
ASubmitted to Special Issue on Application of Concurrency to System Design

Sequentially Constructive Concurrency—
A Conservative Extension of the Synchronous Model of Computation

REINHARD VON HANXLEDEN, Kiel University
MICHAEL MENDLER and JOAQUÍN AGUADO, Bamberg University
BJÖRN DUDERSTADT, INSA FUHRMANN, and CHRISTIAN MOTIKA, Kiel University
STEPHEN MERCER and OWEN O’BRIEN, National Instruments
PARTHA ROOP, Auckland University

Synchronous languages ensure determinate concurrency, but at the price of restrictions on what programs

are considered valid, or constructive. Meanwhile, sequential languages such as C and Java offer an intu-
itive, familiar programming paradigm but provide no guarantees with regard to determinate concurrency.

The sequentially constructive (SC) model of computation (MoC) presented here harnesses the synchronous

execution model to achieve determinate concurrency while taking advantage of familiar, convenient pro-
gramming paradigms from sequential languages.

In essence, the SC MoC extends the classical synchronous MoC by allowing variables to be read and written

in any order and multiple times as long as sequentiality expressed in the program provides sufficient schedul-
ing information to rule out race conditions. This allows to use programming patterns familiar from sequential

programming, such as testing and later setting the value of a variable, which are forbidden in the standard

synchronous MoC. The SC MoC is a conservative extension in that programs considered constructive in the
common synchronous MoC are also SC and retain the same semantics. In this paper, we investigate classes

of shared variable accesses, define SC-admissible scheduling as a restriction of “free scheduling,” derive the

concept of sequential constructiveness, and present a priority-based scheduling algorithm for analyzing and
compiling SC programs efficiently.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory—Semantics

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: Concurrency, constructiveness, determinacy, determinism, embedded
systems, Esterel, reactive systems, synchronous languages

ACM Reference Format:
R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S. Mercer, O. O’Brien
and P. Roop. 2014. Sequentially Constructive Concurrency—A Conservative Extension of the Synchronous
Model of Computation. ACM Trans. Embedd. Comput. Syst. V, N, Article A (December 2014), 25 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This work has been supported in part by the German Science Foundation, as part of the PRETSY project
(DFG HA 4407/6-1, ME 1427/6-1), and by National Instruments.
Authors’ adresses: R. von Hanxleden, B. Duderstadt, I. Fuhrmann and C. Motika, Dept. of Computer Sci-
ence, Kiel University, Kiel, Germany; e-mail: {rvh, bdu, ima, cmot}@informatik.uni-kiel.de; M. Mendler and
J. Aguado, Dept. of Computer Science, Bamberg University, Bamberg, Germany; e-mail: {michael.mendler,
joaquin.aguado}@uni-bamberg.de; S. Mercer and O. O’Brien, National Instruments, Austin, TX, USA; e-
mail: {stephen.mercer, owen.o’brien}@ni.com; P. Roop, Dept. of Electrical and Electronic Engineering, Auck-
land University, Auckland, New Zealand; e-mail: p.roop@auckland.ac.nz.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/12-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:2 von Hanxleden et al.

1. INTRODUCTION

One of the challenges of embedded system design is the determinate handling of con-
currency. As suggested by Milner [1989], we consider a computation as determinate if
the same sequence of inputs produces the same sequence of outputs, as opposed to de-
terministic computations, which in addition have identical internal behavior/schedul-
ing. The concurrent programming paradigm exemplified by languages such as Java or
C with Posix threads adds unordered concurrent threads to a fundamentally sequen-
tial model of computation. Combined with a shared address space, concurrent threads
may generate write/write and write/read race conditions, which are problematic with
regard to ensuring determinate behavior [Hansen 1999; Lee 2006], as the run-time
order of execution of a multi-threaded program depends both on the actual time that
each computation takes to execute and on the behavior of an external scheduler beyond
the programmer’s control. Especially for safety-critical embedded systems, as found
in, e. g., medical, avionics, or automotive applications, such non-determinacy is unac-
ceptable, as it hampers predictability and certifyability. However, even for non-safety-
critical systems non-determinacy is undesirable as it makes testing and functional
validation more difficult. To address this, tools and methods for determinacy analysis
have been proposed recently for different concurrent programming domains [Vechev
et al. 2010; Leung et al. 2012; Yuki et al. 2013; Kuper et al. 2014].

An established concurrent programming paradigm which has determinacy built into
its very core is the synchronous model of computation (MoC) [Benveniste et al. 2003],
exemplified by languages such as Esterel [Berry 2000], Quartz [Schneider 2002], Lus-
tre [Halbwachs et al. 1991], Signal [Guernic et al. 1991] and SyncCharts [André 1996].
The synchronous MoC divides time into discrete macro ticks, or ticks for short. Within
each tick, a synchronous program reads in inputs and calculates outputs. The inputs
to a synchronous program are assumed to be in synchrony with their outputs, and
the time that computations take is abstracted away. Simultaneous threads still share
variables, where we use the term “shared variable” in a generic sense that also encom-
passes streams and signals. However, race conditions are resolved by a determinate,
statically-determined scheduling regime, which ensures that within a tick, (i) concur-
rent reads occur after writes and (ii) each shared variable is written only once (with
certain exceptions, such as combination functions, as discussed later). A program that
cannot be scheduled according to these rules is rejected at compile time as being not
causal, or not constructive. This approach ensures that within each tick, all shared
variables can be assigned a unique value. This provides a sufficient condition for a
determinate semantics, though, as we argue here, not a necessary condition.

Introducing global synchronization barriers and sequences of reaction cycles is a
sound basis for determinate concurrency and applicable also for general programming
languages commonly used for embedded systems. Demanding unique variable values
per tick is appropriate for, e. g., control theory and circuit behavior, which are two do-
mains that have driven the original development of synchronous languages. However,
this requirement limits expressiveness and also runs against the intuition of program-
mers versed in sequential programming. It also makes the task of producing a pro-
gram free of “causality errors” more difficult than it needs to be. For example, consider
a simple programming pattern such as if (!done) { . . . ; done = true}, where done is a shared
variable. This is a common pattern in Programmable Logic Controller (PLC) software,
for example. The requirement of unique values per tick would produce a causality er-
ror because done is written to within the cycle after it is read, and because done would
possibly be both false and true within the same tick. However, in this example, there is
no race condition between the read and the write. Thus, there is no reason to reject
such a program in the interest of ensuring determinate concurrency.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:3

Assignment Sequence Conditional Label / Goto Thread Parallel Pause
SCL x = e s1 ; s2 if (e) s1 else s2 goto l . . . l: s t fork t1 par t2 join pause

SCG ������

��

��

��

��

����

��

����

�

�����

�

����

����

�� ��

����

����

�����

Fig. 1. The mapping between SCL statements and SCG subgraphs. Double circles are place holders for
SCG subgraphs, those labeled t1/t2 are subgraphs representing threads. Solid arrows depict seq (sequential)
edges, double arrows represent an arbitrary number of seq-edges. The dotted line indicates a tick edge.

Contributions. We propose the sequentially constructive (SC) MoC, a conservative
extension to the synchronous MoC that accepts a strictly larger class of programs.
Specifically, the SC MoC permits shared variables to have multiple values per tick as
long as these values are explicitly ordered by sequential statements within the source
code, or the compiler can statically determine that the final value at the end of the tick
is insensitive to the order of operations. This extension still ensures determinate con-
currency, and is conservative in the sense that programs that are accepted under the
existing synchronous MoC have the same meaning under the SC MoC. For example,
all constructive Esterel programs are also SC. However, there exist Esterel programs
that are SC, but not constructive in the sense of Berry [2002], the standard notion of
constructiveness which we will call B-constructive. E. g., all programs that do not use
the concurrency operator are trivially SC, though they may be not B-constructive.

Outline. The next section presents the SC Language (SCL) and the SC Graph (SCG),
which we use as a basis for the concept of sequential constructiveness. Sec. 3 presents
the general scheduling problem, on which Sec. 4 builds to define sequential construc-
tiveness. Sec. 5 presents an approach to analyze whether programs are SC and to com-
pute a schedule for them. We discuss related work in Sec. 6, in Sec. 7 we summarize
and provide an outlook. For proofs and further aspects of SC not covered here due to
space constraints we refer the reader to an extended technical report [von Hanxleden
et al. 2013b].

2. THE SC LANGUAGE AND THE SC GRAPH

To illustrate the SC MoC, we introduce a minimal SC Language (SCL), adopted from
C/Java and Esterel. The concurrent and sequential control flow of an SCL program is
given by an SC Graph (SCG), which acts as an internal representation for elabora-
tion, analysis and code generation. Fig. 1 presents an overview of the SCL and SCG
elements and the mapping between them.

2.1. The SC Language

SCL is a concurrent imperative language with shared variable communication. Vari-
ables can be both written to and read from by concurrent threads. Reads and writes
are collectively referred to as variable accesses.

SCL program constructs have the following abstract syntax of statements

s ::= x = e | s ; s | if (e) s else s | l: s | goto l | fork s par s join | pause

where x is a variable, e is an expression and l ∈ L is a program label. The statements
s comprise the standard operations assignment, the sequence operator, conditional
statements, labelled commands and jumps. We include the primitive goto rather than
some structured alternative as this facilitates, for example, the synthesis of state ma-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:4 von Hanxleden et al.

chines/statecharts. Of course, structured control flow constructs, such as loops, can be
easily derived from the goto. As a syntactical detail, the conditional, as is the practice
in C-like languages, omits a then keyword, but we will still refer to the two branches
as then and else branches. The pause statement introduces synchrony, by deactivat-
ing a thread until the next tick commences. Parallel composition forks off two threads
and terminates (joins) when both threads have terminated. In Esterel, parallel com-
position is denoted ‖, and we will use this notation also for our formal treatment of
concurrency; however, the SCL language uses fork/par/join instead, to provide additional
structure and to avoid confusion with the logical or used in expressions. For simplicity,
we here only consider parallelism of degree two; larger numbers of concurrent threads
can be accommodated by nesting of parallel compositions, or by a straightforward ex-
tension of syntax and semantics to support arbitrary numbers of concurrent threads
directly. Jumps are not allowed to cross thread boundaries. The sublanguage of ex-
pressions e used in assignments and conditionals is not restricted. All we assume is a
function eval to evaluate e in a given memory M and return a value v = eval(e,M) of
the appropriate data type. However, we rule out side effects when evaluating e.

To present SCL examples in concrete textual as opposed to abstract syntax, more
syntactic information is needed. E. g., we typically add braces for structuring the code,
subject to conventions regarding the binding strength of the operators; e. g., the con-
ditional binds stronger than the sequence. We may also omit empty else branches, or
enhance the unstructured goto with structured loops (for, while, etc.). Also, there may
be comments and local variable declarations, including their data types, and initial
values. A concrete program also contains an interface that declares inputs (set at the
beginning of each tick by the environment), outputs (conveyed to the environment at
the end of each tick), and input/outputs. However, as our formal development will be
based on the internal representation of SCL programs as SC Graphs, we leave the
concrete SCL syntax informal.

