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Abstract—For most service architectures, such as OSGi and
Spring, architecture-specific tools allow software developers and
architects to visualize otherwise obscure configurations hidden
in the project files. Such visualization tools are often used for
documentation purposes and help to better understand programs
than with source code alone. However, such tools often do not
address project-specific peculiarities or do not exist at all for
less common architectures, requiring developers to use different
visualization and analysis tools within the same architecture.
Furthermore, many generic modeling tools and architecture
visualization tools require their users to create and maintain
models manually.

We here propose a DSL-driven approach that allows software
architects to define and adapt their own project visualization
tool. The approach, which we refer to as Software Project
Visualization (SPViz), uses two DSLs, one to describe archi-
tectural elements and their relationships, and one to describe
how these should be visualized. We demonstrate how SPViz
can then automatically synthesize a customized, project-specific
visualization tool that can adapt to changes in the underlying
project automatically.

We implemented our approach in an open-source library, also
termed SPViz and discuss and analyze four different tools that
follow this concept, including open-source projects and projects
from an industrial partner in the railway domain.

I. INTRODUCTION

This is joint work with the industrial partner Scheidt &
Bachmann System Technik GmbH who has to maintain large
software projects for a long duration, a setting that is quite
common in industry. To maintain a good understanding of
complex software architectures is a non-trivial task. Further-
more, one regularly has to make new team members familiar
with the existing software. Diagrams can aid understanding
concrete connections and ideas and the broader architecture of
a system [1], [2]. However, it is still common practice to create
such diagrams manually. This requires significant maintenance
effort [3] and bears the risk of becoming inconsistent with the
actual project.

There are multiple approaches to combat this issue. There
are tools to reverse-engineer the actual architecture of projects
to compare it to the modeled architecture and adapt them to
each other [4], [5]. Other solutions require a direct inclusion
of the architecture design into the actual source artifacts.
Such architecture inclusion is usually done via extended
languages [6], Architecture Description Languages (ADLs)
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Fig. 1. Screenshot of an architecture visualization tool synthesized by SPViz,
here for OSGi projects. The overviews can be interactively expanded to show
connections as shown in Figures 2 and 3. The view can be customized with
filters and interactive features in the open sidebar.

that are developed alongside the architecture [7], or language-
specific architecture systems such as OSGi1 [8], [9]. For
example, Figure 1, a view of a tool generated by SPViz,
provides a very high-level view of a specific OSGi project
highlighting its architecture consisting of services, features,
products, and bundle dependencies that can be browsed to
provide customizable views as shown later in the paper.

Irrespective of the taken approach, architecture visualization
tools [9]–[12] provide insights into legacy code. However,
most of them are specific for one task or project style, making
them unusable for most other projects. As the use of pro-
gramming languages and project structures surrounding them
changes over time, new tools to work with those languages and
structures must be developed. The problem for the developers
is not only to keep up with the technology, but also with
all tool support outside of rather general IDE and debugging
tooling. For each new project structure, developers will ask
how project artifacts relate to each other and which hierarchies
exist, to explore and explain the projects. Alternatively to that
project-specific approach, one may use tools that support very

1OSGi™ is a trademark of the OSGi Alliance in the US and other countries.



Fig. 2. View of the internal bundle dependencies originating from the klighd.ui.view bundle of the KLighD4 project, synthesized by the tool generated by
SPViz based on structural and visual descriptions in Figures 8 and 12.

Fig. 3. View on the same bundle dependency hierarchy as in Figure 2, filtered by their categorizing features.

generic visual languages such as defined in the UML standard.
As stated by a survey by Lange et al. [13], such languages can
be used and understood by many developers, architects, and
other users of code. However, such generic techniques may fail
to be specific enough to describe the needs of domain experts
and require too much manual effort to yield pleasing and
meaningful diagrams. Another survey by Malavolta et al. [14]
highlights what industry lacks in current architectural tools.
They mention support for multiple views for architectures and
adequate support for specific architectural styles and patterns.

Users want visualizations to automatically update to
changes in the actual project structure, removing the need
to manually craft and update visual descriptions by hand.
Enabling a quick way to implement a new tool or tool support
for software projects to visualize their architecture offers
the different use cases of visualizations such as exploration,
comprehension, and documentation to any software project.

Tools using web technologies are increasingly popular for
their superior versatility and quick turnaround time with low
to no installation requirements. Interactive visualizations are
no exception and should be usable on any device in any
environment, for example in online documentation about sys-
tems. Advancements in that area for example with the generic
visualization framework Sprotty2, the Graphical Language
Server Platform (GLSP)3, and a Language Server Protocol
(LSP) infrastructure for graphical modeling infrastructure [15]
show the feasibility of using diagrams in the web.

2https://github.com/eclipse/sprotty/
3https://www.eclipse.org/glsp/

In the current state of the practice, for projects where
no good specific tools exist and architects do not want to
use the traditional way of using manually designed UML
diagrams, they need other tool support. Thus, the research
question we address in this paper is: How can one create
customized architecture visualization tools with minimal
effort. In answer to that question, we here propose a Do-
main Specific Language (DSL)-driven approach, referred to
as Software Project Visualization (SPViz). SPViz uses project
meta modeling with two DSLs, one to describe architectural
elements and their relationships, and one to describe how
these should be visualized. Provided with such architecture
and visualization descriptions, we propose to automatically
synthesize a customized, project-specific visualization tool.
We have validated this approach with an open-source library,
also termed SPViz5. An outline of an initial view for further
configuration of a concrete architecture visualization tool
synthesized by SPViz is shown in Figure 1.

