
with the straight-line method is very close to the expected result of a function randomly
choosing between 0, 1, and −1, which would make a correct decision in 33% of the cases.
More details are presented in Table 4.

Execution time. Performance evaluations conducted on a separate set of 100 randomly
generated large bipartite graphs (500 nodes, 3 edges per node) confirmed our theoret-
ical results: Straight (mean time 0.3ms) was significantly faster than ApproxOpt
(1.7ms), which in turn was significantly faster than MinOpt (24ms).

18



Table 1. Average values measured for the flattened Ptolemy diagrams, with standard
deviations in brackets. All three methods for counting crossings (cs, cm, and ca) were
measured in all three executions, but each execution used only one method for minimiz-
ing crossings: cs in Execution Es, cm in Execution Em, and ca in Execution Ea. The last
column shows the average values over all three executions. All values are normalized by
the total average number of crossings c̄ ≈ 18.75.

Variable Execution Es Execution Em Execution Ea Total
(using cs) (using cm) (using ca)

c 1.19 [4.77] 0.91 [3.65] 0.91 [3.95] 1.00 [4.14]

cs 3.02 [13.94] 3.63 [16.48] 3.66 [16.86] 3.44 [15.79]

cm 1.12 [4.24] 0.82 [3.33] 0.85 [3.62] 0.93 [3.75]

ca 1.46 [5.52] 1.17 [4.81] 1.09 [4.77] 1.24 [5.04]

|c− cs| 1.90 [10.13] 2.79 [13.49] 2.78 [13.61] 2.49 [12.50]

|c− cm| 0.29 [0.69] 0.28 [0.63] 0.26 [0.63] 0.28 [0.65]

|c− ca| 0.33 [1.01] 0.36 [1.28] 0.31 [0.94] 0.33 [1.09]

|cm − ca| 0.35 [1.47] 0.34 [1.49] 0.26 [1.17] 0.32 [1.38]

Table 2. Average values measured for the random bipartite graphs, with standard
deviations in brackets. The table has the same format as Table 1. All values are
normalized by the total average number of crossings c̄ ≈ 1628.

Variable Execution Es Execution Em Execution Ea Total
(using cs) (using cm) (using ca)

c 1.04 [2.00] 0.98 [1.93] 0.99 [1.95] 1.00 [1.96]

cs 2.49 [4.43] 2.67 [4.68] 2.68 [4.69] 2.61 [4.60]

cm 0.58 [1.28] 0.54 [1.23] 0.55 [1.24] 0.55 [1.25]

ca 0.79 [1.69] 0.74 [1.63] 0.72 [1.59] 0.75 [1.64]

|c− cs| 1.46 [3.31] 1.69 [3.65] 1.69 [3.64] 1.61 [3.54]

|c− cm| 0.46 [0.81] 0.44 [0.78] 0.44 [0.78] 0.45 [0.79]

|c− ca| 0.24 [0.47] 0.24 [0.44] 0.27 [0.48] 0.25 [0.46]

|cm − ca| 0.22 [0.43] 0.20 [0.41] 0.17 [0.36] 0.19 [0.40]

19



Table 3. Rate of correctness determined with Equation 4.1 applied to the results of
the three executions on Ptolemy diagrams. The execution results are compared in pairs
Es / Em, Es / Ea, and Em / Ea, where Execution Es used cs to determine a node
order, Execution Em used cm, and Execution Ea used ca. The correctness rates for
each prediction method are presented in four rows: three rows constrained to graphs
that meet specified criteria and one row showing total average rates for all graphs. The
criteria are given in the form c1 ∼ c2, where c1 and c2 are the actual numbers of crossing
resulting from the first and second compared executions, respectively.

Exec. Es / Em Exec. Es / Ea Exec. Em / Ea Total
(using cs/cm) (using cs/ca) (using cm/ca)

Straight c1 < c2 74 % 82 % 79 %

c1 > c2 8 % 4 % 32 %

c1 = c2 82 % 62 % 73 %

Total 64 % 42 % 58 % 55 %

MinOpt c1 < c2 46 % 66 % 73 %

c1 > c2 76 % 32 % 28 %

c1 = c2 90 % 79 % 91 %

Total 77 % 56 % 63 % 65 %

ApproxOpt c1 < c2 67 % 34 % 12 %

c1 > c2 82 % 92 % 91 %

c1 = c2 88 % 58 % 73 %

Total 82 % 67 % 68 % 72 %

Table 4. Rate of correctness determined with Equation 4.1 applied to the random
bipartite graphs. The table has the same format as Table 3.

