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ABSTRACT
Synchronous programming is a paradigm of choice for the design

of safety-critical reactive systems. Runtime enforcement is a tech-

nique to ensure that the output of a black-box system satisfies some

desired properties. This paper deals with the problem of runtime

enforcement in the context of synchronous programs. We propose

a framework where an enforcer monitors both the inputs and the

outputs of a synchronous program and (minimally) edits erroneous

inputs/outputs in order to guarantee that a given property holds.

We define enforceability conditions, develop an online enforcement

algorithm, and prove its correctness. We also report on an imple-

mentation of the algorithm on top of the KIELER framework for

the SCCharts synchronous language. Experimental results show

that enforcement has minimal execution time overhead, which

decreases proportionally with larger benchmarks.
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1 INTRODUCTION
Runtime verification (RV) [9] is an active area of research on meth-

ods that dynamically verify a set of desirable properties over an

execution of a “black-box” system. An alternative to such passive

runtime analysis is runtime enforcement (RE) [6, 10, 13, 17]. In RE

mechanisms, an enforcer is synthesized to observe the executions

of a black-box system to ensure that a set of desired properties are

satisfied. In the event of a violation, the enforcer performs certain

evasive actions so as to prevent the violation. The evasive actions

might include blocking the execution [17], modifying input se-

quence by suppressing and / or inserting actions [10], and buffering

input actions until a future time when it could be forwarded [6, 13].

These enforcement mechanisms are not suitable for synchronous

reactive systems since delaying the reaction or terminating the

system is infeasible. Considering this, there is recent interest in

runtime enforcement of synchronous reactive systems [4].

A synchronous reactive system is non-terminating and interacts

continuously with the adjoining environment. Hence, the system

execution may be considered as a series of steps, where in each

step the system reads the inputs from the environment, calls a reac-
tion function that computes the outputs for emission. Synchronous

programming languages [2] are well suited for the design of syn-

chronous reactive systems. They use observers [7] to express safety

properties, which are verified statically (using model checking).

There have also been limited attempts to use observers as runtime

entities [15], for example for automatic test case generation. More

recently Rushby studies applications of observers for the expression

of assumptions and axioms in addition to test case generation [16].

However, there have been no studies on the bi-directional RE prob-

lem for synchronous reactive systems, which is the focus of the

current paper.
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Figure 1: Bi-directional RE for synchronous programs.

We consider bi-directional RE of synchronous programs, and the

general context is illustrated in Figure 1. Here, {i1, i2, · · · , in } are in-
puts from the environment to the enforcer, {i ′

1
, i ′
2
, · · · , i ′n } are trans-

formed inputs from the enforcer to the program, {o1,o2, · · · ,om }
are outputs of the program to the enforcer, and {o′

1
,o′

2
, · · · ,o′m }

are transformed outputs from the enforcer to the environment. RE

for synchronous reactive systems is distinct from the existing RE

mechanisms such as [6, 10, 13, 17] since the enforcement mech-

anism for a synchronous reactive system cannot halt the system

or delay events, and must react instantaneously when an error is

observed. Moreover, we consider bi-directional enforcement where

the enforcer needs to consider the status of the environment and

the program in order to enforce the policies. The enforcer must

respect the causality aspects i.e. every reactive cycle must start with

the environment, where the status of the environment inputs must

determine the reaction. After the program has reacted, the gener-

ated outputs are emitted to the environment. Considering this, the

enforcer must act as an intermediary such that it first intercepts the

inputs from the environment to validate them relative to the policy

and forward the inputs to the program once the policy is satisfied.

In the event of any violation, the enforcer may suitably alter the

inputs before forwarding to the program. After the program has re-

acted to these inputs, again the enforcer must ensure that either the

policy is satisfied and hence the outputs are forwarded unchanged

to the environment or a violation has happened that needs to be

handled by altering the outputs to prevent policy violation.

We study the problem of synthesizing an enforcer for any given

safety property φ. Similar to enforcement mechanisms in [6, 10,

13, 17], several constraints are required on how an enforcer trans-

forms input-output words. The enforcer cannot delay events, and

cannot block execution, but it is allowed to edit an event when

necessary (i.e., when the event that it receives as input leads to a

violation). The notions of soundness and transparency are similar to

the existing enforcement mechanisms [6, 10, 13, 17], where sound-

ness means that the output of the enforcer must satisfy property

φ, and transparency expresses that the enforcer should not modify

events unnecessarily. In the proposed framework, we also intro-

duce additional requirements called causality, and instantaneity.
These constraints are developed specifically to respect synchronous

execution, detailed in Section 3. For any given safety property φ,
these constraints also ensure that input/output events are edited

minimally (to avoid violation of φ) so that other non-safety proper-

ties of the system are potentially not affected by the enforcement

mechanism.

Contributions. In this paper, we study and formally define, for

the first time, the bi-directional enforcer synthesis problem for syn-

chronous reactive systems (expressed as synchronous programs).

The main contributions of the paper are (1) We formally define

the bi-directional enforcer synthesis problem and characterize the

set of safety properties which can be enforced (Section 3), (2) We

develop an enforcement algorithm (Section 4) and prove its cor-

rectness, (3) We report on an implementation of the algorithm on

top of the KIELER framework for the SCCharts synchronous lan-

guage (Section 5), and (5) We evaluate the approach over a range of

synchronous programs in the SCCharts language [20] to illustrate

scalability and practicality (Section 5).

2 PRELIMINARIES AND NOTATION
A finite (resp. infinite) word over a finite alphabet Σ is a finite

sequence σ = a1 · a2 · · ·an (resp. infinite sequence σ = a1 · a2 · · · )
of elements of Σ. The set of finite (resp. infinite) words over Σ is

denoted by Σ∗ (resp. Σω ). The length of a finite word σ is n and

is noted |σ |. The empty word over Σ is denoted by ϵΣ, or ϵ when
clear from the context. The concatenation of two words σ and σ ′

is denoted as σ · σ ′. A word σ ′ is a prefix of a word σ , denoted as

σ ′ 4 σ , whenever there exists a word σ ′′ such that σ = σ ′ · σ ′′; σ
is said to be an extension of σ ′.

We consider a reactive system with a finite ordered sets of

Boolean inputs I = {i1, i2, · · · , in }, and Boolean outputs O =
{o1,o2, · · · ,om }. The input alphabet is ΣI = 2

I
, and the output al-

phabet is ΣO = 2
O
and the input-output alphabet Σ = ΣI×ΣO . Each

input (resp. output) event will be denoted as a bit-vector/complete

monomial. For example, let I = {A,B}. Then, the input {A} ∈ ΣI
is denoted as 10, while {B} ∈ ΣI is denoted as 01 and {A,B} ∈ ΣI
is denoted as 11. A reaction (or input-output event) is of the form

(xi ,yi ), where xi ∈ ΣI and yi ∈ ΣO .
Given an input-output word σ = (x1,y1) · (x2,y2) · · · (xn ,yn ) ∈

Σ∗, the input word obtained from σ is σI = x1 ·x2 · · · xn ∈ ΣI which
is the projection on inputs ignoring outputs. Similarly, the output

word obtained from σ is σO = y1 · y2 · · ·yn ∈ ΣO is the projection

on outputs.

