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Abstract

Synchronous languages, such as the recently proposed SCCharts language, have been
designed for the rigorous specification of real-time systems. Their sound semantics,
which builds on an abstraction from physical execution time, make these languages
appealing, in particular for safety-critical systems. However, they traditionally lack
built-in support for physical time. This makes it rather cumbersome to express things
like time-outs or periodic executions within the language.

We here propose several mechanisms to reconcile the synchronous paradigm with
physical time. Specifically, we propose extensions to the SCCharts language to express
clocks and execution periods within the model. We draw on several sources, in particular
timed automata, the Clock Constraint Specification Language, and the recently proposed
concept of dynamic ticks. We illustrate how these extensions can be mapped to the
SCChart language core, with minimal requirements on the run-time system, and we
argue that the same concepts could be applied to other synchronous languages such as
Esterel, Lustre or SCADE.

Keywords: real-time systems, reactive systems, synchronous languages, timed automata,
timing specification, dynamic ticks

This is an extended version of a paper submitted to the Forum on specification & Design
Languages (FDL) 2018.
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1 Introduction

Cyber-physical/embedded systems are typically reactive, meaning that they have to con-
tinuously react to their environment, and that these reactions must meet certain timing
contraints. Real-time aspects may be rather simple, such as “the system must run at
least at 10 KHz,” or it may be quite intricate, like “coil A must be activated 27.3 msec
after coil B.” A long-standing challenge in the design of such real-time systems is to
reconcile concurrency and determinacy. As it turns out, time there plays a rather ad-
versarial role in that standard mechanisms to handle concurrency, such as Java/Posix
threads, are rather sensitive to how long individual computations take; determinacy is
easily compromised by race conditions [17]. Synchronous languages address this chal-
lenge by abstracting from execution time; their semantics rests on the assumption that
computations take zero time, and that outputs are synchronous with their inputs [4].
The synchronous programming paradigm has been explored since the 1980s, and for ex-
ample SCADE (Safety-Critical Application Development Environment) and its certified
code generator are routinely used for avionics control software [8].

The abstraction from time in synchronous languages typically comes at the price that
all references to physical time must somehow be resolved by the environment. Unlike
for example Harel’s statecharts [13], which already included a mechanism to express
timeouts, physical time is traditionally not a first-class citizen in synchronous languages;
they instead build on a multi-form notion of time, where time is expressed by counting
events (detailed further in Sec. 3.3). This is consistent with the synchronous abstraction,
but in practice does not help the programmer, who at the end of the day must express
the required real-time behavior.

In this paper, we investigate how we can incorporate physical time into the syn-
chronous model of computation. We do so using the SCCharts language [25], however,
the concepts presented here can be applied to other synchronous languages as well.

1.1 Contributions and Outline

• We show how timed automata, which model time with real-valued clocks, can
be expressed in a synchronous setting with discretized execution (Chap. 2). Our
proposal, which includes a new type clock for SCCharts, uses on-board mechanisms
of synchronous languages (in particular during actions) to faithfully model clocks
and imposes minimal requirements on the execution environment.

• We investigate the suitability of different execution regimes in a timed setting
(Chap. 3) and argue that dynamic ticks [24] are a natural fit for realizing timed
automata.

1



• We present an approach to implement dynamic ticks in a synchronous setting,
where the compiler deduces anticipated tick durations from timing constraints in
the model (Chap. 4).

• We propose a language extension of SCCharts (period) that allows to model multi-
clocked systems based on periodical activation of different subsystems and that
maps naturally to real-valued clocks (Chap. 5).

• Finally, having clocks as first-class citizens we use them to map one abstract clock
constraint, expressed in the Clock Contraint Specification Language (CCSL), to
SCCharts (Chap. 6). This allows to not only relate the activation of subsystems
to physical time, but also to the activation of other subsystems.

We briefly discuss further related work in Chap. 7 and conclude in Chap. 8.
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2 Timed Automata in SCCharts

Timed automata, proposed by Alur and Dill [2], are a formalism to model the behavior
of real-time systems over time. Timed automata consist of state-transition graphs with
timing constraints using real-valued clocks. A timed automaton accepts timed words,
which are (infinite) sequences in which a real-valued time of occurrence is associated
with each element of the timed word.

Timed automata and their variations have been extensively studied for verification
purposes [2, 1, 20]. We here want to use them for synthesis purposes as well. That is,
we investigate how to model the behavior of real-time systems such that the model can
also be synthesized into a piece of software or hardware.

Timed automata have been extended in various ways, one example are multirate timed
automata (or multirate timed systems) [1], where each clock has its own speed, possibly
varying between a lower and an upper bound. Lee and Seshia [18] discuss (multirate)
timed automata in the context of cyber-physical system design. One of their illustrating
examples is the traffic light controller introduced in the next section.

4. HYBRID SYSTEMS

Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.

Lee & Seshia, Introduction to Embedded Systems 87

Figure 2.1: Trafficlight controller modeled as timed automaton. From Lee and Seshia [18]
(CC BY-NC-ND 4.0).
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2.1 The Traffic Light Controller Example

We use the traffic light controller shown in Fig. 2.1 as running example. The traffic
light has three lights green, yellow, and red to control the car traffic and a button for a
pedestrian to request secure crossing of the street, which should cause the traffic light
to switch temporarily to a red light to stop the traffic. The automaton of the controller
has a real-valued clock x, an input pedestrian indicating whether a pedestrian requests
crossing the street, and three outputs sigR, sigG, sigY. The type pure denotes “pure
signals” present or absent at each reaction and carrying no further data. The outputs
do not directly indicate the light states, but rather constitute events that indicate color
changes. It is assumed that initially the red light is turned on; emitting the event sigG
switches off red and switches on green, and so on.

