
Polyglot Modal Models through Lingua Franca
Alexander Schulz-Rosengarten

Reinhard von Hanxleden
{als,rvh}@informatik.uni-kiel.de

Kiel University
Kiel, Germany

Marten Lohstroh
Edward A. Lee

{marten,eal}@berkeley.edu
UC Berkeley
Berkeley, USA

Soroush Bateni
soroush@utdallas.edu

UT Dallas
Dallas, USA

ABSTRACT
Complex software systems often feature distinct modes of opera-
tion, each designed to handle a particular scenario that may require
the system to respond in a certain way. Breaking down system
behavior into mutually exclusive modes and discrete transitions
between modes is a commonly used strategy to reduce implemen-
tation complexity and promote code readability.

However, such capabilities often come in the form of self-con-
tained domain specific languages or language-specific frameworks.
The work in this paper aims to bring the advantages of modal
models to mainstream programming languages, by following the
polyglot coordination approach of Lingua Franca (LF), in which
verbatim target code (e. g., C, C++, Python, Typescript, or Rust)
is encapsulated in composable reactive components called reac-
tors. Reactors can form a dataflow network, are triggered by timed
as well as sporadic events, execute concurrently, and can be dis-
tributed across nodes on a network. With modal models in LF, we
introduce a lean extension to the concept of reactors that enables
the coordination of reactive tasks based on modes of operation.

CCS CONCEPTS
• Software and its engineering → Model-driven software engi-
neering; Abstraction, modeling and modularity; Visual languages;
Orchestration languages; State based definitions.

KEYWORDS
coodination, polyglot, modal models, state machines, Lingua Franca

ACM Reference Format:
Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Marten Lohstroh,
Edward A. Lee, and Soroush Bateni. 2023. Polyglot Modal Models through
Lingua Franca. In Cyber-Physical Systems and Internet of Things Week 2023
(CPS-IoT Week Workshops ’23), May 09–12, 2023, San Antonio, TX, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.3587498

1 INTRODUCTION
The focus of this paper is on reactive systems, which continuously
react to their environment, are typically embedded in larger sys-
tems, and often have some real-time requirements.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05. . . $15.00
https://doi.org/10.1145/3576914.3587498

© A. Schulz-Rosengarten, R. von Hanxleden, M. Lohstroh, E. A. Lee, and S. Bateni 2023. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was published in Proceedings of Cyber-Physical Systems and Internet of Things
Week 2023, https://doi.org/10.1145/3576914.3587498.

Two major notations or views have emerged for describing reac-
tive systems, actor-oriented dataflow networks and state machines.
The dataflow view breaks down the program into smaller blocks
with streams of data flowing between them. Each such actor re-
ceives inputs, produces outputs, and can be assumed to operate
fully independently from other blocks on which it has no data de-
pendencies, thereby presenting opportunities for parallelization
or distribution. MathWorks’ Simulink and National Instruments’
LabVIEW are examples for such an approach.

In a state-oriented view, the program is modeled in terms of states
of the system and its progression in the form of transitions between
them. State machine notations can be found, for example, as State-
flow [5] in Simulink or as Statecharts [6]. While state machines
often describe fine-grained steps at the system level, they can also
be used to represent more abstract modes of operation. For exam-
ple, a system or subsystem may progress from initialization mode,
through a training mode, and into a steady-state mode, with ad-
ditional modes for error handling. Each mode of operation may
encapsulate a complex collection of (stateful) reactive behaviors.
Such modal models were realized, for example, in Ptolemy II [7],
where they were used to simulate complex and hybrid systems.

However, the languages that provide the capabilities to model
systems in any of these notations often come in the form of stan-
dalone domain specific languages (as in Simulink, LabVIEW, or
Ptolemy II) or language-specific frameworks (such as Akka [15]).
Usually, these languages either compile to or integrate into specific
general purpose programming languages to produce executable
code. The idea of polyglot coordination is to allow any mainstream
programming languages to benefit from the advantages of mod-
eling with actors, states, or modes. This can be done by directly
embedding the verbatim code and then producing executable code
that coordinates the execution of these modular units.

