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Abstract

The Directed Layering Problem (DLP) solves a step of the widely used layer-based layout
approach to automatically draw directed acyclic graphs. To cater for cyclic graphs,
classically a preprocessing step is used that solves the Feedback Arc Set Problem (FASP)
to make the graph acyclic before a layering is determined.

Here, we present the Generalized Layering Problem (GLP) which solves the combi-
nation of DLP and FASP simultaneously, allowing general graphs as input. We show
GLP to be NP-complete, present integer programming models to solve it, and perform
thorough evaluations on different sets of graphs and with different implementations for
the steps of the layer-based approach.

We observe that GLP reduces the number of dummy nodes significantly, can produce
more compact drawings and improves on graphs where DLP yields poor aspect ratios.

Keywords: layer-based layout, Sugiyama layout, linear arrangement, feedback arc set,
bandwidth sum coloring, integer programming, data flow diagrams
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1 Introduction

The layer-based approach is a well-established and widely used method to automatically
draw directed graphs. It is based on the idea to assign nodes to subsequent layers clearly
showing the inherent direction of the graph, see Figure 1.1 for an example. The approach
was introduced by Sugiyama et al. [21] and remains a subject to ongoing research.

Given a directed graph, the layer-based approach was originally defined for acyclic
graphs as a pipeline of three phases. However, two additional phases are necessary to
allow practical usage, which are marked with asterisks.

1. Cycle removal*: Remove all cycles by reversing a preferably small subset of the
graph’s edges. This phase adds support for cyclic graphs as input.

2. Layer assignment: Assign all nodes to numbered layers such that edges point from
layers of lower index to layers of higher index. Edges connecting nodes that are
not on consecutive layers are split by so-called dummy nodes.

3. Crossing reduction: Find an ordering of the nodes within each layer such that the
number of crossings is minimized.

4. Coordinate assignment: Determine explicit node coordinates with the goal to draw
as many edges straight as possible.

5. Edge routing*: Route the edges depending on the application, e. g. using an or-
thogonal style.

While state-of-the-art methods produce drawings that are often satisfying, there are
graph instances where the results show bad compactness and unfavorable aspect ra-
tio [11]. In particular, the number of layers is bound by the longest path of the input
graph after the first phase. When placing the layers vertically one above the other this
affects the height of the drawing, see for instance Figure 1.1a.

Following these observations, we present new methods to overcome current limitations.

1.1 Contributions

The focus of this paper is on the first two phases, as they have the greatest impact on the
compactness and the aspect ratio of the resulting drawing. Our main new contributions
are the following.

We introduce a new layer assignment method named GLay, which is able to handle
cyclic graphs and to consider compactness properties for selecting an edge reversal set.
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(a) 0 reversed edges,
71 dummy nodes

(b) 2 reversed edges,
35 dummy nodes

(c) 6 reversed edges,
16 dummy nodes

Figure 1.1. Different drawings of the g.39.29 graph from the AT&T graphs collection. (a) is
drawn with known methods described in Chapter 4. (b) and (c) are results of
the methods presented here.

Specifically, 1) it can overcome the previously mentioned lower bound on the number of
layers arising from the longest path of a graph, 2) it can be flexibly configured to either
favor elongated or narrow drawings, thus improving on aspect ratio, and 3) compared to
previous methods it is able to reduce both the number of dummy nodes and the number
of reversed edges for certain graphs. See Figure 1.1 and Figure 4.2 for examples.

We present and discuss integer programming models to solve the new problem to op-
timality, which we show to be NP-complete. The models can be extended to incorporate
hard bounds on the number of layers and maximum number of nodes in any layer.

We perform thorough evaluations of the new approach using graphs from practical
applications as well as randomly generated graphs. The results show that the new
method easily improves drawings of graphs for which current methods, as described in
Chapter 4, produce drawings with unfavorable aspect ratio. They furthermore show
an improved average performance in terms of compactness for general graphs without
explicitly aiming for compactness.
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Outline. The next section presents related work. We introduce problems and defi-
nitions in Chapter 2 and present models to solve the newly introduced problems in
Chapter 3. Chapter 4 discusses thorough evaluations before we conclude in Chapter 5.

1.2 Related Work

The cycle removal phase targets the Feedback Arc Set Problem (FASP) which is defined
more precisely in the next section. This problem is NP-complete and several approaches
have been proposed to solve the problem either to optimality or heuristically. The most
popular heuristic used in the context of graph drawing was introduced by Eades et al. [7];
it yields reasonable results and runs in linear time.

It has been noted before, however, that reversing a minimal number of edges does not
necessarily yield the best suiting results [9] and that application-inherent information
might make certain edges better candidates to be reversed. Moreover, the decision which
edges to reverse in order to make a graph acyclic has a big impact on the results of the
subsequent layering phase (cf. Figure 1.2), nevertheless the two phases are executed
separately until today.

To solve the second phase, i. e. the layer assignment problem, several approaches have
emerged with different optimization goals.

Eades and Sugyiama employ a longest path layering which requires linear time and
the resulting number of layers equals the number of nodes of the graph’s longest path [8].

Gansner et al. solve the layering phase by minimizing the sum of the edge lengths
of the graph’s edges [9]. They show that the problem is solvable in polynomial time
and present a network simplex algorithm which in turn is not proven to be polynomial,
however, in practice it runs fast. This approach was found to inherently produce compact
drawings and performed best in comparison to other layering approaches [13].

In a series of papers, Healy and Nikolov tackle the problem of finding a layering subject
to bounds on the number of layers and the maximum number of nodes in any layer with
consideration of dummy nodes [13]. They show the problem to be NP-hard, even without
considering dummy nodes, and evaluate the approach using linear programming. In a
subsequent paper they present a branch-and-cut algorithm to solve the problem faster
and for larger graph instances [12]. Later, Nikolov et al. [18, 17] propose and evaluate
several heuristics to find a layering with a restricted number of nodes in each layer.
Furthermore, an approach using ant colony optimization is presented by Andreev et
al. [1].

Nachmanson et al. present an iterative algorithm to produce drawings with an aspect
ratio close to a previously specified value [16].

All of the previously mentioned layering methods have two major drawbacks. 1) they
require the input graph to be acyclic upfront, and 2) they are bound to a minimum
number of layers equal to the longest path of the graph. This particularly means that
the bound on the number of layers in the methods of Nikolov et al. cannot be smaller
than the longest path.
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(a) EaGa – 46 dummy nodes (b) OptGa – 20 dummy nodes

Figure 1.2. Two drawings of the same graph with 19 nodes. While in both drawings exactly
one edge is reversed, different edges (dashed lines) are reversed. The example
highlights the impact of the choice of which edge to reverse on the resulting
number of dummy nodes.
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2 Problem Descriptions and
Definitions

In this section we define the terms and problems that are relevant for the rest of this
paper. New problems that we introduce are marked with an asterisk.

Definition 2.1. Let G = (V,E) be a graph with a set of nodes V and a set of directed
edges E. A layering of G is a mapping L : V → N.