An execution σ of a synchronous program P is an infinite se-

quence of input-output events σ ∈ Σω , and the behavior of a syn-
chronous program P is denoted as exec(P) ⊆ Σω . The language
of P is denoted by L(P) = {σ ∈ Σ∗ |∃σ ′ ∈ exec(P) ∧ σ 4 σ ′} i.e.
L(P) is the set of all finite prefixes of the sequences in exec(P).

A property φ over Σ defines a set L(φ) ⊆ Σ∗. A program P |= φ
iff L(P) ⊆ L(φ). Given a word σ ∈ Σ∗, σ |= φ iff σ ∈ L(φ). A
property φ is prefix-closed iff all prefixes of all words from L(φ) are
also in L(φ), i.e., ∀σ ∈ L(φ), ∀σ ′ ∈ Σ∗ : σ ′ 4 σ =⇒ σ ′ ∈ L(φ).
In this paper, we consider prefix-closed properties. Properties are

formally expressed as safety automata that we define in the sequel.

Definition 2.1 (Safety Automaton). A safety automaton (SA) A =
(Q,q0,qv , Σ,−→) is a tuple, where Q is the set of states, called lo-
cations, q0 ∈ Q is an unique initial location, qv ∈ Q is a unique

violating (non-accepting) location, Σ = ΣI × ΣO is the alphabet,

and −→⊆ Q × Σ ×Q is the transition relation. All the locations in Q
except qv (i.e., Q \ {qv }) are accepting locations. Location qv is a

unique non-accepting (trap) location, and there are no transitions

in −→ from qv to a location in Q \ {qv }. Whenever there exists

(q,a,q′) ∈ −→, we denote it as q
a−→ q′. Relation −→ is extended to

words σ ∈ Σ∗ by noting q
σ .a−−−→ q′ whenever there exists q′′ such
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that q
σ−→ q′′ and q′′

a−→ q′. A location q ∈ Q is reachable from q0

if there exists a word σ ∈ Σ∗ such that q0
σ−→ q.

An SA A = (Q,q0,qv , Σ,−→) is deterministic if ∀q ∈ Q,∀a ∈
Σ, (q a−→ q′ ∧ q a−→ q′′) ⇒ (q′ = q′′). A is complete if ∀q ∈ Q,∀a ∈
Σ,∃q′ ∈ Q,q

a−→ q′. A word σ is accepted by A if there exists

q ∈ Q \ {qv } such that q0
σ−→ q. The set of all words accepted by

A is denoted as L(A).

Remark 1. In the rest of this paper, φ is a safety property defined
as deterministic and complete SA Aφ = (Q,q0,qv , Σ,−→). If the user
provides a non-deterministic or incomplete automaton, we determinize
and complete it first. We also consider that Q does not contain any
(redundant) locations that are unreachable from q0.

Due to the causality requirement, the enforcer has to first trans-

form inputs from the environment in each step according to prop-

erty φ defined as SA Aφ . We thus need to consider the input prop-

erty that we obtain from Aφ by projecting on inputs.

Definition 2.2 (Input SAAφI ). Givenφ ⊆ Σ∗, defined as SAAφ =

(Q,q0,qv , Σ,→), input SA AφI = (Q,q0,qv , ΣI ,→I ) is obtained
from Aφ by ignoring outputs on the transitions, i.e., for every

transition q
(x,y)
−−−−→ q′ ∈→ where (x ,y) ∈ Σ, there is a transition

q
x−→ q′ ∈→I , where x ∈ ΣI . L(AφI ) is denoted as φI ⊆ Σ∗I .

Example 2.3 (Example property defined as SA and its input SA).
Let I = {A,B} and O = {R}. Consider the following property: S1:
“A and B cannot happen simultaneously, and also B and R cannot
happen simultaneously”. The safety automaton in Figure 2a defines

property S1. Figure 2b presents the input SA for the SA in Figure 2a

defining property S1. Though the SAAφ is deterministic, the input

SA AφI might be non-deterministic as is the case in Figure 2b.

Lemma 2.4. Let AφI = (Q,q0,qv , ΣI ,→I ) be the input automa-
ton obtained from Aφ = (Q,q0,qv , Σ,→). We have the following
properties:

1 ∀(x ,y) ∈ Σ,∀q,q′ ∈ Q : q
(x,y)
−−−−→ q′ ⇒ q

x−→I q
′.

2 ∀x ∈ ΣI ,∀q,q′ ∈ Q : q
x−→I q

′ ⇒ ∃y ∈ ΣO : q
(x,y)
−−−−→ q′.

Intuitively, property 1 of Lemma 2.4 states that if there is a

transition from state q ∈ Q to state q′ ∈ Q upon input-output event

(x ,y) ∈ Σ in the automatonAφ , then there is also a transition from

state q to state q′ in the input automatonAφI upon the input event

x ∈ ΣI . Property 2 of Lemma 2.4 states that if there is a transition

from stateq ∈ Q to stateq′ ∈ Q upon input event x ∈ ΣI , then there
certainly exists an output event y ∈ ΣO s.t. there is a transition

from state q to state q′ upon event (x ,y) in the automaton Aφ .

Lemma 2.4 immediately follows from Definitions 2.1 and 2.2.

Edit Functions. Consider property φ ⊆ Σ∗, defined as SA Aφ =

(Q,q0,qv , Σ,→), and SA AφI = (Q,q0,qv , ΣI ,→I ) obtained from

Aφ by projecting on inputs. We introduce editIφI (resp. editOφ ),

that the enforcer uses for editing input (resp. output) events (when

necessary), according to input property φI (resp. property φ).

• editIφI(σI ): GivenσI ∈ Σ∗I , editIφI (σI ) is the set of input eventsx
in ΣI such that the word obtained by extending σI with x satisfies

property φI . Formally, editIφI (σI ) = {x ∈ ΣI : σI · x |= φI }.

Considering the SA AφI = (Q,q0,qv , ΣI ,→I ), the set of

events in ΣI that allow to reach a state in Q \ {qv } from a state

q ∈ Q \ {qv } is defined as:

editIAφI
(q) = {x ∈ ΣI : q

x−→I q
′ ∧ q′ , qv }.

For example, consider the SA in Figure 2b obtained from the SA

in Figure 2a by ignoring outputs. Let σ = (10, 0) · (01, 1), and thus
σI = 10 · 01. Then, editIφI (σI ) = ΣI \ {11}. Also, q0

10·01−−−−→I q0,
and editIAφI

(q0) = ΣI \ {11}.
If editIAφI

(q) is non-empty, then nondet-editIAφI
(q) returns

an element (chosen non-deterministically) from editIAφI
(q), and

is undefined if editIAφI
(q) is empty.