The goal of the work in this paper is to bring the advantages
of modal models to mainstream programming languages through
a reactor-oriented coordination language called Lingua Franca
(LF) [12]. LF is rooted in a model of computation called reactors [11]
and is built as a polyglot coordination language. Reactors encapsu-
late reactive tasks specified in verbatim code and provide aminimal
coordination layer around them that is reactive, timed, concurrent,
event-based, and accounts for isolated states. Unlike Ptolemy II,
LF is not merely intended for modeling and simulation, but rather
is meant for building efficient implementations. LF currently sup-
ports C, C++, Python, TypeScript, and Rust. For these languages
it provides a runtime environment for automatic coordination of
time-sensitive and concurrent or distributed reactors. The applica-
bility of LF ranges from embedded systems to distributed systems
deployed to the Cloud.

https://orcid.org/0000-0002-1494-8631
https://orcid.org/0000-0001-5691-1215
https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0002-5663-0584
https://orcid.org/0000-0002-5448-3664
https://doi.org/10.1145/3576914.3587498
https://doi.org/10.1145/3576914.3587498

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA A. Schulz-Rosengarten, R. von Hanxleden, M. Lohstroh, E. A. Lee, and S. Bateni

Contributions and Outline
While the reactor-oriented modeling approach is well-suited for
concurrent and distributed event-based coordination, it does not
allow to naturally coordinate these tasks in terms of modes of
operation, as we will illustrate in Sec. 2. After summarizing relevant
aspects of LF in Sec. 3, we will present our concept of modal reactors,
extending the polyglot coordination layer of LF. Specifically, this
includes

• a lean textual and diagrammatic modal language extension
that embraces the polyglot nature of LF by taking a “black-
box approach” towards the target language and that allows
hierarchical decomposition of modal behavior;

• an adaptation to reactors with two simple but effective tran-
sition types, reset and history, which can be further refined
at the target language level; and

• a semantics for modal behavior that introduces mode-local
time and leverages LF’s superdense time model to achieve
deterministic behavior.

Sec. 5 presents related work and Sec. 6 concludes.
We present the main aspects of modal reactors here. More de-

tailed information, e. g. on the implementation, can be found in an
extended report [17].

2 MOTIVATING EXAMPLE: THE FURUTA
PENDULUM

A Furuta pendulum [4] is a classic control system problem often
used to teach feedback control. The setup consists of a vertical shaft
driven by motor, a fixed arm extending out at 90 degrees from the
top of the shaft, and a pendulum at the end of the arm. The goal
is to rotate the shaft to impart enough energy to the pendulum
that it swings up, to then catch the pendulum and balance it so
that the pendulum remains above the arm. Each of these steps
requires a different control behavior which makes a controller a
prime candidate for a modal model. It cycles through the three
modes, which we will name SwingUp, Catch, and Stabilize.

From a classical event-driven or dataflow perspective, there is
only a single reactive task, computing the motor control based on
the angle measurements at the arm and shaft. However, with modes
we can identify more fine-granular tasks and coordinate these by
embedding them in a modal model.

To illustrate what we are aiming for with modal reactors, we
have replicated a solution given by Eker et al. [9] and implemented
it using our mode extension for Lingua Franca. The program is
presented in Fig. 1. Our language extension includes the diagram
synthesis capabilities of LF, which yields an automatically gener-
ated and interactive pictorial representation (Fig. 1a) of the textual
program. The overall program consists of three connected reac-
tors Sensor, Controller, and Actuator. Fig. 1b presents the source
code of the top-level reactor. We will now explain the code for the
Controller reactor, and, in the process, introduce Lingua Franca.
Fig. 1c shows an abbreviated version of the Controller definition
with some C code omitted for clarity. The source code of a more
comprehensive implementation is available online.1

1https://github.com/lf-lang/examples-lingua-franca/tree/date23/C/src/modal_
models/FurutaPendulum

FurutaPendulum

Sensor
angles

Actuator
control

Controller

SwingUp

1angles control

Catch

2angles control

Stabilize

3angles control

angles

angles angles

angles control

(a) Structural overview as graphical diagram

1 target C;