Definition 2.2. Let G = (V,E) be a directed acyclic graph. A layering L is valid
if ∀(u, v) ∈ E: L(v) − L(u) ≥ 1. An edge (u, v) ∈ E is short in a valid layering if
|L(v)−L(u)| = 1, otherwise it is long. A valid layering L is proper if all edges are short.
Given any valid layering, it can be made proper by splitting long edges with sequences
of dummy nodes.

We now introduce several minimization problems that are either related to the methods
we present here or are used for the NP-completeness proofs.

Problem (Feedback Arc Set (FASP)). Given a directed graph G = (V,E), find a
minimum k such that E ′ ⊆ E is a subset containing at least one edge of every directed
cycle in G and |E ′| = k. Such a subset E ′ is called Feedback Arc Set (FAS). This
problem is one of Karp’s 21 NP-complete problems [14].

An alternative formulation is to find a minimum k and a one-to-one mapping f : V 7→
{1, . . . , |V |} such that |{(u, v) ∈ E : f(u) > f(v)}| = k.

Problem (Linear Arrangement (LAP)). Let G = (V,E) be a graph. The prob-
lem seeks a minimum k and a one-to-one mapping f : V 7→ {1, . . . , |V |} such that∑
{u,v}∈E |f(u)− f(v)| = k.

The problem is NP-complete (cf. [GT42] in [10]) and also known as the Bandwidth
Sum Problem [6]. It has a range of applications, is subject to ongoing research and
several heuristics have been proposed, see for instance Caprara et al. for a literature
research [4].

Problem (Sum Coloring (SCP)). Let G = (V,E) be a graph. Kubicka and Schwenk
introduced the concept of Sum Coloring Problem (SCP) [15] which seeks a minimum k
and a mapping c : V 7→ N such that ∀{u, v} ∈ E : c(u) 6= c(v) and

∑
v∈V c(v) = k.

The problem is NP-complete and a minimum k is also called chromatic sum of G,
Σ(G).
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Problem* (Bandwidth Sum Coloring (BSCP)). Let G = (V,E) be a graph. Sim-
ilar to the previous problems, we define the Bandwidth Sum Coloring Problem (BSCP)
as finding a minimum k and a mapping c : V 7→ N such that ∀(u, v) ∈ E : c(u) 6= c(v)
and

∑
(u,v)∈E |c(u)− c(v)| = k.

We prove this problem to be NP-complete in Section 2.1.

Problem* (0/1-BSCP). LetG = (V,E) be a graph, we extend BSCP by a weight we ∈
{0, 1} for every edge e ∈ E. The problem then seeks for a minimum k and a mapping
c : V 7→ N such that ∀{u, v} ∈ E : c(u) 6= c(v) and

∑
{u,v}∈E w{u,v}|c(u)− c(v)| = k.

We later use this problem to prove the NP-completeness of BSCP.

The following problems are the basis for the layering methods presented by Gansner et
al. and for the course of this paper.

Problem (Directed Layering (DLP)). Let G = (V,E) be an acyclic directed graph.
The problem is to find a minimum k and a valid layering, i. e. a mapping L such that
∀(v, w) ∈ E : L(w)− L(v) ≥ 1 and

∑
(v,w)∈E L(w)− L(v) = k.

The problem was originally introduced by Gansner et al. to solve the layering problem
for layer-based layout [9].

We now extend the idea of a layering for directed acyclic graphs to general graphs, i. e.
graphs that are either directed or undirected and can possibly be cyclic.

Definition 2.3. Extending Definition 2.2, a layering L of a graph G = (V,E) is feasible
if ∀(u, v) ∈ E : |L(u) − L(v)| ≥ 1. An edge (u, v) ∈ E is short in a feasible layering if
|L(v) − L(u)| = 1, otherwise it is long. A feasible layering L is proper if all edges are
short.

Problem* (Generalized Layering (GLP)). We extend the DLP and define the Gen-
eralized Layering Problem (GLP). Let G = (V,E) be a possibly cyclic directed graph
and let ωlen, ωrev ∈ N be weighting constants. The problem is to find a minimum k and
a feasible layering of G, i. e. a mapping L, such that ∀(v, w) ∈ E : |L(w)− L(v)| ≥ 1
and

ωlen

 ∑
(v,w)∈E

|L(w)− L(v)|

+ ωrev |{(v, w) ∈ E : L(v) > L(w)}| = k

Intuitively, the left part of the sum represents the overall edge length (i. e. the number
of dummy nodes) and the right part represents the number of reversed edges (i. e. the
FAS). After reversing all edges in this FAS, the feasible layering becomes a valid layering
in the sense of Definition 2.2. Compared to the standard cycle removal phase combined
with DLP, the generalized layering problem allows more flexible decisions on which edges
to reverse. Also note that GLP with ωlen = 1, ωrev =∞ is comparable to DLP for acyclic
input graphs.
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Problem* (ε-GLP). We define ε-GLP as a variation of GLP where we fix the size
of the FAS instead of minimizing it. Let G = (V,E) be a graph and s be an inte-
ger. The problem is to find a minimum k and a feasible layering, i. e. a mapping L
such that ∀(v, w) ∈ E : |L(w)− L(v)| ≥ 1, |{(v, w) ∈ E : L(v) > L(w)}| = s, and∑

(v,w)∈E |L(w)− L(v)| = k.

The remainder of this section defines terms associated with the characteristics used to
qualify a drawing of a graph.

Definition 2.4. Let G be a graph with a layering L. The height of the layering is the
number of layers. The width is the maximum number of nodes in a layer over all layers.
The width can optionally include dummy nodes.

Definition 2.5. Let G be a graph with a layering L. The estimated area is the width
of L multiplied by its height. The estimated aspect ratio is the quotient of width and
height.

Definition 2.6. Let G be a graph with a layering L. The edge density of a layer i is
the number of edges spanning from layer i to layer i + 1. The edge density of the last
layer is thus always 0.

Definition 2.7. Let G be a graph. A drawing of G is an embedding in the plane.

Definition 2.8. Let D be a drawing of a graph G. The width of D is the difference be-
tween the maximal and the minimal horizontal component of any point in the embedding
D. The height is defined symmetrically for the vertical components.

Definition 2.9. Let D be a drawing of a graph G. The area is the product of the width
and height of D. The aspect ratio is the quotient of width and height.

Here we define desired aspect ratios to be close to the aspect ratios of paper sheets
(
√

2 ≈ 1.4) or computer displays (between 1.3 and 1.8). While in the literature of the
layer-based approach the usual edge direction is top-to-bottom, there are applications,
e. g. data flow diagram layout, that are by convention drawn from left-to-right. For
the rest of this paper we conform to the usual assumption of top-to-bottom layout and
also conduct our experiments in this way. Note, however, that with a top-to-bottom
drawing direction the desired aspect ratios for data flow diagram layouts are therefore
in the range between 0.55 and 0.75. The resulting drawing is then rotated by 90° for
presentation.