As shown in this example, a clock is represented by a first-order differential equation
on a real number and can be explicitly set and used as transition guard. While in state
red, time progresses with a slope of one (ẋ(t) = 1), this is also the case for all other states.
Time is expressed in abstract time units; for simplicity, we assume for this example that
one time unit corresponds to one second. Each transition has a guard, which consists of
a condition (such as pedestrian) and a timing constraint (such as x ≥ 60), both of which
are optional. When clock x has reached or surpassed 60, the automaton transitions to
green emitting the green light and resetting the time to zero. Now the system waits
for a pedestrian to push the button. When the pedestrian input is present, the reaction
depends on the passed time. Case 1, if less than 60 sec passed since entering green, the
automaton will transition to pending, but x is not reset. It remains there until the time
has reached at least 60, then the yellow light is turned on, the timer is reset and the
state is switched to yellow. Case 2, if the pedestrian event occurs after at least 60 sec
in green, the automaton transitions directly to yellow with the same output and reset.
After at least 5 sec, the automaton leaves the yellow state for red and activates the red
light and again resets the time.

2.2 From Specification to Behavior—the Eager Semantics

Even though this traffic light controller specification seems rather clear and straight-
forward, it turns out that there is still some variation as to how the controller may
behave in a specific scenario. The original definition of timed automata [2] is based
on timed regular languages, where symbols in a word are associated with a real-valued
time stamp. Formally, a timed word is a pair (σ, τ), where σ = σ1, σ2, . . . is an infinite
word over some alphabet Σ of events, and a timed sequence τ = τ1, τ2, . . . is an infinite
sequence of time values τi ∈ R that satisfies certain constraints (monotonicity and
progress). Given a timed word, a run of a timed automaton is an (infinite) sequence of
state transitions, analogous to standard regular languages defined by standard automata.
For convenience, we extend the concept of timed words such that the inputs σi do not
have to consist of exactly one event, but constitute arbitrary input valuations that assign
a value and/or presence status to each input variable.

4



0
t

Input:

Output:

40 122.2

pedestrian
sigG
pedestrian

(a) Pure event-triggered execution
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(b) Eager semantics execution
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(c) Time-triggered execution, with rate 5
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(d) Time-event-triggered execution, multiform notion of time
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Input:

Output:
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deltaT:

122.2 127.2

sigY sigR

187.2

pedestrian
sigG

0 40 20 62.2 5 60
sleepT: 60 20 1000 5 60 60

(e) Dynamic tick execution

Figure 2.2: Execution traces of the traffic light controller based on different semantics.
Vertical strokes denote reactions.

To make things concrete, assume that in our traffic light controller the pedestrian
button is triggered at times 40 and 122.2. We denote this as input trace (timed word)
(〈pedestrian, 40〉, 〈pedestrian, 122.2〉); we thus allow input sequences to be finite, and we
use a notation that associates each input valuation directly with a time stamp. Given
such an input sequence, our timed automaton performs a sequence of reactions, or ticks,
one for each time-stamped input valuation.

A first non-obvious question this raises is how system initialization should be handled.
In principle, there is nothing that requires that the first reaction of the system must occur
at time zero. Furthermore, the “initial transition” to state red is not really a transition,
but rather a convenient way to specify initial values for variables, including clocks.
However, it does seem reasonable to let the clock x assume the initial value 0 at time zero,
and to make this explicit by performing an initial reaction with an empty input (denoted
ε) at time zero. The resulting input trace is (〈ε, 0〉, 〈pedestrian, 40〉, 〈pedestrian, 122.2〉).

As illustrated in Fig. 2.2a, the traffic light controller reacts to this input trace by
initializing itself at time 0, doing nothing at time 40, and then, at time 122.2, transi-
tioning to green and emitting sigG. Then there is no further reaction due to the absence
of further input events. However, this behavior is probably not what the creator of the
traffic light controller intended. For example, the output sigG should probably not occur
at time 122.2, even though 122.2 ≥ 60 certainly holds, but rather at time 60. Thus,
we conclude that just the passage of time (without further input events) should also be
able to trigger a reaction, in particular if the automaton contains transitions that are
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guarded solely by timing constraints. Lee and Seshia [18] resolve this by assuming that
a transition is taken as soon as it is enabled. This assumption, which we denote as eager
semantics, leads to the trace in Fig. 2.2b, which augments Fig. 2.2a by further reactions,
all with empty input valuations, at times 60 (emission of sigG, transition to green),
127.2 (emission of sigR), and 187.2 (sigG again). The remaining traces are explained in
Chap. 3, along with their execution concepts.

2.3 Timed SCCharts

As it turns out, the synchronous model of execution fits quite naturally for timed au-
tomata as well. We here illustrate this with the SCCharts language. SCCharts provide
many different language features, however, most of these are extended features that
can be mapped to a very small set of core features. These extended features can be
considered just as syntactical sugar, and the SCCharts compilation consists largely of
model-to-model transformations that replace extended SCChart features by simpler fea-
tures [25].

As we illustrate now, the timed-automata clocks can be added as an extended SCChart
feature [25] without too much difficulty. Fig. 2.3a shows the SCChart realization of the
traffic light controller. Despite some minor syntactical differences, the structure of the
state machine itself and its transitions and their effects are the same as in Fig. 2.1. The
new SCChart keyword clock here declares a clock x, which then, as in timed automata,
can be set to arbitrary values and can be used to guard transitions. We here use the
float data type for clocks, other types (including integral types) would also be possible.

