Reactive Parallel Processing for Synchronous Dataflow

Claus Traulsen and Reinhard von Hanxleden
Real-Time and Embedded Systems Group
Department of Computer Science
Christian-Albrechts-Universitat zu Kiel
Olshausenstr. 40, D-24118 Kiel, Germany
{ctr, rvh}@informatik.uni-kiel.de

ABSTRACT

The control flow of common processors does not match the
specific needs of reactive systems. Key issues for these sys-
tems are preemption and concurrency, combined with tim-
ing predictability. To model reactive systems, synchronous
programming languages are well-suited, which can be either
synthesized to hardware or compiled to C and run on a nor-
mal processor. Both of these approaches have significant
drawbacks: the generation of hardware is inflexible, the tim-
ing analysis of the generated C code is complicated.

We propose a special parallel processor, designed to ex-
ecute programs written in the synchronous dataflow lan-
guage Lustre, or its graphical variant Scade. This approach
achieves an efficient but still predictable execution. We in-
troduce the processor as well as compiler from Lustre and
Scade. To validate our approach, we compare a prototype
of the processor, running on an FPGA, with a MicroBlaze
processor that executes C code generated from Lustre pro-
grams.

Keywords

Reactive processors, parallel execution, synchronous languages,

synchronous dataflow, Lustre, Scade

1. INTRODUCTION

Reactive systems are control systems that have to react
continuously to inputs at a rate that is determined by their
physical environment. The control-flow of such systems dif-
fers from that of standard computer systems: the systems
are inherently concurrent, since they have to deal with a
physical environment that itself is concurrent. The control
can often be in different modes, hence parts of the systems
have to be suspended or aborted. Since these systems are
often highly safety-critical, the behavior of the controller
should always be deterministic. This is not only true for the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

functional behavior, but for the timing as well. To match
these needs, synchronous languages, such as Esterel [16],
Lustre |9], and Signal [6] were introduced. The execution
of these languages is divided into discrete ticks. While Es-
terel is an imperative, control-oriented language, Lustre and
Signal are dataflow languages. Since the design of reactive
systems is often done by engineers who have a background in
control theory, rather than in computer-science, a dataflow
formalism is a good means to describe these systems.

Predictable/Reactive Processors

For processor design, the usual approach is to “make the
common case fast.” However, this is not true for reactive
systems, where we must react in time under all circum-
stances. Here we need the worst case to be fast and we
must be able to statically determine the Worst Case Re-
action Time (WCRT), or at least a tight upper bound for
it. Recently, there have been multiple approaches to build
a processor that allows tight timing analysis, such as the
PReT |[14]. Here, the goal is to design a general purpose
processor with timing analysis in mind, while still allow-
ing the execution of arbitrary C code. Another approach
are the so called reactive processors, which are designed to
execute programs written in synchronous languages. The
Kiel Esterel Processor (KEP) [12/13], the EMPEROR |[22]
and the STARPro [23] are reactive processors that can di-
rectly execute Esterel programs. While this limits the class
of executable programs, it greatly simplifies both proces-
sor design and timing analysis. Reactive processors can
be seen as an Application Specific Instruction-set Processor
(ASIP), or since they are not designed for a specific appli-
cation but for the whole application area, namely reactive
systems, as an Application Area Specific Instruction-set Pro-
cessor (AASIP). To analyze the WCRT for the execution
on reactive processors is much simpler than for standard
processors [3,/15], because they optimize, like synchronous
languages, for the worst case.

Developing robust and correct software for reactive sys-
tems is not trivial. One of the problems is to ensure that
the actual implementation performs the same way as the
high-level model, on which formal verification can be per-
formed. While there exist certified compilers for Esterel
and Scade, this only ensures that the compilers were devel-
oped with a specified, robust methodology, but it does not
ensure that they are actually correct, i.e., always produce
code that behaves the same way as the model. In particu-
lar, when the models are translated into a subset of C, as
it is done for Esterel and Scade, it is hard to ensure the

correctness of the compilation. Here reactive processors can
help by giving a simple instruction set architecture that is
specially designed to support the modeling language. This
makes the compilation process easier and should allow for a
provably correct compiler. Of course this also implies that
the processor itself must be proven to be correct, but this
seems to be a simpler task than proving the correctness of
software for general-purpose processors. Another benefit is
the increased traceability. The compilation of synchronous
programs to traditional instruction sets makes it hard to de-
termine which statement in the source program led to which
assembler instruction. In contrast, the instruction set of a
reactive processor allows for a direct mapping between the
assembler and the source model: low-level debugging can be
performed on the high-level model.

One of the advantages of synchronous programs is their

deterministic behavior, which is independent from the schedul-

ing. This is also true in complex situations, e.g., multiple
interrupts, without relying on the precise timing as common
processors. Reactive processors enforce determinism in two
ways. First, like synchronous languages, they sample their
inputs so that all input values are unique in one tick. Second,
events occur either simultaneously, or they are separated by
at least one tick. Reactive processors avoid race conditions,
either by mapping concurrent threads to hardware threads
with clearly defined switch points, or by implementing con-
currency directly, but enforcing the uniqueness of all values
within a tick. To achieve this, the compiler or the proces-
sor itself has to ensure that all writes to a specific value are
performed before the value is read.