7



1 2 3 4
(a) Example input G for LAP

1 2 3 4

1

1 1

0

0

0

(b) Constructed G′ for 0/1-BSCP

Figure 2.1. Illustration of the construction of G′ for Lemma 2. Edges with weight 0 are
added to G until G′ represents a complete graph.

2.1 NP-Completeness of BSCP and GLP

In the following, we examine the complexity of BSCP and GLP. For this we first prove
an auxiliary lemma and show 0/1-BSCP to be NP-complete.

Lemma 1. Let G = (V,E) denote a graph with n nodes. If there exists a feasible
solution for 0/1-BSCP, then there exists one using at most n consecutive integers.

Proof. Let c be a mapping for 0/1-BSCP that yields a feasible solution. We may assume
that minv∈V c(v) = 1 by a shifting argument. Now assume that mV = maxv∈V c(v) > n.
That is, there is at least one integer ` ∈ 1, . . . ,mV that no node is assigned to.

Let V = V1 ∪ V2 be a partition of the nodes such that V1 ∩ V2 = ∅, c(v) < ` for all
v ∈ V1, and c(v) > ` for v ∈ V2. Let c′(v) = c(v) for v ∈ V1, and c′(v) = c(v) − 1 for
v ∈ V2. This yields |c′(u) − c′(v)| = |c(u) − c(v)| if u and v are in the same partition,
and |c′(u)− c′(v)| = |c(u)− c(v)| − 1 otherwise. Thus,∑

e={u,v}∈E

we|c(v)− c(u)| ≥
∑

e={u,v}∈E

we|c′(v)− c′(u)|

By induction, this concludes the proof.

Lemma 2. 0/1-BSCP is NP-complete.

Proof. 0/1-BSCP obviously is in NP. For this, randomly assign integers to the nodes
and verify (in polynomial time) that the edge sum is as required.

We now reduce LAP to 0/1-BSCP. For a set S let
(
S
2

)
denote the set of all 2-subsets

of S, i. e.
(
S
2

)
= {{x, y} : x, y ∈ S}.

Let G = (V,E) denote a graph on n nodes. Let G′ = (V,E ′), E ′ =
(
V
2

)
denote the

complete graph on n nodes, and let we = 1 iff e ∈ E and we = 0 iff e ∈ E ′ \ E (see
Figure 2.1 for an illustration). We show that an optimum solution for 0/1-BSCP on G′

is an optimum solution for LAP on G.
Let kLAP and k0/1−BSCP denote minimum k for LAP and 0/1-BSCP, respectively.

Moreover, let c and c′ denote the mappings that produce kLAP and k0/1−BSCP .
As any solution for LAP is a feasible solution for 0/1-BSCP, we have kLAP ≥ k0/1−BSCP .

According to Lemma 1, there is an optimum solution for 0/1-BSCP using at most n

8



1 2 3 4

1

1 10
e

(a) Example input G for 0/1-BSCP

1 2 3 4

1 4
Ge

(b) Constructed G′ for BSCP

Figure 2.2. Illustration of the construction of G′ for Theorem 1. For all edges e of G with
weight 0 auxiliary complete graphs Ge are added to G′. Node labels denote the
integer value assigned to that node.

consecutive integers. Furthermore, by construction of G′ we know that c′ uses at least
n different integers because G′ is complete and for all {u, v} ∈ E ′ it must hold that
c′(u) 6= c′(v).

Thus, exactly n consecutive integers must be used for G′, and hence every solution
for 0/1-BSCP is a solution for LAP as well. Thus, we have kLAP = k0/1−BSCP .

Theorem 1. BSCP is NP-complete.

Proof. BSCP obviously is in NP using the same argument as in Lemma 2.
We show that 0/1-BSCP can be solved using BSCP. Let G = (V,E) denote a graph

with n nodes and weights we ∈ {0, 1} for edges e ∈ E. For all e = {u, v} ∈ E where
we = 0 let Ge = (Ve, Ee), Ve = {u, v, xe1 , . . . , xen−2}, Ee =

(
Ve

2

)
denote a complete graph

with n− 2 new nodes. We use these graphs to construct

G′ = (V ′, E ′) =

V ∪ ⋃
e∈E|we=0

Ve, E ∪
⋃

e∈E|we=0

Ee

 .

Clearly, this construction is polynomial. An example can be seen in Figure 2.2.
Let BSCP (G′, k′) denote that there is a solution for BSCP on G′ with a given k′, and

0/1-BSCP (G, k) be equivalent for 0/1-BSCP on G and k. Furthermore, let z = |{e ∈
E : we = 0}| denote the number of edges with weight 0. We show that

BSCP

(
G′, k + z ·

(
n+ 1

3

))
⇐⇒ 0/1-BSCP (G, k) .

For the implication “⇐”, let c denote a solution of 0/1-BSCP for G and k. By
Lemma 1 we may assume that the nodes are assigned to at most n consecutive integers.
Create the assignment c′ as follows. Assign nodes from V ′\V greedily to positive integers
smaller than n such that for all e ∈ E with we = 0 and all v1 6= v2 ∈ Ve : c′(v1) 6= c′(v2).

9



Additionally, retain the assignments for all v ∈ V . Let E1 = {e ∈ E : we = 1}, and
E2 = E ′ \ E1. Thus, we have∑

{u,v}∈E′
|c′(u)− c′(v)| =

∑
{u,v}∈E1

|c′(u)− c′(v)|+
∑

{u,v}∈E2

|c′(u)− c′(v)|

= k + z ·
(
n+ 1

3

)
,

as the costs for a complete graph on n nodes are exactly
∑

1≤x<y≤n |x− y| =
(
n+1
3

)
.

Next, for the implication “⇒”, let us assume that we are given a solution c′ for BSCP
with k′ = k + z ·

(
n+1
3

)
. The costs induced by the graphs Ge are lower-bounded by

z ·
(
n+1
3

)
, thus there is an assignment for the remaining nodes with costs upper-bounded

by k.

Theorem 2. GLP is NP-complete.

Proof. Obviously, GLP can be used to solve both FAS and BSCP, either by setting
ωrev = 0 (BSCP) or ωlen = 0 (FAS).

10



3 Solving the Generalized Layering
Problem

In the following, we describe how to solve the GLP using integer programming (IP). As
discussed above, the problem is NP-complete. An IP formulation allows us to conduct
first experiments with optimal solutions to indicate the usefulness of the presented ap-
proach. We present three different IP formulations. One turns out to perform quite well
in terms of execution time for medium-sized problems, while another version using only
binary variables performs poorly. Third, we present an IP formulation for ε-GLP.

3.1 GLay IP Model

The rough idea of the following model is to assign an integer value to each node of the
given graph that represents the layer in which the node is to be placed.

Input and parameters.
Let G = (V,E) be a graph with node set V = {1, . . . , n}. Let e be the adjacency
matrix, i. e. e(u, v) = 1 if (u, v) ∈ E and e(u, v) = 0 otherwise. ωlen and ωrev are
weighting constants.