• editOφ (σ, x): Given an input-output word σ ∈ Σ∗ and an input

event x ∈ ΣI , editOφ (σ ,x) is the set of output events y in ΣO
s.t. the input-output word obtained by extending σ with (x ,y)
satisfies property φ. Formally, editOφ (σ ,x) = {y ∈ ΣO : σ ·
(x ,y) |= φ}.

Considering the automaton Aφ = (Q,q0,qv , Σ,→) defining
property φ, and an input event x ∈ ΣI , the set of output events
y in ΣO that allow to reach a state in Q \ {qv } from a state

q ∈ Q \ {qv } with (x ,y) is defined as:

editOAφ (q,x) = {y ∈ ΣO : q
(x,y)
−−−−→ q′ ∧ q′ , qv }.

For example, consider property S1 defined by the automaton in

Figure 2a. We have editOAφ (q0, 01) = {0}.
If editOAφ (q,x) is non-empty, nondet-editOAφ (q,x) returns

an element (chosen non-deterministically) from editOAφ (q,x),
and is undefined if editOAφ (q,x) is empty.

3 PROBLEM DEFINITION
In this section, we formalize the RE problem for synchronous pro-

grams. In the setting we consider, as illustrated in Figure 1, an

enforcer monitors and corrects both inputs and outputs of a syn-

chronous program according to a given safety property φ ⊆ Σ∗. We

assume that the “black-box” synchronous program may be invoked

through a special function call called ptick, which is invoked exactly
once during each reaction / synchronous step. Formally, ptick is a

function from ΣI to ΣO that takes a bit vector x ∈ ΣI and returns a
bit vector y ∈ ΣO .

An enforcer for a property φ can only edit an input-output event

when necessary, and it cannot block, delay or suppress events. Let

us recall the two functions editIφI and editOφ that were introduced

in Section 2 that the enforcer for φ uses to edit the current input

(respectively output) event according to the property φ. At an ab-

stract level, an enforcer can be seen as a function that transforms

input-output words. An enforcement function for a given prop-

erty φ takes as input an input-output word over Σ and outputs an

input-output word over Σ that belongs to φ.

Definition 3.1 (Enforcer for φ). Given property φ ⊆ Σ∗, an en-
forcer for φ is a function Eφ : Σ∗ → Σ∗ satisfying the following

constraints:

Soundness

∀σ ∈ Σ∗ : Eφ (σ ) |= φ. (Snd)
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q0 qv
(11, 1) , (11, 0) , (01, 1)

Σ \ {(11, 1), (11, 0), (01, 1)} Σ

(a) SA AS
1
.

q0 qv
11 , 01

ΣI \ {11} ΣI

(b) Input SA obtained from AS
1
.

Figure 2: SA (left), and its input SA (right).

Monotonicity

∀σ ,σ ′ ∈ Σ∗ : σ 4 σ ′ ⇒ Eφ (σ ) 4 Eφ (σ ′). (Mono)

Instantaneity
∀σ ∈ Σ∗ : |σ | = |Eφ (σ )|. (Inst)

Transparency

∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO :

Eφ (σ ) · (x ,y) |= φ ⇒ Eφ (σ · (x ,y)) = Eφ (σ ) · (x ,y).
(Tr)

Causality

∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO ,∃x ′ ∈ editIφI (Eφ (σ )I ),
∃y′ ∈ editOφ (Eφ (σ ),x ′) : Eφ (σ · (x ,y)) = Eφ (σ ) · (x ′,y′).

(Cau)

The input-output sequence released as output by the enforcer

upon reading the input-output sequence σ is Eφ (σ ), and Eφ (σ )I ∈
Σ∗I is the projection on the inputs. Note, editIφI (Eφ (σ )I ) returns
a set of input events in ΣI , s.t. Eφ (σ )I (which is the projection of

input-output word Eφ (σ ) to the input alphabet) followed by any

event in editIφI (Eφ (σ )I ) satisfies φI . editOφ (Eφ (σ ),x ′) returns a
set of output events in ΣO , s.t. for any event y in editOφ (Eφ (σ ),x ′),
Eφ (σ ) · (x ′,y) satisfies φ.
• Soundness (Snd) means that for any word σ ∈ Σ∗, the output of
the enforcer Eφ (σ ) must satisfy φ.

• Monotonicity (Mono) expresses that the output of the enforcer
for an extended word σ ′ of a word σ , extends the output produced
by the enforcer for σ . The monotonicity constraint means that

the enforcer cannot undo what is already released as output.

• Instantainety (Inst) expresses that for any given input-output

word σ as input to the enforcer, the output of the enforcer Eφ (σ )
should contain exactly the same number of events that are in

σ (i.e., Eφ is length-preserving). This means that the enforcer

cannot delay, insert and suppress events. Whenever the enforcer

receives a new event, it has to react instantaneously and has to

produce an output event immediately.

• Transparency (Tr) expresses that for any given word σ and any

event (x ,y), if the output of the enforcer for σ (i.e., Eφ (σ )) fol-
lowed by the event (x ,y) satisfies the property φ (i.e., Eφ (σ ) ·
(x ,y) |= φ), then the output that the enforcer produces for in-

put σ · (x ,y) will be Eφ (σ ) · (x ,y). This means that the enforcer

makes no change when no change is needed in order to satisfy

the property φ.

• Causality (Cau) expresses that for every input-output event (x ,y)
the enforcer produces input-output event (x ′,y′) where the en-
forcer first processes the input part x , to produce the transformed

input x ′ according to property φ using editIφI . The enforcer later

reads and transforms output y ∈ ΣO which is the output of the

program after invoking function ptickwith the transformed input

x ′, to produce the transformed output y′ using editOφ .

Remark 2. Let Eφ (σ ) be the input-output sequence released as
output by the enforcer for φ after reading input-output sequence
σ ∈ Σ∗. Upon reading a new event (x ,y), if what has been already
computed as output by the enforcer Eφ (σ ) followed by (x ,y) does
not allow to satisfy the property φ, then the enforcer edits (x ,y) us-
ing functions editIφI and editOφ . When the current event (x ,y) has
to be edited, note that there may be several possible solutions. For
example, consider the property S1 introduced in Example 2.3. Let
σ = (10, 1) · (01, 0), and the output of the enforcer after process-
ing σ will be Eφ (σ ) = (10, 1) · (01, 0). Let the new event be (11, 0),
and Eφ (σ ) · (11, 0) ̸|= φ, and the enforcer has to edit the new event
(11, 0). Note that Eφ (σ )I = 10 · 01, and editIφI (10 · 01) = {00, 01, 10}
and the enforcer can choose any element from editIφI (10 · 01) as the
transformed input.

Remark 3 (Enforcing bi-directional properties). By consid-
ering two uni-directional enforcers, where one enforcer checks and
transforms inputs from the environment to the program and another
enforcer checks and transforms outputs from the program to the envi-
ronment, bi-directional properties cannot be enforced. For example,
bi-directional properties such as the property S1 introduced in Exam-
ple 2.3 cannot be enforced using two uni-directional enforcers.