As proposed in our previous work [9] for architecture
visualization specific to OSGi, the concept for that specific tool
follows the modeling pragmatics approach [16]. Specifically,
it uses the Model-View-Controller (MVC) paradigm [17] as
a guiding principle. The approach separates the views for
exploration and navigation from the models of the underlying
projects and applies filtering and interaction possibilities as
the controller. This previous work only works for a single
architecture and therefore lacks the applicability to other

4https://github.com/kieler/klighd
5https://github.com/kieler/SoftwareProjectViz/tree/spviz24

https://github.com/eclipse/sprotty/
https://www.eclipse.org/glsp/
https://github.com/kieler/klighd
https://github.com/kieler/SoftwareProjectViz/tree/spviz24


Fig. 4. The usage process of the view tools with its core, the view context
model. It is used to configure and filter views for later reuse. Solid arrows
depict data flow, dashed ones the interaction paths to control the VCM.
Adapted from Rentz et al. [9].
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Fig. 5. Collapsed (klingontranslator) and expanded (englishtranslator) prod-
ucts. Expanded product shows filtered views (services, bundle dependencies),
here in their current collapsed form.

architectures. SPViz automates the process of designing such
tools and adapts the concepts to arbitrary architectures. A
dependency hierarchy of an example OSGi project, where
the visualization tool was generated by SPViz can be seen in
Figures 2 and 3. Here we emphasize the importance of filtering
in both the architectural description and visualization tooling
to not show everything at once, but focus on individual compo-
nents of a system and their context. The figures are interesting
and readable, because they do not show many details, but
filtered views, here for the investigation of the project-internal
dependency hierarchy of a specific bundle artifact.

Outline: In Section II we recapitulate how the visualization
and interaction style proposed in our previous work [9] works
for OSGi projects. Next, we cover the main contributions:

• We present the SPViz approach via two DSLs describing
arbitrary architectures and their visualization as a gener-
alization of the OSGi visualization tool in Section III.

• We propose how to automatically generate a complete
visualization tool, as well as template code for a model
generator akin to the OSGi visualization using the DSLs
based on example project architectures in Section IV.

• We illustrate the DSLs using example projects, both open
source and ones from industrial partners, and present the
generated tools with their feedback in Section V.

Finally, we compare related work in Section VI, discuss further
directions in Section VII and conclude in Section VIII.

II. VISUALIZING SPECIFIC PROJECT ARCHITECTURES

In our previous work [9], we presented a visualization tool
specific to the OSGi architecture to aid developers understand

legacy OSGi projects and to document actively developed sys-
tems. The use of the diagrams, according to the previous paper,
allows users to move from manually drawn diagrams such as
UML to automatically created diagrams that are useful for
system documentation purposes. The visualization tool utilizes
the tooling of the KIELER Lightweight Diagrams (KLighD)
framework [18] with automatic layout by the Eclipse Layout
Kernel (ELK)6. KLighD provides a visualization of OSGi
projects given a model synthesis, which is implemented in that
tool. This visualization uses node-link diagrams to represent
structural relationships between architectural artifacts. This
follows the graph-based visualization technique, a term coined
by Shahin et al. in a systematic literature review of software
visualization [1]. This section summarizes the concepts and
visualization techniques, the later sections generalize these
concepts for arbitrary architectures.

The view context model (VCM), depicted in Figure 4, is
the central model for interaction with the tool by modifying
and filtering views to be reusable for documentation purposes
in evolving (software) projects. This model is entirely hidden
from the user and only modified by interaction with the UI.
The project model (PM) contains the extracted data of a
concrete project, here for an OSGi project. It is the data source
of the VCM and describes the project at its state in time
when the PM was generated. The PM conforms to the meta
model of the OSGi architecture, therefore we also call this the
architecture meta model (A2M). It models all possible PMs
for OSGi projects. When initially visualizing a PM, a VCM is
created. Together with the model synthesis and KLighD, this
allows visually browsing different views sensible in the OSGi
environment.

Figure 1 shows the view of such an initial VCM as it is
initially created for any OSGi project. Interacting with the
view via the options, filters, or the UI will change the VCM
directly to reflect the currently shown and connected elements.
Figure 2 is such a configured view investigating the KLighD
framework, which also uses OSGi as its project architecture.
The view is configured to focus on the bundle dependencies
view to show all bundles that are directly or indirectly required
by its klighd.ui.view bundle. All connections of the project as
defined in the A2M and configured to be shown in the meta
model for the VCM, the view context meta model (VC2M)
can be interactively added or removed to show any hierarchy.

Filtered views based on e.g. OSGi products can be browsed
as shown in Figures 3 and 5. In Figure 5 the products
show child views for their services and for their bundle
dependencies, which can be expanded to browse only the
service artifacts/bundles used in that product.

By interacting with the views with the mouse, the VCM
and with that the view can be modified. Overall, the user can

• (un-)focus and expand/collapse views,
• show/hide all collapsed artifacts,
• connect the connected artifacts of an artifact following a

connection once, or for all artifacts at once,

6https://www.eclipse.org/elk/

https://www.eclipse.org/elk/


Fig. 6. The meta modeling hierarchy of SPViz. The shaded top is our proposed abstraction, the center contains examples for the different models.

• remove all connections of an artifact,
• undo/redo the last action or reset the view to its default,
• filter to show or hide the individual artifact views,
• filter artifacts based on their IDs,
• export a VCM to document specific parts,
• and more standard browsing interactions.

Of these, showing/hiding the collapsed artifacts, connecting
artifact connections recursively, and removing all connections
from an artifact are not in the previous work and newly
implemented in SPViz based on feedback by our industrial
partner.

The collapsed and expanded artifacts are always shown
beneath each other in two separate areas, as shown in Figure 5.
On top the collapsed artifacts are packed together, where
the tool features a search and filter of the artifacts to be
inspected further. On the bottom the expanded artifacts are
shown with their filtered artifact views or their connections
to other artifacts in the view as in Figure 2. Furthermore,
in Figure 2 the collapsed artifacts are also hidden and the
interactive buttons are deactivated, to allow the export of such
a VCM as part of the documentation for that project without
cluttering the view.

In SPViz, the colors of all artifacts are picked in a way
to have a low saturation to have a good contrast to black
text, while trying to not collide with the colors of other
artifacts. This is done by choosing the hue of the color
based the low-discrepancy sequence on remainders mod 1 of
integer multiples of the golden ratio [19], to have consistent
colors with good contrast between them, no matter how many
different artifacts are used in the A2M. The colors could also
be manually picked by the visualzation tool designer to match
known styles for the specific architecture.

Overall, this previous work [9] can be used for OSGi
projects, but lacks usage for any other architecture. We now
further generalize this visualization tool and make it applicable
to arbitrary architectures.