2 import Controller from "FurutaPendulumController.lf"

3 import Sensor, Actuator from "FurutaPendulumUtil.lf"

4 main reactor {

5 s = new Sensor();

6 c = new Controller();

7 a = new Actuator();

8 s.angles -> c.angles;

9 c.control -> a.control;

10 }

(b) The main reactor code for the program

1 target C;

2 reactor Controller {

3 input angles:float[];

4 output control:float;

5 initial mode SwingUp {

6 reaction(angles) -> control, reset(Catch) {=

7 ... control law here in C ...

8 lf_set(control, ... control value ...);

9 if (... condition ...) { lf_set_mode(Catch); }

10 =}

11 }

12 mode Catch {

13 reaction(angles) -> control, reset(Stabilize) {=

14 ... control law here in C ...

15 lf_set(control, ... control value ...);

16 if (... condition ...) { lf_set_mode(Stabilize); }

17 =}

18 }

19 mode Stabilize {

20 reaction(angles) -> control, reset(SwingUp) {=

21 ... control law here in C ...

22 lf_set(control, ... control value ...);

23 if (... condition ...) { lf_set_mode(SwingUp); }

24 =}

25 }

26 }

(c) The Controller reactor code

Figure 1: LF program to drive the Furuta Pendulum.

The very first line identifies the target language as C, which
means that this controller will be translated into a standalone C
module, and that the logic of reactions and mode transitions will
be written in C. The first two lines in the Controller reactor define
the input and output ports. Following are three reaction definitions,
each reacting to the angles input, producing a control output, and
implementing one of three control laws.

https://github.com/lf-lang/examples-lingua-franca/tree/date23/C/src/modal_models/FurutaPendulum
https://github.com/lf-lang/examples-lingua-franca/tree/date23/C/src/modal_models/FurutaPendulum

Polyglot Modal Models through Lingua Franca CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

We here use the new mode extension to encapsulate each one in
a separate mode. The reaction bodies are given in ordinary C code
that reads the input values and calculates an actuation signal. That
C code would go on lines 7, 14, and 21 but is abstracted away here
because those details are not germane to this paper. On lines 8, 15,
and 22, the calculated control value is sent to the output port. Lines 9,
16, and 23 use C expressions (abstracted here) to determine whether
a mode change is now required, and, if so, invoke lf_set_mode to
specify the next mode. See Sec. 4.2 for the semantics of these mode
transitions.

With three modes, this model is a rather small example and
could, as any statemachine, also be expressed in a single reaction
that encodes the modal behavior (e. g. in a switch statement). Yet,
such hand-written code would contradict the fundamental idea of
model-driven engineering and would also be prone to errors and
complex to extend. In more advanced modal scenarios, features
like mode-local time and reset transitions (explained below) add
expressiveness that is not easily replicated in non-modal LF.

3 REACTOR-ORIENTED PROGRAMMING
We now briefly introduce the structure of LF programs and high-
light a few aspects that are especially relevant for the integration
of modal models. For a more detailed discussion we refer else-
where [10–12].

Causality and Concurrency. As the Furuta pendulum example
already illustrates, reactors declare input and output ports and pro-
vide reactions to handle and produce events. Each reaction specifies
triggers and effects while the actual body of a reaction is written
in target code and not part of the LF coordination language layer.
Reaction signatures are enforced and, hence, encode a causality
interface [8]. In combination with reactor connections they form
a dependency graph that captures all scheduling constraints nec-
essary to ensure an execution that yields deterministic results. Be-
cause this graph is valid irrespective of the contents of the code that
executes when reactions are triggered, reactions can be treated as
a black box, which enables the polyglot nature of LF. Furthermore,
the dependency graph allows to execute reactions in parallel with-
out introducing any data races or deadlocks, if they are logically
simultaneous and have no dependencies between them. Reactions
within the same reactor always have dependencies between them,
to ensure mutually exclusive access to shared state. Specifically, the
order of declaration in the code determines precedence.