Integer decision variables.
l(v) takes a value in {1, . . . , n} indicating that node v is placed in layer l(v), for all
v ∈ V .

Boolean decision variables.
r(u, v) = 1 if and only if edge e = (u, v) ∈ E and e is reversed, i. e. l(u) > l(v), for all
u, v ∈ V .

Objective.

Minimize ωlen ·
∑

(u,v)∈E

|l(u)− l(v)| (A)

+ ωrev ·
∑

(u,v)∈E

r(u, v) (B)

Part A represents the edge lengths, i. e. the number of dummy nodes. Part B is the
number of reverse edges.

11



Constraints.

1. l(v) ≥ 1 ∀v ∈ V

2. l(v) ≤ n ∀v ∈ V

3. |l(u)− l(v)| ≥ 1 ∀(u, v) ∈ E

4. n · r(u, v) + l(v) ≥ l(u) + 1 ∀(u, v) ∈ E

Constraints (1) and (2) restrict the range of possible layers. (3) ensures that the resulting
layering is feasible. (4) binds the decision variables in r to the layering and is a realization
of r(u, v) = 0⇒ L(v) > L(u). We can omit the reverse implication r(u, v) = 1⇒ L(v) <
L(u) if r is part of the objective function and ωrev > 0.

The model contains non-linear constraints due to the absolute values. We implemented
the model in CPLEX where an absolute-value function is available off the shelf. For
graphs with up to 50 nodes the execution on an up-to-date laptop takes between 2 and
15 seconds.

Variations. The model can easily be extended to restrict the number of layers by
replacing the n in constraint (2) by a desired bound b ≤ n.

The edge matrix can be extended to contain a weight wu,v for each edge (u, v) ∈ E.
This can be helpful if further semantic information is available, i. e. about feedback edges
that lend themselves well to be reversed.

3.2 ε-GLay IP Model

ε-GLP is a variation of GLP where we remove the number of reversed edges from the
objective function and instead fix it to a certain number s by adding it as a constraint.
For this we also have to adapt constraint (4) as r is not part of the objective anymore.
In fact, we get rid of r altogether and add another constraint as follows.

Objective.

Minimize
∑

(u,v)∈E

|l(u)− l(v)| (C)

Constraints. Let neg(x) = 1 if x < 0 and neg(x) = 0 otherwise for all x ∈ Z.

1. l(v) ≥ 1 ∀v ∈ V

2. l(v) ≤ n ∀v ∈ V

3. |l(u)− l(v)| ≥ 1 ∀(u, v) ∈ E

4.
∑

(u,v)∈E neg(l(u)− l(v)) = s

12



Constraints (1), (2), and (3) are defined as in Section 3.1. (4) assures that exactly
s edges are reversed (in case s allows a feasible solution). Note that with CPLEX the
neg(x) operator can be directly implemented by writing (x < 0).

Again, one can easily add a bound on the number of layers and define different weights
for the edges.

3.3 GLay 0-1 IP Model

We also experimented with a model containing only boolean decision variables. The
rough idea is to have one decision variable for each combination of node and layer that
is set if the node is placed in that layer. This yields a number of decision variables equal
to the number of nodes times the number of possible layers. For each edge two decision
variables are introduced indicating whether the edge has a certain length and whether
it is reversed.

However, the model performed poorly in terms of execution time and did not allow
proper evaluations. We present it here for completeness since it can serve as a basis to
incorporate further constraints. For example, contrary to the IP of the previous section,
the following model is able to directly incorporate the notions of dummy nodes and
number of nodes per layer.

Input and parameters.
Let G = (V,E) be a graph with node set V = {1, . . . , n}. Let m = |E| and [m] =
{1, . . . ,m}. ωlen and ωrev are weighting constants.

Boolean decision variables.
l(v, i) = 1 iff node v is in layer i ∈ [n].
el(e, d) = 1 iff edge e has length d, i. e. if for an edge e = (u, v) with l(u, i) = 1,
l(v, j) = 1, and |i− j| = d then el(e, d) = 1.
er(e, r) = 1 for an edge e = (u, v) with r = j − i + n, l(u, i) = 1, and l(v, j) = 1. We
consider e to be reversed if r ≤ n.

Objective.

Minimize ωlen ·
∑

e∈[m],d∈V

d · el(e, d) (D)

+ ωrev ·
∑

e∈[m],r∈V

er(e, r) (E)

Part D represents the edge lengths, i. e. number of dummy nodes. Part E is the number
of reversed edges.
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Constraints.

1.
∑

x∈[n] l(v, x) = 1 ∀v ∈ V

2. l(u, x) + l(v, x) ≤ 1 ∀(u, v) ∈ E, x ∈ [n]

3. −l(u, i)− l(v, j) + el((u, v), d) ≥ −1 ∀(u, v) ∈ E, d = |i− j|

4. −l(u, i)− l(v, j) + er((u, v), r) ≥ −1 ∀(u, v) ∈ E, r = j − i+ n

5.
∑

d∈[n] el(e, d) = 1 ∀e ∈ [m]

6.
∑

r∈[2n] er(e, r) = 1 ∀e ∈ [m]

Constraint (1) expresses that every node has to be assigned to a layer. (2) ensures a
feasible layering. (3) binds the edge length variables el. (4) binds the edge reversal
variables er. (5) and (6) are additional constraints requiring exactly one index to be set
for each row of the el and er variables.

Comments. The relaxed model allows for a trivial solution of l(v, i) = 1
2
∀v ∈ V and

any two i ∈ V with objective value of 0. This makes the model in its current form
unpractical.

The layer count can be restricted by adapting constraint, replacing the n by the desired
bound (1). The number of nodes per layer (without consideration of dummy nodes) can
be restricted to at most B nodes by adding a constraint of the form

∑
v∈V l(v, x) ≤

B ∀x ∈ [n].
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4 Evaluations

This section presents a series of evaluations that are structured as follows.
First, we support the idea to combine the first two phases of the layer-based approach

by showing that the quality of the results from separately applying the phases is not
predictable and can vary significantly. Second, we determine the quality of GLay’s
results compared to existing methods using randomly generated graphs. We extend
these evaluations to ε-GLay to eliminate the influence of varying numbers of reversed
edges. Fourth, a subset of the AT&T graphs is examined for which current methods
yield unfavorable aspect ratios.

Before we present the actual results, we describe the used methods for the first two
phases of the layer-based approach, the test setups, and the used test graphs.

Cycle Breaking Phase. In case the input graph is cyclic, we use a popular and often
used heuristic by Eades et al. [7]. It runs in linear time, and performs well on sparse
graphs.

Exclusively for evaluation purposes, we apply a second method that uses an IP for-
mulation to find the MFAS, i. e. the optimal solution. As we neither use this method
for execution time measurements nor in practice, its runtime is irrelevant.