III. THE SPVIZ DSLS AS ARCHITECTURE
AND VIEW META META MODELS

To allow domain experts to conceptualize a visualization for
software projects following arbitrary architecture meta models
(A2Ms), we define meta meta models to describe the general

structure of a software architecture and an abstract way of
visualizing that architecture. We illustrate the meta model-
ing hierarchy of visualization tools relative to our previous
work [9] with our proposed abstraction in Figure 6. Section II
explains the project, view, and their respective project model
(PM) and view context model (VCM). We refer to the meta
model for describing the architecture the architecture meta
model (A2M), and the meta model for the possible types of
shown connections and views the view context meta model
(VC2M). This section introduces two DSLs for defining such
A2Ms and VC2Ms, thus making the DSLs themselves an
architecture meta meta model (A3M) and a view context meta
meta model (VC3M).

A. The Architecture Meta Meta Model

Domain experts can describe a project architecture using our
definition of the architecture meta meta model (A3M) DSL.
The grammar is defined using the Xtext [20] framework and
shown in extended Backus–Naur form (EBNF) in Figure 7.

All project structures are different in their concrete realiza-
tion in the sense of which files and which configurations define
the underlying project. However, in an abstract sense projects
always contain different artifacts and references between these
artifacts. Artifacts can be coarse- or fine-grained parts of a
software system such as entire products, features, classes, or
even statements, which may refer to other artifacts. References
can be further specialized into connections, e.g. dependencies
connecting different artifacts, and containments, e.g. some
product artifact containing a set of packages. We define these
components as the A3M. The A3M can be applied to most
architectures to show how all their different artifacts relate to
each other. This concept is comparable to other meta models
used for Model Driven Engineering (MDE) such as the Meta
Object Facility (MOF) [21], in a simplified version. We do
not need its relations special to object orientation, such as
class inheritance to describe arbitrary software architectures.
We have found that the A3M suffices to describe interrelations.
In fact, class inheritance can be modeled with our model
through the use of references from a class artifact to itself.
This is due to the A3M being self-describing, just as the MOF.
Furthermore, the A3M restricts the designer to design their



SPVizModel = "package" Name
"SPVizModel" Name "{"{Artifact}"}"

Artifact = Name ["{"{Reference}"}"]
Reference = Containment|Connection
Containment = "contains" Artifact
Connection = Name "connects" Artifact
Name = ? Letters, numbers, full stop ?

Fig. 7. A3M DSL grammar.

// generate code into this package
package de.cau.cs.kieler.spviz.osgi

// name of the project structure is OSGi
SPVizModel OSGi {
// the artifacts the project contains
Feature {

// features give structure to their bundles
contains Bundle

}
Bundle {

// bundles may connect to other bundles
// as a connection called "Dependency"
Dependency connects Bundle
// services are defined within bundles
contains ServiceInterface
contains ServiceComponent

}
// service components can require and provide
// other service interfaces. Inverting the
// provision for a consistent "requires" direction
ServiceInterface {

ProvidedBy connects ServiceComponent
}
ServiceComponent {

Required connects ServiceInterface
}

}

Fig. 8. Example A3M DSL usage.

architecture in a minimal way and to restrict it to a unique
way for later code generation.

Figure 8 shows an example use of the A3M DSL to describe
the OSGi architecture A2M. This example intentionally re-
visits the OSGi architecture to show that the previous tool [9]
can entirely be generalized. The information in the example
consists of the name, artifacts, their hierarchy, and connections.
The resulting meta model describes coarse- and fine-granular
artifacts of the OSGi architecture modeling bundle dependen-
cies and service hierarchies. Blocks within the SPVizModel
block define the artifacts that the architecture contains, here
features, bundles, service interfaces, and service components.
These artifacts are structured according to the artifacts that
they contain. In this example, the features are structured by the
bundles that they contain. This artifact structure can be used
to automatically generate a class hierarchy, which is part of
the subsequent code synthesis. A corresponding class diagram
with containments modeled as references is shown in Figure 9.
Figure 10 shows the pattern for the class structure for any
A2M in general. Every artifact type gets its own class and the
connections and containments are handled via reference lists.

PM instances of this OSGi A2M describe information of the
structure of concrete projects to model dependencies between
bundles from the project itself and external ones. One can

Fig. 9. Class structure as generated for the example OSGi A2M.

Fig. 10. Abstract class structure of the generated code for the A2M.

also get an insight into otherwise more obscure connections of
different service components, as defined in the service layer of
the OSGi specification [8], in the specification with the name
service objects.

This example OSGi A2M taken from the A3M DSL is now
comparable to the manually described one from Section II.
However, only using the A3M is insufficient to define how
different views should be configured and filtered. For that, we
define the VC3M as another DSL.

B. The View Context Meta Meta Model

The view context meta meta model (VC3M) makes it pos-
sible to describe which of the artifacts and their connections
from the A3M should be visualized in different views. Typ-
ically, not all possible connections should be shown in any
view, and not all artifacts of the same type should be in the
same view part. Just showing everything at once is typically
not the best visualization for project structures, but filtered
subsets are.



SPViz = "package" Name
"import" URI
"SPViz" Name "{"

{View}
{ArtifactShows}

"}"
View = Name "{"

{ShownElement}
{ShownConnection}
{ShownCategoryConnection}

"}"
ShownElement = "show" Artifact
ShownConnection = "connect" Connection
ShownCategoryConnection = "connect" Connection

"via" Artifact {">"Artifact} "in" View
ArtifactShows = Artifact "shows" "{"

{ArtifactView}
"}"
ArtifactView = View "with" "{"

{Artifact "from" Artifact {">"Artifact}}
"}"

Fig. 11. VC3M DSL grammar, referring to the A3M DSL grammar in Fig-
ure 7.

Therefore the VC3M allows the architects to further struc-
ture their visualization. Its grammar defined by an Xtext DSL
is shown in Figure 11. The VC3M, connecting to an existing
A3M, describes views. These views refer to the A3M and
define which artifacts and which of their connections can be
visualized within them. This allows for configurability, to have
views specifically intended to show one kind of connection
between artifacts, or multiple connection types for broader
overviews. Furthermore, the VC3M makes a configuration of
how the artifacts themselves should be visualized possible.
As artifacts from the A3M may contain other artifacts, we
allow the definition of artifact views as views filtered to the
context of this parent artifact. Artifact views can be used
especially for artifacts that have the purpose of organizing
other artifacts, such as bundle categories as subsets for bundles
in the OSGi specification [8]. The artifact views refer to
the views defined above with their artifact and connection
types and filter the artifacts to the context of this artifact
view’s parent artifact. Finally, the category connections are
another way of organizing and filtering views. They are part
of views and show the implicit connections between catego-
rizing artifacts that are in a relation to each other via some
contained artifact type. Category connections are defined by
the connection they represent, the artifact hierarchy following
the parent-child hierarchy to get from the connected artifacts
to the defined connection, as well as the inner view to connect
to. The following example will further illustrate this concept.

