INSTITUT FUR INFORMATIK

A Case-Study on Manual Verification of
State-based Source Code Generated by
KIELER SCCharts

Steven Smyth, Soren Domros, and
Reinhard von Hanxleden

Bericht Nr. 1905
December 2019
ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITAT
/U KIEL

Institut fir Informatik der
Christian-Albrechts-Universitit zu Kiel
Olshausenstr. 40
D - 24098 Kiel

A Case-Study on Manual Verification of
State-based Source Code Generated by KIELER
SCCharts

Steven Smyth, S6ren Domros, and Reinhard von Hanxleden

Bericht Nr. 1905
December 2019
ISSN 2192-6247

E-mail: {ssm, sdo, rvh}@informatik.uni-kiel.de

Technical Report

Contents

2. The Steam Boller Model

11

12

15

List of Figures

[1.1. Compilation system and region ordering of the lean state-based compila- |

tion approach| 2
[2.1. Steam boiler model in SCCharts|. 5
[3.1. Inner behavior of the degraded state] 7
[3.2. Case-study results|. 9
[A.1. Steam boiler with highlighted degraded state| 15

ii

Abstract

Statecharts-like languages, such as SCCharts, are commonly used to develop state-
oriented reactive and critical systems. Code is often generated by automatic code gen-
erators, which employ different strategies. This paper presents the results of a second
user study on manual user verification of different source codes, which were generated
using a netlist-based, a priority-based, and a state-based code generation approach com-
piling SCCharts models to C. The evaluation shows that manual verification can be
time-consuming and is error prone if the user has no clear mapping between states and
transition of the original model and the generated code. The participants performed bet-
ter if the generated code followed a state pattern that preserves original model structures
and names.

1. Introduction

Harel introduced the Statecharts notation for visual languages in 1987 [Har87|. It has
since become a popular means to model reactive and embedded systems, because state
machines naturally describe the different modes of these systems. Since maintaining
large projects becomes a tedious task, automatic code generators are commonly used.
Nonetheless, authorities demand manual verification of the generated code before it can
be deployed to safety-critical devices [Riel3|. Readability of the generated code and
mappability to the original model are key factors for verifying.

SCCharts are a visual language that combines the Statecharts notation with sequen-
tially constructive synchronous semantics [vHDM™"14]. The official SCCharts compiler
is included in the academic open-source project Kiel Integrated Environment for Lay-
out Eclipse Rich Client (KIELER). The tool chain linked to SCCharts is bundled under
the name KIELER SCCharts Tools. By default, the compiler comes with three com-
pilation strategies, namely the netlist-based, the priority-based, and the state-based
compilation approaches. The first two strategies were part of the initial contribution
on SCCharts [vHDM™14]. The latter one follows a common state pattern approach
modified according to the structure of SCCharts models. It was presented in 2018 and
compared to the previous approaches in a first case-study |[SMvH18]. The case-study
tested readability of the generated code by asking participants to reverse engineer an
SCCharts model from the generated code. While the results were promising, code ver-
ification was of secondary concern. The follow-up case-study presented here explicitly
aimed at verification. Participants were asked to find errors in the generated code of a
steam boiler power plant model.

To increase readability of the generated source code even more, the state-based ap-
proach has been extended by a lean mode. The lean variant refrains from bi-directional
concurrent broadcasting. Uni-directional communication between concurrent regions
can be resolved by ordering the associated region functions statically without any syn-
chronization code. This strategy is feasible if the models only comprise uni-directional
communication or no concurrency at all. shows the example model from the
initial state-based contribution, but with swapped regions. Region RO depends on region
R1, because T0 is waiting for O or O2 to become true, which can be emitted by R1, as
depicted in A region dependency processor inside the compilation performs
a dependency analysis. The result is depicted in Afterwards, the regions are
sorted accordingly in The source code can now be synthesized in the order of
the regions. The complete compilation chain of the lean state-based approach is shown
in More on the general capabilities of the KIELER compiler can be found
elsewhere [SSRvH18b|,[SSRvH18a,[Mot 17, MSvH14].

Example
input bool |, 12
output bool O, 02
RO

i
i S,
i
1

R1 i

T

2: S2 —I2/ Sfétrue
‘1: e 1T E— :

(a) Running example from the initial state-
based contribution [SMvH18] with swapped
regions.

o

Example

input bool |, 12
output bool O, 02
R1

2: S2 —I2 /02 =true
1:IIO=true ——————————————————————— '
(T)—oll 02

(b) Regions are swapped automatically by
the compilation chain due to the detected de-
pendencies.