2.2. The Control Example

A running SCL program always executes a top-level thread referred to as Root thread.
In the Control example shown in Fig. 2, Root spawns two further threads named Request
and Dispatch that are concurrent to each other. Thus Control consists of three threads.
The functionality of Control is inspired by PLC software used in the railway domain. It
processes requests (as indicated by the req input flag) to a resource, which may be free or
not. As shown in the dataflow/actor view in Fig. 2a, there are two separate functional
units, corresponding to the Request and Dispatch threads, which process the requests
and dispatch the resource. The output variables indicate whether the resource has
been granted or is still pending.

The execution of Control is broken into discrete reactions, the aforementioned (macro)
ticks. During each tick, the following sequence is performed:

(1) read input variables from the environment,
(2) execute all active (currently instantiated) threads until they either terminate or

reach a pause,
(3) write output variables to the environment.

Only the output values emitted at the end of each macro tick are visible to the outside
world. The internal progression of variable values within a tick, i. e., while performing
a sequence of micro ticks (cf. Sec. 2.5), is not externally observable. Hence, when rea-
soning about determinate behavior, we only consider the outputs emitted at the end of
each macro tick (e. g., in Def. 4.8).

The execution of Control begins by launching the Root thread, which executes a fork
that spawns off Request and Dispatch. These two threads then progress on their own.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:5

Request

checkReqreq

pend
freeDispatch

grant
Dispatch

Control

(a) The dataflow view

-

free = true
req = false

grant = false
pend = false

free = true
req = true

grant = true
pend = false

(b) The first two ticks of an ex-
ample trace, shown as tick time
line; inputs are above the time
line, outputs below.

�������

��������

����

����

�����

����

�����

�����

�������������������

����������

����������

������������������

�������������������

�����������
��������

���������������
�������

���

�������������������

������

����

����

������

��������������������

����� �����

���

�������������������

���

������

����

������

(c) The SC Graph (SCG), indicating sequen-
tial flow (continuous arrows), data dependen-
cies (dashed, red arrows), and the tick delim-
iter edges (dotted lines). The data dependency
edges are labeled with their type (here ir only).
Nodes are prefixed “〈 id 〉, 〈p〉:” with node iden-
tifier id, which here correspond to line num-
bers of the SCL program, and priorities p.

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6

7 fork {
8 // Thread ”Request”
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread ”Dispatch”
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join ;
29 }

(d) The SCL program

Macro tick a 1 1
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 12

Input vars free t t
req f f

Output vars grant ⊥ f f
pend ⊥ f f

Local var checkReq ⊥ f f

CRoot L0 L7 [L28] [L28]
Continuations CRequest ⊥ L8 L10 L11 L13 L14 L14 L14 L14 L14 L16s (L16s)

CDispatch ⊥ L20 L20 L20 L20 L20 L22 L23 L25s (L25s) (L25s) (L25s)
Scheduled nodes Ra(i) L0 L7 L8 L10 L11 L13 L20 L22 L23 L25s L14 L16s

(e) An admissible run, corresponding to the first (macro) tick of the example trace (b).

Fig. 2. The Control example, illustrating the sequential modification of shared variables and the resulting
scheduling under the SC MoC. “Ln” refers to the statement at line n of the SCL program. In (e), the values
true and false are abbreviated as t and f . We see for each micro tick the current variable values, where ⊥
denotes “uninitialized.” The input values provided by the environment and the output values visible to the
environment are shown in bold. To avoid cluttering the table, values that do not change from one micro tick
to the next are omitted, except at the end of a macro tick. Continuations denote for each thread the statement
to be executed next, as further explained in Sec. 3.1. Threads may be disabled (denoted ⊥), active, waiting
(square brackets), or pausing (parentheses).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:6 von Hanxleden et al.

Were they Java threads, a scheduler of some run-time system could now switch back
and forth between them arbitrarily, until both of them have finished. Under the SC
MoC, their progression and the context switches between them are instead disci-
plined by a scheduling regime that prohibits race conditions. Determinacy in Control is
achieved by demanding that in any pair of concurrent write/read accesses to a shared
variable, the write must be scheduled before the read. For example, the write to check-
Req in node L13 of the SCG (Fig. 2c), corresponding to line 13 of the SCL program
(Fig. 2d), is in a different concurrent thread relative to the read of checkReq (L23) in
Dispatch. Hence L13 in Request must be scheduled before L23 Dispatch.

A common means to visualize program traces in synchronous languages is a tick time
line, as shown in Fig. 2b. As can be seen there, in the first tick, the inputs free = true, req
= false produce the outputs grant = pend = false, under the concurrent write-before-read
scheduling sketched above.

The concurrent threads in Control not only share variables, but also modify them
sequentially. E. g., Dispatch first initializes grant with false, and then, in the same tick,
might set it to true. Similarly, Request might assign to pend the sequence false/true/false.
Due to the prescribed sequential ordering of these assignments, this does not in-
duce any non-determinacy. However, this would not be permitted under the strict
synchronous, fixed-point MoC using signals, which requires unique values per tick.
Similarly, pend is read (L14) and subsequently written to (L15); this (sequential) write-
after-read is again harmless, although forbidden under the existing synchronous MoC.
Thus, Control is not B-constructive and would be rejected by compilers for current syn-
chronous languages. However, because it is possible to schedule Control such that all
concurrent write-before-read requirements are met and all such schedules lead to the
same result, we consider Control sequentially constructive (SC). The rest of this paper
makes this notion precise and describes a practical strategy to analyze sequential con-
structiveness and to implement schedules that adhere to the SC MoC. One building
block is the graph abstraction presented next.

2.3. The SC Graph

An SCG is a labelled graph G = (N,E) whose statement nodes N correspond to the
statements of the program, and whose edges E reflect the sequential execution or-
dering and data dependencies between the statements. Every edge e ∈ E connects a
source e.src ∈ N with a target node e.tgt ∈ N . Fig. 2c shows the SCG for Control.

Nodes and edges are further described by various attributes. A node n is labelled by
the statement type n.st that it represents, viz. n.st ∈ {entry, exit, goto, x = e, if (e), fork,
join, surf, depth}, where x is some variable and e is some expression.1 Nodes labelled
with x = e are referred to as assignment nodes, those with if (e) as condition nodes,
those with surf as surface nodes; all other nodes are referred by their statement type
(entry nodes, exit nodes, etc.). As illustrated in Fig. 1, in the graphical representations
of the SCG the shape of a node indicates the statement type, except for entry/exit/goto
nodes, which all are shown as ovals; these mainly serve to structure the SCG and
could be eliminated without changing the meaning of an SCG. Fig. 1 sketches how
SCG elements correspond to an SCL program, the TR [von Hanxleden et al. 2013b]
describes this mapping in detail.

For a fork node nf , we define join(nf) =def nj , where nj is the uniquely associated
join node. Similarly, for a surface node ns, we define tick(ns) =def nd, where nd is the
uniquely associated depth node of ns, also referred to as tick successor.

1Strictly speaking, “x = e” and “if (e)” each denote a multitude of statements, ranging over all variables x
and expressions e. However, to not make the notation unnecessarily heavy, we here treat them like the other
statements that are not parameterized.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:7

Every edge e has a type e.type that specifies the nature of the particular ordering
constraint expressed by e.

Definition 2.1 (Edge types). We define the following sets of edge types: iur-edges
αiur =def {ww, iu,ur, iu}, instantaneous edges αins =def {seq} ∪ αiur, arbitrary edges
αa =def {tick} ∪ αins, and flow edges αflow =def {seq, tick}.

We write e.src →α e.tgt , pronounced “e.src α-precedes e.tgt,” if e.type = α. We also
write→iur/ins/flow to encompass all→α with α ∈ αiur/ins/flow .

We also write Eiur/ins/flow ⊆ E to denote the iur / instantaneous / flow edges.
When n1 →seq n2 holds, we say that n1 and n2 are sequential successors. We anal-

ogously define tick and flow successors. A path consisting exclusively of flow edges is
referred to as flow path. We use �α for the reflexive and transitive closure of→α.

The iur-edges are derived later for the purpose of scheduling analysis (Def. 4.3).
The sequential order n1 →seq n2 expresses the usual sequential control flow. Note

that n1 →seq n2 does not necessarily mean that there is a fixed run-time ordering
between n1 and n2. When n1 and n2 are enclosed in a loop, an execution of n2 might be
followed by an execution of n1 in the same tick.

The tick order n1 →tick n2 says that there is a tick border between n1 and n2; i. e.,
the control flow passes from n1 to n2 not instantaneously in the same tick, as with
n1 →seq n2, but only upon a global clock tick.

2.4. Thread Terminology

We distinguish the concept of a static thread, which relates to the structure of a pro-
gram, from a dynamic thread instance, which relates to a program in execution. We
first define in this section our notion of (static) threads, building on the SCG program
representation G = (N,E) with statement nodes N and control flow edges E.

We denote the set of threads of G by T , which includes Root. Each thread t ∈ T
is associated with unique entry and exit nodes t.en, t.ex ∈ N with statement types
t.en.st = entry and t.ex .st = exit. Each n ∈ N belongs to a thread th(n), defined as the
immediately enclosing thread t ∈ T such that there is a flow path to n (as defined
in Sec. 2.3) that originates in t.en and that does not traverse any other entry node
t′.en, unless that flow path subsequently traverses t′.ex also. We define fork(t) as
the fork node that immediately precedes t.en, and for each thread t 6= Root define its
immediate parent thread p(t) =def th(fork(t)). In Control, it is p(Request) = p(Dispatch) =
Root. Conversely, we define the child threads ch(t) =def {t′ | t = p(t′)}.

We are now ready to define (static) thread concurrency and subordination:

Definition 2.2 (Thread relations). Let t, t1, t2 be threads in T .

(1) The set of ancestor threads of t is defined as the transitive closure of the parent
relationship p∗(t) =def {t, p(t), p(p(t)), . . . ,Root}.

(2) The set of descendant threads of t, the inverse ancestor relation, is defined as
ch∗(t) =def {t′ | t ∈ p∗(t′)}.

(3) t1 is subordinate to t2, written t1 ≺ t2, if t1 6= t2 and t1 ∈ p∗(t2).
(4) t1 and t2 are concurrent, denoted t1 ‖ t2, iff they are descendants of distinct threads

sharing a common fork node, i. e., iff there exist t′1, t′2 ∈ T with t′1 6= t′2, fork(t′1) =
fork(t′2), t1 ∈ ch∗(t′1), and t2 ∈ ch∗(t′2). We then refer to this fork node as the least
common ancestor (lca) fork, denoted lcafork(t1, t2). This is lifted to nodes, i. e., if
th(n1) ‖ th(n2) then lcafork(n1, n2) = lcafork(th(n1), th(n2)).