Fig. 2.3b presents the compiled intermediate result of TimedTrafficLight, revealing its
actual internal implementation and behavior. In comparison to the original model in
Fig. 2.3a, x is now an ordinary floating point variable, and the SCChart has an additional
input deltaT. The only obligation on the run-time environment is, at each tick, to set
deltaT to the time passed since the last tick. Based on these time increments, the SCChart
itself keeps track of the progression of clocks. Specifically, the progression of time for
the clock x is represented by during actions in each state, which increase the clock x by
deltaT multiplied by the slope, which we omit here since it is 1. A during executes its
effect in every tick its state is active, except for the tick the state is entered; this is
important since only the time passed inside the state should be considered. Note that
x may instantaneously assume up to three different values within a tick: the value at
the beginning of a tick, the incremented value computed by the during action, and the
reset value when a transition is taken that resets x to zero. This is no problem under
the sequentially constructive (SC) semantics of SCCharts [25]. Applying the same idea
to classical, non-SC synchronous languages would be a bit more involved, but with for
example SSA-like renamings a synchronous language such as Esterel can also support
multiple values per tick [21, 22].
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TimedTrafficLight
input signal pedestrian
output signal sigR, sigG, sigY
clock x = 0

red

green

pending

yellow

x >= 60
/ sigG;
  x = 0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0

x >= 60
/ sigY;
  x = 0

x >= 5
/ sigR;
  x = 0

-

(a) Original SCChart, with clock declarations

TimedTrafficLight
input float deltaT
input signal pedestrian
output signal sigR, sigG, sigY
float x = 0.0

red
during / x += deltaT

green
during / x += deltaT

pending
during / x += deltaT

yellow
during / x += deltaT

x >= 60
/ sigG;
  x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0.0

x >= 60
/ sigY;
 x = 0.0

x >= 5
/ sigR;
  x = 0.0

-

(b) Transformed SCChart

TimedTrafficLight
input float deltaT
input signal pedestrian
output signal sigR, sigG, sigY
output float sleepT
float x = 0.0
immediate during / sleepT = 1000.0

red
during / x += deltaT
immediate during / sleepT min= 60.0 - x

green
during / x += deltaT

pending
during / x += deltaT
immediate during / sleepT min= 60.0 - x

yellow
during / x += deltaT
immediate during / sleepT min= 5.0 - x

x >= 60
/ sigG;
  x = 0.0

1: pedestrian && x < 60 2: pedestrian && x >= 60
/ sigY;
  x = 0.0

x >= 60
/ sigY;
  x = 0.0

x >= 5
/ sigR;
  x = 0.0

-

(c) Transformed SCChart with dynamic ticks

Figure 2.3: Traffic light controller modeled as as timed automaton in SCCharts, with
various compilation/expansion stages.
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3 When to React?

Timed automata allow to add timing constraints to transitions based on a real-valued
clock. It is clear that if the constraint is not met, the transition must not be taken.
When the constraint is satisfied, the automaton can react. As discussed in Sec. 2.1,
it seems advisable to tighten this by saying that we want to react as soon as possible,
which we denoted as the eager semantics. Still, the non-trivial question remains of how
to make sure in practice that reactions occur on time to implement an eager semantics,
or how to at least approximate it in some reasonable manner.

As it turns out, the question of when an automaton should react is not restricted to
the “timed” setting presented here, but arises in synchronous programming in general.
There, time is separated into discrete instants at which the system performs a reaction
(tick). The synchrony hypothesis states that the reaction itself takes conceptually no
time and that the actual time passes between reactions. Fig. 3.1a illustrates this concept.

In practice, a synchronous program is synthesized into a tick function to perform
reactions. Executing a tick takes computation time and separates inputs from outputs,
as shown in Fig. 3.1b.

3.1 Event-Triggered Execution

In an entirely event-triggered execution, a reaction is triggered when an input (signal)
changes. Hence our traffic light example would only react if the pedestrian input event
occurs, as already illustrated in the trace in Fig. 2.2a. This execution regime is obvi-
ously insufficient as e. g. it does not trigger transitions with only timing constraints, as

0

I0O0

tl

I1O1 I2O2

1 2
(a) Logical time: time is discretized into logical

ticks 0, 1, etc. Input Ii is synchronous with
output Oi, the reaction time is abstracted to
be 0.

w0 = 0

I0 O0

t [μsec]
w1 = 100 w2 = 200

tick()

I1 O1

tick()

I2 O2

tick()

c0 c1 c2

(b) Physical time: the computation of the i-th
reaction, corresponding to logical tick i and
the i-th call of the tick function, begins at
wake-up time wi. Inputs are read at the
beginning of the computation, outputs are
written at the end of the computation.

Figure 3.1: Different timing abstractions [24].
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discussed in Sec. 2.2. Consequently, a concept is needed which performs reactions based
on time while handling the continuous nature of time.

3.2 Time-Triggered Execution

A common alternative to event-triggered execution is a periodical invocation of the tick
function. One fixed global period is determined by analyzing the timing constraints of
the model and its environment (i.e. poll rate of sensors), and sometimes also its worst
case reaction time, to allow on-time executions of ticks. Fig. 2.2c illustrates a trace
with this execution semantics for our example in Fig. 2.3a. The period is 5, which is the
greatest common divisor of the two relevant timing constants 5 and 60 in the model, and
hence a sufficient sample rate for the systems timing constraints if events are discretized
to this rate as well. The system only reacts every 5 sec, which causes the pedestrian input
occurring at time 122.2 to be processed only in the next period at time 125, consequently
the sigR signal is also emitted at time 130. This behavior might be sufficient, especially
when there are corresponding hardware sample rates for hardware sensors such as the
pedestrian button.