Example

input bool |, 12
output bool O, 02
R1

2: ——» S2 12/02=tru
~~1:1/ 0 =true

RO
02+202

o--0 (T0)0ll02(T1)

(¢c) The region dependency processor performs a dependency analysis. The result can be

inspected in the diagram view.

_> Reference Expansion _. Region Actions _. SCL Code Effects _. For V2

_> Pr Transitions _. Const

_> Timed Automata _. Init Operator

[_>Followed By Operator _.,. Sequential Followed By Operator . History

_> Signal

_>Suspend _, Count Delay _ Pre _> Weak Suspend

-

[_> Deferred _ Static

_> During Action _. Complex Final State _.. Abort

_> Exit Action _ Initialization _. Entry Action _. Connector

[_,Array initialisation |_. User Schedule _. Region Dependencies _.. Region Dependency Sort _.. State-based C Code (Lean)

(d) The complete compilation chain of the state-based lean approach. Intermediate results can
be inspected interactively.

Figure 1.1.: Compilation system and region ordering of the lean state-based compilation
approach

presents the steam boiler model used for the verification study and describes
its behavior. describes the setup, the tasks, and the result of the case-study.
Related work is presented in |[Chap. 4] |Chap. 5| concludes the paper and presents future
work on this topic.

2. The Steam Boiler Model

The steam boiler example is a well known model for cyber-physical systems, which has
been implemented in several different languages [Abr96, BW96|. An SCCharts version
of the core steam boiler part of that specification can be seen in [Fig. 2.1 The inner
behavior of the normal, degraded, and rescue state is depicted in

The steam boiler has four pumps that provide it with water. Each pump can be
operated independently. In this example, however, they are always activated or deac-
tivated at the same time to simplify the case-study. A water measuring system, which
is not modeled here, calculates the quantity g of water that is currently in the steam
boiler. The amount of water should be between the minimal normal quantity N1 and
the maximal normal quantity N2. The water level has to be between the minimal limit
quantity M1 and the maximal limit quantity M2 to prevent damage to the steam boiler.
M1 < N1 < N2 < M2 must hold. To further simplify the generated code, boolean vari-
ables are used as signals to notify the system’s components about external state changes,
instead of broadcasting signals as in the original specification.

The behavior of the steam boiler can be expressed in five different execution modes:

e The initialization mode makes sure that the steam boiler is filled with an amount
of water ¢ that is within its normal quantity (N1 < ¢ < N2). In this mode, the
boiler is filled up or water is released by opening the valve if necessary. If all pumps
work correctly, the initialization phase transitions in the normal execution phase.
If they do not, the degraded state is activated.

e During normal execution, the steam boiler should only have a water level ¢ between
its normal, not safety-critical boundaries N1 and N2. The initial state in this
mode assumes a valid water level (see initialization mode). Depending whether
the water level falls below or above this range, pumps are activated or deactivated
and a corresponding inner state is entered. For example, we take the transition
from manageWaterLevel to tooLittleWater if ¢ < N1. The inner state is left again if
the water-level measured by the quantity ¢ is within the normal range. The normal
mode is left if parts of the pumping-system fail (degraded), the water measuring
unit is defect (rescue), or the water level is no longer within its critical boundaries
(emergency stop).

e In the degraded mode the system has the same behavior as in the normal mode as
mentioned by the original specification. The system enters the degraded state if
a physical unit, for example the pumping-system, fails. The degraded state is left
if the broken parts are repaired (normal), a water measuring unit defect occurs
(rescue), or the critical boundaries M1 and M2 are violated (emergency stop).

e During rescue mode only the calculation of ¢ changes. The inner behavior is the
same as in the normal and the degraded mode. In the rescue state the quantity
q is calculated using v, the quantity of produced steam. This state is left if the
corresponding broken systems are repaired (normal, degraded) or a defect of the
steam measuring unit is detected (emergency stop).

e The emergency stop mode stops the whole system if it is no longer rescuable.
The original paper specifies that the physical environment has to take appropriate
actions to shut down the system. We model this by closing the pumps and releasing
all water from the boiler by opening the valve.