In Control, it is Root ≺ Request and Root ≺ Dispatch, meaning that Root can only termi-
nate after Request and Dispatch have terminated (which they never do). It is also Request

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:8 von Hanxleden et al.

‖ Dispatch, whereas Root is not concurrent with any thread. Note that concurrency on
threads, in contrast to concurrency on node instances (Def. 2.6), is purely static and
can be checked with a simple, syntactic analysis of the program structure.

2.5. Macro Ticks, Micro Ticks, and the Thread Status

As already described, the externally observable execution of a synchronous program
consists of a sequence of macro ticks. Internally, however, one typically breaks down a
macro tick into a series of micro ticks, both for describing the semantics and possibly
for a concrete implementation.

Definition 2.3 (Ticks, runs). For an SCG G = (N,E), a (macro) tick R, of length
len(R) ∈ N≥1, is a mapping from micro tick indices 1 ≤ j ≤ len(R) to nodes R(j) ∈ N .
A run of G is a sequence of macro ticks Ra, indexed by a ∈ N≥1.

Definition 2.4 (Node instances). A node instance is a pair ni = (n, i) consisting of a
statement node n ∈ N and a micro tick count i ∈ N.

Sometimes it is convenient to view macro ticks as sequences of nodes R =
n1, n2, . . . , nk where k = len(R) and ni = R(i) for all 1 ≤ i ≤ k.

One possible run of the Control example is illustrated in Fig. 2e. We see for each micro
tick the node that is scheduled next for execution. An assignment results in an update
of the written variable, reflected by the variable values of the subsequent micro tick.
The continuations, explained further in Sec. 3, denote the current state of each thread,
i. e., the node (statement) that should be executed next, similar to a program counter.
In addition, a continuation denotes what execution state a thread is in.

2.6. Concurrency of Node Instances

The function last(n, i), defined next, is instrumental to define concurrency of node in-
stances.

Definition 2.5 (Last occurrences). For a macro tick R, an index 1 ≤ i ≤ len(R), and
a node n ∈ N , lastR(n, i) = max{j | j ≤ i, R(j) = n} retrieves the last occurrence of n in
R at or before index i. If it does not exist, lastR(n, i) = 0.

Definition 2.6 (Concurrent node instances). For a macro tick R, i1,2 ∈ N≤len(R), and
n1,2 ∈ N , two node instances ni1,2 = (n1,2, i1,2) are (run-time) concurrent in R, denoted
ni1 |R ni2, iff

(1) they appear in the micro ticks of R, i. e., n1,2 = R(i1,2),
(2) they belong to statically concurrent threads, i. e., th(n1) ‖ th(n2), and
(3) their threads have been instantiated by the same instance of the associated least

common ancestor fork, i. e., lastR(n, i1) = lastR(n, i2) where n = lcafork(n1, n2).

3. FREE SCHEDULING OF SCGS

With the above preliminaries in place, we now come to discuss the semantics of SCL.
We do this by looking at the execution and scheduling of a fixed SCG G = (N,E) as-
sociated with some arbitrary program. We begin by considering the “free execution”
of G based on the program flow edges →seq and →tick. Our notion of sequential con-
structiveness will then arise from a further restriction of the free schedules guided by
additional iur precedences.

Traditional schedulers work at machine instruction granularity. This means that
thread context switches can basically occur anywhere within any statement. In prin-
ciple, we could allow this flexibility also for the SC MoC. For simplicity, we restrict

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:9

ourselves to scheduling at the statement level. In particular, the evaluation of expres-
sions and the update of variables in assignments happens atomically.

3.1. Continuations and Continuation Pool

Our simulation semantics is based on continuations, which are instances of program
nodes from the SCG enriched with information about the run-time context in which
the nodes are executed. In general imperative languages this may comprise explicit
thread identification, instance numbers, local memory, references to stack frames and
other scheduling information. For the simple SCL language considered in this paper
and for the free scheduling to be defined in this section, only few data are needed,
namely (i) the currently running node in the SCG and (ii) a scheduling status.

Definition 3.1 (Continuations, continuation pools). A continuation c has a node
c.node ∈ N and a status c.status ∈ {active,waiting, pausing}. A continuation pool C is
a finite set of continuations.

We write c[s :: n] when s = c.status and n = c.node, or to express that the status
and node of a continuation c are updated to be s and n, respectively. The waiting status
is derivable from subordination of threads: If th(c′.node) ≺ th(c.node), then c′ runs in
a proper ancestor thread of c and thus c′ must wait for c. We overload notation and
write c′ ≺ c in this case.

Fig. 3. Execution states of a thread, shown with a
Statechart notation; initial states have a bold out-
line.

We also associate each thread with a pos-
sible thread state. Threads other than the
Root thread are initially disabled, with a
status denoted by ⊥. When a thread gets
forked by its parent, it becomes enabled.
An enabled thread t has a continuation c,
we thus associate the state of c with t as
well. The resulting possible thread states
and the associated notation is illustrated in
Fig. 3; see also Fig. 2e. There, the thread
pool Cai in micro tick i of macro tick a con-
sists of the entries in the rows CRoot, CRequest
and CDispatch at column index i. The entries show the continuations’ nodes and status.
Nodes in square brackets [n] are waiting, those in parentheses (n) are pausing and all
others are active.

At every micro tick of an execution run, the scheduler picks an active continuation
from a continuation pool C and executes it. Initially, C only contains the main program
Root activated at its entry node Root.en. Then, every time an active fork node nf is exe-
cuted, the corresponding join node nj = join(n) is installed in the same thread as the
fork. This thread is subordinate to the threads of the children spawned by the nf , which
thus block the execution of the continuation in the parent thread. In this fashion, nj
starts with status waiting until the children are terminated, at which point nj .status
becomes active. The switching between active and pausing happens in the execution of
the pause statement. When an active surf node ns is scheduled, its status changes to
pausing, thereby suspending it for the current macro tick. When the execution switches
to the next macro tick, the thread is re-activated at the uniquely associated depth node
tick(ns).

Continuation pools must satisfy some coherence properties.

Definition 3.2 (Valid continuation pools). A continuation pool C is called valid iff
the following conditions are satisfied.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:10 von Hanxleden et al.

— The waiting continuations c[waiting :: n] ∈ C are those continuations in C that are
not ≺-maximal in C, meaning they are subordinate to some other thread in C, and
they must always be join nodes; i. e., n.st = join.

— All ≺-maximal continuations have status active or pausing. Of those, the pausing con-
tinuations c[pausing :: n] ∈ C must be surface nodes; i. e., n.st = surf.

— The threads appearing in a continuation pool preserve the tree structure. For each
c ∈ C such that th(c.node) 6= Root, there is a unique parent c′ ∈ C such that
p(th(c.node)) = th(c′.node). Furthermore, the parent continuation always corre-
sponds to a waiting join statement; i. e., c′.node.st = join and c′.status = waiting.

3.2. Configurations, Micro Step and Macro Step Scheduling

Definition 3.3 (Configurations). A configuration is a pair (C,M) where C is a pool
of continuations and M is a memory assigning values to the variables accessed by G.
A configuration is called valid if C is valid.

A scheduling step moves from the current configuration (Ccur ,Mcur) to the next con-
figuration (Cnxt ,Mnxt). In general, this involves the execution of one or more continu-
ations from Ccur . Our free schedule is restricted (i) to execute only ≺-maximal threads
and (ii) to do so in an interleaving fashion:

(1) Micro Step. If there is at least one continuation in Ccur , then there also is a ≺-
maximal one, because of the finiteness of the continuation pool. The free schedule is
permitted to pick any one of the ≺-maximal continuations c ∈ Ccur with c.status =
active and execute it in the current memory Mcur . This yields a new memory Mnxt =
µM (c,Mcur) and a (possibly empty) set of new continuations µC (c,Mcur) by which
c is replaced; i. e., Cnxt = Ccur \ {c}∪µC (c,Mcur). Note that in Cnxt the status flags
are automatically set to active for all continuations that become ≺-maximal by the
elimination of c from the pool in case µC (c,Mcur) = ∅.
The actions µM and µC depend on the statement c.node.st to be executed and
will be defined shortly. A transition between two micro ticks is referred to as a
micro step, written (Ccur ,Mcur)

c→µs (Cnxt ,Mnxt), where c is the continuation that
is selected for execution. Since (Cnxt ,Mnxt) is uniquely determined by the executed
continuation c we may write it as (Cnxt ,Mnxt) = c(Ccur ,Mcur).

(2) Clock Step. When there is no active continuation in C, then all continuations in
C are pausing or waiting. We call this a quiescent configuration. In the special
situation where C = ∅ the main program has terminated. Otherwise, and only
then, the scheduler can perform a global clock step, i. e., a transition between the
last micro tick of the current macro tick to the first micro tick of the subsequent
macro tick. This is done by letting all pausing continuations of C advance from
their surf node to the associated depth node. More precisely,

Cnxt = {c[active :: tick(n)] | c[pausing :: n] ∈ Ccur}
∪ {c[waiting :: n] | c[waiting :: n] ∈ Ccur}.

Let I = {x1, x2, . . . , xn} be the designated input variables of the SCG, including
input/output variables. Then the memory is updated by a new set of external in-
put values VI = [x1 = v1, . . . , xn = vn] for the next macro tick. All other memory
locations persist unchanged into the next macro tick. Formally,

Mnxt(x) =

{
vi, if x = xi ∈ I,

Mcur (x), if x 6∈ I.
A clock step is denoted VI : (Ccur ,Mcur)→tick (Cnxt ,Mnxt), where VI is the external
input. Observe that since the set of inputs I is assumed to be fixed globally, both VI

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:11

and Mnxt can be derived from each other and from Mcur . Hence the label VI may
be dropped.

During a macro tick (Def. 2.3), we perform a maximal sequence of micro steps of G.
More concretely, the scheduler runs through a sequence

(Ca0 ,M
a
0)

ca1→µs (Ca1 ,M
a
1)

ca2→µs · · ·
cak(a)→ µs (Cak(a),M

a
k(a)) (1)

of micro steps obtained from the interleaving of active continuations, to reach a fi-
nal quiescent configuration (Cak(a),M

a
k(a)), in which all continuations are pausing or

waiting. We write (Ca0 ,M
a
0) �µs (Cai ,M

a
i) to express that there exists a sequence of

micro steps, not necessarily maximal, from configuration (Ca0 ,M
a
0) to (Cai ,M

a
i), drop-

ping the information on continuations. The complete sequence (1) from start to end
encompasses the macro tick, abbreviated

(Ra, V aI) : (Ca0 ,M
a
0) =⇒ (Cak(a),M

a
k(a)). (2)

The label V aI projects the initial memory, i. e., V aI (x) = Ma
0 (x) for x ∈ I. The final

memory state Ma
k(a) of the quiescent configuration is the response of the macro tick a.

