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ZU KIEL



Department of Computer Science
Kiel University

Olshausenstr. 40
24098 Kiel, Germany

Using SCCharts Models in Simulink to Model an
Electronic Control Unit

Monty Santarossa, Steven Smyth,
Alexander Schulz-Rosengarten and Reinhard von Hanxleden

Report No. 1903
July 2019

ISSN 2192-6247

E-mail: {stu121264,ssm,als,rvh}@informatik.uni-kiel.de

Technical Report



Abstract

When constructing an electrical racing car, special attention needs to be directed to the
development of its engine control unit. Functionality of the motor-torque calculation and
the integration of advanced driver assistance systems are crucial for the speed handling
and hence, the safety of the car. The Kieler Formula Student Team Raceyard, which since
2011 has been constructing electrical racing cars annually, so far designed and tested its
controller model in the popular commercial modeling software MATLAB/Simulink.
This work shows how a functionally equivalent system can be designed by utilizing

the visual synchronous language SCCharts in the academic open-source project KIELER.
A complete controller model is modeled in KIELER and validated to behave the same
as the original controller both in Simulink directly as well as in the 3D simulation
environment IPG Carmaker. Tests on the performance of both controllers show that
while a slowdown can be observed when comparing the generated C Code, simulation
time in IPG Carmaker only increases by a negligible factor.

KIELER’s developing and testing capabilities for synchronous models can therefore be
considered a valuable tool in the process of designing, tuning and documenting such a
controller model.
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1 Introduction

The Formula Student is an international design competition for students, where every
year the aim for each team is to design, construct and test a race car. These race cars
are then compared and judged during official events. Points are awarded for static disci-
plines, such as preparing a business plan and a cost report, and for dynamic disciplines,
where the car has to race on different courses. Since 2005 Team Raceyard takes part
in the Formula Student as the official team of the University of Applied Sciences Kiel.
Beginning with the season 2011/2012 Raceyard has exclusively designed electric cars -
a trend that is continued in the current season with the additional challenge of using a
four-wheel drive for the first time in the team’s history.
Designing an electric car means that each of the motors has to be controlled by a

program instead of by mechanical devices. The signals from the various sensor boards in
the car as well as the suggestions from the driver, i.e. acceleration pedal position, brake
pedal position and if necessary the steering angle, have to be converted into four torques
for the four electric motors. Further aspects to be considered are power limitations
dictated by the Formula Student rulebook, the traction control system, torque vectoring
that allows a sophisticated torque distribution to avoid over- and understeer and a
system for recuperative braking, where the motors act as a generator to charge the
battery. The program that accomplishes all of this as well as handling communications
between the boards inside the racing car is by Raceyard internally referred to as the
Electronic Control Unit (ECU).
For the task of designing and testing the control systems of the ECU, Raceyard uses the

MathWorks’ modeling software Simulink. Integrated into MATLAB, Simulink provides
a block diagram environment for modeling and testing dynamic systems. Of special
importance for Raceyard are the built-in blocks for PID controllers and the provision
of scopes and displays to view every signal inside the system during and after runtime.
Furthermore, those signals can be saved externally into MATLAB-arrays for later anal-
yses. Verifying as well as fine-tuning the ECU is done via the simulation software IPG
Carmaker. IPG Carmaker provides a virtual 3D environment and simulated drivers of
varying abilities so that the effects of the ECU can intuitively be seen on the 3D car
model. Due to integration of IPG Carmaker into Simulink, values from the simulation
such as the velocity of the car or the forces acting upon it can be measured and saved
using the previously described scope- and display-blocks in Simulink. This practically
allows for storing entire test runs. Following the test-phase, the Simulink model is then
converted into C code and put on an STM32F40 micro controller inside the car.
SCCharts is a synchronous language that was designed for safety-critical applica-

tions [11]. It can be seen as a successor to SyncCharts [1], which itself is a graphical stat-
echarts variant of Esterel [2], combining the semantics of Esterel [3] with the graphical
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notation of Harel’s statecharts [5]. The most complete implementation of the SCCharts
language is included in the academic, open-source project Kiel Integrated Environment
for Layout Eclipse Rich Client (KIELER)1 as the KIELER SCCharts Editor. The editor
includes all tools a developer needs to develop, simulate, and compile SCCharts. It also
supports different code generation approaches and pre-defined compilation chains for
various target platforms.
The goal of this work is to evaluate whether the KIELER modeling environment can