Continuing the OSGi example, Figure 12 shows a possible
use of the VC3M DSL to describe a VC2M for the OSGi A2M.
The configuration matches and extends the OSGi visualization
described in Section II, thus showing that the previously
manually designed OSGi visualization can be generalized
using our DSLs. The example defines a new visualization
for the OSGi architecture called OSGiViz and defines what
views can be shown in general, as well as how artifacts can
reuse these views to filter views down into a sensible context.

// generate code into this package
package de.cau.cs.kieler.spviz.osgiviz
// refer to the "OSGi" model above
import "osgi.spvizmodel"

// this visualization is called "OSGiViz"
SPViz OSGiViz {
// the available views for OSGiViz
// this is the view for services
Services {
// show the service hierarchy with all
// its artifacts and connections
show OSGi.ServiceInterface
show OSGi.ServiceComponent
connect OSGi.ServiceInterface.ProvidedBy
connect OSGi.ServiceComponent.Required

}
// view for bundles and their dependencies
BundleDependencies {
show OSGi.Bundle
connect OSGi.Bundle.Dependency

}
// view of features, for filtering
Features {
show OSGi.Feature
//connect features via their bundle dependencies
connect OSGi.Bundle.Dependency via OSGi.Feature

in BundleDependencies
}

// features can show filtered artifact views,
OSGi.Feature shows {
// inner views connected as defined above
BundleDependencies with {

// only bundles contained in the feature
OSGi.Bundle from OSGi.Feature>OSGi.Bundle

}
}

}

Fig. 12. Example VC3M DSL usage, referring to the example in Figure 8.

The views called services and bundle dependencies clarify
that the artifacts and the connections related to them from the
underlying OSGi model should be shown. An example view
of the bundle dependencies can be seen in Figure 2. The view
named features shows an overview of all possible features and
a category connection.

Through configuration of an artifact view, the features
displayed in their overview show filtered views specific to
the individual features defined within an OSGi project. This
artifact view defines the filters for a bundle dependencies
view. It defines how the bundles that should be shown in a
bundle dependencies view as defined above are filtered. The
DSL allows referring to the requested artifacts by chaining the
artifacts together via their contains relation of the A3M. In this
example it means that all bundles are shown that are listed
in the feature’s child bundles. This way, whereas a general
view for bundle dependencies would show all bundles as they
are used and defined in the whole project, the feature-specific
artifact view for bundle dependencies shows the filtered view,
only with bundles relevant for the feature. Figure 3 illustrates
this, as each feature only shows the bundles in their bundle
dependencies view that the feature contains.

The category connection defined in the features view makes



Fig. 13. Traditional (left, gray) and proposed (red) process for developing a new software project visualization tool. A2M and VC2M are written in the DSLs
proposed here. Boxes represent files, software packages, and applications in UML style.

it possible to show a relation between features, although the
OSGi A2M does not define any direct connections for features.
Because features contain bundles, which themselves define
the bundle dependencies connection, this category connection
enables showing the relation between the features in terms
of their bundle dependencies. That is, a connection between
features will be shown, if a bundle contained in one feature
has a connection to a bundle contained in another feature.
Figure 3 illustrates this. Here the view and ide features have
a shown dependency, because the ui.view bundle within the
view feature has a dependency to the ide bundle within the
ide feature, as also seen in Figure 2. Edges are drawn thicker
if they bundle multiple dependencies into a single edge. This
is an important filtering view that does not require more effort
in the later PM extraction, but just a single line in the VC2M.

IV. PROJECT VISUALIZATION TOOL SYNTHESIS WITH
SPVIZ

Figure 13 shows the proposed development process for soft-
ware architects who want to apply the visualization technique
from our previous work [9] to their project. They need to
describe the architecture and its visualization as described in
Section III and extract information about the real artifacts
of the project on their file system into a PM. To design the
models, questions such as ‘What connections and hierarchies
in the code should be made visible?’ and ‘What kinds of
artifacts define and order these?’ need to be answered. This
first layer of modeling a visualization and the architecture is
the main task of an architect when using SPViz. Traditionally,
the architect does not have access to this first layer and needs
to develop all code in the second layer manually or use an
entirely different approach. This traditional way was done in
our previous work [9], showing the simplification the DSLs
provide compared to that process.

A. Visualization Framework Generated from the DSLs

Our implementation of the SPViz approach separates the
generated visualization into multiple parts and uses IDE sup-
port and the code generation features of Xtext for DSLs for
that purpose. This code generation is the second layer of
steps in Figure 13 and will be automatically executed when
developing the DSLs in Eclipse. Once the user is finished
designing their A2M, SPViz will create an Eclipse Modeling
Framework (EMF) model of that A2M following the class
structure in Figure 10. Such a model contains a single project
class containing lists of all artifacts defined for that project. For
the OSGi example from above, this results in the project class
OSGiProject as in Figure 9 containing lists of its features,
bundles, service interfaces, and service components. Every
artifact then has lists that refer to all artifacts they are in
a containment or connection relation to. I.e. each artifact
refers to the source or target artifact for each connection it
is used in, as well as the parent or child artifact for each
containment it is used in. More specifically, bundles refer
to their contained service interfaces and components, to the
features they are contained by, as well as the bundles they
refer to and are referred by the dependency connection. That
means that every relation can be followed both ways in this
model and any change to any of the lists will automatically
update its opposing list by EMF.