Time. Alongside ports and reactions, reactors can further contain
state variables, actions, and timers. State variables provide access
to stateful reactor-encapsulated data. Actions are used for sched-
uling of future events inside a reactor (as opposed to ports, which
relay events logically instantaneously). Timers are actions that are
automatically rescheduled with a predefined periodicity.

Events are aligned on a logical timeline, assigning each a tag.
Tags are pairs (𝑡,𝑚), where 𝑡 is a time value and 𝑚 a microstep
index. That index is used to enable subsequent event cycles to occur
without any time elapsing between them, a concept known as
superdense time [14]. Furthermore, LF features a special relationship
between physical and logical time [13] to enable deadlines and
handle external interrupts.

Visualization. The reactor-oriented programming paradigm lends
itself particularly well to visualizations. LF comes with an automatic
interactive diagram synthesis for its coordination layer, tailored to
enhance developer’s grasp of the high-level structure. One could
say that LF capitalizes on “pragmatics” [19] when it comes to the
handling of models of possibly highly complex systems, with a
focus on how to get the best of both the textual and the graphical
worlds. All the LF diagrams, including the ones presented in this
paper, are synthesized automatically from textual LF code.

4 MODAL REACTORS
The basic idea of modal reactors is to use the existing reactor model
but to allow for a modal coordination of reactions, by partitioning
reactors into disjoint subsets that are associated with mutually
exclusive modes. In a modal reactor, only a single mode can be
active at a particular logical time instant, meaning that activity in
other modes is automatically suspended. Transitioning between
modes switches the reactor’s behavior and controls the starting
point of the entered modes. The option to reset or continue with
the mode’s history are common and powerful abstractions that are
particularly helpful in managing complex timed behaviors, which
can be extremely error-prone when carried out manually.

While the ideas behind modal reactors are not new, the guidance
by LF’s fundamental principles towards a polyglot modal coordina-
tion layer is novel. Our goal is to create modal models that are:

• lean a minimal coordination layer that provides the most
essential functionality but still offers maximal versatility and
user adjustability;

• polyglot a flexible multi-language wrapper that focuses
on the user’s language and requires only minor adaptation
effort;

• concurrent allowing the design of multiple separate modal
units acting independently;

• timed a reliable and precise way to specify time sensitive
modal behavior, even in parallel and distributed environ-
ments; and

• deterministic yielding unambiguous and reproducible out-
put behavior for the same sequence of tagged input events.

Our modal extension to LF embodies these very principles and
embraces the crucial “black box” approach to reactions.

4.1 Syntax
The additional syntax required for adding modes is rather minimal.
The added syntax allows reactions to be grouped into modes and
includes new keywords for declaring (initial) modes and specifying
transition types. The core LF language remains unchanged.

Modes can be defined in any reactor. Eachmode requires a unique
(per reactor) name and can declare contents that are local to this
mode. There must be exactly one mode marked as initial (see
line 5 in Fig. 1c). A mode can contain state variables, timers, actions,
reactions, reactor instantiations, and connections. While the modes
cannot be nested in other modes directly, hierarchical composition
is possible through the instantiation of modal reactors. The main
exception in allowed contents in modes are port declarations, as
these are only possible on reactor level. Yet, modes share the scope
with their reactor and, hence, can access ports, state variables, and

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA A. Schulz-Rosengarten, R. von Hanxleden, M. Lohstroh, E. A. Lee, and S. Bateni

parameters of the reactor. Only the contents of other modes are
excluded.

Mode transitions are declared within reactions. If a reactor has
modes, reactions are allowed to list one or more as effects. This
enables the use of the target language API to set the next mode,
using lf_set_mode (e. g. in line 9 in Fig. 1c). The compiler will re-
ject the program if the target code references a mode that is not
declared as an effect. The user also has to specify the type of the
transition by adding the modifier reset or history to the effect.
An effect declared as history(<mode>) specifies a history transition
to the mode, rendered in the graphical syntax with an “H” at the
arrowhead (see Fig. 2a). The diagrams can also visualize the reac-
tion triggers of transitions (e. g. angles in Fig. 1a), but due to the
black-box nature of the target code in LF, the actual condition logic
cannot be displayed with approach. The extended report [17] will
elaborate on this design and further details of the syntax.