Exec. Es / Em Exec. Es / Ea Exec. Em / Ea Total
(using cs/cm) (using cs/ca) (using cm/ca)

Straight c1 < c2 97 % 100 % 59 %

c1 > c2 1 % 0 % 37 %

c1 = c2 66 % 62 % 70 %

Total 24 % 28 % 51 % 34 %

MinOpt c1 < c2 7 % 31 % 88 %

c1 > c2 98 % 89 % 21 %

c1 = c2 73 % 70 % 81 %

Total 79 % 75 % 59 % 71 %

ApproxOpt c1 < c2 21 % 5 % 18 %

c1 > c2 93 % 100 % 84 %

c1 = c2 67 % 64 % 71 %

Total 78 % 76 % 50 % 68 %

20



5 Conclusion

In this report, we described how to integrate orthogonal hyperedges into the layer-
based approach to graph drawing by replacing hyperedges with representing edges. We
proposed a method to handle hyperedges that span multiple layers and a method to
compute junction points. We proposed two methods for counting crossings in orthogonal
hypergraph drawings more accurately. Our experiments indicate that the algorithms lead
to significantly fewer edge crossings both with real-world and with random diagrams.

We see two main areas for future research. First, the number of crossings between
orthogonal hyperedges depends not only on the results of the crossing minimization, but
also on the exact placement of nodes. However, current node placement algorithms only
try to minimize either edge length or the number of bend points. And second, limiting the
routing of each hyperedge to one horizontal segment reduces the number of bend points
at the expense of edge crossings. Future research could address routing algorithms that
reduce the number of edge crossings as well by creating multiple horizontal segments.

21



Bibliography

[1] Danil E. Baburin. Using graph based representations in reengineering. Proceed-
ings of the Sixth European Conference on Software Maintenance and Reengineering,
pages 203–206, 2002.

[2] Wilhelm Barth, Petra Mutzel, and Michael Jünger. Simple and efficient bilayer
cross counting. Journal of Graph Algorithms and Applications, 8(2):179–194, 2004.

[3] Markus Chimani, Carsten Gutwenger, Petra Mutzel, Miro Spönemann, and Hoi-
Ming Wong. Crossing minimization and layouts of directed hypergraphs with port
constraints. In Proceedings of the 18th International Symposium on Graph Drawing
(GD’10), volume 6502 of LNCS, pages 141–152. Springer, 2011.

[4] Peter Eades, Xuemin Lin, and W. F. Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47(6):319–323, 1993.

[5] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogeneity—the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–144, Jan 2003.

[6] Thomas Eschbach, Wolfgang Guenther, and Bernd Becker. Crossing reduction for
orthogonal circuit visualization. In Proceedings of the 2003 International Conference
on VLSI, pages 107–113. CSREA Press, 2003.

[7] Thomas Eschbach, Wolfgang Guenther, and Bernd Becker. Orthogonal hypergraph
drawing for improved visibility. Journal of Graph Algorithms and Applications,
10(2):141–157, 2006.

[8] Lars Kristian Klauske. Effizientes Bearbeiten von Simulink Modellen mit Hilfe
eines spezifisch angepassten Layoutalgorithmus. PhD thesis, Technische Universität
Berlin, 2012.

[9] Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-oriented
design of embedded hardware and software systems. Journal of Circuits, Systems,
and Computers (JCSC), 12(3):231–260, 2003.

[10] Hiroshi Nagamochi and Nobuyasu Yamada. Counting edge crossings in a 2-layered
drawing. Information Processing Letters, 91(5):221–225, 2004.

[11] Helen C. Purchase. Which aesthetic has the greatest effect on human understand-
ing? In Proceedings of the 5th International Symposium on Graph Drawing (GD’97),
volume 1353 of LNCS, pages 248–261. Springer, 1997.

22



[12] Georg Sander. A fast heuristic for hierarchical Manhattan layout. In Proceedings of
the Symposium on Graph Drawing (GD’95), volume 1027 of LNCS, pages 447–458.
Springer, 1996.

[13] Georg Sander. Layout of directed hypergraphs with orthogonal hyperedges. In Pro-
ceedings of the 11th International Symposium on Graph Drawing (GD’03), volume
2912 of LNCS, pages 381–386. Springer, 2004.

[14] Christoph Daniel Schulze, Miro Spönemann, and Reinhard von Hanxleden. Drawing
layered graphs with port constraints. Journal of Visual Languages and Computing,
Special Issue on on Diagram Aesthetics and Layout, 25(2):89–106, 2014.

[15] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual under-
standing of hierarchical system structures. IEEE Transactions on Systems, Man
and Cybernetics, 11(2):109–125, February 1981.

[16] Vance Waddle and Ashok Malhotra. An E logE line crossing algorithm for lev-
elled graphs. In Proceedings of the 7th International Symposium on Graph Drawing
(GD’99), volume 1731 of LNCS, pages 59–71. Springer, 1999.

[17] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cognitive mea-
surements of graph aesthetics. Information Visualization, 1(2):103–110, 2002.

[18] Michael Wybrow, Kim Marriott, and Peter J. Stuckey. Orthogonal hyperedge rout-
ing. In Proceedings of the 7th International Conference on Diagrammatic Represen-
tation and Inference (Diagrams’12), volume 7352 of LNAI, pages 51–64. Springer,
2012.

23


	Introduction
	The Layer-Based Approach
	Related Work

	Hyperedges in the Layer-Based Approach
	Merging Dummy Nodes
	Junction Points

	Counting Crossings
	Lower Bound Method
	Approximating Method

	Experimental Evaluation
	Conclusion