Layering Phase. This phase is the main focus of this paper. We use the network
simplex method presented by Gansner et al. alongside the newly presented approaches
in the previous section (GLay and ε-GLay). The network simplex method minimizes the
total edge length, i. e. the number of dummy nodes, and runs fast in practice even though
its runtime is not proven to be polynomial [9]. Healy and Nikolov [13] empirically found
the minimization of the number of dummy nodes to be the best goal for the layering
phase when a compact drawing is desired and no bounds on the height and width of the
drawing are given. This makes it a good candidate for comparison as the methods we
present here minimize the same objective.

In order to avoid ambiguity, we name the different combinations of evaluated cycle
breaking and layering phases as follows.

EaGa: Cycle breaking heuristic of Eades et al. and layering of Gansner et al.

OptGa: Optimal cycle breaking and layering of Gansner et al.

GLay: Combined cycle breaking and layering as introduced in Section 3.1. We say
ωlen-ωrev-GLay to further specify the used weights.
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ε-GLay: The number of reversed edges is computed by the cycle breaking heuristic of
Eades et al., the decision which edges to reverse, however, is made by GLay.

To solve the optimization problems we used CPLEX 12.6 and executed the evaluations
on a server with an Intel Xeon E5540 CPU and 24 GB memory.

Test Graphs. Our new approach is originally intended to improve the drawings of
graphs with a large height and relatively small width, hence unfavorable aspect ratio.

Nevertheless, we first evaluate the approach using a set of 180 randomly generated
graphs with 17 to 60 nodes and an average of 1.5 edges per node to test its feasibility
in the general case.

Second, we filtered the well-known AT&T graphs1 based on aspect ratio and selected
148 graphs that have 20 or more nodes and a drawing2 with an aspect ratio below 0.5,
i. e. are at least twice as high as wide. We also removed plain paths, that is, pairs of nodes
connected by exactly one edge, and trees. For these special cases GLay in its current
form would not change the resulting number of reversed edges as all edges can be drawn
with length 1. This is also true for any bipartite graph. Note, however, that GLay can
easily incorporate a bound on the number of layers which can straightforwardly be used
to force more edges to be reversed resulting in a drawing with better aspect ratio.

Metrics. The layer-based approach is defined as a pipeline of several independent steps.
On the one hand this imposes a clear hierarchy on the importance of aesthetic criteria
(e. g. a uniform edge direction is more important than edge crossings), on the other
hand early phases have to cope with partial information when it comes to predicting
the quality of the final drawing. The actual dimensions of the drawing are not available
until termination of the final edge routing phase

After the layering phase four metrics are available: The number of reversed edges, the
number of dummy nodes, the number of layers, and the maximal number of nodes in a
layer. The latter three metrics allow an estimation of the area and aspect ratio of the
final drawing.

During our evaluations we first solely base on these incomplete information and later
compare with the quality of the final drawing. This is for two reasons. First, we are
interested in the gap between estimation and final result. Second, when searching for
new methods for early phases it is necessary to know which of the metrics that are
available at that point in time allow the best prediction and are thus trustworthy.

1http://www.graphdrawing.org/data/
2Created using BK and POLY as introduced in Section 4.2.1
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Min. Avg. Max.

Node count 17 38.12 60
Edge count 30 60.22 90
Heuristic rev. 0 3.07 8
Optimal rev. 0 2.43 7

(a) Relative number of reversed edges
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(b) Difference in dummy nodes between the
heuristic and optimal method
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(c) Detailed plot for graphs where the heuristic
and optimal methods found a FAS of the
same size
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(d) Detailed plot for graphs with smaller opti-
mal FAS

Figure 4.1. Evaluation results for random graphs comparing the number of reverse edges and
resulting number of dummy nodes after the layering phase. For cycle breaking
a heuristic method by Eades et al. and an optimal IP were used. Layering was
performed using the approach by Gansner et al. Each dot represents the result
for one graph instance. Positive values indicate fewer dummy nodes when using
the optimal cycle breaking method.

4.1 Cycle Breaking

The underlying idea of the layer-based approach is to highlight a direction or the overall
flow of a graph. Therefore it is often desirable to have as few edges pointing backward
as possible, which corresponds to finding a minimum FAS. As this is an NP-complete
problem, often heuristics are applied.

However, in some settings the desire for compactness outweighs the desire for a co-
herent direction. In the following, we examine the impact of heuristical and optimal
approaches on the compactness of drawings. We will see that small differences in the
number of reversed edges and the selection of the reversed edges can have a significant
impact on the number of resulting dummy nodes.

Figure 4.1a illustrates that for the random graphs the heuristic reversed an average of
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3.07 or about 5 % of the edges. The minimum number of edges that have to be reversed
is 2.43 or about 4 %. The figures conform with the general observation that the heuristic
performs well in practice.

We plotted the difference in the number of dummy nodes of EaGa and OptGa in Figure
4.1b. Each dot represents the number of EaGa dummy nodes minus the OptGa dummy
nodes. Positive values indicate fewer dummy nodes after optimal cycle breaking. While
on average the number of dummy nodes is slightly smaller for optimal cycle breaking,
there are graphs for which the difference amounts −63 and 99. Basically, it cannot be
decided for a given graph whether applying the heuristic or the optimal method yields
better results.

To examine this more closely, we split the graph instances into two sets—those for
which the heuristic found the optimal FAS and those with a non-optimum FAS. The
results can be seen in Figure 4.1c and Figure 4.1d.

When reversing the same number of edges, the optimal strategy reversed, on average,
edges that allowed for a layering with fewer dummy nodes (Figure 4.1c). This might be
due to the nature of the heuristic, selecting rather disadvantageous edges for the set of
test graphs. However, this is merely a speculation and out of the scope of this paper.
Figure 4.1d demonstrates that finding a smaller FAS increases the number of dummy
nodes significantly. This seems natural as reversing fewer edges can yield more long
spanning edges in the rest of the graph.

From the presented results we can conclude that for the cycle breaking phase finding
the MFAS is not necessarily the best approach and that two distinct FAS of the same
size might result in significantly different numbers of dummy nodes after the layering
phase.

The first of the last-mentioned points was already noted by Gansner et al. [9]. They
also remark that in practice graphs often have a natural direction inferred by the under-
lying application. In such a case a disadvantageously reversed edge might confuse the
user.

4.2 Generalized Layering with Weights

We now discuss the conducted experiments for the new GLay approach, which we pre-
sented in Section 3.1. An exemplary result of the GLay approach compared to EaGa can
be seen in Figure 4.2. For that specific drawing, GLay produces fewer reversed edges,
fewer dummy nodes, and less area (both in width and height).