Remark 4 (When the input word provided to the enforcer

satisfies φ). Constraint Tr’ expresses that when any input-output
word σ ∈ Σ∗ provided as input to the enforcer satisfies the property
φ, then the enforcer will not edit any event and will output σ (i.e.,
Eφ (σ ) = σ ).

∀σ ∈ Σ∗ : Eφ (σ ) |= φ ⇒ Eφ (σ ) = σ . (Tr’)

Lemma 3.2. Tr⇒ Tr’.
Lemma 3.2 shows that Tr’ is a consequence of constraint Tr. For

any φ, for any σ ∈ Σ∗, proof of this lemma is straightforward using
induction on σ .

Table 1: Example: Tr Vs. Tr’

σ Eφ (σ ) Tr Tr’
(10, 1) (10, 1) ✓ ✓

(10, 1) · (11, 1) (10, 1) · (10,1) ✓ ✓

(10, 1) · (11, 1) · (01, 0) (10, 1) · (10,1) · (10,0) ✗ ✓

Example 3.3 (Tr is stronger than Tr’). Via this example, we illus-

trate that constraintTr is stronger than the alternative transparency
constraint Tr’. Let us consider the property S1 introduced in Exam-

ple 2.3. In Table 1, first column denoted using σ shows input-output

words, and the second column denoted using Eφ (σ ) shows the
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output of the enforcer for σ , and the next two columns indicate

whether Eφ (σ ) satisfies constraints Tr and Tr’ respectively. We

can see that there are situations where Tr’ holds and Tr does not
hold. When the enforcer reads the third event (01, 0), if it edits this
event to (10, 0), then constraint Tr’ holds, and constraint Tr does
not hold since Eφ ((10, 1) · (11, 1)) followed by the new event read

(01, 0) satisfies the property S1, and it should not be edited by the

enforcer according to constraint Tr.

Definition 3.4 (Enforceability). Let φ ⊆ Σ∗ be a property. We say

that φ is enforceable iff an enforcer Eφ for φ exists according to

Definition 3.1.

Not all properties are enforceable, even if we restrict ourselves to

prefix-closed safety properties, as the following example shows.

Example 3.5 (Non-enforceable safety property). We illustrate that

not all prefix-closed safety properties are enforceable according

to Definition 3.1. Consider the automaton in Figure 3 defining the

property φ that we want to enforce, with I = {A}, O = {B} and
Σ = ΣI × ΣO . Let the input-output sequence provided as input to

the enforcer be σ = (1, 1) · (1, 0). When the enforcer reads the first

event (1, 1), it can output (1, 1) (since every event in Σ from q0 leads
to a non violating state q1).

q0 q1 qv
Σ Σ

Σ

Figure 3: A non-enforceable
safety property.

Note that from q1, every event

in Σ only leads to violating state

qv . Thus, when the second event

(1, 0) is read, every possible edit-

ing of this event will only lead to

violation of the property. Upon

reading the second event (1, 0),
releasing any event in Σ as out-

put will violate soundness, and if no event is released as output,

then the instantianety constraint will be violated.

Theorem 3.6 (Condition for enforceability). Consider a
property φ defined as SA Aφ = (Q,q0,qv , Σ,→). Property φ is en-
forceable iff the following condition holds:

∀q ∈ Q,q , qv ⇒ ∃(x ,y) ∈ Σ : q
(x,y)
−−−−→ q′ ∧ q′ , qv (EnfCo)

Proof of Theorem 3.6 is given in Appendix A. Note that given

any property φ defined as SA Aφ = (Q,q0,qv , Σ,→), it is straight-
forward to test whether Aφ satisfies condition (EnfCo).

Remark 5 (Transforming a non-enforceable property into

an enforceable property). Some non-enforceable properties can
be made enforceable by a transformation that excludes some behav-
iors from the property. We illustrate this with an example. Consider
the property defined by the automaton in Figure 4a. This property
is not enforceable for the following reason. Suppose that the first
input-output event that the enforcer receives is (1, 1). Since there is a
transition from q0 to q2 upon (1, 1), the enforcer will take this tran-
sition (according to transparency constraint). Then, whatever may
be the second event that the enforcer receives, note that editIφI and
editOφ will be empty, and there is no way to correct the event and
avoid reaching qv . However, we can transform this property into an
enforceable property by excluding all the paths/behaviours that are
problematic. In particular, we can remove state q2 from the automaton
of Figure 4a and redirect the transition labeled (1, 1) from q0 to qv

instead. This has the effect of removing the word (1, 1) from the lan-
guage accepted by this automaton. The resulting automaton (shown
in Figure 4b) that we obtain satisfies the condition for enforceabil-
ity (EnfCo) and therefore the resulting new property is enforceable.
Note that transforming a non-enforceable property to an enforceable
one is not always possible. For instance, the non-enforceable property
of Figure 3 cannot be transformed to an enforceable property.

Transformation of non-enforceable properties. If a given safety

property φ defined as automaton Aφ = (Q,q0,qv , Σ,−→) does not
satisfy the condition for enforceability (EnfCo), then we can apply

the following transformation process to check whether Aφ can

be transformed in to an enforceable property (by discarding some

states in Q \ {q0} in the automaton Aφ ). We discuss the algorithm

for transformation briefly.

• For every state q ∈ Q \ {qv } if ∀(x ,y) ∈ Σ,q
(x,y)
−−−−→ qv , then

merge q with qv (q is removed from the set of states Q and all

the incoming transitions to q go to qv instead).

• The transformation continues until one of the following two

conditions hold:

• only two states q0 and qv remain in Q , i.e., Q = {q0,qv } such

that ∀(x ,y) ∈ Σ,q0
(x,y)
−−−−→ qv . In this case, the algorithm re-

turns thatAφ cannot be transformed into an enforceable prop-

erty.

• Q \ {q0,qv } is non-empty, and there is no state inQ \ {q0,qv },
that has all its outgoing transitions to qv . In this case, the

algorithm returns the resulting transformed automaton which

is an enforceable property. Let sub(Aφ ) be the transformed

automaton. Note that L(sub(Aφ )) ⊆ L(Aφ ).
Note that the transformation algorithm is complete i.e., ifAφ can be

transformed in to an enforceable property, then the transformation

algorithm returns the transformed safety automaton sub(Aφ ). The
algorithm excludes only problematic paths (behaviors) from Aφ ,

and all good behaviors will be retained in sub(Aφ ) (i.e., removal of

behaviors is done minimally).

4 ALGORITHM
In this section, we provide an algorithm for implementing the bi-

directional synchronous enforcement problem defined in Section 3.

Let the SA Aφ = (Q,q0,qv , Σ,→) define the property φ that we

want to enforce. SA AφI = (Q,q0,qv , ΣI ,→I ) is obtained from

Aφ by projecting on inputs (see section 2).

We provide an online algorithm that requires automata Aφ and

AφI as input. Algorithm 1 is an infinite loop, and an iteration of

the algorithm is triggered at every time step. We adapt the reac-
tive interface that is used for linking the program to its adjoining

environment by following the structure of the interface described

in [1]. We extend the interface by including the enforcer as an

intermediary between the synchronous program and its adjoining

environment.