The second part created by SPViz is a template for a PM
generator. The template is a complete program with a depen-
dency on the generated EMF model of the A2M. It comes
with a Maven build, which can bundle it into an executable.
The template contains a file ReadProjectFiles.java which is
missing the architecture-specific extraction of data from the
project’s sources. It provides methods to create and connect
all artifacts as defined in the A2M as well as a checklist of
all artifacts, connections, and containments that need to be
extracted in the generator. Examples described in Section V



implement this template to show its feasibility. Alternatively,
an extractor can be a separate program or tool. Our API
requires an EMF model instance following the class structure
of Figure 10 in the open XML Metadata Interchange (XMI)
format proposed by OMG [22], which can be implemented
by any tool. For more information about the XMI model API,
see the EMF book [23]. This open format allows other code
mining and reverse engineering tools to work together with
our A2M and therefore with the visualization tool.

Because the A2M and its generator can be used isolated
from the VC2M, this allows users to write different VC2Ms for
the same A2M. This is useful so that a single model generator
can create a model of the current state of a project, which can
be visualized using different VC2Ms.

Once the user is finished designing their possible views
in the VC2M, SPViz will create four more modules: the
EMF model and code to support that VC2M that yields a
visualization using the KLighD framework [18], a language
server to enable viewing KLighD diagrams in web environ-
ments [24], as well as a Maven build system. This can be
packaged together either as Eclipse plug-ins or as a standalone
application to be used together with the KLighD CLI [25]7.

As a different concept, one could think of visualizing sys-
tems just using the DSLs without code generation, thus having
a single generic SPViz tool that could handle all visualizations,
given the DSLs. However, that would complicate writing a
model generator, as it could not programmatically depend on
the A2M model code, but would require more complex meta-
parsing of models and it would ignore the benefits of the MDE
workflow with the EMF models. Furthermore, the tool itself
would need the DSLs to run and parse the configurations,
making the tool less concise for its use case. However, such
a generic tool would remove the need to generate, build, and
execute the built tool first from the DSLs and allow the direct
execution of such a tool, thus creating a tradeoff. We opted
for the generation approach, mainly to make the subsequent
implementation/adaption of the model generator simpler.

B. View Your Visualization Anywhere

SPViz is designed to work with any project architecture,
causing the range of such an architecture’s main development
IDE to be pretty much any IDE. The tool support for de-
velopment in any language should try to follow the IDE, as
for example requested by Charters et al. [26] for visualization
tools or presented in tools such as VisUML [11]. As there is
no widely-adopted framework or API to add diagrams in many
IDEs yet, such an integrated support is not feasible. However,
the use of web tools and tools developed with web technology
in mind is growing and allows for an easy access. Therefore,
we also make use of web technologies for the configuration
and deployment of architectural views.

While individual deployment of tools such as the individual
tools generated by SPViz can vary between projects, they
can be integrated and configured into of a largely automated

7Available on GitHub: https://github.com/kieler/klighd-vscode

process after their initial setup to view the models in the web
or some IDEs directly.

The initial setup of the individual visualization tool is
supported mainly in the Eclipse IDE. This includes the de-
velopment of both DSLs and the implementation/adaption
of a model generator for the PM. From there, most other
use cases can be automated and integrated into existing web
documentation. We think that after the initial setup, the tool
is best used by first integrating the model generator into the
CI/CD chain of the project. The model generator template
has a Maven build, which will create an executable to call
in CI/CD for every iteration where it should update the
documentation. Architects can use the generated PM as well
as the visualization tool to configure some specific views and
to put their corresponding VCMs into the documentation. Here
the architects are free to configure the views anywhere the final
visualizations can be displayed as well. That is, the diagrams
can currently be shown in the Eclipse IDE, in VS Code, or
embedded in web sites (see Figure 1) by using KLighD or
the KLighD CLI. The view configuration of that PM can be
stored as its VCM and deployed to the documentation, making
it possible to update the PM generated by the CI/CD to always
have most up-to-date documentation without the need to adapt
the VCM.

As another use case, the visualization applications and PM
generator designed for the architecture can also be distributed
to other developers of the project for exploration outside of
the pre-configured documentary views.

V. PRELIMINARY EVALUATION AND VALIDATION

We evaluate our proposed concept in two ways. First, we
show its flexibility and usability for diverse project archi-
tectures by realizing four different A2Ms and VC2Ms via
the DSLs, motivated by open source projects and projects
developed by our industrial partner. For each resulting tool, we
evaluate the tool usability with these open source and industrial
projects and do a quantitative analysis on the effort reduction
using SPViz for the OSGi example. Second, we evaluated
different user stories for different user groups of SPViz and
asked two users of different projects of our industrial partner
for feedback on their goals with the generated project visual-
izations and their successes and criticisms.

A. Testing with Real-World Examples

We answered the design questions as mentioned in Sec-
tion IV for four different project architectures and modeled
the A2Ms and VC2Ms accordingly. As some examples are
rather specific on the project configurations, e.g. being for a
specific build and dependency system with a specific Depen-
dency Injection (DI) framework, they do not directly apply
to most other projects. However, they are easily configurable
and combinable, so that tools working for other architectures
with their specific use cases are built quickly. The models
and generators for the examples can be found in the SPViz
examples repository8.

8https://github.com/kieler/SoftwareProjectViz-examples/tree/spviz24
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1) OSGi: For the OSGi visualization, the created models
aim to visualize dependencies within the module layer and
service relations within the service layer of the OSGi specifi-
cation [8]. The example, which is slightly extended compared
to the OSGi example from Figures 8 and 12, also uses products
to further organize the individual components and allows the
view of service connections in relation to their parent bundle
artifacts as category connections. This example architecture
visualization was designed as a first proof of concept. It
indicates that the interactive visualizations can in fact be gen-
eralized from the implementation of our previous work [9] and
result in equivalent views conveying the information that the
architecture-specific visualization does. The PM generator for
OSGi projects scans through a repository and parses the data of
META-INF/MANIFEST.MF files for bundles, feature.xml files
for features, and *.product files for products. Furthermore, it
parses OSGI-INF/ folders and the Java files for definitions and
connections of service components and interfaces and creates
an OSGi PM based on that data for any OSGi project.

This example was verified with a project from our industrial
partner, as well as the KLighD and Semantics frameworks
of the KIELER9 project. The partner project consists of 144
bundles plus 109 additional dependent bundles, as well as
285 service artifacts. The KLighD and Semantics frameworks
consist of 25 plus 196 bundles and 166 plus 144 bundles,
respectively. Example views of this are shown in Figures 2
and 3.