4.2 Modes and Transitions
The basic effect of modes in LF is that only parts that are contained
in the currently active mode, or not contained in any mode, are
executed at any point in time. This also holds for parts that are
nested in multiple ancestor modes due to hierarchy; consequently,
all those ancestors must be active in order to execute. Reactions in
inactive modes are simply not executed. All components that model
timing behavior, namely timers, scheduled actions, and delayed
connections, are subject to a concept of local time. That means
while a mode is inactive, the progress of time is suspended locally.
How the timing components behave when a mode becomes active
depends on the transition type. A mode can be reset upon entry,
returning it to its initial state. Alternatively, if it was active before,
it may continue based on its history. Sec. 4.3 will provide further
insights to the concept of local time.

Upon reactor startup, the initial mode of each modal reactor is
active, others are inactive. If at a tag (𝑡,𝑚), all reactions of this
reactor and all its contents have finished executing, and a new
mode was set in a reaction, the current mode will be deactivated
and the new one will be activated for future execution. This means
no reaction of the newly active mode will execute at tag (𝑡,𝑚); the
earliest possible reaction in the new mode occurs one microstep
later, at (𝑡,𝑚 + 1). Because of its superdense time model, LF is able
to model a subsequent reaction at the same logical time, but one
microstep later. Hence, if the newly active mode has for example
a timer that will elapse with an offset of zero, it will trigger at
(𝑡,𝑚 + 1). In case the mode itself does not require an immediate
execution in the next microstep, it depends on future events, just
as in the normal behavior of LF. Hence, modes in the same reactor
are always mutually exclusive w. r. t. superdense time.

The introduction of amicrostep delay gives order to subsequently
activated modes and prevents causality issues that would occur if
modes would be activated multiple times at the same tag. Yet, it
still requires resolving potentially “conflicting” transition effects
from different reactions. Here, we determine the effective target
mode by relying on the fixed ordering of reactions within a reactor.
In terms of deterministic outcome and overriding behavior, setting
new modes can be considered analogous to assigning output ports.

However, in terms of timing, transition effects correspond to sched-
uling actions with a zero delay, which also enforce a microstep
delay to prevent causality cycles.

A transition is triggered if a new mode is set in a reaction body,
as done on lines 9, 16, and 23 of Fig. 1c. The type of the transition is
inferred from the effect declaration. In case a mode is entered with
the reset behavior, all contained modal reactors are reset to their
initial mode (recursively), all local timers are reset and start again
awaiting their initial offset, all events (actions, timers, delayed con-
nections) that were previously scheduled from within this mode are
discarded, and a newly introduced reset trigger activates associated
reactions in the mode and all contained reactors (recursively). Thus,
whenever a mode is entered with a reset transition, the subsequent
timing behavior is as if the mode was never executed before. State
variables are subject to special handling via reset reactions, since
it is idiomatic for reactors to use state variables to store manually
managed resources. For history transitions, no reset is performed.
This preserves its history and continues the behavior based on local
time.

4.3 Local Time
The notion of mode-local time, with the suspension of all timing
behavior within inactive modes, is an established and well-formed
principle also found in modal models in Ptolemy II [7]. The suspen-
sion of time gives a clear and consistent meaning to the inactivity of
modes and provides a comprehensible state for the mode’s contents
upon entry. This especially favors modularity, as reactors that may
be instantiated in modes do not have to anticipate the fact that their
time (driven by timers or scheduled actions) will advance while
their reactions are suppressed. Furthermore, modes allow to de-
fine reactor elements outside of modes, which gives the developer
control over whether time should be local to a mode or not.