In the algorithm shown below, t keeps track of the time-step

(tick), initialized with 0. q keeps track of the current state of both

the automata Aφ and AφI . Recall that the automaton AφI that

we obtain from the automaton Aφ by projecting on inputs (see

Section 2) have identical structure, and the only difference is that
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q0

q1

q2 qv

(0, 0)

(1, 1)

(1, 0)|(0, 1)

Σ

Σ

Σ

(a) A non-enforceable property that can be
transformed into an enforceable property.

q0

q1

qv

(0, 0)

Σ \ {(0, 0)}

Σ

Σ

(b) Enforceable property obtained after
transformation.

Figure 4: A non-enforceable property transformed into an enforceable property.

Algorithm 1 Enforcer

1: t ← 0

2: q ← q0
3: while true do
4: xt ← read_in_chan()
5: if ∃q′ ∈ Q : q

xt−−→I q
′ ∧ q′ , qv then

6: x ′t ← xt
7: else
8: x ′t ← nondet-editIAφI

(q)
9: end if
10: ptick(x′t)
11: yt ← read_out_chan()

12: if ∃q′ ∈ Q : q
(x ′t ,yt )−−−−−−→ q′ ∧ q′ , qv then

13: y′t ← yt
14: else
15: y′t ← nondet-editOAφ (q,x ′t )
16: end if
17: release((x ′t ,y′t ))
18: q ← q′ where q

(x ′t ,y
′
t )−−−−−−→ q′ ∧ q′ , qv

19: t ← t + 1
20: end while

the outputs are ignored on the transitions in the automaton AφI .

Note that at the beginning of each iteration of the algorithm, the

current states of both the automata Aφ and AφI are the same

(where both are initialized with q0). At t , if EOut ∈ Σ∗ is the input-
output sequence obtained by concatenating all the events released

as output by the enforcer until time t , thenq corresponds to the state
that we reach in the automaton Aφ upon reading EOut. Similarly,

if EOutI ∈ Σ∗I is the sequence obtained by projecting on x ′i s from
EOut,q also corresponds to the state that we reach in the automaton

AφI upon reading EOutI.
Functions read_in_chan (resp. read_out_chan) are functions cor-

responding to reading input (resp. output) channels, and function

ptick corresponds to invoking the synchronous program. Function

release takes an input-output event, and releases it as output of the

enforcer.

Each iteration of the algorithm proceeds as follows: first all the

input channels are read using function read_in_chan and the input

event is assigned to xt . Then the algorithm tests whether there

exists a transition in→I from the current state q upon xt to an

accepting state in AφI . In case if this test succeeds, then it is not

necessary to edit the input event xt , and the transformed input

x ′t is assigned xt . Otherwise, x
′
t is assigned with the output of

nondet-editIAφI
(q). Let us recall that nondet-editIAφI

(q) returns
an input event that leads to an accepting state in AφI from q.

After transforming the input xt according to AφI , the pro-

gram is invoked with the transformed input x ′t using function

ptick. Afterwards, all the output channels are read using function

read_out_chan and the output event is assigned to yt . Then the

algorithm tests whether there exists a transition in → from the

current state q upon (x ′t ,yt ) to an accepting state in Aφ . In case if

this test succeeds, then it is not necessary to edit the output event

yt , and the transformed output y′t is assigned yt . Otherwise, y
′
t

is assigned with the output of nondet-editOAφ (q,x ′t ). Note that
nondet-editOAφ (q,x ′t ) returns an output eventy′t such that (x ′t ,y′t )
leads to an accepting state in Aφ from q.

Before proceeding with the next iteration, current state q is

updated to q′ which is the state reached upon (x ′t ,y′t ) from state

q in the automaton Aφ , and the time-step t is incremented. Note

that if there exists a transition q
(x ′t ,y′t )−−−−−−→ q′ in the SA Aφ , then

there also exists a transition q
x ′t−−→I q

′
in the SA AφI . The current

states of both the SA are always synchronized and the same at the

beginning of each iteration of the algorithm.

Definition 4.1 (E∗φ ). Consider an enforceable safety property φ.

We define the function E∗φ : Σ∗ → Σ∗, where Σ = ΣI × ΣO , as

follows. Let σ = (x1,y1) · · · (xk ,yk ) ∈ Σ∗ be a word received by Al-

gorithm 1. Then we let E∗φ (σ ) = (x ′1,y
′
1
) · · · (x ′k ,y

′
k ), where (x

′
t ,y
′
t )

is the pair of events output by Algorithm 1 in Step 17, for t = 1, ...,k .

Theorem 4.2 (Correctness of the enforcement algorithm).

Given any safety property φ defined as SA Aφ that satisfies condi-
tion (EnfCo), the function E∗φ defined above is an enforcer for φ, that
is, it satisfies (Snd), (Tr), (Mono), (Inst), and (Cau) constraints of
Definition 3.1.

Proof of Theorem 4.2 is given in Appendix A.

Remark 6 (Determinism of the enforcer). Since we consider
synchronous programs, the enforcer should be deterministic. Regarding
determinism, note that though Aφ is deterministic, the enforcer E∗φ
may be non-deterministic, because when the received input x (resp.
outputy) does not lead to an accepting state from the current state q in
AφI , (resp. Aφ ), it is edited in step 8 (resp. step 15) of the algorithm.
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Note that editIAφI
(q) (resp. editOAφ (q,x) where x ∈ editIAφI

(q)),
may contain more than one element as illustrated via an example in
Remark 2, and nondet-editIAφI

(resp. nondet-editOAφ ) will choose
one element from the set editIAφI

(resp. editOAφ ). However, it is
straightforward to make the behavior deterministic by computing
editIAφI

(q) off-line for all q ∈ Q \ {qv }, and selecting one element
randomly from editIAφI

(q) and remembering the selection for each
q by storing in a table with size |Q |. Thus, whenever in some state q
and when the input read x does not lead to an accepting state from q
(i.e, the condition tested in line 5 evaluates to false), in step 8 we check
the element corresponding to the state q from the table and assign it
to x ′. Similarly, for event q ∈ Q \ {qv }, and for all x ∈ editIAφI

(q),
we can compute editOAφ (q,x) off-line, select one element randomly
and store the selection in a table with size |Q × ΣI |. Thus, whenever
in some state q, when (x ′,y) (where x ′ is the transformed input and
y is the output read) does not lead to an accepting state, in step 15 we
check the element corresponding to (q,x ′) from the table and assign
it to y′.

5 APPLICATION TO SCCHARTS
SCCharts is a Statechart dialect that has been designed for safety-

critical systems and offers deterministic concurrency [20]. We im-

plemented the algorithm presented in Section 4 in an SCCharts com-

pilation framework
1
according to the single-pass language-driven

incremental compilation approach [12]. Here, a safety automaton

is automatically transformed into a synchronous enforcer using

model-to-model transformations. The generated enforcer has three

concurrent regions, one for reading and editing the inputs, one for

invoking the tick function ptick with the edited inputs and a final

one for processing and emitting the outputs. The three components

exactly match the steps of the algorithm presented in Section 4.