The label Ra is the sequence of statement nodes executed during the macro tick as
described in Def. 2.3. More precisely, len(Ra) = k(a) is the length of the macro tick and
Ra the function mapping each micro tick index 1 ≤ i ≤ k(a) to the node Ra(i) = cai .node
executed at index i.

For example, in the execution run shown in Fig. 2e, the (doubly indexed) node se-
quence Ra(i) is given by the last row “Scheduled nodes.”

Note that in (2) the input label V aI may be dropped since it can be derived from
I and M0. When the memory state and scheduling information is not needed, it is
convenient to identify a macro tick (2) with Ra as its abstraction.

We call the end points of a macro tick (2) macro (tick) configuration, while interme-
diate configurations (Cai ,M

a
i), 0 < i < k(a), seen in (1) are micro (tick) configurations.

Definition 3.4. A run of an SCG G is a sequence of macro ticks Ra and external
inputs V aI of the form (2) such that (i) the initial continuation pool C0

0 = {c0} activates
the entry node of the G’s Root thread, i.e., c0.node = Root.en and c0.status = active, and
(ii) all macro tick configurations are connected by clock steps, i.e., (Cak(a),M

a
k(a)) →tick

(Ca+1
0 ,Ma+1

0).

It remains to define the actions µM and µC exercized by active continuations on
memory M and continuation pool C, respectively. The former is easy to specify. The
only statement c.node.st to affect the memory is the assignment statement x = e. In
this case variable x is updated by the value of e. Formally, µM (c,M)(x) = eval(e,M)
and µM (c,M)(y) = M(y) for y 6= x. In all other cases, if c.node.st is not an assignment,
we have µM (c,M) = M . The action of a continuation on the continuation pool is only
slightly more involved. For c[active :: n] ∈ C the set µC (c,M) is given thus:

— For n.st ∈ {entry, goto, x = e, depth, join} the continuation c passes on control to its
immediate sequential successor, i. e., µC (c,M) = {c[active :: n′]}, where n′ with
n→seq n

′ is uniquely determined.
— At an exit node n.st = exit we have reached the end of the continuation, which

terminates and disappears from the pool; i. e., µC (c,M) = ∅.
— When n.st = surf, then we set the continuation pausing to wait at this node for the

next synchronous tick. i. e., µC (c,M) = {c[pausing :: n]}.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:12 von Hanxleden et al.

— Consider a conditional statement n.st = if (e) with the uniquely determined succes-
sor nodes n1 = true(n) ∈ N and n2 = false(n) ∈ N for its true and false branch,
respectively. The execution of n takes one of the branches according to the boolean
value of e, so that µC (c,M) = {c[active :: ni]}, where i = 1 if eval(e,M) = true and
i = 2 if eval(e,M) = false. Note that in each case n→seq ni.

— Finally, suppose c instantiates a fork statement with edges n →seq t1.en and
n →seq t2.en leading to the two entry nodes of its concurrent child threads t1, t2.
Let nj = join(n) ∈ N be the corresponding join node. Then, µC (c,M) = {c[active ::
t1.en], c[active :: t2.en], c[waiting :: nj]}. Hence the free scheduler may execute t1.en
or t2.en in any order, but both have to terminate before the join statement nj can
resume.

4. THE SEQUENTIALLY CONSTRUCTIVE (SC) MODEL OF COMPUTATION

The key to determinacy lies in ruling out any uncertainties due to an unknown
scheduling mechanism. Like the synchronous MoC, the SC MoC ensures macro-tick
determinacy by inducing certain scheduling constraints on variable accesses. Unlike
the synchronous MoC, the SC MoC tries to take maximal advantage of the execution
order already expressed by the programmer through sequential commands. A sched-
uler can only affect the order of variable accesses through concurrent threads. For
example, a thread is not concurrent with its parent thread. Because of the path order-
ing ≺, a parent thread is always suspended when a child thread is in operation. Thus,
it is not up to the scheduler to decide between parent and child thread. There can be
no race conditions between variable accesses performed by parent and child threads,
and there is no source of non-determinacy here.

In every reachable micro configuration (C,M), the order of execution of the active
continuations is up to the discretion of the scheduler. Hence, non-determinacy can
occur if the macro tick response, computed during the tick in which (C,M) occurs,
depends on this ordering. In this case, the program must be rejected. Yet, it is compu-
tationally intractable whether a program is determinate on the macro tick level, even
for a given configuration (C,M).

The challenge is to find a suitable restriction on the free scheduler which is a) easy
to compute, b) leaves sufficient room for concurrent implementations and c) still (pre-
dictably) sequentializes any concurrent variable accesses that may conflict and pro-
duce unpredictable responses. Note that it is easy to obtain determinate executions
disregarding b): Simply restrict the scheduler to a globally static execution regime,
e. g., by assigning each (occurrence) of a program statement some arbitrary, unique ex-
ecution priority. However, this would not be transparent to the programmer and would
destroy the natural parallelism of the program.

In the previous section, we defined our “playing field” for reactive control flow; se-
quential flow is expressed directly in the structure of the program, concurrent control
flow is subject to run-time scheduling. Unlike Java etc., the SC MoC does not leave this
run-time scheduling to chance, but follows certain rules, set down in this section. We
start by defining different types and properties of accesses to shared variables, proceed
in Sec. 4.2 by defining when we consider schedules admissible, and then define when
a program is sequentially constructive (SC) in Sec. 4.3.

4.1. Types of variable accesses

In general, concurrent writes to the same variable constitute a race condition that
must be avoided. However, there are exceptions to this that we want to permit, again
with the goal of not needlessly rejecting sensible, determinate programs. For instance,
it may be the case that two assignments x = e1 and x = e2 can be scheduled successively
in any order with the same final result; this depends on the expressions e1 and e2 and

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:13

possibly the memory configurations in which the assignments are evaluated. When the
execution order is irrelevant we call such assignments confluent in a given configura-
tion, formalized later in Def. 4.4. Often, confluence of assignments can be guaranteed
globally, i. e., for all reachable configurations. A large class of such assignments are
those involving combination functions, defined in the following:

Definition 4.1 (Combination functions). A function f(x, y) is a combination function
(on x) if, for all x and all y1, y2, f(f(x, y1), y2) = f(f(x, y2), y1).

If f is a combination function, then, by definition, any set of assignments x = f(x, ei),
in which the expressions ei neither produce any side effect nor depend on x, can be
executed in arbitrary order yielding a unique final value for x.

Definition 4.1 is closely related to resolution functions in VHDL, or similar opera-
tions used in parallel computing [Schwartz 1980]. Also, Esterel has a slightly restricted
variant of our combination function (Esterel requires commutativity, SC does not; con-
sider, e. g., subtraction). In Esterel, such combination functions are used to merge con-
current emissions of valued signals in a determinate way, for example via addition.
Combination functions can be used as “updates” on a variable for which the final value
is accumulated incrementally from concurrent source processes.

Our notion of sequential constructiveness is based on the idea that the compiler
guarantees a strict “initialize-update-read” (iur) execution schedule during each macro
tick. The initialize phase is given by the execution of a class of writes which we call
absolute writes, while the update phase consists of executing relative writes. All the
read accesses, in particular the conditional statements which influence the control
flow, are done last. In this way, the compiler restricts the freedom of the run-time
platform for reordering variable accesses and avoids possibly non-determinate macro
step responses.

Definition 4.2 (Absolute/relative writes and reads). For a combination function f ,
an assignment x = f(x, e) where e does not reference x is a relative write, or an update,
of type f . Other assignments are absolute writes, or initializations. Initializations x = e,
updates x = f(x, e) and conditionals if (e) are all reads for every variable y referenced by
e.

Relative writes of the same type are confluent. As the definition of relative writes
requires that e does not reference x, an assignment such as x += x – 1 is not considered
a relative write, even though + is a valid combination function.

Based on this purely syntactic, structural classification of variable accesses, we de-
fine the following relations on nodes.

Definition 4.3 (iur relations). Given two statically concurrent accesses n1 ‖ n2 on
some variable x, we define the iur relations

— n1 →ww n2 iff n1 and n2 both initialize x or both perform updates of different type.
We call this a ww conflict.

— n1 →iu n2 iff n1 initializes x and n2 updates x.
— n1 →ur n2 iff n1 updates x and n2 reads x.
— n1 →ir n2 iff n1 initializes x and n2 reads x.

Since n1 →ww n2 implies n2 →ww n1, we abbreviate the conjunction of n1 →ww n2

and n2 →ww n1 with n1 ↔ww n2, and by symmetry→ww implies↔ww.

4.2. SC-Admissible Scheduling

We are now ready to define what variable accesses we allow in the SC MoC, and what
scheduling requirements the accesses induce. The idea is to formulate the require-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:14 von Hanxleden et al.

ments that a given program must fulfill to produce a determinate result, and to accept
all programs for which a schedule can be found that meets these requirements. First,
we formalize the notion of confluence.

Definition 4.4 (Confluence of nodes). Let (C,M) be a valid configuration of the SCG.
Two nodes n1,2 ∈ N are called conflicting in (C,M), if both are active in C, i. e., there
exist c1,2 ∈ C with ci.status = active, ni = ci.node, for i ∈ {1, 2} and c1(c2(C,M)) 6=
c2(c1(C,M)). The nodes n1,2 are called confluent with each other in (C,M), written
n1 ∼(C,M) n2, if there is no sequence of micro steps (C,M) �µs (C ′,M ′) such that n1,2

are conflicting in (C ′,M ′).

Note that confluence is taken relative to valid configurations (C,M) and indirectly as
the absence of conflicts. Instead of requiring that confluent nodes commute with each
other for arbitrary memories, we only consider those configurations (C ′,M ′) that are
reachable from (C,M). For instance, if it happens for a given program that in all memo-
riesM ′ reachable from a configuration (C,M) two expressions e1,2 evaluate to the same
value, then the assignments x = e1 and x = e2 are confluent in (C,M). Similarly, if the
two assignments are never jointly active in any reachable continuation pool C ′, they
are confluent in (C,M), too. This means that statements may be confluent for some
program relative to some reachable configuration, but not for other configurations or
in another program. However, notice that relative writes of the same type, according
to Def. 4.2, are confluent in the absolute sense, i. e., for all valid configurations (C,M)
of all programs.

This relative view of confluence expressed in Def. 4.4 is useful to keep the scheduling
constraints on admissible macro ticks, defined later in Def. 4.6, sufficiently weak. No-
tice that two nodes that are confluent in some configuration are still confluent in every
later configuration reached through an arbitrary sequence of micro steps. Formally,
if (C,M) �µs (C ′,M ′) and n1 ∼(C,M) n2 then n1 ∼(C′,M ′) n2. However, there may be
more nodes confluent in (C ′,M ′) as compared to (C,M), simply because some conflict-
ing configurations reachable from (C,M) are no longer reachable from (C ′,M ′). We
exploit this in the following definition by making confluence of node instances within
a macro tick relative to the index position at which they occur.

