
1
Submitted to Special Issue of MEMOCODE 2015 Best Papers

SCEst: Sequentially Constructive Esterel

STEVEN SMYTH, Kiel University
CHRISTIAN MOTIKA, Kiel University
KARSTEN RATHLEV, Kiel University
REINHARD VON HANXLEDEN, Kiel University
MICHAEL MENDLER, Bamberg University

The synchronous language Esterel provides determinate concurrency for reactive systems. Determinacy
is ensured by the signal coherence rule, which demands that signals have a stable value throughout one
reaction cycle. This is natural for the original application domains of Esterel, such as controller design
and hardware development; however, it is unnecessarily restrictive for software development. Sequentially
Constructive Esterel (SCEst) overcomes this restriction by allowing values to change instantaneously, as
long as determinacy is still guaranteed, adopting the recently proposed Sequentially Constructive model
of computation. SCEst is grounded in the minimal Sequentially Constructive Language (scl), which also
provides a novel semantic definition and compilation approach for Esterel.
CCS Concepts: •Computer systems organization → Real-time languages; Embedded software; Real-
time system specification; •Software and its engineering → Real-time systems software; Concur-
rent programming languages; Concurrent programming structures; Software safety; Compilers;
•Theory of computation → Concurrency;

Additional Key Words and Phrases: Synchronous Languages, Sequential Constructiveness, Esterel
ACM Reference Format:
Steven Smyth, Christian Motika, Karsten Rathlev, Reinhard von Hanxleden, and Michael Mendler. 2017.
SCEst: Sequentially Constructive Esterel ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January
2017), 25 pages.
DOI: 0000001.0000001

1. INTRODUCTION

Embedded real-time systems or cyber-physical systems are typically reactive systems, mean-
ing that they continuously react to their environment. A natural approach for developing
reactive systems is to divide time into discrete ticks, each of which executes a reaction cycle:
1) read inputs (sensors), 2) compute a reaction, typically by calling a tick function, and 3)
write outputs (actuators). A common requirement, in particular for safety-critical systems,
is that the tick function is determinate, meaning that the same sequence of inputs produces
the same sequence of outputs. This requirement of determinacy may be simple to achieve
for traditional, sequential algorithms. Determinacy is not trivial for reactive systems, as
these often entail concurrent and preemptive control-flow, which leads to race conditions.
However, the family of synchronous languages [Benveniste et al. 2003] provides just that,
determinacy for reactive systems. That is, a reactive system programmed or modeled in a

This work was supported by the German Science Foundation (DFG HA 4407/6-1 and ME 1427/6-2) as
part of the PRETSY project. Author’s addresses: S. Smyth, C. Motika, K. Rathlev, and R. von Hanxleden,
Dept. of Computer Science, Kiel University, Kiel, Germany; E-mail: {ssm,krat,cmot,rvh}@informatik.uni-
kiel.de; M. Mendler, Dept. of Computer Science, Bamberg University, Bamberg, Germany; E-mail:
michael.mendler@uni-bamberg.de.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
© 2017 ACM. 1539-9087/2017/01-ART1 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:2 S. Smyth et al.

module WriteAfterRead:
signal s in ...

present (not s) then emit s; ... end
end

(a) Invalid Esterel, but valid SCEst

WriteAfterRead() {
bool s = false; ...
if (! s) { s = true; ... }

}

(b) Equivalent, valid C-like Program

Fig. 1: WriteAfterRead example.

synchronous language will always behave in the same manner, irrespective of how this sys-
tem is realized, be it in hardware or software, or on a fast or a slow processor. Determinacy
of concurrent interaction could also be achieved in general-purpose languages using stan-
dard mechanisms like semaphores, locks or other synchronization barriers. However, using
these correctly without creating other problems such as deadlocks requires great skills on
the side the programmer. Synchronous languages relieve the programmer from this burden.

The Esterel language is a well-studied, textual synchronous language that targets control-
oriented systems. It offers concurrency and numerous forms of preemption and suspen-
sion [Potop-Butucaru et al. 2007]. Esterel offers shared signals and non-shared variables.
Communication with signals is instantaneous, meaning that threads can communicate back
and forth within a tick. This capability, which is lacking in many other languages, is rather
powerful and valuable, as it for example facilitates the decomposition of a system with-
out having to spread a computation across multiple ticks. For instance, in the hardware
description language VHDL, which also distinguishes between signals and variables in this
way, all process communication is delayed by one δ-cycle [Fuchs and Mendler 1995]. This
generates determinacy trivially yet breaks the micro-step/macro-step abstraction of logical
ticks. However, instantaneous communication also makes the compilation of Esterel rather
challenging [Potop-Butucaru et al. 2007].