The inner behavior of the normal, degraded, and rescue modes are modeled identically
to make the task of identifying specific inner states non-trivial. This is also stated by
the original specification.

SteamBoiler

input bool valve, steamBoilerWaiting, physicalUnitsReady, physicalUnitDefect, waterMeasuringUnitDefect, steamMeasuringlUnitDefect, transmissionFailure

input int quantity_g, quantitySteam_v

output bool programReady

output int mode

output bool closePump[4]

output bool openPump[4]

const int MINIMAL_LIMIT_QUANTITY_M1 =20

const int MAXIMAL_LIMIT_QUANTITY_M2 = 90

const int MINIMAL_NORMAL_QUANTITY_N1 =30

const int MAXIMAL_NORMAL_QUANTITY_N2 = 80
operation

entry / mode =0

v
checkSteamOutput
________________ S T e
—————— N T ————
- \ ==~
. i \
3: quantity_q < 2: quantity_q > 1:
MINIMAL_NORMAL_QUANTITY_N1 MAXIMAL_NORMAL_QUANTITY_N2 quantitySteam_v
! ! =0
1 1
v \ 4
fillBoiler emptyBoiler
entry /openPump = {true, true, true, true}; closePump = {false, false, false, false} entry /valve = true
i i
quantity_q >= quantity_q <=
MINIMAL_NORMAL_QUANTITY_N1 MAXIMAL_NORMAL_QUANTITY_N2
S . S ——— e
sendProgramReady
entry /programReady = true
,"—— --------------- =-—
2: 1:
physicalUnitsReady physicalUnitsReady
' &&
i physicalUnitDefect
‘
normal

entry /mode =1

2: 1: 3: quantity_q >
physicalUnitDefect waterMeasuringUnitDefect ~ MAXIMAL_LIMIT_QUANTITY_M2
I Il quantity_q < 3:
transmissionFailure MINIMAL_LIMIT_QUANTITY_M1 IphysicalUnitDefect
\ Z—-— -----
degraded

entry /mode =2

— —

1: quantity_q > 2:
MAXIMAL_LIMIT_QUANTITY_M2 waterMeasuringUnitDefect
Il quantity_q <
MINIMAL_LIMIT_QUANTITY_M1

3:
'waterMeasuringUnitDefect

rescue

entry /mode =3

?

1:
steamMeasuringlUnitDefect

\\>

entry /mode =4
entry /closePump = {true, true, true, true}; openPump = {false, false, false, false}
entry /valve = true

emergencyStop

.

2:
lwaterMeasuringUnitDefect
&& !physicalUnitDefect

Figure 2.1.: Steam boiler [Abr96] core model implemented in SCCharts

3. Case-Study

To test the hypothesis that the state-based code generation approach makes a program
easier to comprehend, we conducted a verification study. describes the case-
study set-up. The results of the study are presented in [Sec. 3.2

3.1. Set-up

The diagram of the steam boiler model, as it is depicted in [Fig. A.1] was given to the
participants of the study in digital form as an SVG and also as A4 hard copy. They re-
ceived a five minute introduction to the power plant set-up and a general explanation on
the netlist-based, priority-based, and state-based code generation approach. Afterwards,
the participants were asked to find a structural error within the generated C codes. For
each approach, a structural error was included in the model. A structural error means
that there is either

e an additional erroneous or missing state,
e an additional erroneous or missing transition,
e or a transition with wrong source or target state.

Moreover, the participants were informed that the wrong behavior has been located
within the degraded state. It was not necessary to check outgoing transitions of the
degraded superstate. The participants had 12 minutes to find the difference of the gen-
erated C code and the steam boiler model for each code generation approach. However,
if they could not make any sense of the generated code, they were allowed to end the ap-
proach prematurely. To stay within the tight time constraints, each approach comprises
exactly one structural error. The included errors are depicted as SCCharts in [Fig. 3.1}
shows the original inner behavior of the degraded state. The participants faced
erroneous code of the following alterations: In the first structural erroneous part (1) of
the diagram, the transition from manageWaterLevel to tooLittleWater is missing, as seen
in In the second faulty model part (2) in [Fig. 3.1d, the transition from tooLit-
tleWater to manageWaterLevel has the wrong target tooLittleWater. The third erroneous
diagram (3), shown in [Fig. 3.1d}, has a new state pumpsOff. The pumpsOff state is always
reached from manageWaterLevel since the transition to it has the highest priority and it is
not guarded. Note that depending on the code generation approach, code optimization
might throw away unreachable code. For example, error (1) (see results in a
missing tooLittleWater state in the netlist-based code generation approach.