Fig. 2 illustrates the different characteristics of local time affect-
ing timers and actions in the presence of the two transition types.
Fig. 2a shows the generated diagram for a synthetic example pro-
gram. It consists of two modesOne (the initial mode) and Two, both
in the Modal reactor. The next input toggles between these modes.
It is driven by a reaction periodically triggered each second by timer
T. The modes’ contents are structured identically. Each has a timer
T1/T2 that triggers a reaction after an initial offset of 100 msec and
then periodically after 750 msec. This reaction then schedules a
logical action with a delay of 500 msec. This action triggers the
second reaction, which writes to the output out. The last reaction is
triggered by the input next and invokes the transition to the other
state. The main difference between the modes is thatOne is entered
via a history transition, continuing its behavior, while Two is reset.

Fig. 2c illustrates the execution trace of the first 4 seconds of this
program. Below the timeline is the currently active mode and above
are the model elements that are executed at certain points in time,
together with arrows indicating triggering relations and dashed
lines for distribution through time. For example, at 100 msec, the
initial offset of timer T1 elapses, which leads to the scheduling of
the logical action in this mode. The action triggers the reaction
500 msec later, at 600 msec, and thus causes an output. The timing
diagram illustrates the different handling of time between history
transitions and reset transitions. Specifically, when mode One is

Polyglot Modal Models through Lingua Franca CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

TimingExample

Modal

One

2L

min delay: 500 msec
(100 msec, 750 msec)

T1

1

3

out

next

TwoT2

(100 msec, 750 msec)

6

L

min delay: 500 msec

54

next

out

next out

(1 sec, 1 sec)

T

(a) The LF Model

0

500

850
1000

1500

2000

2500

3000

3500

4000
One OneTwo Two

0 500 1000 1500 2000 2500 3000 3500 4000

L
o

c
a

liz
e

d
 T

im
e

 (
m

se
c
)

Global Time (msec)

Mode

Timing Example (T)

One (T1)

Two (T2)

100

1600

Leave One

Leave Two

Continue
One

Leave One

Start Two

Reset Two

(b) The progression of time in each mode and their respective timer

0 1000100

logical
time
(msec)

600 850

T1

out

modeOne

1100 20001600 1850 26002350 3000

OneTwo Two

1

out

out

2

T1

action suspends1

T

action is discarded

timer restarts with
initial offset

timer resumes
remaining
period time

3

L L

2

LL

T1

1

L

T2

4

5

T2

4

T

6

T

3

L L L

3100 40003600 3850

T2

4

5

T2

4

T

6

L L L

action resumes action suspends

out

(c) The execution trace with reaction illustration

Figure 2: LF example illustrating the different effects of reset and history transitions on timers and delays in modes.

re-entered via a history transition, at time 2000 msec, the action
triggered by T1 before, at time 850 msec, resumes. In contrast, when
mode Two is re-entered via a reset transition, at time 3000 msec,
the action triggered by T2 before, at time 1850 msec, gets discarded.

Fig. 2b illustrates the relation between global time in the envi-
ronment and the localized time for each timer in Fig. 2. Since the
top-level reactor TimingExample is not enclosed by any mode, its
time always corresponds to the global time. Mode One is the initial
mode and hence progresses in sync with TimingExample for the
first second. During inactivity of mode One the timer is suspended
and does not advance in time. At 2000 msec it continues relative to
this time. T2 only starts advancing when the mode becomes active
at 1000 msec. The reentry via reset at 3000 msec causes the local
time to be reset to zero.

5 RELATEDWORK
We are not aware of other work that aims to create a polyglot modal
coordination layer based on a reactor-like foundation. However,
there clearly is significant related work that our proposal builds on.

The synchronous modeling language SCADE [3] originally had a
dataflow focus, where concurrently operating nodes communicate
via streams. However, from version 6 onwards, it includes state
machines as well, based on the mode extension proposed by Colaço
et al. [2]. Their work is perhaps closest in spirit to what we propose
here, also because they manage to enable modes through a minimal
language extension. They extend boolean clocks, which control
execution in Lustre/SCADE, into a richer type that encodes modes.
They also employ a similar design to the mutual exclusion of modes,
as described in Sec. 4.2. SCADE represents a standalone language and
while it is able to integrate with its target languages and coordinate
behavior through signals, it does not embody the rigorous polyglot
coordination nature envisioned by LF.