Contributions, Outline

In this paper, we propose a special processor, the Kiel Lus-
tre Processor (KLP)['| designed for efficient and predictable
execution of synchronous data-flow programs. Its key ideas
are to use the implicit concurrency in Lustre programs to
execute independent equations in parallel and to support
Lustre clocks directly, in order to detect which parts of a
program need to be executed in one tick. For the scheduling,
we evaluate two different approaches, a dynamic scheduling,
based on the run-time dependencies, and a priority based
scheduling, with statically determined priorities. We also
present a compiler from Lustre and Scade, which maps Lus-
tre equations to hardware registers and computes priorities
based on the data dependencies. The compiler from Scade
also handles automata.

In the next section, we will give an overview on related
work. Section [3|introduces the source languages Lustre and
Scade. In Section[d] we explain the architecture of the KLP.
Section [5| details the compilation process for the KLP. We
show experimental results in Section [before concluding in
Section [0

2. RELATED WORK

The KEP [12)13] is a reactive processor with an ISA that is
closely related to Esterel. It supports concurrency by hard-
ware threads with a priority-based scheduling. Preemption
is implemented by hardware watchers, which will sense the
code ranges and suspend or abort the execution when their
trigger signal is present. In contrast to the KLP, it has only
one point of control.

lavailable at www.informatik.uni-kiel.de/rtsys/kep

The PReT [14] approach targets the development of a
general purpose processor, which can execute arbitrary C
code, while still allowing exact timing analysis. To achieve
this, processor parts that might have unpredictable tim-
ings are replaced by better analyzable parts, e.g., caches
by scratch-pad memories and memory access by a memory
wheel. However, to fully utilize its features, the programmer
needs to use low-level deadline instructions. In contrast, our
approach is to use a domain specific input language. This
simplifies the processor, and allows to program in a high
level programming language.

The Java Optimized Processor (JOP) [18] is designed for
time-predictable execution of Java byte-code. It implements
a simple pipeline mechanism and cache system that do not
introduce timing uncertainties. They use Java byte-code as
an input language, hence they have no particular support
for reactive control flow.

PRET-C [1] extends C by constructs for deterministic con-
currency and preemption and it also defines a small proces-
sor extension to perform the scheduling. This approach al-
lows precise timing analysis |[17]. In contrast to concurrency
in synchronous languages, the scheduling is not based on the
data dependencies, but on the syntactical order. Also pre-
emption can only be triggered by values from the previous
tick. A similar approach is taken by SyncCharts in C [21],
an extension of C to directly express synchronous State-
charts. The additional instructions are inspired by the KEP
and implemented as C macros. Concurrency is expressed by
threads with priorities. To implement preemption, explicit
checks for preemption triggers are inserted at all points in
the code where control can resume or end in a tick.

Dataflow processors, like the Manchester Machine (7], al-
low the parallel execution of programs on multiple function
units. Here, available data will trigger the execution of in-
structions that depend on it. This aims for simple parallel
execution to reduce the average execution time. Compared
to this, our parallelism is more coarse grained, since only
data that have reached their final value for the current tick
can trigger further executions.

3. LUSTRE AND SCADE
3.1 Lustre

Lustre [8l[9] is a synchronous dataflow language. A Lustre
program can be seen as a synchronous circuit that not only
holds boolean values combined by and/or gates, but also
integer values combined by arithmetical operations. Lustre
programs are constructed from nodes. A node consists of a
set of inputs and outputs and a set of concurrent equations,
which are executed synchronously.

Lustre programs operate on infinite streams of data. Clocks
define whether a value shall be computed in a tick. In the
notion of Lustre, a clock is simply a boolean stream. Lustre
defines the following clock operators, which allow to access
different values in the stream.

el — e2 Init: The result is the value of el in the first tick,
and the value of €2 in all following ticks. The first
value of €2 is ignored.

pre e: This gives the value of the expression e in the previous
tick. In the first tick that pre is executed, this value is
undefined (nil). In a correct Lustre program, this value

www.informatik.uni-kiel.de/rtsys/kep

1 | node ToggledSum(l: int; X: bool) returns (FI, O: int);
2 | var on: bool;

3| let FI = Filter(1);

4 on = ToggleOnEdge(true, X);

5 O = current(Sum(Fl) when on); tel

6

7 | node Filter (In: int) returns (Out: int)

8 | let Out = In —> (In+pre(In))/2; tel

9

10 | node ToggleOnEdge(init, X: bool) returns (on: bool)
11 | var Edge : bool;

12 | let Edge = X —> X and not pre(X);
13 on = init —> pre(on) xor Edge; tel

15 | node Sum(A: int) returns (B:int);
16 | let B = 0—> pre(B)+A; tel

(a) Lustre implementation

04—

-

(b) Scade implementation

T

Figure 1: The ToggledSum example

is never accessed, therefore, pre should only appear on
the right hand side of an init statement.

el when e2 Down-sample: the expression el is only exe-
cuted when the boolean expression e2 evaluates to
true. If e2 evaluates to false, the value is not defined.

current e Up-sample: gives the last defined value of e.