quantity_q >
MINIMAL_NORMAL_QUANTITY_N

2: quantity_q < tooLittleWater

MINIMAL_NORMAL_QUANTITY_N1
/ openPump = {true, true, true, true};
closePump = {false, false, false, false}

GnanageWaterLeveI

quantity_q <

MAXIMAL_NORMAL_QUANTITY_Nz\

1: quantity_q > tooMuchWater

MAXIMAL_NORMAL_QUANTITY_N2

/ closePump = {true, true, true, true};
openPump = {false, false, false, false}

(a) Correct behavior

quantity q <
‘MAXIMAL_NORMAL_QUANTITY_NZ\

tooMuchWater

quantity_q >
MAXIMAL_NORMAL_QUANTITY_N2 /
/ closePump = {true, true, true, true};
openPump = {false, false, false, false}

(manageWaterLeveI

quantity_q > .
MINIMAL_NORMAL_QUANTITY_NT— tooLittleWater

(b) Error 1

quantity q <
MAXIMAL_NORMAL_QUANTITY_NZ\

1: quantity_q >

MAXIMAL_NORMAL_QUANTITY_N2 /
/ closePump = {true, true, true, true}; ‘
openPump = {false, false, false, false} quantity_q >

MINIMAL_NORMAL_QUANTITY_N1

2: quantity_q < m
MINIMAL_NORMAL_QUANTITY_N1 .
/ openPump = {true, true, true, true}; —> toolittleWater

closePump = {false, false, false, false}

tooMuchWater

(manageWaterLeveI

(c) Error 2

quantity_q >
MINIMAL_NORMAL_QUANTITY_N‘T\

3: quantity_q < toolLittleWater

MINIMAL_NORMAL_QUANTITY_N1 _/

/ openPump = {true, true, true, true};
closePump = {false, false, false, false}

quantity_q <

G“a"agewate"-e"e' MAXIMAL_NORMAL_QUANTITY_NE\

2: quantity_q > tooMuchWater
MAXIMAL_NORMAL_QUANTITY_N2 _j
/ closePump = {true, true, true, true}; ‘
openPump = {false, false, false, false}
1:/ closePump = {true, true, true, true}; —> pumpsOff

openPump = {false, false, false, false}

(d) Error 3

Figure 3.1.: Inner behavior of the degraded state

The participants were put into six different groups regarding the code generation
approach they worked on first as seen in to mitigate learning effects. Each
group should include a reasonable number of people. With the expected number of
participants, we did not vary the order of the errors, because shuffling the code generation
approaches was more important.

I II I1I
Group 1 | netlist prio state-based
Group 2 | prio netlist state-based
Group 3 | state-based | netlist prio
Group 4 | prio state-based | netlist
Group 5 | state-based | prio netlist
Group 6 | netlist state-based | prio

Table 3.1.: Order of code generation approaches for each group

42 students participated. They were all computer science students, either in the final
terms of their bachelor’s or in the master’s degree programme. While having limited
experience with SCCharts from attended lectures, they had only sparse knowledge about
the different code generation approaches.

3.2. Results

shows the results of the case-study in the categories correctness, confidence, and
time.

Correctness From the 42 participants, 61.9% found the diagram’s issue in the state-
based approach, 40.4% in the priority-based approach, and 7.1% in the netlist-based
approach, which is depicted in Moreover, only 4, 20, and 27 participants
named an issue within the netlist-, priority-, and state-based approaches respectively.
In this order, 1, 3, and 1 answers were wrong, which is shown in normalized to
the answers given.

Confidence The participants should rate how confident they are with their answer on a
scale from 0 (not confident) to 2 (confident). From the correct answers, the mean result
of the confidence rating is depicted in [Fig. 3.2d While both, priority and state-based,
are settled around a mean value of 1.7, the confidence in the netlist approach is lower
at around 1.