be used to design an ECU-model equivalent to those already used by Raceyard. The
performance of the KIELER model is compared against the existing models, both when
integrating the KIELER model as a System in Simulink as well as when generating C
code for the micro controller from Simulink.
To this end the following workflow was applied: The subsystems of the Raceyard

controller were remodeled as SCCharts using KIELER. The KIELER SCCharts were then
converted into C Code and integrated into Simulink as several subsystems. These steps
are presented in Chap. 2. The model was validated by testing its generated C Code as
well as comparing the results in Simulink and IPG Carmaker to the original controller
model in Chap. 3. The performance of both models as well as the performance of their
resulting codes were measured in different environments in Chap. 4. Related work is
introduced in Chap. 5.

1http://rtsys.informatik.uni-kiel.de/kieler

Figure 1.1: The T-Kieler18 B racing car built by Team Raceyard in the Season 2018/2019
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2 The Control System Model

This chapter introduces the Control Systems model as used by Raceyard. The sub-
systems and the resulting C code for the ECU are explained in Sec. 2.1 and Sec. 2.2,
respectively. In Sec. 2.3 the subsystems are remodeled as SCCharts in KIELER. Sec. 2.4
looks at the C Code generated from the SCCharts and Sec. 2.5 shows how it is integrated
into Simulink. A different approach of modeling the SCCharts as dataflow is introduced
in Sec. 2.6.

2.1 The Control Systems Model in Simulink

In its most simple form, the controller is considering only the positions of the brake
and the acceleration pedal from the driver input. If the brake pedal is pressed to any
greater amount than 5%, no (positive) output torque is given to the motors. In any
other case the output torque is scaled proportionally to the position of the acceleration
pedal and evenly distributed to the four electric motors. The maximal output torque is
then limited only by the maximal torques of the motors (28 Nm for each one) and the
power limitations given by the Formula Student rulebook (80 kW at any given moment).
Note that the described controller does not include a traction control system, torque

vectoring or recuperative braking. In fact, this controller model does not even include
any sort of P, PI or PID controller. However, while being simplistic, this is the controller
model that Raceyard used extensively for testing in the real car. Using a simple but

Figure 2.1: The top layer of the controller model in Simulink
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Figure 2.2: The subsystem desired torque calculation in Fig. 2.1

robust controller proved to be helpful when evaluating other, possibly more critical
compartments of the car.
Fig. 2.1 shows the Simulink model of the described controller. The model needs three

inputs: Input one and two are the positions of the acceleration and the brake pedal re-
spectively, coded in a range from 0 to 1; 1 meaning the pedal is pressed down completely.
The third input is a 1x4 vector consisting of the current revolutions per minute of each
of the four electric motors. The model itself is divided into two subsystems. The three
inputs are converted into a desired output torque in the first subsystem desired torque
calculation. This torque is a single value equal for every motor. It is then checked in
the second subsystem power limiting whether the desired torque would lead to a needed
mechanical power that is greater than a given power limit. If this is the case, the output
torque is limited; if it is not the case, the output limited torque of the subsystem equals
its input desired torque. This single output value is then propagated to the four outputs,
resulting in four equal torques for the motors. Furthermore, the subsystem power limiting
calculates the needed power for the limited torques. The calculated power value is then
given first to the output actual power of the subsystem and then to the output with the
same name of the complete model. Note that this output is only a control value for
testing and is not influencing the behavior of the car in any way.

2.1.1 Desired Torque Calculation and Speed Calculation

Fig. 2.2 shows the desired torque calculation subsystem of the Simulink Controller. In
essence, the subsystem checks whether the driver wants to brake or accelerate and sets
the desired output torque accordingly. The decision of braking or accelerating is done
via the brake acceleration switch at the end of the subsystem. A brake pedal position of
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Figure 2.3: The subsystem speed calculation in Fig. 2.2