To compare the effort of a manual architecture-specific
implementation and the SPViz approach, we compare the man-
ually written lines of code (LoC) using the SPViz approach
for the OSGi example and the code generated from our tool.
We compare to the generated code instead of the manual im-
plementation because of slight differences and improvements
between the tools and similar LoC in the generated and manual
tools. The A2M and VC2M descriptions using the DSLs for
this OSGi example have a combined 76 LoC and the PM
generator template was extended by 466 LoC in Java to extract
all OSGi-specific artifacts, their connections, and containments
of any such OSGi project. The generated project consists of
318 LoC of EMF model code and 8654 LoC of Xtend and Java
code that would have to be written manually without SPViz,
plus the 466 LoC of above to make the generator template
functional. These numbers do not include the 25 000 lines of
Java code that are further generated from the generated EMF
models, as they do not add to manual work in either setup.
Comparing the effort on a LoC basis, this yields a reduction in
the manually written LoC of 1− 76+466

318+8654+466 = 94.3%. The
effort is further reduced because the generated tool comes with
a release engineering configuration that builds and packages
the generated tool as an Eclipse plugin or as a web tool to run
in web pages in conjunction with the KLighD CLI.

2) Maven and Spring DI: A second example visualization
using SPViz has the goal to visualize two kinds of connections
that may occur within Java projects—dependencies between

9https://github.com/kieler

modules as defined by its Maven10 build system, as well
as dependencies and provisions of service components and
interfaces using DI as defined in the Spring Framework11.
These connections are structured via Maven artifacts bundling
together multiple child modules. We want to clarify to not
confuse these Maven artifacts with the artifacts of our A3M.
The modeled Maven artifacts are one kind of artifact as defined
by the A3M. This modeled structure is similar to the OSGi
example and shows that different systems can be modeled and
therefore visualized. The main difference here is how both
examples have their different artifacts persisted in the file
system. For the Maven modules and artifacts, the generator
parses the pom.xml files to build the PM of the hierarchy and
the module dependencies. The DI artifacts are extracted by
parsing the Java files looking for interfaces and classes with
@Inject and @Named annotations.

This example was designed by our industrial partner and
verified by them with a project consisting of 34 modules
and 175 service artifacts. Their goal was to use such a
visualization tool for automatically updating documentation
and for onboarding of new developers and maintenance. Other
projects can also reuse parts of this design and model extractor,
as the project structure based on the Maven build and the DI
information are separate and can be used with other systems.
This example does not visualize all possible DI configurations
of the Spring Framework, as the use case of our partner only
uses the annotation-based configuration of components and
requirements via @Inject and @Named annotations directly
in the Java code. Therefore this example supports to extract
these annotations, but no further XML-based configuration or
other annotations.

3) Gradle: Many projects use build tools such as Gradle12

to define the project structure, dependencies, and to automate
the build process and tests. This build system is extensible
and features a look into the project structure, dependencies,
etc. as a direct part of the build process, thus making it easier
to reuse that data for analysis tools. Designing the DSLs and
generating the visualization code for any project architecture
can be done quite quickly. However, programming an extractor
for any project style can require deeper insight into the project
structure and its build tools and used frameworks. Reusing the
data provided by frameworks and build tools such as Gradle
can cut down the cost to develop such an extractor and also
make it less error-prone. With Gradle, data can be extracted
by the same tool that is used to execute or build the project.

This Gradle example was verified with the open source
project Spring Boot13, which contains a total of 187 so-
called projects plus 729 further dependent projects. To make
this example work together with its Gradle build system,
we added a task to be executed for each sub-project during
the build. This collects the information of the Configuration
API of Gradle and presents it to the model generator in a

10https://maven.apache.org/
11https://spring.io/projects/spring-framework
12https://gradle.org/
13https://github.com/spring-projects/spring-boot
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Fig. 14. The interfaces and resolved classes providing those interfaces for the SvgExporter class as they are pre-configured by Sprotty’s main repository.

more accessible JSON format. Similarly, other code miners
and extensible project build systems can be used to extract
the project information for other project types. This example
shows the feasibility of using the build system to our advantage
and can be combined with other hierarchies as shown in the
other examples.

4) Yarn and InversifyJS: Finally, to show another full
visualization combining dependencies and services outside of
the Java programming language, we combined the dependency
management of TypeScript projects using Yarn14 with the
InversifyJS15 DI framework. The artifacts for this example are
parsed by analyzing the yarn.lock file generated by Yarn to
extract the packages and their dependencies and by parsing the
TypeScript source files to search for interface-to-class bindings
and @inject and @injectable annotations to create the
hierarchy as described in the other examples.

We verified this with the open source framework Sprotty16

with a dependency tree of 906 packages and 126 defined
service artifacts. An example view showing the configuration
of injected services as they are required by the SvgExporter
class is shown in Figure 14. Here every other layer represents
either a class (green), which was configured to provide its
service to some interface, or an interface (blue) that is injected
to a class. Being a quite small framework, InversifyJS has no
tool to visualize such hierarchies to our knowledge, so this is
a good showcase to implement novel visualizations. However,
this example shows a possible usability issue. The PM is
defined as an EMF model, which can be best extracted in
Java, as the framework supports programmatically building the
model, whereas writing generators in other languages would
require manually conforming to the XMI definition of the PM,
which is more effort than using the framework directly. Future
work can circumvent this issue by providing or reusing another
exchange format.

B. User Stories and Industry Feedback

SPViz can be used by varying user groups with different
goals and desires for a tool solution. Next, we present and
analyze three such groups and their implications for the tool
design.

14https://yarnpkg.com/
15https://github.com/inversify/InversifyJS
16https://github.com/eclipse/sprotty

As a first user group we identify the software developers, or
end users. They want to learn and understand the system they
are developing to be able to improve and extend it. For this,
they need reliable and up-to-date information about the system
and a way to filter that information to some context. Further-
more, the effort for acquiring such information should be low.
A technical solution for the software developers should allow
for different representations [14]. The information should
furthermore update automatically, for example by integration
into the build process, to lower the effort to use the solution
and always have up-to-date information. Finally, the solution
should be close to or integrated into their development IDE
or the documentation [26] to avoid bloating their workflows.