Figure 5 depicts the example safety automaton ABO SA in SC-

Charts and the automatically generated Enforcer ABO Enf. In this

example, A and B serve as input vector, whereas O is the only out-

put. The automaton only has two states, the initial state q0 and the

violation state qv . The safety property says that A and B and also

B and O may not be present at the same time.

In order to evaluate this implementation we used a series of

models with increasing sizes as can be seen in Table 2. To generate

the mean values we simulated every model 5 times with each run

consisting of 1000 ticks. As inputs for each model, a random envi-

ronment was created. The whole setup was executed for two cases.

Firstly, the plain model was simulated within its environment. Sec-

ondly, the same environment was used to simulate the model again

with an enforcer in between. The number of enforced properties

(entry “# Properties” in Table 2) range from 0 to 3 including proper-

ties that enforce inputs and also outputs (bi-directional properties).

All experiments were conducted on an embedded system equipped

with an 1 GHz ARMCortex-A7 Dual-Core. Depending on the model

size and the number of properties enforced, we see an increase of

mean execution time between 12%-38% when simulating with an

enforcer. Due to the netlist-based code generation of KIELER, there

is a constant overhead because of the tick function call. Therefore,

the overhead decreases percentage-wise with increasing model size.

1
https://rtsys.informatik.uni-kiel.de/kieler

The Null model test measures the overhead of this black-box call

with an enforcer with 0 safety properties. We observe a constant

overhead of 0.1µs here.
As a concrete case study, we selected a pacemaker based on [8],

which has been implemented in SCCharts. As second experiment

we ran the Faulty Heart Model together with the Pacemaker. The
results of the close-loop simulation can be seen in the last row of

Table 2. Here, the Faulty Heart Model serves as environment for

the Pacemaker and generates flawed pulse signals for the heart.

We added an enforcer to the pacemaker to make sure that atrial

and ventricular signals cannot occur simultaneously, which results

in editing the input vector, and also that the pacemaker does not

emit pace signals for both in return, which results in editing the

output vector. We observe a mean overhead of 12% when using the

enforcer.

6 RELATEDWORK
Synthesizing enforcers from properties is an active area of research.

Security automata proposed by Schneider [17] focus on enforce-

ment of safety properties, where the enforcer blocks the execution

when it recognizes a sequence of actions that doses not satisfy the

desired property. Edit automata (EA) [10] allows the enforcer to

correct the input sequence by suppressing and (or) inserting events,

and the RE mechanisms proposed in [6, 13] allows buffering events

and releasing them upon observing a sequence that satisfies the

desired property. Recently, compositionality of enforcers has been

studied in [14]. These approaches focus on uni-directional RE.

Mandatory Result Automata (MRA) [5] extended EA [10], by

considering bi-directional runtime enforcement. Compared to the

other RE frameworks such as [6, 10, 13, 17], in MRA the focus is on

handling communication between two parties. However none of

the above approaches are suitable for reactive systems since halting

the program and delaying actions is not suitable. This is because

for reactive systems the enforcer has to react instantaneously.

Our work is closely related to [4], which introduces a framework

to synthesize enforcers for reactive systems, called as shields, from
a set of safety properties. In our work, we restrict to prefix-closed

safety properties. The approach in [4] seems to consider more

than prefix-closed properties (where properties are expressed as

automata), but not all regular properties. Also, the approach in [4]

has the notion of k-stabilization where the shield allows to deviate

from the property for k consecutive steps whenever a property

violation is unavoidable. If a second violation occurs within k steps,

then the shield enters into a fail-safe mode, where it ensures only

correctness. So, if two or more errors occur within k-steps, then the

shield may generate outputs arbitrarily to satisfy the property being

monitored by ignoring outputs from the system being monitored.

In our approach, if the input given to the enforcer satisfies the

property, then the enforcer does not modify any event. In case if a

violation is noticed upon some event, the enforcer corrects it (to

avoid violation), and continues to minimize deviation also for the

future input events depending on the state of the enforcer and the

received input event. Moreover, in [4], the shield is uni-directional,

2ABRO from [3], ABO from [20], Reactor from [18], Simple Heart Model and Pace-
maker are remodeled SCCharts variants from [8], Faulty Heart Model is a variant of
the Simple Heart Model with deliberately flawed pulse signals, Traffic Light from [11]

(remodeled from Ptolemy Traffic Light)
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Figure 5: Example safety automaton ABO in SCCharts (left) and its automatically generated enforcer (right).

Table 2: Evaluation results.

Examples
2

Tick (LoC) # Properties Enf. (LoC) Time (µs) Time w/ Enf. (µs) Incr. (%)

Null 0 0 0 0.654 0.752 14.98

ABRO 23 1 21 1.208 1.565 29.55

ABO 28 1 21 0.998 1.368 37.10

Reactor 32 2 32 1.587 2.137 34.61

Faulty Heart Model 43 2 40 1.346 1.869 38.85

Simple Heart Model 76 2 40 2.175 2.825 29.86

Traffic Light 171 3 41 4.039 4.707 16.53

Pacemaker 271 2 35 7.302 8.318 13.91

FHM + Pacemaker 314 2 35 9.195 10.306 12.08

where it observes inputs from the environment and outputs from

the system (program), and transforms erroneous outputs. In our

work, we consider bi-directional enforcement, as explained and

illustrated in Fig. 1.

Our work is also superficially related to repair of reactive pro-

grams w.r.t a specification [19], which deals with white-box pro-

grams. Contrary to [19], in our work, we consider the system

(synchronous program) to be a black-box, and we focus on synthe-

sis of enforcers from properties.

7 CONCLUSIONS
Synchronous observers are used to express safety properties for

synchronous programs, which may be verified either statically or

during runtime. This paper extends observers by proposing the

concept of runtime enforcers for synchronous programs. The prop-

erty to be enforced is modeled as a safety automaton, which is

syntactically like an observer (expressed as an automaton with

a single violation state) referring to both inputs and outputs of

the synchronous program. We formalise, for the first time, the

runtime enforcement synthesis problem for synchronous reactive

systems. We define enforceability conditions, provide an algorithm,

and prove its correctness. The synthesised enforcer interacts with

a black-box synchronous program and its adjoining environment

to ensure that the property in question holds during program ex-

ecution. We have implemented the proposed enforcer synthesis

algorithm for the SCCharts synchronous language.We highlight the

applicability of the proposed approach by enforcing policies over

a synchronous pacemaker model. In the near future, we will con-

sider several extensions, including enforcement with valued inputs

and outputs (valued signals), non-safety properties, and distributed

enforcement.

A APPENDIX: PROOFS
Proof of Theorem 3.6. Let us recall Theorem 3.6. Consider a

property φ defined as SA Aφ = (Q,q0,qv , Σ,→)3. Property φ is

enforceable iff the condition (EnfCo) holds which is the following

condition: ∀q ∈ Q,q , qv ⇒ ∃(x ,y) ∈ Σ : q
(x,y)
−−−−→ q′ ∧ q′ , qv .