The first node of the Lustre program in Fig. [Ta] Toggled-
Sum, takes an integer input | and a boolean X. To the input
| it applies a filter, which takes the average of the previous
and the current value, and writes the output (Fl) to the en-
vironment. The input | is also integrated, depending on the
value of X. The local signal on is toggled by each rising edge
of X, and summation only takes place when on is true. Ap-
plying the filter to | and checking whether the integration
shall take place at all can be done in parallel, since there are
no data dependencies.

A correct Lustre program must not contain cyclic data de-
pendencies. This ensures that the semantically synchronous
execution of equations can be translated into a sequential
ordering that respects the data dependencies. Furthermore,
the program must be clock consistent, i. e., when two streams
are combined, they must have the same clock.

Lustre programs can be synthesized to hardware or com-
piled into C code. The original compilation translates the
program into finite automata [10]. The current Lustre com-
piler first checks for clock consistency and implements the
clock operators by conditionals. More recent approaches [2]
use the clock structure to minimize the generated code.

3.2 Scade

The dataflow equations of Lustre can be naturally rep-
resented by dataflow-diagrams. This is done by the lan-

guage Scade, which is implemented in the SCADE (Safety-
Critical Application Development Environment) tool by Es-
terel Technologiesﬂ A Scade version of the ToggledSum ex-
ample is shown in Fig. where the content of the Filter
and Sum nodes are hidden. To determine the rising edge of
the input X, a predefined operator is used. The Sum node
is embedded in an activation condition, this corresponds to
the current and when in the Lustre program.

Scade extends Lustre by some additional features, such as
arrays, convenient conversion between datatypes, and ad-
ditional build-in functions. It also extends Lustre by Safe
State Machines (SSMs), a synchronous Statechart variant [4].
Data equations and automata can be mixed freely, i. e., states
may contain equations and the expression, which computes
an equation, might itself contain an automaton. Scade sup-
ports three different kinds of transitions: weak-delayed abor-
tions allow the execution of the source state in the tick the
transition is triggered and activate the target state in the
next tick. Strong abortions immediately abort the execu-
tion of the source state when they are triggered and transfer
control to the target state. Synchronized transitions are
triggered when the source state itself reaches a state that
is flagged as final. The transition triggers can be arbitrary
data expressions or signals, i. e., boolean variables.

Since the arbitrary mixing of clocks can lead to complex
code that is hard to understand, the usage of clocks in Scade
is per default restricted. Clocks are replaced by activation
conditions, which execute a given node only when a boolean
value is true, as the Sum node in Fig. Whenever the
boolean condition is not true, the output is not undefined,
as in Lustre, but a default value is used.

4. ARCHITECTURE

The architecture of the KLP (Fig. is designed to di-
rectly express the dataflow nature of Lustre programs. Since
in Lustre computations are only ordered by their data de-
pendencies, Lustre programs tend to have a high degree
of concurrency. The KLP uses this logical concurrency to
achieve parallel execution, using two mechanisms. 1) The
KLP contains multiple processing units, so that indepen-
dent computations can be performed truly in parallel. The
mapping of instructions to the processing units is done by a
hardware scheduler, which either analyses the dependencies
at run-time or uses statically set priorities, which are com-
puted by the compiler. 2) The KLP directly implements
Lustre clocks, computations that shall not be executed in
the current tick are marked as finished without any over-
head. In contrast to a multi-core approach, all processing
units access the same data; the scheduling ensures that no
data conflicts occur.

The external interface consists of the following inputs: a
Tick signal which triggers the execution of a global tick, a set
of integer inputs |, and instructions coming from the instruc-
tion ROM. The outputs are the Done signal, to indicate that
a tick has finished, a set of integer outputs O, and program
counter values PC to request instructions from the ROM.
The Exec output is used to generate execution traces.

4.1 Building blocks
The KLP consists of three building blocks. The register

2w esterel-technologies.com

www.esterel-technologies.com

[KLP |
Reset ¢ ‘ ‘
Tick fﬂ Regs ‘ l Sched] l Proc]
Done — AL ROM
oo--gd

[[——|Select

0 — reg access f
Exec PC >

Instruction

Figure 2: Overview of the KLP

file (Regs) stores all runtime information. For each equation
this is: the current value, the previous value, the address of
the next instructions to compute this register, the register
id, which holds the clock of the expression, and a Done-flag
to indicate whether the execution has terminated for the cur-
rent tick. Additionally, each register has some basic control
logic to detect whether it is done, because the register that
holds its clock is done and its value is zero. The register file
also contains some control logic: whenever the input Tick is
set to true, it reads all inputs, overwrites the previous value
with the current value for all registers, and resets the Done-
flags of all active registers, i.e., registers with a program
counter different to zero. Whenever a register has a Done-
flag set to false, it sends this information to the scheduler.
From the scheduler it receives the information which regis-
ters shall be executed. Now it reads the instruction for this
register from the instruction ROM, sends the instruction to
the processing unit, and waits for the results. When all reg-
isters are done, it signals this to the environment via the
Done output and writes the output values. When the TICK
input is set for the first time, the boot process is started by
setting register 0 to ready. This triggers the execution of
instruction 0, where the code to initialize the other registers
is expected.