One could make confluence in Def. 4.4 even less constraining by taking into account
only those conflicts between nodes which can actually be observed by the environment.
Specifically, one could consider active continuations c1, c2 in conflict if c1(c2(C,M)) 6≈
c2(c1(C,M)), where ≈ is observational equivalence rather than identity. For instance,
if c1 and c2 are writes to an external log file, which is never read by the program during
execution, we could consider them conflict-free and thus confluent, in this sense.

Note that confluence n1 ∼(C,M) n2 requires conflict-freeness for all configurations
(C ′,M ′) reachable from (C,M) by arbitrary micro-sequences under free scheduling. We
will use this notion of confluence to define the restricted set of SC-admissible macro
ticks (Def. 4.7). Since the compiler will ensure SC-admissibility of the execution sched-
ule, one might be tempted to define confluence relative to these SC-admissible sched-
ules. However, this would result in a definitional cycle.

Definition 4.5 (Confluence of node instances). Let R be a macro tick and (Ci,Mi),
for 0 ≤ i ≤ len(R), the configurations of R. Consider two node instances ni1,2 =
(n1,2, i1,2) in R, i. e., 1 ≤ i1,2 ≤ len(R) and n1,2 = R(i1,2). The node instances are called
confluent in R, written ni1 ∼R ni2 if n1 ∼(Ci,Mi) n2, where i = min(i1, i2)− 1.

Definition 4.5 determines confluence of node instances (n1,2, i1,2) in a macro tick R
relative to the configuration (Ci,Mi) in which the first of the two instances is exe-
cuted. This is the instance with the minimal index i = min(i1, i2) − 1. It may thus

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:15

happen that n1 and n2 are confluent relative to this configuration (Ci,Mi) although
they are not confluent in the initial configuration (C0,M0) of the macro tick. Since
the execution sequence from (C0,M0) to (Ci,Mi) will be done under SC-admissibility
constraints, the range of configurations in a tick in which confluence of given node in-
stances becomes critical may be drastically reduced. This is important since whenever
two concurrent nodes are not confluent, their execution order must be fixed to prevent
non-determinacy. To this end the concurrency relation |R is now refined by the fol-
lowing scheduling relations on node instances to characterize potentially conflicting
variables accesses:

Definition 4.6 (Scheduling relation on node instances). For a macro tick R with two
node instances ni1,2 = (n1,2, i1,2), i. e., 1 ≤ i1,2 ≤ len(R) and n1,2 = R(i1,2), that are
concurrent in R, i. e., ni1 |R ni2, but not confluent in R, i. e., ni1 6∼R ni2, we write
ni1 →R

α ni2 iff n1 →α n2 for some α ∈ αiur, and ni1 →R ni2 iff i1 < i2; i. e., ni1 happens
before ni2 in R.

By ensuring that the execution order of concurrent statements respects the ordering
constraints →iur, we can now implement the iur protocol on concurrent accesses to
shared variables.

Definition 4.7 (SC-admissibility, scheduling conditions SCiur). A macro tick R is
SC-admissible iff for all node instances ni1,2 = (n1,2, i1,2) in R, with 1 ≤ i1,2 ≤ len(R)
and n1,2 = R(i1,2), and for all α ∈ αiur, it fulfills scheduling condition SCα: if ni1 →R

α ni2

then ni1 →R ni2.
A run for an SCG is SC-admissible if all macro ticks R in this run are SC-admissible.

Note that if there is a ww conflict, then SCww cannot hold, due to symmetry of→R
ww

and anti-symmetry of→R, and thus the run cannot be SC-admissible.
Note also that ordering absolute writes before relative writes before reads is not the

only possible order to achieve determinate concurrency. For example, if reads were to
be done before any writes, the reads would not refer to variable values from the current
tick, but would always refer to the variable values from the previous tick, or possibly
uninitialized values. Also, we could order relative writes before absolute writes (due to
persistence, the relative writes would be relative to the last value from the previous
tick), but then the relative writes would be overwritten by the absolute writes. There-
fore, we consider the iur order prescribed above to be the most sensible and intuitive
one, as it offers the programmer the greatest degree of control and expressiveness.

The run shown in Fig. 2e for the Control example is admissible because the write
to checkReq (L13) is scheduled before the corresponding read (L23), and similarly the
writes to grant (L22 and potentially L24) are scheduled before the read (L14).

4.3. Sequential Constructiveness

The notion of SC-admissibility (Def. 4.7) restricts the free scheduling defined in Sec. 3.2
to those executions which respect an iur regime for concurrent variable accesses un-
less these variable accesses are confluent. We assume that this regime is enforced
by the compiler and/or the run-time system on the target architecture. A program is
considered sequentially constructive if it exhibits a determinate behavior under such
SC-admissible scheduling.

Definition 4.8 (Sequential constructiveness, reactivity, determinacy). A program is
sequentially constructive (SC) if (i) it is reactive, i. e., there exists an SC-admissible
run for it, and (ii) it is determinate, i. e., every SC-admissible run generates the same,
determinate sequence of macro ticks. More precisely, for any two SC-admissible runs

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:16 von Hanxleden et al.

(Ra, V aI) : (Ca0 ,M
a
0) =⇒ (Cak(a),M

a
k(a)) and (R′a, V ′aI) : (C ′a0 ,M

′a
0) =⇒ (C ′ak′(a),M

′a
k′(a))

such that M0
0 = M ′00 are the same initial memory, and V aI = V ′aI are the same input

sequences, the sequence of responses is identical, too, i.e., Ma
k(a) = M ′ak′(a) for all a.

1 module NonReact
2 output bool u, v;
3 {
4 u = false;
5 v = true;
6 fork
7 u = v
8 par
9 v = u

10 join ;
11 u = true;
12 v = true;
13 }

Fig. 4. NonReact is
determinate, but
not reactive.

1 module NonDet
2 output bool x, y;
3 {
4 x = false;
5 y = false;
6 fork // ”CheckX”
7 if (! x)
8 y = true;
9 par // ”CheckY”

10 if (! y)
11 x = true;
12 join ;
13 }

Fig. 5. NonDet is reac-
tive, but not determi-
nate.

The term “reactive” is chosen in analogy to
“logically reactive” [Berry 2002]. Sequential con-
structiveness is violated when a program is not
reactive, as is the case for NonReact seen in Fig. 4.
Since the assignments in NonReact are ordered
L7 →ir L9 and L9 →ir L7 in both directions, the
scheduler has no chance to select one of them
without violating SCir of Def. 4.7. Note that all
macro tick runs of NonReact produce the same re-
sult; i. e., the program is determinate under non-
SC (free) scheduling; however, programs like Non-
React certainly do not represent good coding style,
thus we do not mind rejecting them.

Reactivity does not imply determinacy, as il-
lustrated by NonDet in Fig. 5. There are two SC-
admissible runs in which the threads CheckX and CheckY (conditionals in L7 and L11)
are executed atomically. Depending on which thread is scheduled first, we end up with
the memory [x = true, y = false] or [x = false, y = true]. These runs are non-determinate
and thus NonDet is not SC.

As a positive example, the program Control, shown in Fig. 2, is SC. As the concur-
rency relation on variable accesses is not transitive, an access may belong to different
(maximal) sets of mutually concurrent accesses. For example, in Control, L14 belongs
to two maximal sets of concurrent accesses, namely {L14, L22} and {L14, L24}. The SC
scheduling rule (Def. 4.7), applied to each of these sets, demands that L22 and L24 must
both be scheduled before L14. This, together with the natural sequential ordering of the
Dispatch thread, results in a determinate outcome.

5. ANALYZING SEQUENTIAL CONSTRUCTIVENESS IN PRACTICE

Practical analyses must approximate the notion of sequential constructiveness which
is computationally intractable due to its dependence on run-time properties of macro
ticks and node instances. To this end we now discuss how to abstract the concurrency
and scheduling relations from node instances to static relations on nodes.

5.1. Acyclic Sequential Constructiveness (ASC)

Definition 5.1 (SC-schedules). For an SCG G = (N,E), an SC-schedule Σ is a sub-
set of G’s instantaneous edges: Σ ⊆ Eins. We refer to Eins itself, which is derived solely
by analysis of the program structure, as structural SC-schedule.

An SC-schedule Σ is valid if for every macro tick R ofGwhich can be reached and ex-
ecuted under the SC-admissibility rules, if (n1, i1)→R

α (n2, i2) for some node instances
(n1,2, i1,2) in R and some α ∈ αins (Def. 4.6), then (n1 →α n2) ∈ Σ.

The validity requirement of Def. 5.1 on SC-schedules Σ guarantees that the static
node relations→α of Σ are a conservative over-approximation of the dynamic relations
→R
α on node instances under the assumption that G is executed in an SC-admissible

fashion. In contrast, the inclusion condition Σ ⊆ Eins of Def. 5.1 excludes superfluous
scheduling constraints that the program does not justify.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:17

So far, we defined a schedule as a subset of E. The schedule order, defined next,
provides a concrete rule set for a scheduler that has to choose among instructions
(SCG nodes) from concurrent threads.

Definition 5.2 (Schedule order). For a valid SC-schedule Σ, the schedule order �Σ
ins

is defined such that n1 �Σ
ins n2 iff (i) n1 ‖ n2 and (ii) Σ contains a path from n1 to n2

that includes an iur-edge.

Condition (ii) captures the case that there is an iur scheduling constraint that re-
quires that n1—or a sequential successor of n1—must be scheduled before n2—or a se-
quential predecessor of n2. Thus, to enforce the iur protocol among concurrent threads,
it suffices to always execute �Σ

ins-minimal nodes; i. e., if n1,2 are eligible for execution
and n1 �Σ

ins n2 holds, then n1 must be scheduled before n2.
Note that (ii) is conservative in that it may also impose a scheduling order between

nodes if they are not run-time concurrent. We choose this conservative definition to be
compatible with the priority-based scheduling scheme introduced in Sec. 5.2.

A less conservative, thread-instance aware definition of schedule order would for
example not consider paths that include lcafork(n1, n2), since at run time, executing
lcafork(n1, n2) would preclude that the node instances corresponding to n1,2 could be
run-time concurrent (consider (3) in Def. 2.6).

LEMMA 5.3 (STRUCTURAL SC-SCHEDULE IS VALID). Eins is a valid SC-schedule.

This lemma, which follows directly from Def. 4.6, gives us a means to infer a valid
SC-schedule with simple, structural program analysis. However, a valid schedule may
still contain conflicting orderings that cannot be satisfied or where it depends on the
capabilities of the compiler or the run-time system whether it can be implemented.
Thus, we also introduce the following classifications.