Drawbacks of this execution regime are (1) the discretization of events (the pedestrian
event is processes 2.8 sec after its occurrence) and (2) efficiency. For example, for a
delay of 60 as in red, there are always 12 ticks executed, even though the transition can
only be taken in the 12th tick. The previous invocations are wasted processor time and
energy, which is problematic especially in embedded use-cases.

3.3 The Multiform Notion of Time

When modeling temporal behavior, classical synchronous languages, such as Esterel,
consider time as an arbitrary discrete input event to the program. For example, this
could be a signal that is present in each tick a second has passed; however, equivalently,
one could choose a signal that represents that a travelled distance has increased by one
meter. The progression of time is measured by counting occurrences of some signal.
This is also referred to as the multiform notion of time. This concept is quite flexible;
however, in particular if multiple input signals are used to model time, say one signal
for milliseconds and one for microseconds, this concept can easily lead to temporal
inconsistencies, as discussed further by Bourke and Sowmya [7].

For our SCChart in Fig. 2.3a, the trace in Fig. 2.2d represents an execution semantics
using discrete timing events in combination with input event triggering. Since the model
has two timing-related guards, 5 in state yellow and 60 in the others, we again opt for the
greatest common divisor and use a timing event, let’s denote it as fivesec, that indicates
that 5 sec have passed since the last occurrence of fivesec. As the trace illustrates, the
system reacts every 5 sec, always with fivesec present, and additionally at time 122.2
sec, when pedestrian is present, but fivesec is absent. We call this time-event-triggered
execution, since a reaction is triggered when either the timing-event fivesec or some other
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event occurs.
Consider time 122.2, when the pedestrian input is processed and sigY is emitted. Since

time is measured by counting fivesec events, and the last such event has occurred at
time 120, the pedestrian event is effectively considered to have taken place at time 120.
Consequently, sigR is already emitted at time 125 instead of 127.2; thus not 5 sec have
passed since sigY, but only 2.8 sec, which is not compliant with the original traffic
controller specification. Similarly, sigG is emitted at time 185, which is also earlier
than in the trace in Fig. 2.2b. For this input trace, one could comply to the eager
semantics by increasing the granularity of the discrete time event, i.e. using an event
for 0.1 sec passed. However, this would increase the number of reactions and load on
the system significantly, while most of the reactions would not actually affect the state
of the automaton.

3.4 Dynamic Ticks

To circumvent the difficulties of the execution regimes discussed so far, we here propose
to not discretize time beforehand and to not model time by counting events, but propose
to model time as continuous entity. Note that we still perform discrete reactions, only
the time stamps are chosen from a real-valued domain, and in practice, this domain is
also approximated by discrete types such as float.

This view of time as a continuous entity can be naturally combined with the concept of
dynamic ticks [24], where the program itself outputs a request how long the environment
can wait or sleep until the tick function should be executed again, the wake up time.
Dynamic ticks can be combined with event-triggered execution, thus one may again
react to both the passage of time and external events. Note that this concept preserves
the determinism of the synchronous system [24].

This results in a dynamic and efficient execution, as illustrated in Fig. 3.1b. The
wake up time w can either be set by an external global period or with dynamic ticks by
the preceding tick function, adapting to the actually enabled reactions. Additionally, in
situations where the reaction of the system depends on input events rather than time,
dynamic ticks should be combined with event-triggered ticks, since no definite wake up
time can be determined. As discussed in the next section, dynamic ticks in combination
with event-triggered execution allow the implementation of the eager semantics (trace
in Fig. 2.2b).
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4 Dynamic Ticks in SCCharts

Fig. 4.1 illustrates the general structure that we propose to incorporate physical time
into a reactive execution setting. As usual for an embedded system, a Tick Function
communicates with its Environment, reading inputs from Sensors and conveying outputs
to Actuators. Additionally, there is a Trigger Unit that calls the tick function, i. e., triggers
one reaction (a tick). This classical setup is augmented by dynamic ticks, highlighted
in red. Not only inputs trigger the execution (event-triggered) but there is also a Time
Manager for time-triggered execution. This Time Manager is responsible for providing
deltaT, the time passed since the last execution of the tick function, and it performs the
waiting for the next time trigger based on sleepT. The new input and output extend the
environment of the tick function.

4.1 The Traffic Light Controller with Dynamic Ticks

Our SCCharts traffic light control example in Fig. 2.3b can easily be further extended
to use dynamic ticks, resulting in the SCChart shown in Fig. 2.3c. It has an additional
output sleepT for the time span until the next time-related wake-up. In the root state
there is an additional immediate during action, which executes its effect at every tick the
state is active, including the tick the state is entered, due to the immediate modifier.
It sets sleepT to an appropriate default value (1000.0 in this example), which is then
updated in the states requesting an earlier wake up. This is done by further immediate
during actions which register the remaining time until a guard of this state can be ac-
tivated. The min= is an update assignment that assigns the minimal value between the
current value of sleepT and the rhs expression. (As detailed further elsewhere [25], the

Environment

Sensors

Tick
Function

(Automaton)
Inputs Outputs

sleepTdeltaT

Event-Trigger

Time-Trigger

Trigger Unit

Actuators

Tick

Time Manager

Figure 4.1: Controller and environment of a dynamic tick function.
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SCChart semantics deterministically schedules “updates” such as +=, *=, etc. after
other assignments, hence there is no race condition between the assignment of the de-
fault sleep time and the min= assignments.) The requested sleep time is calculated from
the timing constraints of the outgoing transitions, further discussed in Sec. 4.2.