To facilitate determinacy, synchronous languages have adopted fixed-point semantics,
which in the case of Esterel means that signals must be uniquely determined through-
out a tick, that is, they must be either present or absent. This signal coherence rule is well
suited for many application domains, such as circuits where wires should stabilize to either
high or low voltage in each clock tick. A nice property of constructive Esterel programs is
that they correspond to synchronous circuits in which the combinational next-state function
may have instantaneous, yet delay-insensitive feed-back.

Motivation. The signal coherence rule is convenient from a semantical point of view, but
is often considered restrictive by programmers, who are used to a more liberal model of
computation that allows, for example, reading a variable in some tick and then writing a
different value to the same variable, in the same tick. To illustrate, consider the minimal
WriteAfterRead example shown in Fig. 1a. This module declares a signal s (which is possibly
shared by concurrent threads within the signal scope), checks whether it is not present, i.e.,
absent, and if so, makes s present by emitting it. In that case s will be first considered absent
and then instantaneously made present; i.e., s is not coherent. Thus WriteAfterRead is not
a valid Esterel program, and an Esterel compiler will reject it as being not causal, or not
constructive. However, if we consider WriteAfterRead as a sequential, imperative program,
there is no reason to reject it, as there is a fixed ordering of the read and write of s, which
ensures determinacy. This becomes clear when considering the equivalent, C-like program
in Fig. 1b: s is initialized to false, but at the end of the reaction will have the value true.
The motivation for the work presented here is to improve upon the capabilities of Esterel
in that more programs should have a valid, natural semantics. Note that this does not
necessarily mean increased expressiveness in the sense that one can write more programs or

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:3

Thread Parallel Sequence Conditional Assignment Delay
scl t fork t1 par t2 join s1 ; s2 if (c) s1 else s2 x = e pause

scg

Fig. 2: Overview of scl and scg elements.

that programs become asymptotically smaller; however, we argue that in the Esterel variant
presented here one can write programs in a more intuitive and more readable way.

Contributions and Outline. This paper presents Sequentially Constructive Es-
terel (SCEst), which builds on the Sequentially Constructive Model of Computation (SC
MoC) and the SC Language (scl) [von Hanxleden et al. 2014b], briefly reviewed in Sec. 2.
As detailed in Sec. 3, one extension of SCEst over Esterel concerns its data handling; in
particular, SCEst variables can be shared among threads as well as sequentially modified.
This unification not only permits programs such as WriteAfterRead, but also opens the door
for re-initialization of signal statuses and values, expressed with the new SCEst statements
unemit and set. As illustrated with the Control example in Sec. 4, SCEst thus adds conve-
nience to both scl and Esterel. The technical core of the paper is Sec. 5, which defines
SCEst as a set of transformation rules from SCEst to scl. The transformation rules are
fairly straightforward, structural source-to-source transformations; therefore, one might also
consider SCEst as a language extension to scl, which adds Esterel-style control constructs
(such as the various forms of preemption) as syntactic sugar to scl. We thus leverage the
existing formal semantics for scl and build on the result [Aguado et al. 2014] that the
SC MoC conservatively extends the “Berry constructiveness” (BC) demanded by Esterel.
Conversely, the BC subset of SCEst without the new SCEst statements reduces to Esterel,
thus our definition of SCEst can also be considered a new, alternative semantic grounding
for Esterel. This unambiguously defines the semantics of SCEst, and is also the basis for a
compilation procedure for SCEst, and hence also Esterel, as illustrated with experimental
results in Sec. 6. We wrap up with related work in Sec. 7 and conclusions in Sec. 8.

An abbreviated version of this paper has been presented at the MEMOCODE confer-
ence [Rathlev et al. 2015]. This work expands the previous presentation in particular with
respect to a more complete coverage of the SCEst transformation rules (Sec. 5), a discussion
of the implementation of the transformation rules, down-stream synthesis and validation
(Sec. 6), and a more in-depth coverage of related work (Sec. 7).