In the second user group we identify the technology experts
as the tool designers for individual architectures. They need a
tool that is tailored to their domain technology (e.g. OSGi).
If there is no such tool, or a tool is not specific enough,
development of a new one should be a one-time-effort with low
maintenance cost. A solution should therefore enable experts
to convert their domain knowledge into a usable tool and
extract the data from the underlying project. Its setup should
furthermore be easy and understandable and work with any
technology.

Lastly, we identify the software architects as a third user
group. They need to be able to configure views and highlight
parts of projects. They also want to integrate such views
in the documentation and presentations for on-boarding new
developers. Their solution requirement is that view should
be interactively configurable, that this configuration can be
persisted and that views based on such a configuration auto-
matically update to changes in the underlying system.

Users can be in multiple of these groups and therefore
require a combined solution. We gathered feedback from our
industrial partner on the usage of the OSGi and Maven +
Spring DI examples, being applied to internal projects. We
interviewed two participants, the product owner and one of the
architects of the projects, which are summarized here. One of
them fits in the software architect and partly in the software
developer user group, while the other fits in the technology
expert and software architect groups.

One visualization goal the participants want to solve is to
explore the modules of their architecture to get an overview,
either overall or from some specific view point. Another goal
is to explain the architecture and specific hierarchies to others

https://yarnpkg.com/
https://github.com/inversify/InversifyJS
https://github.com/eclipse/sprotty


by creating architectural descriptions, without the need to
update such descriptions manually. Both participants stated
that previously such diagrams were crafted and updated by
hand. While there are many visualizations out there, this shows
that at least for this questionnaire the architects were not happy
with other tools they used so far. Other tools did not provide
exactly what was required, because they were not usable as
well, or because the architects did not find the right tool yet.

Both had the problem that views for larger projects start to
require more effort to use and that clustering or pooling of
artifacts into categories can induce a better hierarchical view
on parts of the system. This is especially the case when there
are many artifacts of the same type being visualized in the
same view. The artifact views and category connections we
described help to find the right context, as long as the model
provides enough context via some categorizations. Further
ideas indicate that diagram layouts can become a little too
large for what is shown, which can be solved in future work.

Overall, their feedback indicates that the tool can and
already has been used to understand parts of different system
architectures. As mentioned above and further discussed in
Section VII, some improvements regarding the actual views
and their interaction can be added, though that does not impair
the proposed approach to create visualizations for any project.

VI. FURTHER RELATED WORK

As elaborated in the following, many related proposals go
in the direction of visualization for software architectures or
using meta models to describe and visualize architectures.

Following definitions used for software architecture, our
tool mostly adheres to them as well and supports tooling
for software architectures. Citing Shaw and Garlan [27], soft-
ware architecture “involves the description of elements from
which systems are built, interactions among those elements,
patterns that guide their composition, and constraints on these
patterns”. Especially the composition and interaction among
any element of systems is what we also try to focus on,
fitting to this definition of elements as we allow them to be
as fine-granular as methods and statements. Bass et al. [28]
summarize multiple definitions, quoting that “architecture is
high-level, the overall structure, structure of components and
their interrelations, or components and connectors,” indicating
that our visualizations fit into the category of architecture
visualizations.

According to Clements et al. [29], “modern software archi-
tecture practice embraces the concept of architectural views.
A view is a representation of a set of system elements and
relations associated with them.” Views are the main part in
which architectures are perceived and mostly also designed.
We here interpret a view differently, in that it is a visual
representation that emerges from the underlying architecture.
We aim to let users of SPViz use an explicit architecture
following these definitions, or implicit connections through
third parties through dependencies.

Shahin et al. [30] show how understanding architectural de-
sign decisions as communicated by software architects needs

to be visualized. They are however manually created and do
not allow the extraction of data for new visualizations from
the code alone. Shahin et al. [1] further discuss software
architecture visualization techniques and highlight how the
architectural design, architectural patterns, and architectural
design decisions influence what the real code will result in
and how tool support is critical for practical applicability of
their visualization.

Architectures of projects are often described by Architecture
Description Languages (ADLs) in the literature. Medvidovic
and Taylor [31] classify and describe the use of ADLs in
general. Using their words, at one end of the spectrum, it can
be argued that the primary role of architectural descriptions
is to aid understanding and communication about a software
system. At the other end of the spectrum, the tendency
has been to provide formal syntax and semantics of ADLs,
powerful analysis tools, model checkers, parsers, compilers,
code synthesis tools, runtime support tools, and so on. Our
approach is not an ADL, but a way to describe project-
specific architecture descriptions to create an easier step-in
into creating project-specific visualizations, or a meta ADL.
SPViz can be used for existing software architectures, ADLs
and Module Interconnection Languages (MILs) [32].

A related tool for general architecture visualization using an
ADL is described in work by Buchgeher et al. and Weinreich et
al. [7], [33]. They “emphasize the architectural description of
a system as a central element during the whole software devel-
opment process. The main idea is to incorporate a formalized
architecture description model into a software system which is
always kept up-to-date during software development.” While
they focus on continuous co-development of the software and a
formal architecture description of it, they require such a direct
integration and only partly enable the analysis of legacy code
that was not initially designed with their tool. Furthermore,
as their tooling is restricted to the Eclipse IDE, its use for
projects developed outside the Eclipse environment is limited.
However, they allow constraint analysis to automatically detect
architectural errors and inconsistencies and have immediate
visual feedback on system change, giving them some ad-
vantages in such an integrated system. We want to bridge
the gap of generic architecture ADLs and an easy way to
describe meaningful visualizations for them. Our tool can
interface with existing architectures to provide visualizations,
while not requiring any concrete language or syntax on the
architecture description itself. Other ADLs tightly integrated
into specific languages, requiring the underlying projects to
conform to their constraints are for example ArchJava [6] for
Java and Codoc [34] for Python. There are other similar tools
for domain-specific graphical modeling tools, partly based on
DSLs applicable to different architectures.