The resulting behavior is illustrated in Fig. 2.2e. The dynamic reaction times emulate
the eager semantics (Fig. 2.2b), which we chose as the preferable execution semantics for
timed automata. The system reacts to the pedestrian input at time 40, the state of the
automaton does not change; however, as illustrated by deltaT and sleepT presented under
the time line, the dynamic ticks adapt to the event-triggered invocation and correctly
compute a new sleep time of 20. After the output of sigG at time 60, no wake up time
can be computed since no transitions primarily depends on timing constraints, hence
the default sleep time of 1000 is taken. The trace also shows that the reaction to the
pedestrian event at 122.2 is also “on time,” and the output of sigR is exactly 5 sec after
this event. Dynamic ticks use only a minimal number of reactions, as necessary to
process all events and to perform all transitions at their expected time.

4.2 How to Compute Sleep Times

The main task in computing the sleep time is to detect if and which passage of time
causes a transition to be enabled. Our SCChart compiler computes sleep times based on
a static analysis of the timing bounds in the outgoing transitions of a state, with certain
restrictions of timing constraint specifications to facilitate their implementation. More
specifically, we look for timing constraints of the form c ≥ ltb, where c is a clock and ltb
some expression that we refer to as lower timing bound. We compute the corresponding
sleep time as the difference between ltb and the current clock value. For example, state
red in Fig. 2.3c has an outgoing transition with guard x ≥ 60, hence red gets augmented
with an immediate during action that computes sleepT min= 60.0 - x. If a state has multiple
outgoing transitions with lower timing bounds, we assign the minimal positive sleep
time. To simplify the detection of lower timing bounds, our implementation rules out
negations of timing constraints, but that does not limit expressiveness; for example, !(x
< 10) should be written as x ≥ 10. Furthermore, constraints specifying an upper bound
do not contribute to the sleep time since they, considered separately, do not require time
to pass to be enabled and hence would result in a sleep time of zero.

Our example in Fig. 2.3c shows another case where no sleep time is requested and
the value of sleepT should fall back on the default value. In state green, both outgoing
transitions primarily depend on the pedestrian input, and x only distinguishes the two
paths. The two timing constraints are non-triggering in that just the passage of time
does not make a difference in whether any outgoing transition is enabled or not. If
pedestrian is false, we do not take any transition, and if it is true, we take a transition,
no matter what time it is; the time indicated by x solely decides which transition we
take.

To detect such non-triggering timing constraints, assume that the i-th outgoing tran-
sition of some state has a guard Gi = Ci ∧ Ti, where Ci is a condition that does not
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depend on time and Ti is a timing constraint. Assume that no guard is currently active,
i. e.,

∨
iGi = false. Furthermore, assume that T1 specifies a lower timing bound ltb.

This would usually require the computation of a corresponding sleep time, unless T1 is
non-triggering—which is the case if ∃i such that C1 implies Ci and ¬T1 implies Ti (i. e.,
whenever the ltb has not been reached yet, Ti holds). In our implementation, we further
simplify the conditions and assume that C1 and Ci are the same boolean guard, and
T1 and Ti are mutually exclusive unbounded timing constraints. As it turns out, the
guards on the outgoing transitions from green fulfill that criterion, taking pedestrian &&
x >= 60 for C1 and pedestrian && x < 60 for C2, thus the compiler classifies 60 to be a
non-triggering ltb and does not compute a sleep time for it.

The concept of computing sleep times based on lower bounds is closely tied to the eager
semantics. With an perfectly eager execution, it would by sufficient to write x ≥ 60 as
x = 60, but considering a real-valued time and a realistic implementation with possible
timer imperfections, the first option is more robust and thus preferable. Similarly, we
prefer closed timing intervals as specified with ≥ over open intervals specified with >.

However, the behavior specified by timing constrains can change when using a seman-
tics other than the presented eager one or if the reactions are delayed. If for example
more time than the minimum of a specified lower bound passes, it is possible that other
transitions get also enabled or disabled, which may change the expected behavior. As-
sume the example that a state is entered when at least 60 sec passed (x ≥ 60) and is
immediately (in the same tick) left when at most 80 sec have passed (x < 80), without
any reset of the clock. With eager semantics, the state will be entered after a time of
60 and then left immediately. If the reaction is delayed or another execution semantics
is applied and the system is able to react after a time of 80 for the first time, then the
state is entered but can never be left, leaving the system in that state forever. One
could argue such system is designed badly, but this is the reason why we prefer the
eager semantics. Note that for dynamic ticks we only trigger reactions on transitions
that require time to pass, such as ≥ constraints, but when a < constraint is the only
guard then there is no wake up. Otherwise such constraints with delayed transitions
would cause a sleep time of zero which contradicts the concept of a delayed reaction.
Note that delayed transitions, in contrast to immediate transmissions, require the state
machine to stay for at least one tick in the state before it can be left using a delayed
transition. In the previous example the transition x < 80 is not delayed and the state
can be left in the same reaction as entered.
Nevertheless, we also want to discuss the loosening of the eager semantics based on
dynamic ticks in the next section.