Figure 4.3 shows averaged figures for the number of reversed edges and dummy nodes
plotted against the node count of the graphs. The new approach was applied to the
set of random graphs with several different weights for ωrev (ωlen = 1). Figure 4.3a
indicates that for ωrev = 30 or higher GLay produces fewer reversed edges than the
classic approach. Figure 4.3b furthermore shows that for all of the used ωrev values
GLay yields fewer dummy nodes. This is expected, since in contrast to EaGa GLay
is free in the decision which edges to reverse, while both approaches find an optimal
solution in terms of dummy nodes.
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(a) 5 reversed edges, 55 dummy nodes (b) 3 reversed edges, 34 dummy nodes

Figure 4.2. The same graph drawn with (a) EaGa (known methods as described in Chapter 4)
and (b) GLay (this work). This example illustrates that GLay can perform better
in both metrics: reversed edges and dummy nodes.

For certain weights GLay produces fewer reversed edges and fewer dummy nodes.
While this might sound surprising in the first place, it straightforwardly follows from
the facts that EaGa uses a heuristic for cycle breaking and that GLay can make more
informed decisions which edges to reverse. Furthermore, it encourages combining the first
two phases of the layer-based approach, which we regard a more promising approach than
using optimal methods for two consecutively applied phases as evaluated in Section 4.1.

We chose to examine 1-30-GLay more closely. It results in constantly fewer reversed
edges and presents a good trade-off in terms of dummy nodes. Detailed results are
shown in Figure 4.4. Both subfigures show numbers where for each test graph the result
of GLay is subtracted from the result of EaGa. For all but 16 of the 180 random graphs
GLay produced fewer reversed edges (2.7 instead of 3.1 on average). The average in the
number of dummy nodes over all graphs decreased from 78.2 to 54.6 (23.5 % on average).
For one graph with 60 nodes the number of dummy nodes was reduced from 231 to 100.

Clearly, the difference in the number of dummy nodes increases with the number of
nodes in the graph. Normalizing the difference by the number of nodes yields similar
values for all graph sizes which suggests that GLay’s performance remains stable with
increasing node count.

At this stage, and with the used metrics, we can only estimate the resulting area and
aspect ratio of the final drawing. Table 4.1 shows values for the estimated area of GLay,
which reduce on average by 13.2 %. This is slightly less than the percentage decrease in
the number of dummy nodes. Obviously, the estimated area strongly depends on the
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Figure 4.3. Averaged results after applying GLay with different weights for ωrev to the ran-
dom graphs.

maximum number of nodes in a single layer. The values for the estimated aspect ratio
are corrected by a factor of 0.5, which we found to come closer to the effective aspect
ratio than the plain quotient. This is since dummy nodes contribute less to the width
of a layer than usual nodes; Healy and Nikolov found that for a set of directed graphs
and the layering method by Gansner et al. every layer contains about 0.8 dummies
nodes for each usual node [13]. Furthermore, one layer contributes often more height to
the drawing than a single node contributes width; e. g. due to required space for edge
routing, which in terms of weight is already encoded with dummy nodes. Independently
of the correction, the estimated aspect ratios increase on average by 13.5 %. While we
believe the changes described above to be improvements in terms of compactness, the
number of edge crossings increases by about 10.0 %.

To assess the quality of the final drawing, and to compare with the previous estima-
tions, we apply the remaining phases of the layer-based approach and evaluate the final
drawing in the next section.

4.2.1 Final Drawing

We now investigate the final drawing after completion of the layer-based method. For
that we introduce the used methods to produce the final drawing, i. e. the implementa-
tions of phases 2–5.
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Figure 4.4. Detailed results for 1-30-GLay. Plots show the difference between the number
of reversed edges and dummy nodes for EaGa and GLay, respectively. Positive
values indicate lower values for GLay.

Crossing Minimization. We minimize crossings between pairs of layers using a layer
sweep method in conjunction with the barycenter heuristic, as proposed by Sugiyama et
al. [21].

Node Placement. We employ and compare two different strategies to determine fixed
coordinates for nodes within the layers. First, we consider a method introduced by
Buchheim et al. that was extended by Brandes and Köpf [3, 2]. It tries to straighten
long edges by building chains (or blocks) of (dummy-) nodes. We denote this method as
BK. Second, we use a method inspired by Sander [19] that similarly forms so-called linear
segments, to draw layer-spanning edges straight. We call it LS. In general BK tends to
produce fewer edge bends with a slight increase in diagram area when compared with
LS [5].

Edge Routing. We compare two different strategies to route the edges; either using
polylines (POLY) or orthogonal segments (ORTH). The orthogonal router is based on
the methods presented by Sander [20].

Overall, this gives eight setups of the algorithm: two layering methods, two node place-
ment algorithms, and two edge routing procedures.

The results for the final drawings are shown in Table 4.2 and are further refined by
the previously introduced setups. For all setups the average area (normalized by the
number of nodes) of GLay is smaller, depending on the setup, by 7–11 %. The average
aspect ratio becomes closer to the desired values of 0.55 and 0.75 in three cases; in any
case it increases for the selected weights. Both observations conform to the tendency of
the estimated values for area and aspect ratio. Somewhat correlating to the area, the
average edge length decreases as well for all setups.

We further observed that for 64 % of the graphs the tendency of the estimated area
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Table 4.1. Results for random graphs and metrics that are available after the layering phase.
The area is estimated by multiplying the maximum number of nodes in a layer by the number
of layers. Similarly, the quotient of the latter two values is used as estimation for the aspect
ratio. Crossings are averaged per edge.

EaGa GLay

Area (est.)
Min. 60.00 56.00
Max. 600.00 420.00
Avg. 222.86 187.44

Aspect ratio (est.)
Min. 0.21 0.21
Max. 1.94 1.63
Avg. 0.74 0.84

Crossings
Min. 0.13 0.13
Max. 4.67 4.02
Avg. 1.79 1.92

contradicts the tendency of the effective area,3 and 54 % when not considering dummy
nodes. In other words, the estimated area is decreased for GLay compared to EaGa and
the effective area is increased for GLay (or vice versa). This clearly indicates that the
estimation, as we compute it, can be misleading.

While in general the results resemble what we expected and what GLay was designed
for, averaged figures hide some aspects of the overall picture. For this reason, we further
inspect the distribution of the estimated area and effective area in Figure 4.5.

We use boxplots which partition the distribution of data into quartiles, showing 50 % of
the data points in a box with the median value shown as a horizontal bar. Additionally,
so-called whiskers extend to both sides of the box, covering 25 % of the data each. By
definition the maximum extent of a whisker is 1.5 times the height of the box, any values
outside the whiskers are depicted by dots and are generally assumed to be statistical
outliers. In our case we cannot really speak of them as outliers since we have very
heterogeneous data, but use the boxplots anyway to get a rough overview.

The right box in Figure 4.5a indicates that 75 % of the graphs are estimated to have
less area when using GLay and considering dummy nodes. Without consideration of
dummy nodes the results are worse than EaGa in the majority of the cases, but we
believe that an estimation without dummy nodes is not representative anyway.

Figure 4.5b supports the general trend that GLay produces less area in the final draw-
ing, however, it also yields a larger area for over 25 % of the graphs, using any setup. The
two node placement algorithms do not differ significantly in their results. Nevertheless,
orthogonal edge routing reduces the deviation compared to polyline routing.