Figure 2.4: The subsystem power limiting in Fig. 2.1

more than 5% is interpreted as the intention to brake.
While, as stated in the beginning of this chapter, recuperative braking is not supported

by the controller, a basic test architecture for it already exists and is described by the top
part of the subsystem in Fig. 2.2. At first, the rpm of the slowest motor is detected and
converted to the longitudinal velocity in m/s of the corresponding wheel. The formula
for this is:

velocity = rpm · tire_radius

gear_ratio

The Simulink model for the calculation is shown in Fig. 2.3. Note that this way of
calculation the velocity does not hold up in the real world because of tire slip. If in
simulated circumstances the calculated velocity is above the threshold for recuperative
braking, e.g. 5 km/h ≈ 1.388 m/s as stated in the Formula Student Rulebook, the
amount of negative torque for recuperation is proportional to the position of the brake
pedal. The same principle applies when the driver wishes to accelerate. This is described
by the bottom part of the subsystem. The acceleration pedal position is multiplied by
the maximal torque available for the motors (28 Nm in our case), so that a pedal position
of 100% leads to the maximal possible output torque.

2.1.2 Power Calculation and Power Limiting

After the desired torque is calculated in the subsystem desired torque calculation, the
adequately named subsystem power limiting, shown in Fig. 2.4, limits the output torque,
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(a) The subsystem power calculation

(b) The subsystem power limiting

Figure 2.5: The subsystems of Fig. 2.4

if the needed mechanical power needed for the desired torque would exceed a given
limit. To that end, the subsystems power limiting itself is split into three subsystems:
power calculation, power limiting and actual power calculation. It should be noted that only
the first two subsystems influence the behavior of the car, since actual power calculation
only affects the testing value actual power.
The subsystem power calculation is shown in Fig. 2.5a and models the formula:

power = torque · rpm

9550

Here 1
9550 is the constant for motor torques when converting from Nm/min to kW. In

order to ensure an over-approximation, this calculation is done using the maximum of
the four motor rpms. The result is then multiplied by four to get an approximation of the
total needed mechanical power for the desired output torque. It should be noted that
due to friction etc. the actual electrical power drawn from the accumulator is higher
than the used mechanical power. The ratio between the two is described as energy
conversion efficiency and is constantly changing depending on multiple conditions. In
the simple Raceyard controller this ratio can be accounted for by choosing the parameter
maximum_power accordingly.
Should the over-approximated mechanical power exceed the given maximum_power,

the output torques are limited accordingly in the subsystem power limiting as seen in
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Fig. 2.5b. The ratio between the needed and the allowed power is calculated, after
which the output torque is multiplied with this ratio.
The subsystem actual power calculation works in exactly the same way as power calcu-

lation, but instead of the desired torque gets the limited torque as input. If limitation of
the torques was necessary the output power of this subsystem should always be equal
to the maximum power, data type imprecisions excepted.

2.2 The Simulink Model in C

In order for the Simulink model to run on the micro controller, it had to be converted into
C code, which is then integrated into the overall ECU program. Simulink provides tools
to automatically generate C code. For the purposes of Raceyard, this results in three
files: a typedef file, that is not further discussed here, one header and one source file.
The header file contains declarations of the initialize()-function and the step()-function as
well as definitions of the input struct and the output struct of the model.
The initialize()-function as defined in the source file is needed if the model uses blocks

with designated starting conditions. The step()-function as defined in the source file
contains the logic of the model. The input and output struct have as their respective
members the input and output signals of the Simulink model as seen in Fig. 2.1. Ex-
ternal parameters such as maximum power or gear_ratio (refer to Fig. 2.5b and Fig. 2.1
respectively) are declared as global variables in the header file and initialized with their
standard values in the source file.
One run of the model can then be realized in the following way: The initialize()-function

is called once as soon as the ECU starts. The variables of the input struct are set
according to the current values provided by the real sensors or the simulation. Next, the
step()-function is called, which results in the controller running the model and writing
the calculated outputs into the output struct. From there, the outputs can be read and
sent to the motors by the ECU. The process of writing into the input struct and calling
the step()-function is repeated for as long as the ECU runs.

2.3 The Control Systems Model in KIELER

Given that the controller model consists of five subsystems, the decision was made to sep-
arately remodel those five subsystems rather than the whole controller itself. Since the
resulting models are practically black boxes in Simulink (refer to Sec. 2.5 and Chap. 6),
this approach not only guaranteed a faster success in debugging, but also closely re-
sembled a possible future design process, where most likely only certain elements of the
controller are modeled and tested in SCCharts. It should also be noted that in the
following SCCharts models, readability and resemblance of the original Simulink mod-
els were given priority. Most of the subsystems describe one prolonged mathematical
function that could be realized with only a single state.