Definition 5.4 (Schedule / program classes). An SC-schedule Σ is acyclic if it does
not contain any cycle; Σ is iur-acyclic if it does not contain any cycle that contains
edges induced by→iur. A program for which a valid (iur-) acyclic SC-schedule exists is
acyclic (iur-acyclic) SC, abbreviated ASC (IASC).

A program for which the structural SC-schedule Eins is (iur-)acyclic is structurally
(iur-)acyclic SC, abbreviated SASC (SIASC).2

THEOREM 5.5 (SEQUENTIAL CONSTRUCTIVENESS). Every IASC program (and
thus every ASC program) is sequentially constructive.

The proof, provided in the TR [von Hanxleden et al. 2013b], adapts the argument
by Keller [1975] to prove global confluence from local confluence by parameterizing it
to the set of admissible schedules specified by the iur protocol.

We have the implications SASC =⇒ SIASC =⇒ IASC =⇒ SC and SASC =⇒
ASC =⇒ IASC. Thus, SASC is the strongest condition and most conservative ap-
proximation of SC. To determine whether a program is SASC or not requires minimal,
only structural analysis. We therefore propose that any compilation technique devel-
oped for the SC MoC should at least be able to accept all SASC programs; conversely,
writing programs such that they are SASC ensures maximal portability. However, this
precludes some features like instantaneous loops, as permitted by SIASC, even if the
loops are provably finite, thus there is a trade-off to make. The priority-based analysis

2This terminology has evolved slightly. In [von Hanxleden et al. 2013a; von Hanxleden et al. 2013b], “ASC
schedulable” denoted IASC. Furthermore, “wir” (write-increment-read) was used there instead of “iur.”
In [von Hanxleden et al. 2014], where Eins is the only considered schedule, the term “ASC schedulable”
was used to denote SASC.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:18 von Hanxleden et al.

and execution scheme proposed in Sec. 5.2 is indeed not restricted to SASC programs,
but can handle all SIASC programs.

One may also relax the sequential order to only order non-confluent statements.
This leads to the class of data-flow acyclic programs, which is not further elaborated
on here.

For the Control example of Fig. 2, it is easy to see that the only pairs of nodes which
are concurrent and in conflict relative to any initial configuration of Control are L24 6∼
L14 and L22 6∼ L14 which are write-read precedences on variable grant, and L23 6∼ L13
as a write-read precedence on checkReq. Hence, by forcing the execution to respect the
orderings L22 →ir L14, L13 →ir L23 and L24 →ir L14, specified by the dashed arrows
in Fig. 2, we avoid the only possible scheduling violation (SCir) expressed in Def. 4.7.
Since these constraints, when added to the program order, do not introduce a causality
cycle, we have a valid iur-acyclic SC-schedule Σ in the sense of Def. 5.4. Thus Control is
ASC. This not only ensures SC-admissible execution but also, by Thm. 5.5, determinate
macro step responses. Control is in fact SASC since Σ is identical to the instantaneous
edges Eins, which is acyclic.

5.2. Determining SC-schedules with priorities

As explained in Sec. 5.1, the schedule order �Σ
ins for a valid schedule Σ provides a

(conservative) means to execute SC programs according to the SC MoC. One means
to implement �Σ

ins are priorities, defined next. Conceptually, priorities are similar to
(inverse) logical time stamps, where →iur corresponds to “happens before” [Lamport
1978]. We here use the term “priority” as it shall be used by a priority-based scheduler,
which we define such that always gives control to the thread with highest priority,
chosen from the set of threads that are still active in the current tick.

Definition 5.6 (Priorities). Given a valid SC-schedule Σ, the priority n.pr of a state-
ment n ∈ N is the maximal number of →iur edges traversed by any path in Σ that
originates in n.

The following lemma follows from the observation that in �Σ
ins, only iur-edges can

involve concurrent threads.

LEMMA 5.7 (PRIORITIES IMPLEMENT THE SCHEDULE ORDER). For a priority as-
signment according to some SC-schedule Σ, for any two run-time (and hence also stati-
cally) concurrent statements n1,2 ∈ N , n1 �Σ

ins n2 implies n1.pr > n2.pr.

A priority-based scheduler never allows a statement that is ready for execution to
wait on another statement with lower priority. Such a scheduler implements a valid
schedule, as can be verified from the SCG construction. For example n1 →iu n2 implies
n1 →iur n2, which implies, by definition of priorities, n1.pr > n2.pr, which in turn
implies that n1 gets scheduled before n2. Thus initializations are performed before
concurrent updates to the same variable. Similarly →ir ensures that initializations
are performed before concurrent reads of the same variable, and →ur ensures that
updates are performed before concurrent reads of the same variable. The priority
concept can also serve to determine sequential constructiveness, based on Thm. 5.5
and the following theorem:

THEOREM 5.8 (FINITE PRIORITIES). A program is IASC iff there exists a valid SC-
schedule such that all statement priorities are finite.

Note that the existence of finite priorities implies there is no↔ww cycle in Σ, which
means that there is no→ww dependency edge in the schedule.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:19

In principle, we might invoke the priority-based scheduler before every single state-
ment execution. However, for a practical implementation, it is worthwhile to consider
when a scheduler must actually be invoked and when an executing thread might just
keep executing without invoking the scheduler. The way we (conservatively) defined
our priorities, the statements executed within a tick always execute in non-increasing
priority order. (A more permissive priority assignment might, under some circum-
stances, permit the priority of a fork to be lower than its children, corresponding to the
thread-instance aware schedule order discussed along Def. 5.2.) Therefore a thread t
currently executing with some priority pr, meaning that its priority is at least as high
as any other thread currently eligible for execution, cannot be preempted by another
thread u with higher priority unless t just yields by lowering its own priority below u’s
priority. Thus, the only points when a scheduler is called for are 1) when a thread low-
ers its own priority, or 2) when threads are forked and the scheduler has to schedule
one of the forked threads, or 3) when a thread finishes for the current tick, that is, it
reaches a pause statement or terminates.

5.3. Determining IASC and computing priorities

Given a valid SC-schedule Σ, which can be either Eins or a subset thereof depending
on the analysis capabilities of the compiler, the calculation of priorities (Def. 5.6) can
be formulated as a longest weighted path problem. We assign to each edge e ∈ Σ
a weight e.w, with e.w = 0 iff e.src →seq e.tgt , and e.w = 1 iff e.src →iur e.tgt . As
the relations →iur and →seq exclude each other, the weight of each edge is uniquely
determined. With this assignment of weights, n.pr becomes the maximal weight of any
path originating in n.

A non-trivial aspect in calculating priorities is that we want to handle (sequential)
loops, i. e., cyclic SCGs. In the usual synchronous MoC, loops are prohibited when they
can occur within a tick; this simplifies the scheduling problem, but is again more
restrictive than necessary to ensure determinacy. For arbitrary (i. e., possibly cyclic)
weighted graphs, the computation of the longest weighted path is an NP-hard prob-
lem, as it can be reduced to the Hamiltonian path problem. However, according to our
definition of SC, we can exclude all graphs that contain a cycle with a positive weight,
as these cycles would contain a→iur edge, which would mean that the program is not
IASC. Thus we can compute priorities efficiently as follows:

(1) Detect whether Σ has a positive weight cycle. We can do so by computing the
Strongly Connected Components (SCCs), for example using the algorithm of Tar-
jan [1972], and checking if any SCC contains a node that is connected to another
node within the same SCC by a→iur edge.

(2) If a positive weight cycle exists, then Σ is not iur-acyclic (Def. 5.4); we then reject
the program and are done. Otherwise, we accept the program, and continue. Now
nodes in the same SCC can reach each other, but only through paths with weight
0, and therefore must have the same priority.

(3) From the SCCs, construct the directed acyclic graph GSCC = (NSCC , ESCC), where
NSCC ⊂ N contains a representative node from each SCC of G (using e. g. the SCC
roots computed by Tarjan’s algorithm), and ESCC contains an edge from one SCC
representative to another iff the corresponding SCCs are connected in G. Here we
assign an edge in ESCC the maximum weight of the corresponding edges in Σ.

(4) Compute for each nSCC ∈ NSCC the maximum weighted length (priority) nSCC .pr
of any path originating in nSCC , e. g., with a depth-first recursive traversal of all
edges in the acyclic GSCC .

(5) Assign each statement n ∈ N the priority computed for its SCC.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:20 von Hanxleden et al.

We can perform all these steps in time linear to the number of nodes and edges of G.
For the Control example, the resulting priorities are indicated in Fig. 2c.

6. RELATED WORK

Edwards [2003] and Potop-Butucaru et al. [2007] provide good overviews of compila-
tion challenges and approaches for concurrent languages, including synchronous lan-
guages and classical work such as the Program Dependence Graph (PDG) [Ferrante
et al. 1987]. The SC Graph introduced here can be viewed as a traditional control flow
graph enriched with data dependence information akin to the PDG for analysis and
scheduling purposes.

Esterel, like Quartz, provides determinate concurrency with shared signals. Causal
Esterel programs on pure signals satisfy a strong scheduling invariant: they can be
translated into constructive circuits which are delay-insensitive [Brzozowski and Seger
1995] under the non-inertial delay model, which can be fully decided using ternary
Kleene algebra [Mendler et al. 2012]. This makes the work on causality analysis of
cyclic circuits by Malik [1994] applicable to constructiveness analysis of (instanta-
neous) Esterel program. This has been extended by Shiple et al. [1996] to state-based
systems, as induced by Esterel’s pause operator, thus handling non-instantaneous pro-
grams as well. The algebraic transformations proposed by Schneider et al. [2005] in-
crease the class of programs considered constructive by permitting different levels of
partial evaluation. However, none of these approaches separates initialisations and
updates or permits sequential writes to a shared variable within a tick, as we do here.
The notion of sequential constructiveness introduced here is weaker regarding sched-
ule insensitivity, but more adequate for the sequential memory models available for
imperative languages. Various other approaches with their own admissible schedul-
ing schemes have been considered. Some are more restricted, some more generous
and yet others incomparable with SC admissibility and sequential constructiveness
(S-constructiveness). The three most prominent approaches are due to Pnueli and
Shalev [1991], Boussinot [1998] and Berry [2002], which we refer to as P, L, and B-
constructiveness, respectively. We find that {S, P, L}-constructiveness are incompa-
rable with each other, but all three include B-constructiveness. None of {P, L, B}-
constructiveness considers sequential control flow as SC does. Thus we believe that
in particular for software-based reactive system, S-constructiveness is more practical
than the alternatives.