The processing units (Proc) are responsible for executing
the instruction. Each processing unit consists of a dispatcher
for the opcodes and an ALU. It gets an instruction and a
register id from the register file. It queries the register file
for additional register values, if this is necessary to execute
the instruction, and writes back the result: a new value,
program counter or clock, or the signal to set the Done-flag.

The scheduler (Sched) maps ready registers at each tick
to free processing units, based on the Done-flags and the
priorities of the registers. So far, the scheduler takes the first
available registers. Therefore, the actual scheduling and also
the utilization are affected by the ordering of the equations:
the compiler should order the equations according to the
number of dependencies.

To decide which registers are ready and hence which parts
of the program can be executed in parallel is crucial for the
efficient execution of Lustre programs on the KLP. The KLP
implements two alternative ways to achieve this: dynamic
scheduling and priority based scheduling.

Dynamic Scheduling

For the dynamic scheduling, each register detects itself whether

it is ready to execute, based on the next instruction and the
Done-flag of all other registers. It determines the data de-

Instruction

Remark

SETCLK reg, clock
SETPC reg, pc

set clock for a register
set program counter for a register

INPUT +id, reg
OUTPUT id, reg
LOCAL reg
DONE pc

PRIO reg, p

map register to input id

map register to output id

mark register as local

set done flag and pc for next tick
set priority for register reg to p

ADD regr, rega, regp

regr «+ Tega tregp
(Integer arithmetic)

AND regr, rega, regp

regr «— rega®p
(Boolean operators)

LT regr, rega, regnp

regr — Rega <regp
(Comparisons)

JMP pe
JT pc, reg

unconditional jump
jump when true
(Jumps)

RRMOV regr, regs
IRMOV regr, val

reg to reg move: regr «— regs
immediate reg move: regr «— val

Table 1: Overview of KLP instructions. Registers
(reg), immediate values (val), clocks (clock), IO iden-
tifier (id) and priorities (p) are 1 Byte long, program
counter (pc) 2 Bytes.

pendencies for its next instruction and looks up the Done-
flags of its arguments. This is similar to traditional out-of-
order execution, with all active registers in the event queue,
but due to the fixed steps in Lustre, solving data dependen-
cies is much simpler. For each register we know precisely
whether the computation of its value has finished for the
current tick. On the other hand, this will always check all
ready registers, as the instructions in a Lustre are not or-
dered; therefore it will utilize the maximal degree of par-
allelism in each instruction cycle. Since we require the de-
pendency graph to be acyclic, at least one register is ready
whenever there exists a register that is not done.

Priority Based Scheduling

For the priority based scheduling, each register has an ad-
ditional priority. Two registers may be executed in parallel
when they have the same priority. The priorities are com-
puted by the compiler, based on the syntactic dependencies.
While this approach may miss potential parallel execution,
it needs less control hardware. Another benefit is that it al-
lows non-local dependencies, i. e., dependencies that are not
completely determined by the next instruction. Such depen-
dencies are introduced by Scade automata (see Section7
where each outgoing transition adds a dependency to each
computation inside a state.

In the example from Fig. [Ta] the compiler assigns the high-
est priority to the equations that compute Fl and Edge, the
next priority are assigned to on, while O gets the lowest pri-
ority. This is reflected in the generated KLP assembler in
Fig. [] by setting priorities 1, 2, and 3, respectively. Note
that the lowest number indicates the highest priority.

4.2 Instruction Set

Beside the usual arithmetical and logical instructions, the
KLP contains SETCLK and SETPC instructions to initialize
a register by setting the clock and the program counter,
respectively. The INPUT and OUTPUT instructions map
the register to global inputs and outputs.

The DONE instruction marks the current register as fin-

node ToggledSum (I: int; X: bool;) returns (FI, O: int;);
var on, Edge: bool;
let Fl =I1—>((I + pre(l)) / 2);

Edge = X—>(X and (not pre(X)));

on = true—>(pre(on) xor Edge);

O = current((0—>(pre(O) + FI)) when on); tel

e N

Figure 3: Clocked equations for ToggledSum

ished for the current tick and sets the program counter for
the next tick. It is similar to the pause in SyncCharts in
C [21] and the gotopause instruction in Esterel+GOTO [20].
An overview of the instructions is shown in Table [I

The instruction set of the KLP is regular: each instruc-
tion has 32 bits, where the first byte contains the opcode.
Furthermore, the first 4 bits of the opcode encode the data
dependencies of the instruction, and the second 4 bits encode
the ALU-function, in case the instruction uses the ALU.