7



(a) The subsystem speed_calculation remodeled in SCCharts (compare to Fig. 2.2)

(b) The subsystem desired_torque_calculations remodeled in SCCharts (compare to Fig. 2.3)

Figure 2.6: The subsystem desired_torque_calculations in SCCharts
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(a) The subsystem power_caluclations remodeled in SCCharts (compare to Fig. 2.5a)

(b) The subsystem power_limiting remodeled in SCCharts (compare to Fig. 2.5b)

Figure 2.7: The subsystem power_limiting in SCCharts

Fig. 2.6a shows the SCCharts resembling the speed_calculation subsystem. The first
three states model the functionality of the min-Block of the original model while the
fourth combines both gain-Blocks. Fig. 2.6b shows the desired_torque_calculation sub-
system that can be seen in Fig. 2.2. The first and second state calculate the decelera-
tion_torque and acceleration_torque of the original Simulink model respectively. The third
state serves as the recuperation-switch, while the fourth act as the brake-switch.
The power_calculation subsystem as shown in Fig. 2.7a is a straightforward implemen-

tation of the power formula multiplied by four. The actual_power_calculation SCCharts
model is, input names excepted, identical to the power_calculations SCCharts model.
Finally, the power_limiting subsystem as an SCCharts model is shown in Fig. 2.7b. The
first, second and third state serve as the less-than-block, the divide-block and the multi-
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ply-block of the original Simulink model respectively. The fourth state act the switch at
the end of the original model.

2.4 The KIELER C Code

To illustrate the structure of the KIELER C code, the code generated from the desired-
TorqueCalculation SCCharts model is used exemplary for all the SCCharts modeled in
Sec. 2.3. By default the SCCharts C code generator creates one header file and one
source file.

Listing 2.1: C tick data struct
1 typedef struct {
2 double accPedalPos;
3 double brkPedalPos;
4 double speedAtWheels;
5 double maxTorque;
6 double minTorque;
7 double desiredTorque;
8 double decelTorque;
9 double accelTorque;

10 double torqueIfSpeedToLow;
11 double switch1Output;
12 char _g1;
13 char _g2;
14 char _g3;
15 char _g4;
16 char _g6;
17 char _g8;
18 char _GO;
19 char _cg1;
20 char _cg3;
21 char _TERM;
22 char _pg4;
23 } TickData_DesredTorqueCalc;
24

25 static inline void reset_DesredTorqueCalc(TickData_DesredTorqueCalc∗ d);
26 static inline void logic_DesredTorqueCalc(TickData_DesredTorqueCalc∗ d);
27 static inline void tick_DesredTorqueCalc(TickData_DesredTorqueCalc∗ d);

The header file as seen in List. 2.1 defines the reset(), tick() and logic() functions. It also
defines a TickData struct that contains all the inputs, output and local signals defined
in the SCCharts model as well as additionally needed internal signals.

Listing 2.2: C tick and reset functions
1 #include "DesredTorqueCalc.h"
2

3 static inline void reset_DesredTorqueCalc(TickData_DesredTorqueCalc∗ d) {
4 d−>_GO = 1;

10



5 d−>_TERM = 0;
6 d−>_pg4 = 0;
7 }
8

9 static inline void tick_DesredTorqueCalc(TickData_DesredTorqueCalc∗ d) {
10 logic_DesredTorqueCalc(d);
11 d−>_pg4 = d−>_g4;
12 d−>_GO = 0;
13 }

The source file as seen partly in List. 2.2 defines the mentioned functions. As the name
suggests, reset() is called in order to bring all signals into their initial state. The logic()
function is called via the tick() function and executes the internal logic of the SCCharts
model, i.e. updating all the signals.