4.3 The Greedy Semantics

Dynamic ticks can be further extended to introduce soft bounds, leading to a greedy
semantics that loosens the regime of the eager semantics. To motivate, consider the
minimal SCCharts example in Fig. 4.2. There are two regions Fast and Slow, each
one uses a timed automaton to react. Assume that the time scale of this example
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FastAndSlow

clock x = 0

x >= 333
/ x = 0

-  Fast
clock x = 0

x >= 1000
/ x = 0

-  Slow

Figure 4.2: SCChart motivating the use of soft bounds in dynamic ticks.

is microseconds, thus Slow should react every millisecond and Fast three times faster.
Hence, starting at time zero, the third reaction of region Fast will be at time 999, leaving
only one microsecond to invoke the reaction of Slow, which might be infeasible for the
environment.

To circumvent such short sleep times, we introduce soft bounds. States with an
outgoing transitions with a soft bound still compute their own sleep time, but speculate
to possibly “piggyback” on a somewhat earlier reaction invoked by another state.

Specifically, the user may, in region Slow, replace the hard bound x ≥ 1000 by the soft
bound x ≥ 990 || x ≥ 1000. Our implementation detects this pattern and will request a
sleep time of 1000 for this state, as for the original hard bound specified with x ≥ 1000;
however, at run time the transition may already be taken at time 999, thus subsuming
the sleep time of 1000. This favors earlier reactions over late reactions, prevents very
small sleep times, and possibly reduces the total number of reactions.

4.4 Delayed Reactions

As a result of the eager semantics and its implementation using dynamic ticks, which
assumes that the system reacts immediately to the enabling of a transition, the question
arises: Can we react in time? The greedy semantics already allows to specify a certain
amount of slack in the sleep time, but here we want to focus on the problem of possible
deviation between the requested wake time and the actual execution time and their
effects of the system, relevant for both dynamic ticks and execution with a fixed period.
Since the system contains clocks, it requires a time input form the Time Manager, in case
of SCCharts deltaT, and there are different options to provide this input.

The first option is an artificial simulation, where the passed time is always the time
that should have passed, in case of the dynamic ticks the sleep time or the fixed pe-
riod if used. This encapsulates the system in a perfect world, where the execution is
independent from the real physical time.

The other option is to pass the real time to the system. That has the effect that the
deviation between the requested wake up time and deltaT that is passed to the system
depends on the environment. Executing a tick before the requested sleep duration has
passed does not affect the behavior since the clocks only increment by deltaT and the
related time constraints do not trigger. However, when the tick is executed after the
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requested sleep time, the additional delay time will affect all clocks, but when a clock is
reset this time is lost.

For our traffic light example in Fig. 2.3c that means if the automaton is in state yellow
and for some reason 70 sec, instead of 5 sec in eager execution, pass before the system
is able to react. It enters state red, resets the clock to zero and starts waiting again.
However, enough time passed that the system could have transitioned to red and then
to green if more reactions were possible. Hence, one could argue that we want to process
this additional time and try to “catch up” to the actual time. This can be done by
resetting clocks not to zero but instead subtract the time that should have passed. In
this example in combination with dynamic ticks the clock would be reduced by 5, leaving
65 on the clock, which is then consumed in the next reactions, triggered by a resulting
sleep time of zero. However, in this use case of a traffic light it is quite inappropriate
to do such “catch up” because there would be no actual time between switching from
red to green, because this time already passed when yellow was lit. Nevertheless, there
might be cases the additional passed time should stay on the clock.
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5 Multi-Clock SCCharts

Timed automata naturally support multiple clocks and so does its SCCharts implemen-
tation. In synchronous languages, there is also the concept of multiclocking [11], as in
Multiclock Esterel by Berry and Sentovich [5]. In that context the term “clock” does not
relate to a real-valued time measurement but a hardware clock that drives a hardware
circuit or similarly designed software. In multiclock systems, different parts of the pro-
gram are activated by different clocks, which are additional inputs to the program and
effectively refine the base clock. Our concept presented so far can be further adapted to
allow such multiclocking.

We have augmented SCCharts with an additional extended feature period, which con-
trols the activation of states and regions based on a real-time clock. The period command
ensures that the guarded state or region is only activated if the given amount of time
has passed since the entering/start of the state/region or its last activation.

5.1 The Motor Example

To illustrate the usage and effect of the period feature, Fig. 5.1 presents the SCCharts
example Motor. This represents a controller for two rather simplified stepper motors, for
example to drive a robot. There is a left (motorL) and right (motorR) motor, which are
run by toggling the corresponding boolean output at a certain frequency. The SCChart
has two concurrent regions, each controlling one motor with a simple state machine with
two states. The transitions cycle between the states and toggle the motor variable. In
our example, assuming time units of msec, the left motor must toggle every 4.2 msec,
which is represented by the period annotation in the region. The right motor is run with
a period of 1 msec.

To inspect the internal implementation of the extended period feature, Fig. 5.1b shows
the compiled intermediate result of Motor. The periods are transformed into timed au-
tomata, as introduced in Chap. 2, to control the timing of the regions. In region Left,
the inner states of the region are moved into a new super state that declares a new clock
variable x and a boolean flag tick. The tick variable acts as guard for all reactions in
the original state machine, now present in the inner region named Left. This prevents
the inner SCChart from performing any action if the clock is false. If any transition
or action has its own guard, it would be conjuncted with tick. Here tick is initialized to
false, which means that no reaction takes place in the initial tick; however, we might
also initialize tick to true, which would cause a reaction in the initial tick as well.