More generally, there are many state machine notations, beyond
flat finite-state machines (FSMs), that offer feature-rich language
constructs. The most prominent ones are statecharts by Harel [6],
which realize hierarchical state machines and are also part of UML.
The statechart dialects that emerged in the context of synchronous
languages, such as SyncCharts [1] or SCCharts [18], are of particular

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA A. Schulz-Rosengarten, R. von Hanxleden, M. Lohstroh, E. A. Lee, and S. Bateni

relevance for modes in LF as their semantics also involve a clear
notion of time and reactions. These languages provide a much
broader set of transition types for immediate and delayed behavior
and often include means to express preemptive behavior. While we
have considered including such features, we decided to emphasize
our lean approach. This especially, since we realized that many of
these advanced aspects could be expressed in the target code by
controlling transition logic and simulating their effects, which is
not the case for the mechanics of reset and history transitions.

It is also common practice to express statecharts directly in clas-
sical programming languages without real language extensions.
Samek describes how to express UML Statecharts in C/C++ [16].
As in UML Statecharts, this approach does not provide determin-
istic concurrency. Wagner et al. describe how to implement FSMs
in C [20], but these are flat automata without any concurrency.
Moreover, none of them follows a polyglot coordination approach.

Similarly, the Akka framework [15] provides means to write
actor networks directly in Java, but without consideration of modes
or determinism.

Sequential Function Charts, defined in the IEC 61131-3 standard
for programming control logic, provide a state-transition model
that can be combined with Function Block Diagrams. While this
is similar to the way we can encapsulate modes in reactors, the
standard does not aim for a polyglot approach.

6 CONCLUSION AND OUTLOOK
Modal reactors enable the coordination of reactive behavior in
terms of modes and transitions. While we capitalize of many exist-
ing concepts of LF to achieve our objectives of being lean, polyglot,
concurrent, timed, and deterministic, our design carefully adapts
these fundamental principles and seamlessly integrates into the
existing language, diagrams, and tooling. Modes are a fundamen-
tal concept in real-time systems and how designers think about
them. They go beyond specifying low-level stateful behavior in
state machines. Modal coordination in this context enables the or-
chestration of complex event processing networks associated with
different modes of operation. Additionally, with mode-local time, it
grants a powerful tool for modeling timed-behavior. Pausing and
continuing mode-local behavior is a capability that is otherwise
tedious to achieve in LF.

While modes are already central to a large family of existing
programming and modeling languages, our approach of building
modal abstractions into the polyglot coordination language LF has
the advantage of being applicable to a range of target languages at
once. Programmers can still develop the low-level “business logic”
in any target language supported by LF, and may use LF solely to
express modal aspects in a lean, deterministic manner, with dia-
gramming support, largely irrespective of which other LF facilities
might be harnessed as well. Our implementation currently provides
modal support for the C and Python targets, demonstrating the
versatility of our approach. While other targets will follow, the C
target illustrates the suitability for embedded low-level applications,
while Python shows compatibility with a high-level scripting lan-
guage commonly used in Cloud and machine learning applications.
We also successfully used modes in LF to control a robot and specify
different modes for driving and collision avoidance.

The introduction of explicit modes in the model opens up new
opportunities for static analyses. The LF compiler already considers
mutual exclusion imposed by modes in the detection of causality
issues. We plan to follow this avenue and develop tools for verifica-
tion and model checking of modal reactors. Another direction is the
exploration of modal models coordinating federated LF programs,
as well as improving simulation and live visualization of modal LF.

REFERENCES
[1] Charles André. 2004. Computing SyncCharts Reactions. Electronic Notes in

Theoretical Computer Science 88 (Oct. 2004), 3–19.
[2] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing Signals and

Modes in Synchronous Data-flow Systems. In ACM International Conference on
Embedded Software (EMSOFT’06). ACM, Seoul, South Korea, 73–82.

[3] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal
language for embedded critical software development (invited paper). In 11th
International Symposium on Theoretical Aspects of Software Engineering TASE.
Sophia Antipolis, France, 1–11.