5. COMPILATION
5.1 Compiling Lustre

The compilation from Lustre into KLP assembler consists
of three steps. First, we use the lus2ec tool from the Ver-
imag Lustre compilei’|to expand all nodes and tuples and to
propagate pre operators to variables. This also checks that
the programs are well-formed, i. e., every variable is defined
exactly once, the dependency graph contains no cycles, and
only variables that run on the same clock are combined.

In the second step, we simplify the Lustre program further
by restricting the use of clock operators. This results in
clocked equations, which are mapped to the KLP instruction
set in the third step. The first two steps are source to source
transformations that yield valid Lustre code. This allows
easy validation of the correctness by using existing tools to
compare the source file with the generated code.

Clocked equations are Lustre programs where clock oper-
ators may only occur at some special positions. We do not
allow nesting of pre operators, therefore we might have to
introduce additional variables. All equations have the form:
x=current((i — e) when C), where i and e are arbitrary ex-
pressions that do not contain any clock operators except for
pre. The C is either the name of a boolean variable, or true,
e. g., the expression is running on the base clock. The Lustre
example from Fig. [lal can be expressed by clocked equations
as shown in Fig.[3] Note that current ((i — €) when true) can
be simplified to i — e. The behavior of a clocked equation
directly corresponds to the execution of the KLP: in each
tick, we overwrite all previous values. This corresponds to
the fact that all equations run on the base clock, i.e., we
add a current operator to all equations that have a clock.

Translating clocked equations to KLLP assembler is straight-
forward. For the equation O in the Lustre program (Line 6
in Fig. , the following instructions in the KLP assembler
(Fig. [4) are generated: in Line 12-15, the register is ini-
tialized, by setting its program counter, clock and priority.
This register is the only one where a SETCLK instruction
occurs, because in the Lustre program O is the only equa-

3www-verimag.imag.fr/SYNCHRONE/

1 INPUT | // declare input |

2 INPUT X

3 OUTPUT FI // declare output FI

4 SETPC FI L_FI // code for Fl starts in Line 18
5 PRIO FI 1 // Fl has highest priority (1)
6 LOCAL Edge // declare Edge as local register
7 SETPC Edge L_Edge

8 PRIO Edge 1

9 LOCAL on

10 SETPC on L_on

11 PRIO on 2

12 OUTPUT O // declare output O

13 SETPCOLO // code for O starts in Line 32
14 SETCLK O on // set clock of O to on (when on)
15 PRIO O 3 // O has lowest priority (3)

16 DONE 0 // setup complete

17

18 | L_FI: RRMOV FI | J)Fl =1 —>

19 DONE L_Fl_run
20 | L_Flrun: ADD FI | pre(l) // 1 + pre(l)
21 IDIV FI FI 2 /) /2
22 DONE L_Fl_run
23 | L_Edge: RRMOV Edge X // Edge = X—>
24 DONE L_Edge_run
25 | L_Edge_run: IXOR Edge pre(X) 1 // not pre(X)
26 AND Edge X Edge //and X
27 DONE L_Edge_run
28 | Loon: IRMOV on 1 //on=1-—>
29 DONE L_on_run
30 | Lon_run: XOR on pre(on) Edge // pre(on) xor Edge
31 DONE L_on_run
32 | L_O: IRMOV O 0 //0=0-—>
33 DONE L_O_run
34 | L.O_run: ADD O pre(O) FI // pre(O) + FI
35 DONE L_O_run

Figure 4: KLP assembler for ToggledSum

tion that contains a when statement. In Line 15 its priority
is set to 3, this is the lowest priority, because O depends
on all other processes. Line 14 sets the program counter
to Line 32, which initializes the flow with value zero in the
first tick, before the program counter the next tick is set to
Line 34 by the DONE instruction in Line 33. The actual
computation O+Fl is performed in Line 34. This code is
repeated in every tick by the DONE instruction in Line 35.
Because the computation of FI and Edge can be performed
in parallel, both registers get the same priority (1) in Line 5
and 8, respectively.

5.2 Compiling Scade

As mentioned before, Scade can be compiled into dataflow
equations similar to Lustre, which then can be mapped to
clocked equations. We propose a direct compilation. Three
different approaches exist for the parallel execution of hier-
archical automata: the first is to replicate necessary control
as it is done by the distributed execution of Lustre pro-
grams [5]. Of course, this implies that the same code is
executed multiple times. Another possibility is to insert in-
structions into each parallel branch that explicitly request
information of the global state from some master branch,
which is for example done by the Emperor [22]. The third
possibility is to let the master branch execute the control
parts, and only distribute the data-parts that can be easily
parallelized. This is the approach we take. For each automa-
ton or macrostate we create one control thread, which runs

www-verimag.imag.fr/SYNCHRONE/

Aachine:

(* z
ol | pe
A e

(a) A simple Scade automaton

INPUT |

INPUT X
LOCAL CTRL
SETPC CTRL L_.CTRL_A
PRIO CTRL 1
OUTPUT C
SETPCCL.CA
PRIO C 2
OUTPUT O
SETPCO L.O_A
PRIO O 2

© W N U W N e

=R e e
w N o= O

// Controller for state A

L CTRL_A: JT X A_2.B_S // Check strong abort

L_CTRL_AW: PRIO CTRL 3 // Execute state
PRIO CTRL 1
IEQ T C10
JTTA2BW
DONE L_CTRL_A // Resume in next tick

// Strong abort from A to B

A2BS: SETPCCLCB
SETPCO L.OB
GOTO L_CTRL_B // Check weak abortion in B

// Weak abort from A to B

25 | A.2B.W: SETPCCLCB

26 SETPCO L. OB

27 DONE L_CTRL-B // Resume in B in the next tick

28 | // Controller for state B

20 | L.CTRL_B: PRIO CTRL 3

o e e
N o woa

// Check weak abort

NONON NN R
s W N = O © ®

30 PRIO CTRL 1

31 ILETCO

32 JTTB2A

33 DONE L CTRL_B

34 | // Weak abort from B to A

35 | B_2_A: SETPCCLCA
36 SETPCO L.O_A
37 DONE L_CTRL_A // Resume in A in the next tick

38 | // Equations inside A

39 | LLC_.A: 1ADD Cpre(C) 1
40 DONE L_C_A

41 | LOA: IMULO 12

42 DONE L_O_A

43 | // Equations inside B

44| LLC.B: ISUB Cpre(C) 1
45 DONE L CB

46 | LOB: ISUBOI5

a7 DONE L OB

(b) Derived KLP assembler

Figure 5: Handling of Scade automata on the KLP

per default with higher priority than the substates. At each
tick it first checks for strong abortions, then lowers its own
priority to let the inner equations execute before it raises its
priority again, to ensure that strong abortions are checked
with high priority in the next thread, and checks for weak
abortions. If a transition is triggered, it executes code to
reconfigure all equations that are defined in the source and
target state. Due to the semantics of SSMs in Scade, each
state is executed at most once in each tick, and the only case

when a state is entered and left in the same tick is if it is
activated by a strong abortion and left by a weak abortion.
If a weak abortion is taken, we execute a DONE statement
to stop the controller for this tick. For the strong abortion,
we still have to check the weak abortions of the target state.

Fig. shows a simple automaton in Scade. It takes two
inputs: an integer | and a boolean X. Its only output is the
integer O. The local integer variable c is initialized to 0. The
variable ¢ is incremented each tick in the initial state A and
decremented in state B. Control is transferred from A to B
when ¢ equals 10, and from B to A when c is less or equal to
0. These transitions are weak-delayed, indicated by the dot
at the arrowhead. Therefore, the equation inside the state
is executed one last time in the tick where the transition
is triggered, and the execution of the target state starts in
the next tick. Control can also be transferred from A to B
by the input X. This triggers a strong abortion (dot at the
arrow-tail), that will immediately transfer control to state
B without executing state A first.

The KLP-assembler for this program (Fig. [5b) consists of
the following parts. We assign one register to the control of
the complete automaton. (For more complex programs, we
need one automaton per hierarchy.) This control part runs
with higher priority than the contained equations. In Line 8
the code to check for the execution of state A starts. First,
we check whether the trigger X of the strong abortion is
true, in this case, we jump directly to A_2_B, which sets the
program counter of ¢ and O according to state B. Otherwise,
we set the priority to 3, which indicates lower priority than
the equations for ¢ and O, which are now executed. Then
we raise the priority of the controller back to 1. Thereafter,
we check for the weak abortions by comparing C to 0.

The translation from Scade automata to KLP assembler
is similar to the translation of SSMs to KEP assembler [19].
The main difference is that the KEP has a single point of
control. Therefore, a solution with watchers, which monitor
the unique program counter and reset it when a transition
occurs, is feasible. There a state is implicitly declared active,
when the program-counter is currently inside the scope of
the state, while in our approach a state is active when the
program counter of the controller is in the corresponding
handler.

6. EXPERIMENTAL RESULTS

The KLP is developed in Esterel v7 with Esterel-Studio,
from which a software emulation in C and a hardware de-
scription in VHDL is generated. For evaluation purposes,
we extend it by a test-driver that can communicate via a
simple protocol to set inputs, read outputs, load programs,
and get information on the current execution, such as the
execution trace or the reaction time. The test-driver com-
municates either via the serial port, when run on an FPGA,
or via TCP/IP for the software emulation. To validate our
approach, we compare the generated outputs to the results
of the Lustre v4 compiler. We use the tool lurette |11] to
generate random traces for our benchmarks, which are then
executed on the KLP. The generated outputs are compared
to the outputs, when the traces are run on the benchmarks
compiled with the Lustre v4 compiler.