There is also a new region Period with a single-state timed automaton. At each tick
when the clock x reaches the period’s threshold, the tick variable is set to true and
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Motor
output bool motorL = false, motorR = false

period 4.2

/ motorL = true

/ motorL = false

-  Left
period 1.0

/ motorR = true

/ motorR = false

-  Right

(a) SCChart with period annotation

Motor
output bool motorL = false, motorR = false

clock x = 0
bool tick = false

tick
/ motorL = true

tick
/ motorL = false

- Left

2: / tick = false

1: x >= 4.2
/ x = 0;
  tick = true

- Period

-
clock x = 0
bool tick = false

tick
/ motorR = true

tick
/ motorR = false

-  Right

2: / tick = false

1: x >= 1.0
/ x = 0;
  tick = true

-  Period

-

(b) Transformed SCChart

Figure 5.1: Motor example modeled in SCCharts with periodic regions.

enables the reaction in the other region. Otherwise, indicated by the transition with
the lower priority (2:), the variable is set to false. Analogously, the Right region is
affected by the period transformation. Note that one might also add the clock logic
directly within the existing Left and Right regions. However, we decided to add the
separate Period region and explicit tick guard, to reduce the number of timed guards in
the model and to have a clear separation between timing and the original SCChart. In
the process of compiling SCCharts, the next step would be to transform the clock feature
as conceptually presented in Fig. 2.3.
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6 Extension with Clock Patterns

As we have introduced clocks and tick flags that represent activation conditions of re-
gions, we discuss here some possible use of those ticks. In particular, we want to make
explicit relationships between these ticks just as in polychronous systems [12] and multi-
clock implementations [11]. The Clock Constraint Specification Language (CCSL) [3]
has been defined as a language to handle clocks and to specify pure clock-related con-
straints independently of a specific programming language. CCSL sees clocks as infinite
sequences of ticks and can define when a tick (therefore a region) should tick or cannot
tick. We propose to annotate an SCChart with CCSL constraints that make explicit the
rate relationships amongst the various regions and states. This can be done as a pure
syntactic extension as long as such a specification can be compiled (internally) into a
valid SCChart.

CCSL provides a concrete syntax to handle clocks, whether logical or physical, as first-
class citizens. It provides patterns of classical clock constraints (like periodic, sporadic)
that can be of three types: synchronous clocks are directly inspired from primitive con-
structs of synchronous languages [4]; asynchronous clocks rely on the relation “happens-
before” from Lamport’s logical clocks [16]; and real-time clocks represent physical time.
Real-time constraints are usually a special case of the logical ones. For instance, CCSL
defines both a real-time and logical notion of periodic behavior. A clock a is periodic
on another clock b with period p if a ticks synchronously at every pth tick of b. If b is
a physical (real-time) clock (e.g., s), then its a classical periodic behavior, otherwise it
remains purely logical. The semantics of each CCSL constraint is an automaton and a
CCSL specification is the synchronized parallel composition of those automata [19].

Synchronous constraints are encoded as pure finite-state automata. Asynchronous
constraints rely on state machines with unbounded integer counters. In TimeSquare [9],
real-time constraints are encoded as a composition of logical constraints. However,
real-valued clocks can also be encoded as timed automata [23], and the dynamic tick
mechanism provides an efficient way to encode them in SCCharts. The goal here is
to annotate a SCChart with CCSL constraints. This relies on the explicit tick flag
introduced in Fig. 5.1b. CCSL annotations can either force the tick to occur (and
therefore the region to execute) or observe unexpected behaviors and raise alarms. Both
examples are illustrated in this section.

Figure 5.1a illustrated real-time clocks. In that model, the periodic behaviors of
both regions are relative to an absolute real-time reference, assumed to be msec in that
example. Alternatively, we can define the relative periodicity of the regions in CCSL as
some rational period p, as in repeat left every 4 right, where left is a clock associated with
the left region and right is a clock associated with the right region. The semantics of this
constraint is given as a simple finite-state automaton that can be encoded as a SCChart
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RepeatLeftEvery4Right
input bool right
output bool left = false

4 right
/ left = true

/ left = false
-

Figure 6.1: Expansion of logical periodic constraint

in a straight-forward way, as illustrated in Fig.6.1. There the guard “4 right” is a count
delay that becomes enabled after four occurrences of right.

Such synchronous constraints specify a fully determined behavior. When using asyn-
chronous constraints, we may get a partially undetermined behavior. Consider, e. g., a
periodic behavior with jitter as in repeat left every [4,5] right . This constraint expands as
the following primitive CCSL constraints:

1 lower = pLeft delayedBy 4 right
2 upper = pLeft delayedBy 5 right
3 lower < left ≤ upper

where pLeft is defined by the constraint left = pLeft $ 1. The $ is used for unit-delay as
in Signal, it defines pLeft as the same clock as left preceded by one more tick, like a pre
operator.

lower represents the lower bound for left to tick while upper is the upper bound. The
last equation forces left to tick strictly after lower and before upper. Each of these
constraints can be encoded as concurrent SCCharts (see Fig. 6.2a). TimeSquare builds
the synchronized product of these automata to compute a finite state automaton that
can be encoded as a simpler SCChart, see Fig. 6.2b; note that the dashed transition
leaving s0 is immediate, meaning that it could be taken immediately in the tick when
s0 is present.