Listing 2.3: C wrapper function
1 #include "DesredTorqueCalc.c"
2

3 static TickData_DesredTorqueCalc d_dtc;
4 static bool dtc_init = true;
5

6 static inline void wrapper_DesredTorqueCalc(double accPedalPos, double brkPedalPos, double
speedAtWheels, double maxTorque, double minTorque, double ∗desiredTorque)

7 {
8

9 if (dtc_init) {
10 reset_DesredTorqueCalc(&d_dtc);
11 dtc_init = false;
12 }
13 d_dtc.accPedalPos = accPedalPos;
14 d_dtc.brkPedalPos = brkPedalPos;
15 d_dtc.speedAtWheels = speedAtWheels;
16 d_dtc.maxTorque = maxTorque;
17 d_dtc.minTorque = minTorque;
18 tick_DesredTorqueCalc(&d_dtc);
19

20 ∗desiredTorque = d_dtc.desiredTorque;
21 }

For the purposes of this work a third file was generated: The wrapper.c file as seen
in List. 2.3 contains an interface to easily allow execution of one tick of the SCCharts
logic by calling wrapper function. An instance of the according TickData is created and
initialized by calling the reset() function. The input signals of the SCChart model are
set according to the given parameters and the tick() function is called, before the outputs
are returned via call by reference. Since the reset() function should be executed only
once in the first tick, there is an additional global variable init that is initialized with
’true’ and will be set to ’false’ after reset() is called, ensuring that reset() is called only
once.
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Figure 2.8: The subsystem desired torque calculation of the KIELER Controller

Figure 2.9: The subsystem power Limitation of the KIELER Controller

2.5 Integrating KIELER C Code into Simulink

MATLAB and by extension Simulink provides various ways of including external code.
Though the possibility to model state dynamics through the Level-2 MATLAB S-
Function or the S-Function seemed promising, the first executed too slowly in practice
while the latter required more setup work than were deemed necessary for the purposes
of this work. Therefore, the fast and more streamlined approach of utilizing a MATLAB
function was chosen. In accordance with the instructions listed on the official Math-
works Documentations website1, the wrapper C code can be integrated by using the
MATLAB coder.cinclude function to include header files, the coder.updateBuildInfo with
the parameter ’addSourceFiles’ to include source files, the coder.ceval function to call

1https://de.mathworks.com/help/simulink/ug/incorporate-c-code-using-a-matlab-function-block.html
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(a) SCCharts Dataflow model of the speed calculation
from Fig. 2.6a

(b) Dataflow model of the power
calculation from Fig. 2.5a

(c) LSCCharts dataflow model of the
desired torque calculation from
Fig. 2.6b

(d) Dataflow model of the power lim-
iting from Fig. 2.5b

Figure 2.10: SCCharts dataflow models for critical model parts introduced in Sec. 2.3

outside functions and the coder.ceval function to realize call by reference.
MATLAB Functions can be integrated into the Simulink model via the MATLAB

function block. Therefore, the KIELER controller model in Simulink as seen in Fig. 2.8
and Fig. 2.9 consists of five such blocks, two in the subsystem desired torque calculation
and three in the subsystem power limiting. Evidently some of the MATLAB function
blocks feature additional inputs that their original subsystem counterparts lack. As
described in Sec. 2.3, these inputs exist to account for the global parameters such as
maximum power that can be set from outside the Simulink model.

2.6 Dataflow in KIELER

Calculation-based models often only use instantaneous transitions to execute a sequence
of assignments. This pure dataflow usage within a state-based language can sometimes
be cumbersome to model and impair the overview. With recent SCCharts upgrades
the modeler is now capable to create dataflow or hybrid models directly. This dataflow
extension is a new extended feature of SCCharts. The feature will be transformed away
during compilation using the standard compilation approaches available in KIELER
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(a) Actions in the
classical state-
based SCCharts
style

(b) View of the Fig. 2.11a model with actions displayed
as dataflow. The operator used in Reset performs
an update on E.

Figure 2.11: Different action views of the same SCCharts model

SCCharts [8, 11]. Basically, each dataflow assignment is translated into a during ac-
tion, which will be translated as usual [7]. Hence, as long as the enclosing state (or
statemachine) is active, a dataflow region is executed in every tick.
Fig. 2.10 shows four dataflow variants of the speed calculation (in Fig. 2.10a), the

power calculation (in Fig. 2.10b), the desired torque calculation (in Fig. 2.10c), and
the power limiting (in Fig. 2.10d) presented in Sec. 2.3. In each model you can see
how the required data inputs on the left are combined to form the desired output on
the right. SCCharts’ new modeling features aim to encourage modelers to embrace a
more hybrid-like modeling style, where state-based solutions are modeled with statema-
chines and calculation-based parts are modeled (or at least visualized) in dataflow. Both
incarnations can co-exist.
However, while it might be preferable in some contexts to be able to model dataflow

relations in dataflow regions, both worlds can also benefit from each other through
dedicated views without modeling in the other world directly. For example, state-based
actions from superstates can be displayed as dataflow, even if modeled in SCCharts’
classical state-based sense. Fig. 2.11 shows different views on the same SCCharts model.
In Fig. 2.11a the classical state-based syntax with textually displayed actions is depicted.
The dataflow counter-part is shown in Fig. 2.11b, using the same underlying model. Only
the graphical syntax changed.
Another example of this principle is the induced dataflow view presented elsewhere [12].