The standard synchronus MoC distinguishes between (local) variables and (shared)
signals. Signals in Esterel may also be valued, in which case they do not only carry
a presence status, but also a value of some type. The emission of a valued signal sets
a signal present and assigns it a value. Concurrent emissions of a valued signal are
allowed if the signal is associated with a combination function. The SC MoC adopts
and slightly generalizes this concept of a combination function, and considers such as-
signments via a combination function as a relative write. Esterel signals can be coded
in SCL using variable accesses (described further in the TR [von Hanxleden et al.
2013b]). Finally, Esterel also has the concept of variables that can be modified sequen-
tially within a tick. However, they cannot be shared among concurrent threads. The
variable access mechanism of the SC MoC proposed here can be viewed as a combi-
nation of Esterel’s signals and variables that is more liberal than either one, without
compromising determinacy.

Lustre, like Signal, is a data-flow oriented language that uses a declarative,
equation-based style to perform variable (stream of values) assignments. Write-write
races are ruled out by the restriction to just one defining equation per variable. Write-
read races are addressed by the requirement that, within a tick, an expression is only
computed after all variables referenced by that expression have been computed. This

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:21

requires that the write-read dependencies form a partial order from which a schedule
can be derived [Pouzet and Raymond 2010]. Caspi et al. [2009] have extended Lustre
with a shared memory model. Similar to the admissibility concept used in this paper,
they defined a soundness criterion for scheduling policies that rules out race condi-
tions. However, like the original Lustre, they adhere to the current synchronous model
of execution in that they do not harness sequentiality to permit and order multiple
writes.

Our work on SC exploits, and thus also depends on, the implementation of sequential
composition as expressed by “;” at the target platform. This deviates from existing syn-
chronous languages such as Esterel and Quartz which do not assume that statements
separated by “;” are executed in strict sequence. In fact, in causal (pure) Esterel and
Quartz programs sequential composition “;” can be replaced by parallel composition ‖
without affecting the macro tick response. Recently, Mandel et al. [2013] and Gemünde
et al. [2013] applied clock refinement to provide micro-level sequencing within an outer
macro-clock. In this way, sequences of accesses to the same variable but from concur-
rent threads can be bundled within a single tick. This also increases sequential ex-
pressiveness but in an orthogonal fashion compared to our approach, which does not
use an explicit clock to achieve sequential updating but instead takes it for granted
just like a C/Java programmer does.

There have been several proposals that extend C or Java with concurrency con-
structs. However, these typically induce race conditions for shared variables, as ad-
dressed for example by Yu et al. [2012] for OpenMP. Some of these proposed concur-
rency extensions avoid race conditions by building on synchronous programming prin-
ciples. Reactive C by Boussinot [1991] is an extension of C that employs the concepts of
ticks and preemptions, but does not provide true concurrency and has an interpreted
implementation. ECL extends C as well with Esterel-like reactive constructs [Lavagno
and Sentovich 1999]; ECL programs are compiled into a reactive part (Esterel) and
a data-part (C), plus some “glue logic”. FairThreads [Boussinot 2006] are an exten-
sion introducing concurrency via native threads. Synchronous C, a.k.a. SyncCharts in
C [von Hanxleden 2009], augments C with synchronous, determinate concurrency and
preemption. It provides a coroutine-like thread scheduling mechanism, with thread
priorities that have to be explicitly set by the programmer. Synchronous C is a possi-
ble synthesis target for SC programs, where the algorithm presented in Sec. 5.2 can
be used to automatically synthesize thread priorities. PRET-C [Andalam et al. 2009]
also provides determinate reactive control flow; however, PRET-C assumes fixed prior-
ities per thread, thus could not execute SC programs that require back-and-forth con-
text switching between threads. Even more restrictive is the synchronous approach
ForeC [Yip et al. 2013] for multi-core execution which does not permit any commu-
nication during a tick at all. SHIM [Tardieu and Edwards 2006] provides concurrent
Kahn process networks with CSP-like rendezvous communication [Hoare 1985] and
exception handling. Céu [Sant’Anna et al. 2013] schedules threads determinstically,
based on their textual order, and provides shared variables, with compile-time warn-
ings when they may be modified concurrently. None of these language proposals em-
beds the concept of Esterel-style constructiveness into shared variables as we do here.
As far as these language proposals include signals, they come as “closed packages” that
do not, for example, allow to separate initialisations from updates.

The concept of sequential constructiveness can be applied not only to software and
not only to textual C/Java-like languages, but also to hardware and to graphical for-
malisms such as Statecharts [Harel 1987]. In fact, the development of a semantically
sound, yet flexible and intuitive Statechart dialect for FPGA synthesis was the orig-
inal motivation for developing the SC MoC. We have developed such a Statechart di-
alect, named Sequentially Constructive Statecharts (SCCharts) [von Hanxleden et al.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:22 von Hanxleden et al.

2014], to be used for the development of safety-critical embedded systems in an indus-
trial setting. The core semantic concepts of SCCharts are analogous to SyncCharts of
André [1996], which can be viewed as a graphical variant of Esterel. In Esterel Studio,
SyncCharts were introduced as Safe State Machines. The Safety Critical Application
Development Environment (SCADE) uses a variant of SyncCharts elements to aug-
ment dataflow diagrams with reactive behavior, by extending Boolean clocks towards
clocks that express state [Colaço et al. 2005; 2006]. The main difference between SC-
Charts and SyncCharts (including those present in SCADE) is that SCCharts are not
restricted to constructiveness in the sense of Berry [2002], but relax this requirement
to sequential constructiveness. SCCharts, and with them SCL/SCG as intermediate
representations, have been implemented as part of the KIELER3 environment.

Regarding the compilation of SCL programs (and SCCharts), two alternative code
generation strategies have been proposed [von Hanxleden et al. 2014]. The first ap-
proach, termed data-flow approach, transforms SCL programs first into static single
assignment form [Appel 1998] to handle multiple assignments within a tick and then
produces a netlist, which can be either mapped to hardware, or can be simulated in
software. This approach can compile all data-flow acyclic programs (see Sec. 5.1). The
second, priority-based approach permits instantaneous loops and is primarily suitable
for software synthesis; it can compile all IASC programs.

An extended abstract of this work was presented at the DATE conference [von
Hanxleden et al. 2013a]. Since that presentation, we have refined the concept of admis-
sibility, and in particular have sharpened the notion of ineffective writes to confluent
writes. We also improved the definition of acyclic schedulability which was informal
in [von Hanxleden et al. 2013a] and based it on the structural SC scheduling relation
rather than the more general notion of valid SC-schedules.

7. SUMMARY AND OUTLOOK

Relying on a scheduler that is blind to shared variable accesses, such as a Java thread
scheduler, makes concurrent programming a difficult endeavor with generally unpre-
dictable outcome. The SC MoC presented in this paper harnesses the synchronous
MoC where it truly matters, namely to ensure determinacy when shared variables
are accessed concurrently, and combines this with the flexibility and familiarity of se-
quential programming. The SC MoC builds on ideas from synchronous programming
such as the fork. . . par. . . join construct and global clock synchronization through the pause
statement. By exploiting the inherent sequential program order we can compile more
programs than existing synchronous programming languages without losing determi-
nacy. This not only adds expressive power compared to established synchronous pro-
gramming, but allows programmers versed in sequential languages to harness the SC
MoC and the determinate concurrency it provides without giving up familiar, safe pro-
gramming patterns that are merely sequential.

This seemingly simple idea has turned out to be a fairly rich topic, of which only
the fundamentals are covered here. More on how the SC MoC relates to other MoCs
can be found in the TR [von Hanxleden et al. 2013b]. There we also explain how
Esterel/SyncChart-style pure and valued signals can be emulated with shared vari-
ables in the SC MoC, illustrate how hierarchical aborts can be mapped to SCL/SCG,
and present further examples including the combined use of absolute and relative
writes. Another interesting question is how the SC MoC domain relates to other syn-
chronous models of computation with respect to what class of programs are considered
admissible. We have proven elsewhere that B-constructiveness implies SC [Aguado
et al. 2014], using a functional/algebraic formalization of SC, rather than the oper-

3http://www.informatik.uni-kiel.de/rtsys/kieler/

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

http://www.informatik.uni-kiel.de/rtsys/kieler/

Sequentially Constructive Concurrency A:23

ational formalization presented here. However, there are other models of computa-
tion that we plan a comparison with in the future. For instance, the execution model
of PRET-C [Andalam et al. 2010] with its statically scheduled execution of parallel
threads can be accommodated in the SC model by constraining the free schedules by
an additional thread sequentialization order.

Considering Esterel-like languages with signal-based communication and synchro-
nization, SC empowers shared variables to directly model signals. This helps to close
the gap between programming language and implementation language. Thus SC not
only enlarges the class of constructive synchronous programs, but should also help in
the compilation of Esterel-like languages, which is one area we plan to investigate in
the future. Conversely, the compilation of SC programs can also benefit from existing
work on Esterel compilation that, e. g., also permits the compilation of cyclic programs
as long as they are constructive [Potop-Butucaru et al. 2007]. A related area of practi-
cal interest is how to extend the static analysis capabilities of the compiler to enlarge
the class of accepted programs, and how best to give feedback to the user in case a
compiler rejects a program because it cannot schedule it.

So far, we have mainly considered how to express Esterel concepts, notably signals,
into SCL. This is natural in that SCL, with its explicit, programmer-accessible ini-
tialization and updates of variables, provides more elementary concepts than Esterel
does. However, one might also investigate the other direction, i. e., how to transform
an SCL program into an equivalent Esterel program. One approach to do so would
be to develop an SSA transformation that is aware of sequential program orderings as
well as the iur protocol. This approach might not only allow to harness existing Esterel
compilation work, but could also lead to an alternative semantic grounding of SC.

We here presented the semantic principles of SC based on an interleaved, sequen-
tial scheduling of concurrent threads. However, this sequential model still offers room
for parallel execution. This is already illustrated by the aforementioned mapping to
hardware. Another natural application area would be multi-core software execution.
To that end, we plan to further explore scheduling strategies that leave additional
room for parallelism, for example based on PDGs [Ferrante et al. 1987]. For example,
one might permit to revert the execution order of sequential statements if they are
confluent, as is routinely done by out-of-order execution platforms. We also consider
alternative definitions of the SC semantics, for example, as tree rewriting rules, thus
reflecting the tree structure of the continuation pools.

ACKNOWLEDGMENT

The material presented here has benefited greatly from discussions with Hugo Andrade, Gérard Berry,
Stephen Edwards, Jeff Jensen, Louis Mandel, Murali Parthasarathy, and Marc Pouzet. We are also grateful
for the valuable suggestions made by our anonymous reviewers.

REFERENCES

Joaquı́n Aguado, Michael Mendler, Reinhard von Hanxleden, and Insa Fuhrmann. 2014. Grounding Syn-
chronous Deterministic Concurrency in Sequential Programming. In Proceedings of the 23rd European
Symposium on Programming (ESOP’14), LNCS 8410. Springer, Grenoble, France, 229–248.

Sidharta Andalam, Partha Roop, Alain Girault, and Claus Traulsen. 2009. PRET-C: A new language for
programming precision timed architectures. Workshop on Reconciling Performance with Predictability
(RePP’09), Embedded Systems Week, Grenoble, France.