The behavior exposed in Fig. 6.2 describes clock relations between the two regions left
and right. At the same time, it observes whether or not the regions behave as expected.
Clocks left and right are inputs and a wrong sequence of inputs would lead into the
error state, like an assertion. It also enables or disables the code in regions. In state
enabled left, the region left is enabled and its code is executed as expected. In other
states, the region is disabled and its code should be ignored.
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JitterAutogen
input bool right, pleft
output bool left, lower, upper
int c_pleft = 0, c_lower = 0, c_left = 0, c_upper = 0
bool _pleft_on_right = false, _pleft_1right = false, _pleft_2right = false, _pleft_3right = false, _pleft_4right = false

post

pleft
/ c_pleft++

- r1

init

/ left = pleft && pre(c_pleft) >= 1
-  r2

off on
pleft
/ _pleft_on_right = true

right && !pleft
/ _pleft_on_right = false

-  r3

off on
right && pre(_pleft_on_right)
/ _pleft_1right = true

right && !pre(_pleft_on_right)
/ _pleft_1right = false

- r4

off on
right && pre(_pleft_1right)
/ _pleft_2right = true

right && !pre(_pleft_1right)
/ _pleft_2right = false

- r5

off on
right && pre(_pleft_2right)
/ _pleft_3right = true

right && !pre(_pleft_2right)
/ _pleft_3right = false

-  r6

off onright && pre(_pleft_3right)
/ lower = true

/ lower = false
- r7

off on
right && pre(_pleft_3right)
/ _pleft_4right = true

right && !pre(_pleft_3right)
/ _pleft_4right = false

- r8

off onright && pre(_pleft_4right)
/ upper = true

/ upper = false
- r9

post

lower
/ c_lower++

- r10

post

left
/ c_left++

-  r11

post

upper
/ c_upper++

- r12

err

2: pre(c_left) - pre(c_upper) < 01: pre(c_lower) - pre(c_left) == 0 && left

-

(a) Automatically generated SCChart for jitter

JitterReduced

disabledLeft

s0 s1 s2 s3 s4right right right right
- enabledLeft

error2:

1: left

1: left

2: right

-

(b) Simplified SCChart for jitter

Figure 6.2: Periodic behavior with jitter.
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7 Related Work

Timed automata [2] introduce real-valued clocks to describe the temporal behavior of
systems using a continuous notion of time. Usually some progress conditions are re-
quired [14] to avoid time divergence and to guarantee that the system does not remain
idle forever. While timed automata and their multiple extensions are originally defined
with an asynchronous semantics, we here propose to harness them in the synchronous
settings of SCCharts.

As presented here, the clock feature models single-rate clocks, as initially proposed by
Alur and Dill [2], since it relieves the modeler of explicitly handling time. However, note
that the clock type is only a convenience feature, and a user can always model SCCharts
directly as presented in Fig. 2.3b and implement multirate clocks by scaling the change
of x in the during actions. As discussed by Sifakis et al., multirate timed automata can
be mapped to timed automata [20], and in the traffic light example, that transformation
is rather straightforward as the only clock x always moves at the same speed.

Harel [13] also proposes time extensions to statecharts where a time t is associated
with every transition and t refers to a global notion of discrete time steps. We consider
here both discrete and real-valued models of time.

Zelus [6] is a synchronous language that mixes both discrete-time and continuous-time
behaviors. Continuous behaviours are described through ordinary differential equations.
We are not decribing continuous behaviours here but provide an extension to SCCharts
to make explicit the activation conditions of regions under the form of clocks that serve
to express both real-valued and logical constraints.

As explained, this work builds on the concept of dynamic ticks proposed by von
Hanxleden et al. [24]. Thus most of the related work discussed by them is also relevant
for this work. This includes for example the work by Jourdan et al. on extending
ARGOS with timing constructs [15], or PTIDES (Programming Temporally Integrated
Distributed Embedded Systems), which addresses the design and implementation of
distributed real-time embedded systems [10].

The dynamic ticks is akin to the agenda of timed events used in discrete event sys-
tem specification (DEVS) [?] to always pick the most urgent event without relying on
a timed-triggered strategy. However, the sequentially constructive semantics of SCCha-
rts, which permits instantaneous modifications of variables under consideration of data
dependencies, reduces the need for so-called delta-cycles.
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8 Conclusions and Outlook

We have investigated how to incorporate physical time into the synchronous model of
execution. As it turns out, timed automata can be mapped naturally to the synchronous
setting, requiring only minimal support from the environment. However, to achieve a
concrete implementation also requires to settle for a concrete, unambiguous semantics
that specifies not only when a system may react but also when it actually does react;
to that end, we have settled for the eager semantics, as also suggested by Lee and
Seshia [18].

We have proposed two extensions to SCCharts, namely clocks and periods, that can be
mapped directly to standard SCCharts. We have implemented these extensions as part
of an open-source compiler1. We expect that similar extensions could be implemented
in other synchronous languages, such as Esterel, Lustre or also SCADE, as they for
example also facilitate the “during actions” required for tracking clocks.

We have cast the concept of clocks and time in the context of physical time and
durations. However, for us the only practical requirements on clocks are the ones that
timed automata cast on clocks, namely monotonicity and progress. Thus, one might
also consider other (at least conceptually) continuous entities as clocks, such as distance
travelled. In other words, the multiform notion of time could also be applied to time as
proposed here, all within a synchronous setting.

There are several directions to proceed from here. First, we would like to get more
practical experience with the language constructs proposed here. The clock and period
extensions already promise to be quite useful, but other, more high-level language exten-
sions would be feasible as well, as suggested for example by the features already present
in CCSL. Then, while the way these features are mapped to standard SCCharts seems
natural and straightforward, more efficient mappings might be possible. Similarly, in
the context of dynamic ticks, we currently have a rather simple heuristics to compute
sleep times from timing constraints; more powerful static analyses might again lead to
a more efficient implementation.

1http://rtsys.informatik.uni-kiel.de/kieler
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