Nimeta [35] is a tool for architecture reconstruction based
on views. They build graphical views based on so-called view-
points for arbitrary descriptions. They clearly split the data
extraction from the visualization step to allow different tools
to visualize the same data, whereas we with SPViz integrate
the architectural description in the view descriptions, allowing



for further filtering based on the architecture.
The CINCO tool [36] generates domain-specific graphical

modeling tools from abstract specifications. They use a similar
meta meta modeling hierarchy to describe architectures. Their
use case, however, is to generate a full modeling suite for
such a model with the graphs editing to modify the underlying
models. They do not aim to visualize existing architectures in
a way SPViz does. Other graphical editors for models such as
Epsilon [37], Sirius [38], and Spray [39] map domain-specific
models to graphical views, but require explicit descriptions on
how views should be displayed and model elements should be
connected in the first place. The models to graphical views
concept is similar to the KLighD framework that we use,
while we utilize the KLighD framework to make the way of
connecting elements more implicit via the VC3M DSL. These
related papers style different parts of the visualizations for
more configurability. The SPViz approach may also support
similar individual stylings beyond the current box and arrow
graphs as shown above, but the tool currently does not support
such individual element styling.

Another term under which visualizing architecture is under-
stood is the reconstruction of software architecture from the
area of reverse engineering. El-Boussaidi et al. [40] use the
Knowledge Discovery Meta-Model (KDM) [41] to describe
legacy projects to visualize them, while other use clustering
algorithms to try to infer architectural meaning from otherwise
non-structured code [42]–[44]. We think approaches like these
are a good way to reverse engineer and structure unstructured
legacy code which can be combinable with our visualization
techniques, if they can output the results to be imported in
some PM generator described with our approach.

Petre [45] analyzed what expert programmers want from
visualizations. E.g., they need to be specific enough to get
good insight into the architecture and allow a good focus on
parts that are currently interesting for the user. Gallagher et
al. [46] analyzed key areas for software visualization practice
such as representation, navigation and interaction. We ana-
lyzed the visualizations and interactions with the OSGi tool in
our previous work [9]. Most of that analysis is also applicable
to the generalization of this paper. However, the specificity
and its focus are dependent on the concrete A2M and VC2M.
In general, we allow for the tools to be as specific as they
need to be to satisfy the specificity requirement.

VII. DISCUSSION

While this paper presents our proposed concept for describ-
ing arbitrary architectures and their visualization, some parts
in the configurability, the visualization, and the handling of
the DSLs can be improved in the future. We would like the
generated visualization modules to be extensible to make the
final visualizations more configurable to fit aesthetics criteria
of the architecture to visualize. A first idea is to open up an
API that allows the individual renderings for the overviews,
the artifacts, or even the connections or the arrow heads to
be configurable. This could be achieved for example via some
injection mechanism similar to the configurability of many

functional aspects in the Xtext framework or an extension to
the DSL syntax. This could also enable the modification of
automatic artifact colors. Another part that could be config-
urable is mapping the visualized artifacts to some web-link
leading to documentation of that artifact or being integrated
into different IDEs such as Eclipse and VS Code.

An improvement to the tooling to design a new visualization
would be to allow using the DSLs outside of Eclipse in
e.g. VS Code or a command line tool, and generate the
required code from there. Furthermore, support to write a
model generator using other languages could help developers.
Another improvement would be to make the A3M compatible
with other meta models such as the KDM [41].

In the VC3M DSL we would like to enable further config-
uration. The bundle dependencies view in Figure 12 only per-
mits a direct connection of bundles to other bundles. However,
bundles may be indirectly connected via a different package
artifact, whose connections should be shown, without showing
the package artifacts themselves. An extension to the DSL
could allow writing something like connect OSGi.Bundle

via OSGi.Bundle.PackageDependency, to indicate that the
parent bundle artifact of the connected package dependency
should be connected instead. A different syntax to better
distinguish it from the category connection could be used as
well. Another extension would enable (recursive) connections
of filtered artifacts in artifact views. The bundle dependencies
artifact view of products in Figure 12 for example could show
the project-known dependencies of all filtered bundles with
some syntax such as OSGi.Bundle from OSGi.Product>OSGi.

Bundle and connected. This would not only show the bundle
hierarchy of all bundles defined in the product, but also their
(recursive) dependencies, as they are always part of a deployed
product anyways.

To solve another issue that the texts for the artifact names
can get quite long and bloat the required size for the diagram,
we would like to add an option to only show hints of the
names and expand the names with hover feedback or to use
automatic label management to reduce the layout footprint of
the individual artifacts [47].

Lastly, the stored VCM could be improved as well. Cur-
rently a stored VCM restores the last visualized state by the
IDs of each artifact and their connections to make it possible
that a change in the project updates the model and restores
the previous view. For a VCM which was configured to show
all connections of some specific element, while an update
to the project introduces some new connected element, that
connection will not be shown in the updated visualization.
Instead, the port which was white before to indicate that
there are no further elements to connect to would be black in
the updated version, indicating there are further connections
currently not shown. This change is not easily recognizable.
However, restoring the VCM by connecting all elements where
all elements were connected before could mitigate that issue.

To address threats to validity of the industry feedback, that
part of the evaluation is not meant to be the final study
to validate the usability of our proposed SPViz tool. The



questionnaire was not structured in a controlled manner and is
meant to be viewed as a initial argument towards showing the
usefulness of SPViz for generating customized visualization
tools. We plan on conducting a further user study investigating
how users design and adapt new visualization tools using our
proposed approach in the future.

VIII. CONCLUSION

SPViz is a new approach for software architects to quickly
create a visualization tool they can use to explore any oth-
erwise obscure architecture. It enables its users to create
automatically updating architectural views for documentation
purposes and to explain relations to others. We built a tool fol-
lowing this approach to make a previously presented approach
for visualizing, exploring, and documenting OSGi projects
available for arbitrary software architectures, highlighting the
usability of such a concept. The visualizations use state-of-the-
art and well-accepted views on connections within software
systems such as dependencies and service structures. We com-
pared the tool to other meta modeling tools and architectural
visualizations, such as ADLs, which usually require projects
to adapt to. We do not require projects to use any specific
architecture, but support the description of the architecture
for any project. SPViz can be used as a visualization tool
generator for legacy systems to visualize specific parts that
other tools do not cover. It can also be used to quickly set up
a visualization for new and emerging languages and system
structures. To be applicable to projects that have no real
own architecture and are just a collection of source files, a
combination with other tools clustering and organizing specific
artifacts is recommended.

Overall, the tool has been used and evaluated on multiple
projects, showing its benefits. However, as discussed in Sec-
tion VII, some areas can still be improved in future research
to widen the use cases of this architecture-agnostic software
visualization tool generator.
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