The participants that did not find the issue were asked if they recognize any relevant
parts of the diagram in the code, namely states, regions, or transitions relevant for the
degraded state. The mean values of these answers are shown in [Fig. 3.2d] counting
the types of parts they recognized from 0 to 3. The results are 2.6, 2.32, and 1.41 for
state-based, prio, and netlist respectively.

Correctness Incorrectness
Netlist Netlist
Prio Prio
State-based State-based
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Correct answers (b) Incorrect answers despite being confident
Confidence Recognition
Netlist Netlist ‘
Prio Prio
State-based State-based
0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 3
(c) Confidence rating (d) Recognition of model elements
Time Aborted
Netlist Netlist
Prio Prio
State-based State-based
0 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1
(e) Mean time needed (f) Aborted prematurely

Figure 3.2.: Case-study results

Time The mean time values for the participants that gave correct answers are shown in
which are 10:15 minutes for netlist, 09:44 minutes for prio, and 08:24 minutes
for state-based. In this order of approaches, 9, 7, and 2 participants ended their try
prematurely, because they could not make any sense of the generated code, which is
shown in normalized to the total number of participants.

Freeform Feedback All participants that gave feedback to the netlist approach state
that it is not readable and not made to be read by humans. The priority approach was
criticized since one has to read all code leading to the degraded state to find it. Moreover,
the presence of many conditionals in this approach impairs the readability. The state-
based approach was seen as the most readable. However, one has to focus on the code

relevant for the task, because of the increased code size. The state-based approach result
in 1271 lines of generated code compared to 390 and 316 for priority and netlist (without
header). The long variable names were also criticized: They proved a challenge for one
participant with dyslexia, because they often have seemingly redundant names as a result
of the transformation, such as "...regionoperation stateoperation regionoperation...".

Results Overall, the results confirm the trends from the first case-study [SMvH1§].
The code generated by the state-based approach is more readable and mappable to the
original model. This facilitates manual verification of the generated code, increasing the
rate of issues found in less time. While it is arguably not a big surprise that manu-
ally verifying netlists is hard, the state-based approach also scores better in this field
compared to the priority-based approach despite the fact that both generate structures
that resemble the original model. The priority-based approach uses nested macros for
concurrent regions and jumps to labels to model transitions and states. The state-based
approach follows the object-oriented state pattern, but creates dedicated functions for
regions and states, which mimic the hierarchy of an SCChart. The current state is
stored in a context object and is updated at state transitions. Also, the priority-based
approach sometimes gave a false sense of confidence, which was less of a problem with
the state-based approach.

10

4. Related Work

Pintér, Majzik |[PMO3], and Samek [Sam02] give overviews over common Statecharts
compilation techniques, such as implementation of states via nested switch statements,
action-state tables that store pointers to event functions, and approaches following the
state design pattern for object-oriented languages |GHJV95|, in which descendants of
a common interface implement concrete states. SCCharts’ state-based compilation ap-
proach is a variation of the state design pattern customized to the hierarchical state-
region structure of the SCCharts meta-model. Niaz et al. present a code generation
approach for UML Statecharts. Object-oriented Java code is generated by the JCode
code generation system [NTO05|. Niaz et al. argue that their approach produces main-
tainable code since generated Java objects can be mapped to states. However, they did
not evaluate whether this is an improvement compared to other code generators.

For synchronous languages, Potop-Butucaru et al. [PBEB07] as well as Edwards and
Zeng |[EZ07| explain various different compilation approaches for compiling Esterel and
similar languages. The approaches cover translations into classical finite state ma-
chines (FSMs), netlists, and graph code, a control-flow expansion developed by Potop-
Butucaru |[PB02|, dynamic instruction lists, and code for virtual machine execution.

Amende |[Amel0] describes translation rules for SyncCharts to SC [vH09], a lightweight
synchronous macro-based extension to C. While the structural translation of a Sync-
Charts program is done straight-forwardly, concurrency is solved by assigning static
priorities to the target code. Effectively, a light-weight scheduler implemented by the
macros executes the program according to the pre-calculated priorities.

Biernacki et al. [BCHPOS8| presented a formalized modular code generation for syn-
chronous dataflow languages, which is the foundation of the certified compiler used
in SCADE. After type and clock checking, the program is translated into an minimal
object-oriented intermediate language. This intermediate representation can be trans-
formed easily into common general purpose languages, such as C or Java. A minimal,
certified reference compiler was written in OCaml and COQ.