We prove that:

• Sufficient: If condition (EnfCo) holds then Eφ according to Defi-

nition 3.1 exists.

Due to condition (EnfCo), whatever may be the current state

q ∈ Q \ {qv } of the enforcer, there is at least one possibility to

correct the event that it receives when in state q (in case if the

received event leads to qv from q). That is, due to condition (En-
fCo), ∀q ∈ Q \ {qv }, we know for sure that editIAφI

(q) will be
non-empty, and ∀q ∈ Q \{qv },∀x ∈ editIAφI

(q) : editOAφ (q,x)
will be also non-empty.

For any property φ defined as SA Aφ , the enforcement func-

tion E∗φ (Definition 4.1) is an enforcer for φ which satisfies all

the constraints according to Definition 3.1. Theorem 4.2 shows

that for any property φ (defined as SA Aφ ) that satisfies the

condition for enforceability (EnfCo), the enforcement function

E∗φ (Definition 4.1) is an enforcer for φ, that is, it satisfies (Snd),
(Tr), (Mono), (Inst), and (Cau) constraints of Definition 3.1.

• Necessary: If Eφ according to Definition 3.1 exists, then condi-

tion (EnfCo) holds.
Suppose that an enforcer Eφ for φ according to Definition 3.1

exists and assume that condition (EnfCo) does not hold for Aφ .

3
Note that we consider that Aφ is deterministic and complete, andQ does not contain

any (redundant) locations that are not reachable from q0 in 1 or more steps.
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Since condition (EnfCo) does not hold, ∃q ∈ Q \ {qv } :

∀(x ,y) ∈ Σ : q
(x,y)
−−−−→ qv , i.e., there exists a location q ∈ Q \ {qv }

such that all the outgoing transitions from q go to qv .

Since all the locations in Q are reachable from q0, ∃σ ∈ Σ∗ :
q0

σ−→ q, i.e., there certainly exists a word σ ∈ Σ∗ that leads to
the problematic accepting location q (which has all its outgoing

transitions to qv ) from the initial location q0.

Ifσ is the inputword to the enforcer, then due to constraint (Tr),
it cannot edit any event in σ , and the enforcer produces σ as

output and reaches location q. When in location q, upon re-

ceiving any event (x ,y) ∈ Σ, the enforcer has no possibility

to correct it, since every event in Σ leads to qv from q (i.e., since

∀(x ,y) ∈ Σ : q
(x,y)
−−−−→ qv ).

Thus, ∀(x ,y) ∈ Σ, when the input word given to the enforcer

is σ · (x ,y), the enforcer cannot produce any event as output since
editIφI () and editOφ () from location q will be empty, violating

constraints (Inst) and (Cau). Thus, our assumption is false and

condition (EnfCo) holds for Aφ .

�
Proof of Theorem 4.2. Let us recall the condition for enforce-

ability: A property φ defined as SA Aφ = (Q,q0,qv , Σ,→) is en-

forceable iff ∀q ∈ Q,q , qv ⇒ ∃(x ,y) ∈ Σ : q
(x,y)
−−−−→ q′ ∧ q′ , qv .

Let us also recall the definition of function E∗φ : Σ∗ → Σ∗ (Def-
inition 4.1). Let σ = (x1,y1) · · · (xk ,yk ) ∈ Σ∗ be a word received

by Algorithm 1. Then we let E∗φ (σ ) = (x ′1,y
′
1
) · · · (x ′k ,y

′
k ), where

(x ′t ,y′t ) is the pair of events output by Algorithm 1 in Step 17, for t =
1, . . . ,k . Note that the input automaton AφI = (Q,q0,qv , ΣI ,→I )
is obtained from Aφ by projecting on inputs (See Definition 2.2,

Section 2).

We shall prove that given any safety propertyφ defined as SAAφ
that satisfies condition (EnfCo), the function E∗φ is an enforcer forφ,

that is, it satisfies (Snd), (Tr), (Mono), (Inst), and (Cau) constraints
of Definition 3.1. Let us prove this theorem using induction on the

length of the input sequence σ ∈ Σ∗ (which also corresponds to the

number of ticks/iterations of Algorithm 1).

Induction basis. Theorem 4.2 holds trivially for σ = ϵ since the
algorithm will not release any input-output event as output and

thus E∗φ (ϵ) = ϵ .

Induction step. Assume that for every σ = (x1,y1) · · · (xk ,yk ) ∈
Σ∗ of some length k ∈ N, let E∗φ (σ ) = (x ′1,y

′
1
) · · · (x ′k ,y

′
k ) ∈ Σ∗,

for t = 1, . . . ,k , and Theorem 4.2 holds for σ , i.e., E∗φ (σ ) satisfies
the (Snd), (Tr), (Mono), (Inst), and (Cau) constraints. Let q ∈
Q \ {qv } be the current state of both the automata Aφ and AφI
after processing input σ of length k , i.e., q corresponds to the state

that we reach upon E∗φ (σ ) in Aφ , and the state that we reach in

the automaton AφI upon E∗φ (σ )I . Note that the current state q in

Algorithm 1 can never be qv (q is initialized to q0 and it is updated

in step 18 to a state q′ ∈ Q \ {qv }).
We now prove that for any event (xk+1,yk+1) ∈ Σ, Theorem 4.2

holds for σ ·(xk+1,yk+1), where xk+1 ∈ ΣI is the input event read by
Algorithm 1, andyk+1 ∈ ΣO is the output event read by Algorithm 1

in k + 1th iteration (i.e., when t = k + 1). We have the following

two possible cases based on whether there is a transition in the

automaton Aφ from the current state q upon (xk+1,yk+1) to an

accepting state.

• ∃q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv .

In Algorithm 1, the condition tested in step 5 will evaluate

to true since from Lemma 2.4, in AφI we will have ∃q′ ∈ Q :

q
xk+1−−−−→I q

′ ∧ q′ , qv , and thus x ′k+1 = xk+1.

Also, the condition tested in step 12 will evaluate to true

in this case since ∃q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv , and

thus y′k+1 = yk+1. At the end of the k + 1th iteration, the input-

output event released as output by the algorithm in step 17 is

(xk+1,yk+1). The output of the algorithm after completing the

k + 1th iteration is E∗φ (σ · (xk+1,yk+1)) = E∗φ (σ ) · (xk+1,yk+1).
Regarding constraint (Snd), in this case, what has been already

released as output by the algorithm earlier before reading event

(xk+1,yk+1) (i.e., E∗φ (σ )) followed by the new input-output event

released as output (xk+1,yk+1) satisfies the property φ, and thus

constraint (Snd) holds. Regarding constraint (Mono), it holds
since σ 4 σ · (xk+1,yk+1) and also E∗φ (σ ) 4 E∗φ (σ ) · (xk+1,yk+1).
Regarding constraint (Inst) from the induction hypothesis, we

have for σ of some length k , |σ | = |Eφ (σ )|. We also have E∗φ (σ ·
(xk+1,yk+1)) = E∗φ (σ ) · (xk+1,yk+1). Thus, |σ · (xk+1,yk+1)| =
|E∗φ (σ · (xk+1,yk+1))| = k + 1, and constraint (Inst) holds. Con-
straint (Tr) holds in this case since the output of the enforcer

before reading (xk+1,yk+1) i.e., E∗φ (σ ) followed by the new input-

output event read (xk+1,yk+1) satisfies the property φ and we

already saw that the output event released by the algorithm

after reading (xk+1,yk+1) is E∗φ (σ ) · (xk+1,yk+1). Regarding con-

straint (Cau), in this case from the induction hypothesis, from the

definitions of editIAφI
and editOAφ we have xk+1 ∈ editIAφI

(q),
and also yk+1 ∈ editOAφ (q,xk+1).