Fig. [6] shows the number of slices and the minimal in-
struction cycle when it is synthesized for a Virtex 4 FPGA,
depending on the number of registers and processing units
for the dynamic scheduling (dynamic) and the priority based

1000 Slices

1000 Slices

2 4 6 8 10 12 14 16 18 12 3 4 5 6 7 8
Klp registers Processing units
(a) Slices per register, for
1 processing unit

(b) Slices per processing
unit, for 8 registers

(c) Minimal delay per reg-
ister, for 1 processing unit

& dynamic
©-prio

8 10 12 14 16 18 1 2 3 4 5 6 7 8
Processing units

4 6

Klp registers

(d) Minimal delay per processing
unit, for 8 registers

Figure 6: Hardware usage of the KLP

counter =5
elevator lus [B KLP 1
elevator scade e E KLP 4
4
wetch [’
O reluc

005115225335
ms

Figure 7: Reaction times on the KLP compared to
the execution of the program on a MicroBlaze soft-
core, using different Lustre compilers. The KLP
uses 1 or 4 processing units, respectively.

scheduling (prio). The scalability per register of the priority
based approach is slightly better, both with regard to the
usage of slices and the minimal delay. When adding more
processing units, the usage of slices is about equal for both
approaches. The priority based approach is slower in this
case, because the scheduling is more involved. This also ex-
plains why the minimal delay is doubled when going from
one processing unit to two. As to be expected, adding addi-
tional processing units scales better than adding registers.

We measure the reaction times for a set of benchmarks
when running on a Microblaze core with 100 MHz and com-
pared it to the runtime on the KLP, with 1 or 4 processing
units. We synthesized the KLP to get the maximal possi-
ble frequency and used the software emulation to measure
the number of instruction cycles that are needed to compute
one reaction. Fig. |Z| shows the measured worst case reaction
times. The KLP performs better than the code compiled by
the Lustre v4 compiler. It performs about equal to the code
generated by the commercial reluc compiler. Our compiler
performs a basic, syntax-based mapping with minor opti-
mizations, while the reluc compiler performs more aggres-
sive optimizations. For these benchmarks, the 4 processing
units cannot always be used. Since the scheduling for the 4
processing units enforces a lower frequency, the computation
of small benchmarks with few equations or for benchmarks
with many data dependencies can even be slower for more
processing units.

Fig. [§| compares the generated code size for the KLP with
code generated by different Lustre compilers: the Lustre v4

compiler from VERIMAG and the reluc compiler from SCADE.

abro [m—
counter e

elevator lus ;I W KLP
elevatorscade ————— O v4
O reluc

watch Fn———

0051152253354
KBytes

Figure 8: Code size, compiled for the KLP or for
standard hardware using different Lustre compilers

For the KLP-compiler we measure the code size of the KLP-
assembler. For the other compilers, we generate C code and
compile it further with the gcc into object code for a stan-
dard PC. The code of the KLP is relatively large. This has
two, first we need additional code due to the parallel execu-
tion: for each register we need a DONE instruction both for
the runtime code and the initialization plus the setup code.
To reduce this overhead, the compiler could analyze depen-
dencies and combine registers that cannot be executed in
parallel. And the compiler only performs limited optimiza-
tions, in particular compared to the reluc compiler. Note
that for the simple counter example, which has few possibil-
ities for optimization, the code for KLP is smaller than for
the other compilers.

7. OUTLOOK

We have presented the KLP, a processor which is specially
designed to execute synchronous dataflow programs in paral-
lel. It directly supports clocks to determine which code must
be executed in one tick, and it supports the synchronous ex-
ecution of parallel equations. We also showed the compila-
tion process from Lustre and Scade into the KLLP-assembler.
Experiments show that the execution times are competitive
with the compilation from Scade. However, the efficiency of
the processor description needs to be improved. The simple
architecture of the KLP allows easy timing analysis.

One problem in modern processor design is the latency
of memory access, processors can execute instructions faster
than they can be transferred from the instruction ROM.
We do not address this problem here. One possible way to
cope with this problem is to introduce an instruction cache.
To simplify the performance estimation, the cache should
be aware of the registers, hence it should catch instructions
for each register independently. To reduce hardware usage,

we could distinguish between valued registers and boolean
registers, which hold clocks. This can be done easily, since
the register kind is fixed for each instruction.

Also for the compilation are many optimizations possible.
For example, to force initialization, clocks often have the
form true — C where C is some input. So far, we copy the
input in each tick but the first. Instead, we could simply
change the clock-register after the initialization. So far, the
compiler requires one register for each flow in the Lustre
program. If a program needs more registers than available in
the KLP, the compiler could implement these by combining
clocks and implement clocks by conditionals, as it is done
by the compilation from Lustre to common processors.

8.
[

[10]

REFERENCES

S. Andalam, P. Roop, A. Girault, and C. Traulsen.
PRET-C: A new language for programming precision
timed architectures. Technical Report 6922, INRIA
Grenoble Rhone-Alpes, 2009. http:
//hal.inria.fr/docs/00/39/16/21/PDF/rr.pdf.

D. Biernacki, J.-L. Colaco, G. Hamon, and M. Pouzet.
Clock-directed Modular Code Generation of
Synchronous Data-flow Languages. In ACM
International Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), Tucson,
AZ, USA, June 2008.