From the above observations we can conclude the following. The estimated area can
differ from the effective area notably. Node placement and edge routing have a stronger
impact on the compactness of the drawing than generally assumed.

To understand the increase in area we tried to identify a metric that correlates to this

3Using BK and POLY.
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Table 4.2. Results for the final drawing of a graph. Area is normalized by the node count of
a graph. It can be seen that using the same edge routing and node placement strategies the
average effective area and edge length for 1-30-GLay decrease compared to EaGa. The average
aspect ratio increases. The most interesting comparisons are between columns where EaGa
and GLay use the same strategies for the remaining steps.

Poly Orth

BK LS BK LS

EaGa GLay EaGa GLay EaGa GLay EaGa GLay

Area (norm.)
Min. 6,517 6,165 4,580 4,795 5,495 5,873 5,214 4,754
Max. 46,403 40,467 29,111 24,523 24,451 23,245 20,075 18,848
Avg. 20,194 18,683 12,383 11,035 13,582 12,642 10,666 9,917

Aspect ratio
Min. 0.25 0.25 0.22 0.22 0.32 0.32 0.25 0.25
Max. 1.10 1.20 1.18 1.15 1.61 1.59 1.32 1.37
Avg. 0.59 0.67 0.55 0.64 0.84 0.96 0.63 0.70

Avg. edge length
Min. 111.4 107.2 92.1 86.8 118.1 117.0 101.5 101.5
Max. 512.6 441.0 420.0 324.2 388.6 412.5 370.4 358.3
Avg. 261.5 239.9 197.7 175.4 241.4 232.0 218.5 209.4

observation. For the used graphs, however, we could not find a significant correlation
between increased area and a metric that is available during the layering phase, e. g.
maximum number of nodes per layer, number of layers, and edge density. Nevertheless,
we list some factors that influence area and aspect ratio after the layering phase.

1. Number of layers : Affects the height of the graph.

2. Maximum number of nodes per layer : Can increase the overall width of the draw-
ing, especially dummy nodes that are part of long edges that are drawn straight
can push the drawing apart, reducing compactness.

3. Reversed edges : Fewer reversed edges can increase the number of layers. For 1-30-
GLay this was the case several times.

4. Maximum edge density : A lot of edges between two layers can cause the layers to
be pushed apart to route the edges, increasing overall height.

In conclusion, the evaluations show that GLay is able to produce drawings with less
area and better aspect ratio on average. For general graphs, the estimated area and
actual area differ more than we expected and the effective area reduction is smaller than
we expected. Both results need further investigation. The GLay approach specifically
targets drawings with bad aspect ratio due to longest paths and allows to chose weights
such that the drawing conforms to certain requirements. It seems to be a promising
candidate to be used in replacement of current layering strategies.
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Figure 4.5. Percentage change between the area a drawing produced by EaGa and GLay. A
value below 100 % indicates less area for GLay. (a) shows an estimated area by
multiplying the number of layers by the maximum number of nodes per layer,
once with consideration of dummy nodes and once without. (b) shows the effec-
tive area after node placement and edge routing.
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Figure 4.6. Difference in the number of dummy nodes between EaGa and ε-GLay. Positive
values indicate a better performance of ε-GLay.

4.2.2 Weight Selection

For the evaluations of the previous sections we selected the weights ωlen and ωrev for GLay
as we deemed reasonable and selected a pair of weights for more detailed inspections
that looked promising in the general case.

The ratio between the weights clearly shifts with the number of edges and nodes in
a graph. Larger graphs are more likely to require more dummy nodes in relation to
the number of reversed edges. Thus, it seems natural to couple the weight selection to
characteristics of the graph instances.

4.3 Generalized Layering with Fixed FAS Size

In the GLP we try to optimize two objectives at the same time (number of reversed
edges and number of dummy nodes), which makes the problem hard to solve, especially
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Figure 4.7. (a) Percentage change of the estimated area. Values below 100 % represent a
decreased area for ε-GLay. (b) Percentage change between the area a drawing
produced by EaGa and ε-GLay. A value below 100 % indicates less area for
ε-GLay.

if a good trade-off between the two objectives is not known. To overcome this problem
we introduce a variation of GLay named ε-GLay, where we fix the number of edges
to reverse beforehand. This way we remove one objective function but preserve the
advantage to freely select edges to reverse during the layering phase. To determine a
reasonable value we apply the greedy heuristic by Eades et al. and use the size of the
computed FAS to add a constraint to ε-GLay (see Section 3.2).

As expected, Figure 4.6 shows that for every graph of the random graphs set ε-GLay
produces either fewer dummy nodes or the same number of dummy nodes. On average,
ε-GLay has 25.8 fewer dummy nodes. Figure 4.7a depicts that the estimated area is
equal or smaller for 162 of the 180 graphs. Compared to GLay’s results on estimated
area (cf. Figure 4.5) this is a superior result. It supports our claim that several of the
graphs with increased area were layered with fewer reversed edges by GLay as opposed
to EaGa.

Again, we executed the eight combinations of node placement and edge routing in-
troduced in Section 4.2.1, this time with ε-GLay instead of GLay though. The results
are similar to Table 4.2 with the difference that in all cases (area, aspect ratio, average
edge length) ε-GLay performs on average slightly better than the previously used 1-30-
GLay. This supports our assumption that the varying number of reversed edges during
the GLay experiments (i. e. GLay produced less reversed edges than EaGa for several
graphs) has a negative impact on the metrics of the final drawing. This is also supported
by Figure 4.7b which shows boxplots analogous to Figure 4.5b. The height of the boxes
reduces and the boxes shift slightly to the bottom. This indicates that a larger number
of final drawings shows area improvements than before. Nevertheless, over 25 % of the
graphs show a poorer area using ε-GLay, as opposed to EaGa, which in turn confirms
our finding that the number of reversed edges is not the only candidate to influence the
area of the final drawing.
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4.4 AT&T Graphs

Additionally to the randomly generated graphs used in the previous sections we selected
a subset of the well-known AT&T graphs, consisting of graphs with comparatively long
longest paths (height) and a rather stretched aspect ratio. Since the graphs are acyclic
the cycle breaking phase of the layered approach is not required and current layering
algorithms cannot improve the height.

The GLay approach, however, can freely reverse edges and hereby change the height
and aspect ratio. We applied EaGa and GLay with the same weights as in the previous
sections to this set of graphs, the results of which can be seen in Table 4.3. Clearly,
EaGa has no reversed edges as all graphs are acyclic. 1-10-GLay starts with an average
of 2.74 reversed edges and the value constantly decreases with an increased weight on
reversed edges. The number of dummy nodes on the other hand constantly decreases
from 141.30 for EaGa to 39.91 for 1-10-GLay. As expected, more reversed edges yield
more edge crossings.

Moreover, we recorded three metrics on the final drawing after applying the node
placement strategy by Brandes and Köpf and polyline edge routing. The average height
and average area of the drawings decrease with an increasing number of reversed edges.
For 1-10-GLay the average height and area are 38.2 % and 33.8 % smaller, respectively.
The aspect ratio changes from an average of 0.20 for EaGa to 0.34 for 1-10-GLay.