Sidharta Andalam, Partha S. Roop, and Alain Girault. 2010. Deterministic, predictable and light-weight
multithreading using PRET-C. In Proceedings of the Conference on Design, Automation and Test in
Europe (DATE’10). Dresden, Germany, 1653–1656.

Charles André. 1996. SyncCharts: A Visual Representation of Reactive Behaviors. Technical Report RR 95–
52, rev. RR 96–56. I3S, Sophia-Antipolis, France.

Andrew W. Appel. 1998. SSA is functional programming. SIGPLAN Not. 33, 4 (April 1998), 17–20.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

A:24 von Hanxleden et al.

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert de
Simone. 2003. The Synchronous Languages Twelve Years Later. In Proc. IEEE, Special Issue on Em-
bedded Systems, Vol. 91. IEEE, Piscataway, NJ, USA, 64–83.

Gérard Berry. 2000. The Foundations of Esterel. In Proof, Language, and Interaction: Essays in Honour of
Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte (Eds.). MIT Press, Cambridge, MA, USA,
425–454.

Gérard Berry. 2002. The Constructive Semantics of Pure Esterel. Draft Book, Version 3.0, Centre de
Mathématiques Appliqées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902 Sophia-
Antipolis CDX, France.

Frédéric Boussinot. 1991. Reactive C: An Extension of C to Program Reactive Systems. Software Prac. Ex-
perience 21, 4 (1991), 401–428.

Frédéric Boussinot. 1998. SugarCubes Implementation of Causality. Research Report RR-3487. INRIA.
Frédéric Boussinot. 2006. FairThreads: mixing cooperative and preemptive threads in C. Concurrency and

Computation: Practice and Experience 18, 5 (April 2006), 445–469.
Janusz A. Brzozowski and Carl-Johan H. Seger. 1995. Asynchronous Circuits. Springer-Verlag, New York.
Paul Caspi, Jean-Louis Colaço, Léonard Gérard, Marc Pouzet, and Pascal Raymond. 2009. Synchronous

Objects with Scheduling Policies: Introducing Safe Shared Memory in Lustre. In ACM Int’l Conf. on
Languages, Compilers, and Tools for Embedded Systems (LCTES’09). ACM, Dublin, Ireland, 11–20.

Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing Signals and Modes in Synchronous
Data-flow Systems. In ACM International Conference on Embedded Software (EMSOFT’06). ACM,
Seoul, South Korea, 73–82.

Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2005. A Conservative Extension of Synchronous Data-
flow with State Machines. In ACM International Conference on Embedded Software (EMSOFT’05).
ACM, New York, NY, USA, 173–182.

Stephen A. Edwards. 2003. Tutorial: Compiling concurrent languages for sequential processors. ACM Trans-
actions on Design Automation of Electronic Systems 8, 2 (April 2003), 141–187.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and its Use
in Optimization. ACM Transactions on Programming Languages and Systems 9, 3 (1987), 319–349.

Mike Gemünde, Jens Brandt, and Klaus Schneider. 2013. Clock refinement in imperative synchronous lan-
guages. EURASIP J. Emb. Sys. 2013 (2013), 3.

Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire. 1991. Programming real time
applications with SIGNAL. Proc. IEEE 79, 9 (Sept. 1991), 1321–1336.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchronous data-flow pro-
gramming language LUSTRE. Proc. IEEE 79, 9 (Sept. 1991), 1305–1320.

Per Brinch Hansen. 1999. Java’s insecure parallelism. SIGPLAN Not. 34, 4 (April 1999), 38–45.
David Harel. 1987. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Program-

ming 8, 3 (June 1987), 231–274.
C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice Hall, Upper Saddle River, NJ.
Robert M. Keller. 1975. A fundamental theorem of asynchronous parallel computation. In Parallel Pro-

cessing, Tse-yun Feng (Ed.). Lecture Notes in Computer Science, Vol. 24. Springer Berlin, Heidelberg,
102–112.

Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and Ryan R. Newton. 2014. Freeze after writ-
ing: Quasi-deterministic parallel programming with LVars. In Principles of Programming Languages
(POPL’14). ACM, New York, USA, 257–270.

Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21,
7 (July 1978), 558–565.

Luciano Lavagno and Ellen Sentovich. 1999. ECL: a specification environment for system-level design. In
Proc. 36th ACM/IEEE Conf. on Design Automation (DAC’99). ACM Press, New York, NY, USA, 511–516.

Edward A. Lee. 2006. The Problem with Threads. IEEE Computer 39, 5 (2006), 33–42.
Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin Lerner. 2012. Verifying

GPU kernels by test amplification. In Programming Language Design and Implementation PLDI 2012.
ACM, New York, USA, 383–394.

Sharad Malik. 1994. Analysis of Cyclic Combinational Circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 13, 7 (July 1994), 950–956.

Louis Mandel, Cédric Pasteur, and Marc Pouzet. 2013. Time refinement in a functional synchronous lan-
guage. In ACM SIGPLAN Int. Symp. on Principles and Practice of Declarative Programming (PPDP’13).
ACM, New York, NY, USA, 169–180.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

Sequentially Constructive Concurrency A:25

Michael Mendler, Thomas R. Shiple, and Gérard Berry. 2012. Constructive Boolean circuits and the exact-
ness of timed ternary simulation. Formal Methods in System Design 40, 3 (2012), 283–329.

R. Milner. 1989. Communication and Concurrency. Prentice Hall.
Amir Pnueli and M. Shalev. 1991. What is in a Step: On the Semantics of Statecharts. In Proc. Int. Conf. on

Theoretical Aspects of Computer Software (TACS’91). Springer, London, UK, 244–264.
Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. 2007. Compiling Esterel. Springer.
Marc Pouzet and Pascal Raymond. 2010. Modular static scheduling of synchronous data-flow networks - An

efficient symbolic representation. Design Autom. for Emb. Sys. 14, 3 (2010), 165–192.
Francisco Sant’Anna, Noemi Rodriguez, Roberto Ierusalimschy, Olaf Landsiedel, and Philippas Tsigas. 2013.

Safe system-level concurrency on resource-constrained nodes. In Proc. 11th ACM Conf. on Embedded
Networked Sensor Systems (SenSys ’13). ACM, New York, NY, USA, Article 11, 14 pages.

Klaus Schneider. 2002. Proving the Equivalence of Microstep and Macrostep Semantics. In TPHOLs ’02:
Proceedings of the 15th International Conference on Theorem Proving in Higher Order Logics. Springer-
Verlag, London, UK, 314–331.

Klaus Schneider, Jens Brandt, Tobias Schüle, and Thomas Türk. 2005. Improving Constructiveness in Code
Generators. In Int’l Workshop on Synchronous Languages, Applications, and Programming (SLAP’05),
Florence Maraninchi, Marc Pouzet, and Valérie Roy (Eds.). ENTCS, Edinburgh, Scotland, UK, 1–19.

Jacob T. Schwartz. 1980. Ultracomputers. ACM Trans. Program. Lang. Syst. 2, 4 (Oct. 1980), 484–521.
Thomas R. Shiple, Gérard Berry, and Hervé Touati. 1996. Constructive Analysis of Cyclic Circuits. In Proc.

European Design and Test Conference (ED&TC’96), Paris, France. IEEE Computer Society Press, Los
Alamitos, California, USA, 328–333.

Olivier Tardieu and Stephen A. Edwards. 2006. Scheduling-Independent Threads and Exceptions in SHIM.
In Proceedings of the International Conference on Embedded Software (EMSOFT’06). ACM, Seoul, South
Korea, 142–151.

Robert E. Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM Journal of Computing 1, 2
(1972), 146–160.

Martin Vechev, Eran Yahav, Raghavan Raman, and Vivek Sarkar. 2010. Automatic Verification of Determin-
ism for Structured Parallel Programs. In Static Analysis (SAS 2010 (LNCS), R. Cousot and M. Martel
(Eds.), Vol. 6337. Springer, 455–471.

Reinhard von Hanxleden. 2009. SyncCharts in C—A Proposal for Light-Weight, Deterministic Concurrency.
In Proc. Int’l Conference on Embedded Software (EMSOFT’09). ACM, Grenoble, France, 225–234.

Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquı́n
Aguado, Stephen Mercer, and Owen O’Brien. 2014. SCCharts: Sequentially Constructive Statecharts
for Safety-Critical Applications. In Proc. ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI’14). ACM, Edinburgh, UK.

Reinhard von Hanxleden, Michael Mendler, Joaquı́n Aguado, Björn Duderstadt, Insa Fuhrmann, Christian
Motika, Stephen Mercer, and Owen O’Brien. 2013a. Sequentially Constructive Concurrency—A Conser-
vative Extension of the Synchronous Model of Computation. In Proc. Design, Automation and Test in
Europe Conference (DATE’13). IEEE, Grenoble, France, 581–586.

Reinhard von Hanxleden, Michael Mendler, Joaquı́n Aguado, Björn Duderstadt, Insa Fuhrmann, Chris-
tian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. 2013b. Sequentially Constructive
Concurrency—A Conservative Extension of the Synchronous Model of Computation. Technical Report
1308. Christian-Albrechts-Universität zu Kiel, Department of Computer Science. ISSN 2192-6247.

Eugene Yip, Partha S Roop, Morteza Biglari-Abhari, and Alain Girault. 2013. Programming and Timing
Analysis of Parallel Programs on Multicores. In 13th International Conference on Application of Con-
currency to System Design (ACSD). 167–176.

Fang Yu, Shun-Ching Yang, Farn Wang, Guan-Cheng Chen, and Che-Chang Chan. 2012. Symbolic Consis-
tency Checking of OpenMp Parallel Programs. In Proceedings of the 13th ACM Int’l Conf. on Languages,
Compilers, Tools and Theory for Embedded Systems (LCTES’12). ACM, 139–148.

Tomofumi Yuki, Paul Feautrier, Sanjay Rajopadye, and Vijay Saraswat. 2013. Array dataflow analysis for
polyhedral X10 programs. In Principles and Practice of Parallel Programming (PPoPP 2013). ACM, New
York, USA, 23–34.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: December 2014.

	Introduction
	The SC Language and the SC Graph
	The SC Language
	The Control Example
	The SC Graph
	Thread Terminology
	Macro Ticks, Micro Ticks, and the Thread Status
	Concurrency of Node Instances

	Free Scheduling of SCGs
	Continuations and Continuation Pool
	Configurations, Micro Step and Macro Step Scheduling

	The Sequentially Constructive (SC) Model of Computation
	Types of variable accesses
	SC-Admissible Scheduling
	Sequential Constructiveness

	Analyzing Sequential Constructiveness in Practice
	Acyclic Sequential Constructiveness (ASC)
	Determining SC-schedules with priorities
	Determining IASC and computing priorities

	Related Work
	Summary and Outlook