While all code generated for synchronous languages is founded in rigorous semantics,
which make automatic code generation more trustworthy in the first place, readability
and manual verification of the source code was not of primary concern in the previously
mentioned approaches. Most code generation approaches transform input models into
intermediate languages, which eases the downstream compilation, but code readability
and therefore manual code verification suffers.

11

5. Conclusion

This study continues our works towards readability and verifiability of the state-based
compilation approach [SMvH18]. The previous paper investigated how well SCCharts
could be reverse engineered from their generated code. As proposed in the future work
section of the initial contribution, we here focused on verification of SCCharts given the
original diagram and the erroneous generated code. The results, as presented in[Sec. 3.2}
confirm the trend from the first study. The code generated by the state-based approach
is more readable and mappable to the original model, increasing efficiency of manual
verification in both, correctness and time needed.

As future work, readability can be improved even more by translating critical SC-
Charts elements, such as preemption, directly into state-based code. While this sac-
rifices some of the modularity of the general KIELER compilation approach, we expect
readability and verifiability to increase even more. The main task here is to find a good
balance between extra transformation effort needed to increase readability and reuse
of modular compiler transformations that make compact SCCharts feasible in the first
place.

12

Bibliography

[Abr96]

[Amel0]

[BCHPOS]

[BWY6]

[EZ07]

[GHIV95]

[Har87]

[Mot17]

[MSvH14]

[NTO5]

Jean-Raymond Abrial. Steam-boiler control specification problem. In Formal
Methods for Industrial Applications, pages 500-509. Springer, 1996.

Torsten Amende. Synthese von SC-Code aus SyncCharts. Diploma thesis, Kiel
University, Department of Computer Science, May 2010. https:/rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf.

Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet. Clock-
directed Modular Code Generation of Synchronous Data-flow Languages. In Pro-
ceedings of the ACM SIGPLAN/SIGBED 2008 Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’08), pages 121-130, Tucson, AZ,
USA, June 2008. ACM.

Robert Biissow and Matthias Weber. A steam-boiler control specification with
statecharts and z. In Formal methods for industrial applications, pages 109-128.
Springer, 1996.

Stephen A. Edwards and Jia Zeng. Code generation in the Columbia Esterel
Compiler. EURASIP Journal on Embedded Systems, Article ID 52651, 31 pages,
2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231-274, June 1987.

Christian Motika. SCCharts—Language and Interactive Incremental Implemen-
tation. Number 2017/2 in Kiel Computer Science Series. Department of Com-
puter Science, 2017. Dissertation, Faculty of Engineering, Christian-Albrechts-
Universitat zu Kiel.

Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Compiling
SCCharts—A case-study on interactive model-based compilation. In Proceed-
ings of the 6th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2014), volume 8802 of LNCS, pages
461-480, Corfu, Greece, October 2014.

Iftikhar Azim Niaz and Jiro Tanaka. An object-oriented approach to generate java
code from uml statecharts. International Journal of Computer & Information
Science, 6(2):83-98, 2005.

13

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf

[PB02]

[PBEB07]

[PMO3]

[Riel3)]

[Sam02]

[SMvH18]

[SSRvH18a]

[SSRvH18b)]

[vH09)

[VHDM™*14]

Dumitru Potop-Butucaru. Optimizations for faster simulation of FEsterel pro-
grams. PhD thesis, Ecole des Mines de Paris, France, November 2002.

Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling
Esterel. Springer, May 2007.

Gergely Pintér and Istvan Majzik. Program Code Generation based on UML
Statechart Models. Periodica Polytechnica, pages 187-204, 2003.

Leanna Rierson. Developing Safety-Critical Software: A Practical Guide for Avi-
ation Software and DO-178C Compliance. Taylor & Francis Inc, 2013.

Miro Samek. Practical Statecharts in C/C++. CMP Books, 2002.

Steven Smyth, Christian Motika, and Reinhard von Hanxleden. Synthesizing
manually verifiable code for statecharts. In Proc. Reactive and Event-based Lan-
guages & Systems (REBLS ’18), Workshop at the ACM SIGPLAN conference
on Systems, Programming, Languages and Applications: Software for Humanity
(SPLASH), Boston, MA, USA, November 2018.