Theorem 4.2 thus holds for σ · (xk+1,yk+1) in this case.

• @q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv .

In this case, we have two sub-cases, based on whether ∃q′ ∈
Q : q

xk+1−−−−→I q
′ ∧ q′ , qv in AφI .

• ∃q′ ∈ Q : q
xk+1−−−−→I q

′ ∧ q′ , qv .
In Algorithm 1, the condition tested in step 5 will evaluate to

true and thus x ′k+1 = xk+1.

In this case, the condition tested in step 12 will evaluate to

false since @q′ ∈ Q : q
(xk+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv . y

′
k+1 will

thus be an element belonging to the set editOAφ (q,xk+1) if
editOAφ (q,xk+1) is non-empty. It is important to notice that

editOAφ (q,xk+1)will be non-empty in this case sincewe know

for sure that ∃y′k+1 ∈ ΣO ,q′ ∈ Q : q
(xk+1,y′k+1)−−−−−−−−−−→ q′ ∧ q′ , qv

(from the condition for enforceability (EnfCo), hypothesis
(q , qv ), definition of editOAφ , and Lemma 2.4). Thus y′k+1
is an element belonging to editOAφ (q,xk+1). The output of
the algorithm after completing the k + 1th iteration is E∗φ (σ ·
(xk+1,yk+1)) = E∗φ (σ ) · (xk+1,y′k+1).
Regarding constraint (Snd), from the definition of editOAφ ,

we know that E∗φ (σ ) followed by the new input-output event

released as output (xk+1,y′k+1) satisfies property φ, and thus

constraint (Snd) holds. The reasoning for constraints (Mono)
and (Inst) are similar to the previous cases since we saw that
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Algorithm 1 releases a new event (xk+1,y′k+1) as output af-
ter reading event (xk+1,yk+1) after completing k + 1th itera-

tion. Constraint (Tr) holds trivially in this case since E∗φ (σ ) ·
(xk+1,yk+1) ̸|= φ. Regarding constraint (Cau), in this case

from the induction hypothesis, from the definitions of editIAφI
we have xk+1 ∈ editIAφI

(q), and we already discussed that

editOAφ (q,xk+1)will be non-empty and thus constraint (Cau)
holds in this case.

• @q′ ∈ Q : q
xk+1−−−−→I q

′ ∧ q′ , qv .
In Algorithm 1, the condition tested in step 5 will evaluate

to false in this case. It is important to notice that editIAφI
(q)

will be non-empty since from the condition for enforceability

and Lemma 2.4, we know for sure that ∃x ′ ∈ ΣI ,q
′ ∈ Q :

q
x ′k+1−−−−→ q′∧q′ , qv in the automatonAφI . Thus, x

′
k+1 will be

an element belonging to editIAφI
(q). We have two sub-cases

based on if ∃q′ ∈ Q : q
(x ′k+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv or not.

• ∃q′ ∈ Q : q
(x ′k+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv .

In Algorithm 1, the condition tested in step 12 will evaluate

to true in this case. Thus, y′k+1 = yk+1 in this case and the

event released as output by the algorithm at the end of k +

1
th

iteration is (x ′k+1,yk+1). We have E∗φ (σ · (xk+1,yk+1)) =
E∗φ (σ ) · (x ′k+1,yk+1).
Regarding constraint( Snd), from the condition of this case

(i.e., ∃q′ ∈ Q : q
(x ′k+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv ), we know that

E∗φ (σ ) followed by the new input-output event released as

output (x ′k+1,yk+1) satisfies the property φ, and thus con-

straint (Snd) holds. The reasoning for constraints (Mono)
and (Inst) are similar to the previous cases since we saw

that the algorithm releases a new event (x ′k+1,yk+1) as out-
put after reading event (xk+1,yk+1) at the end of k + 1

th

iteration. Constraint (Tr) holds trivially in this case since

E∗φ (σ ) · (xk+1,yk+1) ̸|= φ. Regarding constraint (Cau), we
already discussed that editIAφI

(q) is non-empty and x ′k+1 ∈
editIAφI

(q), and yk+1 ∈ editOAφ (q,x ′k+1) from the condi-

tion of this case and definitions of editIAφI
and editOAφ .

• @q′ ∈ Q : q
(x ′k+1,yk+1)−−−−−−−−−−→ q′ ∧ q′ , qv .

In the algorithm, the condition tested in step 12 will eval-

uate to false in this case. y′k+1 will thus be an element be-

longing to the set editOAφ (q,x ′k+1) if editOAφ (q,x ′k+1) is
non-empty. Note that editOAφ (q,x ′k+1) will be non-empty

in this case since we know for sure that ∃y′k+1 ∈ ΣO ,q
′ ∈

Q : q
(x ′k+1,y

′
k+1)−−−−−−−−−−→ q′ ∧ q′ , qv (from the enforceability

condition, definitions, and Lemma 2.4). Thus y′k+1 is an el-

ement belonging to editOAφ (q,x ′k+1). The output of the

algorithm after completing the k + 1
th

iteration is E∗φ (σ ·
(xk+1,yk+1)) = E∗φ (σ ) · (x ′k+1,y

′
k+1) where x

′
k+1 is an ele-

ment belonging to editIAφI
(qI ) and y′k+1 is an element be-

longing to editOAφ (q,x ′k+1).

Regarding constraint (Snd), from the definitions of editIAφI
and editOAφ , we know that Eφ (σ ) · (x ′k+1,y

′
k+1) satisfies the

property φ and thus constraint (Snd) holds. The reasoning
for constraints (Mono) and (Inst) are similar to the previ-

ous cases since we saw that the algorithm releases a new

event (x ′k+1,y
′
k+1) as output after reading event (xk+1,yk+1).

In this case, constraint (Tr) holds trivially since Eφ (σ ) ·
(xk+1,yk+1) ̸|= φ. Regarding constraint (Cau), we already
discussed that editIAφI

(q) is non-empty, x ′k+1 ∈ editIAφI
(q),

and also that editOAφ (q,x ′k+1) is non-empty and y′k+1 ∈
editOAφ (q,x ′k+1) and thus constraint (Cau) holds.

Theorem 4.2 thus holds for σ · (xk+1,yk+1) in this case.

�
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