[4] Katsuhisa Furuta, M. Yamakita, and S. Kobayashi. 1992. Swing-up control of
inverted pendulum using pseudo-state feedback. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Control Engineering 206, 4
(1992), 263–269.

[5] Grégoire Hamon and John Rushby. 2004. An operational semantics for Stateflow.
In International Conference on Fundamental Approaches to Software Engineering.
Springer, 229–243.

[6] David Harel. 1987. Statecharts: A visual formalism for complex systems. Science
of computer programming 8, 3 (1987), 231–274.

[7] Edward A. Lee and Stavros Tripakis. 2010. Modal Models in Ptolemy. In 3rd
International Workshop on Equation-Based Object-Oriented Modeling Languages
and Tools (EOOLT), Vol. 47. Linköping University Electronic Press, Linköping
University, 11–21.

[8] Edward A. Lee, Haiyang Zheng, and Ye Zhou. 2005. Causality interfaces and
compositional causality analysis. Foundations of Interface Technologies (FIT),
Satellite to CONCUR, San Francisco, CA 2 (2005), 402–405.

[9] Jie Liu, Johan Eker, JörnW Janneck, and Edward A Lee. 2002. Realistic simulations
of embedded control systems. IFAC Proceedings Volumes 35, 1 (2002), 391–396.

[10] Marten Lohstroh. 2020. Reactors: A Deterministic Model of Concurrent Computa-
tion for Reactive Systems. Ph. D. Dissertation. EECS Department, University of
California, Berkeley.

[11] Marten Lohstroh, Íñigo Íncer Romeo, Andrés Goens, Patricia Derler, Jeronimo
Castrillon, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. 2019. Reactors:
A Deterministic Model for Composable Reactive Systems. In 8th International
Workshop on Model-Based Design of Cyber Physical Systems (CyPhy’19), Vol. LNCS
11971. Springer-Verlag, 27.

[12] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021.
Toward a Lingua Franca for Deterministic Concurrent Systems. ACM Trans.
Embed. Comput. Syst. 20, 4, Article 36 (May 2021), 27 pages.

[13] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew
Weber, Jeronimo Castrillon, and Edward A Lee. 2020. A language for deterministic
coordination across multiple timelines. In 2020 Forum for Specification and Design
Languages (FDL). IEEE, 1–8.

[14] Zohar Manna and Amir Pnueli. 1992. Verifying hybrid systems. InHybrid Systems.
Springer, 4–35.

[15] Raymond Roestenburg, Rob Bakker, and Rob Williams. 2016. Akka In Action.
Manning Publications Co.

[16] Miro Samek. 2008. Practical UML Statecharts in C/C++Event-Driven Programming
for Embedded Systems. Newnes.

[17] Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Marten Lohstroh,
Soroush Bateni, and Edward A. Lee. 2023. Modal Reactors. https://doi.org/10.
48550/ARXIV.2301.09597 arXiv:2301.09597

[18] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. 2014.
SCCharts: Sequentially Constructive Statecharts for Safety-critical Applications.
In ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 372–383.

[19] Reinhard von Hanxleden, Edward A. Lee, Hauke Fuhrmann, Alexander Schulz-
Rosengarten, Sören Domrös, Marten Lohstroh, Soroush Bateni, and Christian
Menard. 2022. Pragmatics twelve years later: a report on Lingua Franca. In
11th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA) (Lecture Notes in Computer Science, Vol. 13702).
Springer, Rhodes, Greece, 60–89.

[20] Ferdinand Wagner, Ruedi Schmuki, Peter Wolstenholme, and Thomas Wagner
Thomas. 2006. Modeling Software with Finite State Machines: A Practical Approach.
Auerbach Publications.

https://doi.org/10.48550/ARXIV.2301.09597
https://doi.org/10.48550/ARXIV.2301.09597
https://arxiv.org/abs/2301.09597

	Abstract
	1 Introduction
	2 Motivating Example: The Furuta Pendulum
	3 Reactor-oriented Programming
	4 Modal Reactors
	4.1 Syntax
	4.2 Modes and Transitions
	4.3 Local Time

	5 Related Work
	6 Conclusion and Outlook
	References