Here, dataflow relationships in pure state-based models are made visible explicitly during
the view synthesis. Again, there is no need to modify the original state-based model.
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3 Validation

In order to ensure that the KIELER controller works as intended, it has been tested
against the Raceyard controller it modeled after. Ideally, the KIELER controller works
such that no difference in the outputs can be observed when compared to the Raceyard
controller. Comparisons were done directly in Simulink, where full control over the
inputs is given, as well as in the 3D simulation software, where the controller can be
tested under the complex conditions similar to those in a real car.

3.1 Validation in Simulink

The goal for the KIELER controller is to function exactly as the Raceyard controller.
Therefore a setup has been chosen where both controllers are assigned the same inputs
and their outputs are compared against each other. Since there are three different kinds
of inputs, acceleration pedal, brake pedal and motor rpms, the effects of all three have
been tested.
If the brake pedal is not pressed and no power limiting has to be applied because of too

high motor rpms, an acceleration pedal position of 0% should result in output torques
of 0 Nm while a acceleration pedal position of 100% should result in the maximal 28
Nm possible for the motors with a linear interpolation in between. As can be seen in
Fig. 3.1a, both the Raceyard and the KIELER controller accomplish this. As stated in
Sec. 2.1, a brake pedal position of more than 5% is considered as the intention to brake.
In this case a torque of 0 Nm should be given out. As Fig. 3.1b shows, this again is
accomplished by both controllers.

3.2 Validation in IPG Carmaker

For testing the power limitation, a theoretical scenario is considered, where the max
motor rpm is linearly growing from 0 to 11000 and the mechanical power equals the
electrical power drawn from the accumulator. According to the power formula presented
in Sec. 2.1, if the acceleration pedal is pressed 100% (and therefore an output torque
of 28 Nm for each motor is desired), power limitation should start as soon as the max
motor rpm reaches

80kW · 9550
4 · 28Nm

≈ 6821rpm.
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(a) Output Torques according to the acceleration pedal position

(b) Output Torques for full acceleration and different brake pedal positions

(c) Limiting Torques w.r.t. max motor rpm for full acceleration

(d) Calculated power drawn from the accumulator for full acceleration and different max motor
rpms

Figure 3.1: Comparisons between the Raceyard and the KIELER Controller in Simulink
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Figure 3.2: One of the validation tracks made in IPG Carmaker

As Fig. 3.1c shows, this holds true for both controllers. Fig. 3.1d further shows that the
needed mechanical powers which both controllers calculate, stays at 80 kW after limiting
is necessary. This means the torques are limited in such a way that the maximal possible
target torque (within the limitations of the calculation) is given to the motors. In the
end, where the max motor rpm reaches 11000 rpm, this is

80kW · 9550
4 · 11000rpm

≈ 17.36Nm.

To compare both controllers under conditions that are similar to those in a real car,
the simulation software IPG Carmaker was utilized. Since IPG Carmaker features a 3D
rendering environment, the equivalence of both controllers for a certain test run can be
established by comparing the paths driven: Given the same car, the same track and the
same virtual driver, both vehicles should behave exactly the same.
This test was done for several tracks, one being pictured in Fig. 3.2. One run on that

track consisted of the racing car driving for 200 meters. As can be seen in Fig. 3.3,
both controllers result in the same steering angle as well as the same velocity at each
part of the track and they both needed 16.8 seconds to complete the 200 meters. Those
values stand exemplary for the exact same behavior of both controllers that could be
established during all the test runs. This equivalence could also be seen directly in the
3D environment. IPG Carmaker provides a feature, where the path a car took during a
certain test run can be saved as a ghost vehicle that shows up in later test runs. Using
this feature, it could be observed that the racing car using the KIELER controller and
the ghost using the Raceyard controller overlap at all times. Given the vast amount
of simulated forces and other variables acting upon the racing car, it would be highly
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Figure 3.3: Steering angle and velocity of the Raceyard and the KIELER controller

unlikely that two controllers with different functionality would result in behaviors that
are indistinguishable by eye. Therefore, given the provided exemplary data as well as
the visual feedback, it is validated that the KIELER controller functions as intended.