The results show that for the selected graphs, for which current methods cannot
improve on height, the weights of the new approach allow to find a satisfying trade-off
between reversed edges and dummy nodes. We noticed during the analysis of the results
that the set of test graphs still contains several path-like graphs with only one or two
branches from the longest path. These graphs bias the results for reasons described
in the paragraph on the used test graphs of Chapter 4. Furthermore, the observed
improvements in compactness stem solely from the selection of weights, not from an
upper bound on the number of layers. Naturally, such a bound can further improve the
aspect ratio and height.

As opposed to the random graphs, we did neither compare different node placement
and edge routing methods nor did we apply ε-GLay to the AT&T graphs, mainly because
the latter contain several graphs with more than 90 nodes which slows down the IP
model. Nevertheless, we do not expect that the results would provide new insights in
addition to our findings of the previous sections.

4.5 Execution Times

Figure 4.8 shows four plots of the execution times of the GLay and ε-GLay IPs, for each
IP once plotted against the number of nodes in a graph and once for the number of
reversed edges in the layered graph.

GLay. The execution times for GLay vary between 476ms for a graph with 19 nodes
and 541s for a graph with 58 nodes and steadily increase with the graph’s node count.
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Table 4.3. Average values for different layering strategies employed to the AT&T graphs
with an undesirable aspect ratio. Different weights are used for GLay as specified in the head
column.

1-10 1-20 1-30 1-40 1-50 EaGa

Reversed edges 2.74 1.47 1.02 0.72 0.56 0
Dummy nodes 39.9 55.5 65.7 75.7 82.5 141.3
Crossings 1.46 1.23 1.13 1.06 1.00 0.86

Avg height 1,068 1,224 1,334 1,409 1,469 1,727
Area 587,727 622,838 641,581 660,842 695,494 874,374
Aspect ratio 0.34 0.28 0.24 0.23 0.22 0.20
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Figure 4.8. Execution times of the GLay and ε-GLay IPs when applied to the random graphs.
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This is impracticable for interactive tools that rely on automatic layout, but is fast
enough to collect optimal results for medium sized graphs.

In Figure 4.8a the execution time is plotted against the number of reversed edges.
With an increased number of reversed edges an increased execution time can be observed,
however, this corresponds to the fact that larger graphs often require more edges to be
reversed.

ε-GLay. Initially, we suspected the runtime of ε-GLay to decrease compared to GLay as
we add an additional constraint to the model. However, it turned out that the execution
time increases significantly. Nevertheless, we believe this version of the problem to be a
valuable starting point for further evaluations. Especially regarding our plans to develop
a heuristic the restriction to one objective can be an advantage.

The fastest execution was about 200ms for a graph with 19 nodes and 0 reversed
edges. For a single graph instance with 57 nodes and 8 reversed edges the model did not
finish within the specified time limit of 3 hours (the longest time GLay required is just
over 9 minutes). Interestingly, there are several graphs with up to 53 nodes that require
less than 10s.

Contrary to GLay, Figure 4.8c suggests that the execution time of ε-GLay is coupled
with the number of reversed edges. Looking at the results in detail, ε-GLay executes
faster for all graphs with 0 reversed edges. Reversing no edges reduces the problem
basically to the layering formulation introduced by Gansner et al. For certain graphs
with 1–3 reversed edges ε-GLay is faster, and for 4 or more reversed edges it is always
slower.
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5 Discussion

In this paper we address problems with current methods for the first two phases of the
layer-based approach. We argue that separately performing cycle breaking and layering
is disadvantageous when aiming for compactness, especially for graphs with a high ratio
between height and width.

We present a configurable method for the layering phase that, compared to other state-
of-the-art methods, shows on average improved performance on compactness. That is,
the number of dummy nodes is reduced significantly for most graphs (they can never
increase). While the number of dummy nodes only allows for an estimation of the area,
the effective area of the final drawing is reduced as well. Furthermore, graph instances
for which current methods yield unfavorable aspect ratios can easily be improved.

We want to stress that the common practice to determine the quality of methods
developed for certain phases of the layer-based approach based on metrics that represent
estimations of the properties of the final drawing is error-prone. For instance, estimations
of the area and aspect ratio after the layering phase can vary significantly from the
effective values of the final drawing.

Our evaluations suggest that besides the layering phase the node placement phase and
edge routing phase have a significant impact on the compactness of a graph’s drawing.
We propose to further investigate this in two ways. First, the latter two phases should
be improved in terms of compactness, e. g. the maximization of straight edges during
node placement could be relaxed to disregard edges that, drawn straightly, would highly
increase the area. Second, correlations between the layering phase and later phases, and
vice versa, are to be inspected as to what kind of layering lends itself well to a compact
node placement. For instance, balanced layerings, that is layerings where most layers
contain about the same number of nodes, might allow more compact node placement
than unbalanced ones.

As a final example of the usefulness of the new approach consider Figure 5.1. In (b)
GLay was applied to only the top-most level of this compound graph which consists of
15 nodes. The drawing is more compact and the overall layout took about two seconds
(including our IP).

Future Research. We see several possibilities to proceed from here.
First, in order to make the new method usable in productive tools, heuristics with

a reasonable execution time and quality are required. We plan to evaluate whether
heuristics for the well-studied LAP can be modified to solve either the GLP or its
variation ε-GLP. In either case it is necessary to at least allow a bound on the height
of the layering to be able to improve the aspect ratio of path-like graphs. Even if such
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a heuristic performs worse on average than the method by Gansner et al. it could still
improve on those graphs with excessive height.

Second, the presented IP models can be inspected further. For example, either to
include additional features such as bounds on width and height (with consideration of
dummy nodes) or to improve execution time by adding further constraints.

Third, another interesting topic is whether it is possible to target a certain aspect
ratio by means of an objective function in one of the IPs. A difficulty here is to find a
sound estimation of the aspect ratio of the final drawing.

Acknowledgements. We thank Chris Mears for support regarding the IP formulation.
We further thank Fritz Bökler, Tim Dwyer, Carsten Gutwenger, and Petra Mutzel for
valuable discussions.
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(a) EaGa + LS

(b) 1-10-GLay + LS

Figure 5.1. Two drawings of a graph from an industrial context at the same scale level. The
graph is a compound graph, i. e. nodes can contain further nodes. The layout
configuration only differs for the top-most compound nodes in that the layering
task is performed either by (a) Gansner et al.’s method [9] or by (b) GLay (this
work).
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[3] Christoph Buchheim, Michael Jünger, and Sebastian Leipert. A fast layout algo-
rithm for k-level graphs. In Proceedings of the 8th International Symposium on
Graph Drawing (GD’00), volume 1984 of LNCS, pages 229–240. Springer, 2001.

[4] Alberto Caprara, Adam N. Letchford, and Juan-José Salazar-González. Decorous
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