M. Boldt, C. Traulsen, and R. von Hanxleden. Worst
case reaction time analysis of concurrent reactive
programs. Electronic Notes in Theoretical Computer
Science, 203(4):65-79, June 2008. Proceedings of the
International Workshop on Model-Driven High-Level
Programming of Embedded Systems (SLA++4P’07),
March 2007, Braga, Portugal.

J.-L. Colago, B. Pagano, and M. Pouzet. A
conservative extension of synchronous data-flow with
State Machines. In ACM International Conference on
Embedded Software (EMSOFT’05), Jersey City, NJ,
USA, Sept. 2005.

A. Girault and X. Nicollin. Clock-driven automatic
distribution of Lustre programs. In R. Alur and I. Lee,
editors, 3rd International Conference on Embedded
Software, EMISOFT ’03, volume 2855 of Lecture Notes
in Computer Science (LNCS), pages 206-222,
Philadelphia, PA, USA, Oct. 2003. Springer-Verlag.
P. L. Guernic, T. Goutier, M. L. Borgne, and C. L.
Maire. Programming real time applications with
SIGNAL. Proceedings of the IEEE, 79(9), Sept. 1991.
J. R. Gurd, C. C. Kirkham, and I. Watson. The
Manchester prototype dataflow computer.
Communications of the ACM, 1985.

N. Halbwachs. A synchronous language at work: the
story of Lustre. In Third ACM-IEEE International
Conference on Formal Methods and Models for
Codesign, MEMOCODE’2005, Verona, Italy, July
2005.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305-1320,
September 1991.

N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In

J. Maluszynski and M. Wirsing, editors, Proceedings

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

(22]

23]

of the Third International Symposium on
Programming Language Implementation and Logic
Programming, pages 1-13207-218. Springer Verlag,
1991.

E. Jahier, P. Raymond, and P. Baufreton. Case studies
with lurette v2. International Journal on Software
Tools for Technology Transfer, 8(6), Nov. 2006.

X. Li, M. Boldt, and R. von Hanxleden. Mapping
Esterel onto a multi-threaded embedded processor. In
Proceedings of the 12th International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS’06), San Jose, CA,
October 21-25 2006.

X. Li and R. von Hanxleden. A concurrent reactive
Esterel processor based on multi-threading. In
Proceedings of the 21st ACM Symposium on Applied
Computing (SAC’06), Special Track Embedded
Systems: Applications, Solutions, and Techniques,
Dijon, France, April 23-27 2006.

B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards,
and E. A. Lee. Predictable programming on a
precision timed architecture. In Proceedings of
Compilers, Architectures, and Synthesis of Embedded
Systems (CASES’08), Atlanta, USA, Oct. 2008.

M. Mendler, R. von Hanxleden, and C. Traulsen.
WCRT Algebra and Interfaces for Esterel-Style
Synchronous Processing. In Proceedings of the Design,
Automation and Test in Europe (DATE’09), Nice,
France, Apr. 2009.

D. Potop-Butucaru, S. A. Edwards, and G. Berry.
Compiling Esterel. Springer, May 2007.

P. S. Roop, S. Andalam, R. von Hanxleden, S. Yuan,
and C. Traulsen. Tight WCRT analysis for
synchronous C programs. In Proceedings of the
International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’09),
Grenoble, France, Oct. 2009.

M. Schoeberl. A Java processor architecture for
embedded real-time systems. Journal of Systems
Architecture, 54(1-2), 2008.

F. Starke, C. Traulsen, and R. von Hanxleden.
Executing Safe State Machines on a reactive
processor. Technical Report 0907,
Christian-Albrechts-Universitéit Kiel, Department of
Computer Science, Kiel, Germany, Mar. 2009.

O. Tardieu. Goto and Concurrency—Introducing Safe
Jumps in Esterel. In Proceedings of Synchronous
Languages, Applications, and Programming
(SLAP’04), Barcelona, Spain, Mar. 2004.

R. von Hanxleden. SyncCharts in C. In Proceedings of
the International Conference on Embedded Sofware
(EMSOF'T’09), Grenoble, France, Oct. 2009.

L. H. Yoong, P. Roop, and Z. Salcic. Compiling
Esterel for distributed execution. In Proceedings of
Synchronous Languages, Applications, and
Programming (SLAP’06), Vienna, Austria, Apr. 2006.
S. Yuan, S. Andalam, L. H. Yoong, P. S. Roop, and
Z. Salcic. STARPro—a new multithreaded direct
execution platform for Esterel. In Proceedings of
Model Driven High-Level Programming of Embedded
Systems (SLA++P’08), Budapest, Hungary, Apr.
2008.

http://hal.inria.fr/docs/00/39/16/21/PDF/rr.pdf
http://hal.inria.fr/docs/00/39/16/21/PDF/rr.pdf

	Introduction
	Related Work
	Lustre and Scade
	Lustre
	Scade

	Architecture
	Building blocks
	Instruction Set

	Compilation
	Compiling Lustre
	Compiling Scade

	Experimental Results
	Outlook
	References