3.3 The PI Controller in SCCharts

The preceding sections show that by using SCCharts models and integrating them into
Simulink it is possible to achieve the level of functionality that is needed for the simple
Raceyard controller. Given that the only difference in complexity between the simple
and the complete Raceyard ECU controller other than the number of blocks used is the
utilization of P and PI controllers, the questions remains whether it is possible to design
a SCCharts model equivalent to a PI controller in Simulink.
A PI controller is a feedback mechanism used in control loops. A signal is measured

and compared to a target value. The difference between both values, the error, is given
to the PI controller, which then produces a control variable that controls a device such
that the future error is minimized. The control variable in a PI Controller is the sum
of two terms: The proportional term and the integral term. The proportional term is
always the error value scaled by a certain factor. The integral term is the result of
integrating the scaled error value over time. Raceyard uses P and PI controllers for its
traction control system and for torque vectoring. Of special interest for remodeling in
SCCharts is the I component of the controller: For each tick, the PI controller has to
remember the value of its integral term and update it according to the current error
value. As such, the PI controller is the only block in the Raceyard controller model that
requires to store variables among multiple time steps.
In SCCharts internal variables can be used to store values over multiple ticks. Until
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Figure 3.4: The PI Controller as realized in SCCharts

now such variables were only used to store constants or temporary results. However, as
can be seen in Fig. 3.4, updating the internal variable Iintern rather than overwriting it
ensures the needed functionality for the integral term of the PI controller. Additionally
to the error, P, I and the obligatory init inputs, the model expects one further input: the
period between two calls of the ECU Controller measured in seconds. When converting
the Simulink model to C code, no considerations are made about the clock rate the code
operates on. Therefore, a PI controller that was simulated in Simulink using a clock
rate of 1000 Hz will behave a lot slower with regards to real time when put on a micro
controller that operates the controller at 50 Hz. To account for those differences in clock
rates, the value added to the integral term in each tick is multiplied by the period. In
this way the only difference in the behavior of the PI controller when measured in real
time is due to the different sample frequencies. Note that it is possible to achieve the
same result by using the product of the I factor and the period as the I input. This
is how Raceyard accounts for the problem when using the standard PI controller block
in Simulink. An additional, adequately named input, however, seemed to be the more
intuitive solution, which is why it was chosen for the SCCharts model.
Fig. 3.5 shows that by integrating the SCCharts PI controller it is possible to provide

the functionality of the Simulink PI controller. Given the same error, I and P inputs as
well as equivalent periods both controllers will now calculate the same corrected output
value. It is therefore possible in SCCharts to design a functional PI controller for use in
Simulink and by extension the complete ECU controller used by Raceyard in the season
2018/2019.
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Figure 3.5: The output of the Simulink and the SCCharts PI controller after a 10 second
simulation with a fixed period of 0.001 seconds
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4 Performance

In order to compare the performance of both controllers, the execution time of their C
code as well as their speed inside the simulation software IPG Carmaker was tested.
For comparing the C codes, both codes were put on a Raspberry Pi Version 2 and

executed in batches of 1500 calls of the step() function. The time was measured immedi-
ately before and after the 1500 calls have been completed.Given the described setup, the
execution time of the Simulink controller code averages at 1.648 ns, while the KIELER
code averages at 6.918 ns, resulting in a slowdown of 4.2 ns when comparing the first
to the latter. This is assumed to be largely due to the function overhead of the KIELER
C code. Whereas the Simulink code is able to execute the calculations directly in the
step() function, the KIELER code needs to call for each subsystem its wrapper(), tick() and
logic()-function, resulting in a total of 15 additional function calls. The proportion of
the overhead is further amplified by the fact, that only comparatively simple operations
have to be executed in each subsystem. Given a situation where more sophisticated
calculations had to be done the factor of 4.2 is expected to shrink. Even at its current
performance, the KIELER controller would react well within the one step time limit of
50 Hz to 100 Hz set by the ECU.
While the performance of the C code is critical for usage in the real car, its performance