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden.
Guidance in model-based compilations. In Proceedings of the 8th International
Symposium on Leveraging Applications of Formal Methods, Verification and Val-
idation (ISoLA ’18), Doctoral Symposium, Electronic Communications of the
EASST, Limassol, Cyprus, November 2018. in press.

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. To-
wards interactive compilation models. In Proceedings of the Sth International
Symposium on Leveraging Applications of Formal Methods, Verification and Val-
idation (ISoLA 2018), volume 11244 of LNCS, pages 246-260, Limassol, Cyprus,
November 2018. Springer.

Reinhard von Hanxleden. SyncCharts in C—A Proposal for Light-Weight, Deter-
ministic Concurrency. In Proc. Int’l Conference on Embedded Software (EMSOFT
'09), pages 225-234, Grenoble, France, October 2009. ACM.

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquin Aguado, Stephen Mercer, and Owen O’Brien. SC-
Charts: Sequentially Constructive Statecharts for safety-critical applications. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’14), pages 372383, Edinburgh, UK, June 2014. ACM.

14

team Boiler Model Handou

SteamBoiler
JnitDe

input bool valve,
inputint quantity_q, uuanhlySIeam v
output bool programi

output int

cutput bool dasePump]

Conetint MAXIWAL NORMAL QUANTITY Nz - 80

en(ry Tmodo =0

@D

v
checkSteamOutput
- H .
3: quantity q< 2: quantity_q 1: quantitySteam_v 1=0
MINIMAL _NORMAL_QUANTITY_N1 MAXIMAL] NOHMAL QUANTITY_N2
v
fillBoiler emp«yﬁoilev
entry /openPump = {true, true, true, uuey closePump = (false, false, false, false} | | entry /valve = true
'
ntity quantity q <=
TRMAL] OHMAL QUANTITY_N1 MAXIMAL_NORMAL_QUANTITY_N2

sendProgrameady
entry / programReady = true

2: physicalUnitsReady physicalUnitsReady &&
i physlcalUmiDed fect
v
normal

entry /mode = 1

: fGantity o ?AINIMAL%«JHMAL QUANTITY_NT™

IMAL NORMAL_QUANTITY N1
Pum) true, true, true, true};
(manageWaterLevel JglosePump = /falea fatse telse, folse)
quantity_q

MAXIMAL, NORMAL_QUANTITY |

tooLittleWater

1: quantity_q tooMuchWater
MAXIMAL NORMAL_QUANTITY_N2

/ closePump = {true, true, true, true};

openPump = {false, false, faise, false}

3: qua
MAXIMAL LIMIT "_QUANTITY_M2I

2:
transmissionF:

ntity_q <
WINIMAL LIMIT_QUANTITY M1 3, IphysicalUnitDefect
RN
degraded
entry /mode =2
quantity q>

MINIMAL_NORMAL_QUANTITY_N

- tooLittleWater
2: quantity g< /
MIaIMA'I'.'YNaRMAL __QUANTITY | m
loponPumv = {true, true, true, tru

{false, false, false, |alse)

manageWaterLevel

anti
[AXIMAL, NORMAL_QUANTITY_
TS tooMuchWater
MAXIMAL_NORMAL_QUANTITY N2

/ closePump = {true, true, true, true)
openPump = (false, false, false,

i

MARIAL L?MIT QUANTITY_M21i
ity g |- 2: twaterMeasuringUnitDefect &&

quanti
MINIMAL LiMIT_QUANTITY_m1

2: waterMeasuringUnitDefect

rescue
entry /mode =3

uantity q >
ﬂlINIMHLonRMAL,auAmrTV,

2: quantit tooLittleWater
MINIMAL | NORMAL QUANTITY N1
openPump = {true, true, true, true};
T clasaPump {false, false, faise, faise)
quantity q<
MAXIMAL_NORMAL_QUANTITY
tooMuchWater

1: quantity g>

MAXIMAL_NORMAL_QUANTITY_N2

/ closePump = {true, True, true, true
openPump = {false, faise, faise, false}

1: steamMeasuringlUnitDefect

\\

‘emergencyStop
entry /mode =
entry / closePump = {true, true, true, true}; openPump = {faise, faise, faise, false}
entry /valve = true

Figure A.1.: Steam boiler with highlighted degraded state

15

	Introduction
	The Steam Boiler Model
	Case-Study
	Set-up
	Results

	Related Work
	Conclusion
	Steam Boiler Model Handout