when simulating is important as well. One typical application for the controller, where
performance is of high priority, is exceeded simulation runs, when a large amount of
simulation data has to be acquired in order to fine-tune the controller and for later
analyzing. Here, the car usually drives on the same track many times, each time with
small differences in the setup of the controller.
During simulation, IPG Carmaker provides the possibility for the user to speedup the

simulation by a factor of two, three or five or by the maximum factor possible for the
machine that runs the simulation. Choosing the last option, the Raceyard controller
does usually achieve a speedup of factor 8.6 on computers used for testing the controller
by the Raceyard team. Applying the same option on the same hardware when using
the KIELER controller, a speedup of roughly 7.3 could be observed, thus resulting in a
slowdown of 1.12. Though this is still noticeably slower than the original, the absolute
speedup reached is well within the requirements set for testing by team Raceyard.
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5 Related Work

Attempting to connect model based systems with Simulink or integrating part of their
functionality into Simulink is a long-standing field of interest. Many of such attempts try
to couple Simulink with UML in order to combine the control functionality of the former
with the capability in system design of the latter. One such example is the work of Shi
in 2007, where it was noted that while “Simulink provides support for embedded system
design at code level [it] does not directly support their software/hardware implementa-
tion” [9]. Their attempts in behavioral mapping between Simulink and UML2 models
were left with some unsolved problems, most of them having to do with Simulink’s many
solvers and their timing. This reflects the conclusions by Hooman in 2004, where cou-
pling of Simulink with the UML based tool Rose RealTime was complicated due to the
problem “to establish a common notion of time” [6].
Some success was achieved by Sindicos in 2011 in their work to automatically trans-

form between Simulink models and SysML models. To this end, an open-source model-
to-text generator was utilized [10], resembling parts of the workflow presented in this
work.
Prior to this, in 2005, in another approach Dormido attempted to add interactivity

to existing Simulink models via a 3D GUI [4]. Utilizing the software tool Easy Java
Simulations, the inputs, outputs and the parameters of the Simulink model can be
connected to Easy Java. The connection has to be done manually by the user via the
Easy Java GUI. Once established, Simulink would manage the timing of the simulation
by iteratively running the model, while the user could utilize the GUI to change the
inputs. Of special relevance to this project is the observation by Dormido that while
changing the parameters of the Simulink model is possible in Easy Java, usage of the
new variable is only guaranteed by Simulink if the model was not already running. This,
however, is exactly the intent by Raceyard to use certain global variables like maximum
power in Fig. 2.5b. In this case, maximum power could be changed not often enough
during runtime to warrant its own input, but for example once or twice during the
endurance event, when considerations have to be made about the charging status of the
accumulator. Though neither testing nor inspection of the C code indicates any reason
to suspect that changes made to the global variables in question would be left unnoticed
by the program, this can be due to the rather simple nature of the controller. In a model
with complex internal states as they may have been present in the simulations run by
Dormido, complications when changing parameters during runtime are conceivable.
In the same work Dormido also mentioned communication problems between Easy

Java and Simulink that arose when the Simulink models included integrator subtypes
rather than the standard block. This again could be of relevance for Raceyard, should
more sophisticated control mechanisms be considered in the future. However, it should
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be noted that Dormido encountered those complications in 2005 and many updates were
released for MATLAB and Simulink since.
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6 Conclusion

This work shows that KIELER and SCCharts provide the necessary functionality to
design a complete controller model equivalent to the one used by Raceyard for its torque
calculation. The identical behavior of the KIELER controller has been established during
multiple tests in different environments. Furthermore, its performance has been proven
to be sufficient for extensive simulation as it is e.g. necessary for lap time optimization.
Consequently, a method was presented to integrate KIELER generated C Code into

MATLAB/Simulink. Design of a hybrid Simulink/SCCharts system is therefore pos-
sible. However, due to the resulting functional overhead such an approach seems ex-
pedient mostly in cases where computationally complex modules are integrated. Since
the integrated KIELER model is essentially a black block in Simulink, debugging is also
complicated.
Given the results in this work, a design process of the controller done solely in KIELER

is conceivable. In this case, direct integration of the generated code into simulations
such as IPG Carmaker, i.e. without a detour over Simulink, would be preferable. Since
IPG Carmaker allows the integration of C Code, such an approach seems feasible.
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