2. SEQUENTIAL CONSTRUCTIVENESS

We now briefly review of the SC MoC and the abstract syntax for its reference languages,
the scl and its graphical equivalent, the scg. For full detail, including a formal semantics,
we refer the reader elsewhere [von Hanxleden et al. 2014b; von Hanxleden et al. 2014a].

Fig. 2 summarizes the abstract syntax of scl. A thread is a primitive or compound
statement; the parallel instantaneously forks off multiple threads and joins (terminates)
when all threads have terminated, corresponding to Esterel’s || operator; the sequence,
conditional and assignment are as in standard imperative languages such as C; the delay
corresponds to Esterel’s pause statement. The concrete syntax of scl follows the C syntax,
as illustrated in the scl version of WriteAfterRead shown in Fig. 1b.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:4 S. Smyth et al.

The scl type system is not further specified, but we adopt Esterel’s concept of a host
language, such as C, from which we can use types and an expression language and which
can be linked to SCEst with function or procedure calls as in Esterel. To avoid confusion
with the parallel operator || of Esterel/SCEst, we use | for (logical) or and similarly & for
(logical) and. We also assume a type bool that can be true or false.

For purely sequential scl programs, that is programs without parallel, the semantics is
as one might expect from imperative, sequential programs. All syntactically correct purely
sequential scl programs such as WriteAfterRead have a well defined, determinate semantics
and will not be rejected by an scl compiler. This differs from the situation in Esterel, where
even sequential programs might be rejected, as illustrated with WriteAfterRead.

Things become more interesting when concurrency is considered, in particular when con-
current threads share variables. scl retains determinacy by demanding that concurrent
accesses to the same variable follow the so-called init-update-read discipline, or iur (disci-
pline) in short. In spirit, iur is similar to Esterel’s emit-before-test (ebt) discipline where
the first emission of a signal must precede any test for presence of a signal. Subsequent
emissions do not change the presence status anymore and hence may be scheduled before or
after presence tests. With iur, we classify writes as either updates, which can be scheduled
in any order, typically because they are commutative and associative (such as additions/in-
crements), or initializations, which is the default. More precisely, we consider an assignment
as an update if it is of the form x = f(x, e), where f is a combination function that fulfills
f(f(x, y1), y2) = f(f(x, y2), y1) for all x, y1, y2. In our SCEst implementation, we recognize
writes as updates of type f if they are written as augmented assignments, such as, e.g.,
x += e if f is addition, and the right-hand side expression e does not reference x. More
elaborate analyses might be feasible, but we actually prefer updates to be made explicit by
an augmented assignment.

We say that two variable accesses are confluent if their order of scheduling does not
matter. E.g., updates of the same type (e.g., of type addition) are confluent; likewise, in
Esterel, signal emissions are confluent. iur demands that for two concurrent, non-confluent
accesses n1 and n2 to some variable x, n1 must be scheduled before n2 if (i) n1 initializes
x and n2 updates x, or (ii) n1 writes x and n2 reads x. For a full, formal treatment,
including a precise definition of confluence, we refer the reader elsewhere [von Hanxleden
et al. 2014b]. For example, without iur the scl fragment fork x+=2 par y=x par x=1 par x+=3
par x=1 join could result in different values for y, depending on the scheduling order of
the concurrent accesses to x. However, iur demands that the (confluent) initializations of
x (x=1) are scheduled first, in any order, followed by the two updates of x (x+=. . .), in
any order, followed by the read of x (y=x). Thus y will always be assigned the value 6,
and iur guarantees that the program behavior is determinate. Note that this assumes
atomicity and sequentially consistent execution of updates. This is innocuous for single-
threaded compilation addressed in this paper. For multi-threaded code running on parallel
architectures that suffer from weak memory anomalies (e.g., see [Sewell et al. 2010]) the
compiler may need to add appropriate memory barrier instructions.

A key difference between scl’s iur and Esterel’s ebt is that iur only applies to concurrent
variable accesses, while ebt applies to all accesses, even if they are already sequentially
ordered, as in the WriteAfterRead example. Thus more programs are schedulable in scl than
in Esterel. Still, there are scl programs that cannot be scheduled, e.g., if they contain
concurrent non-confluent initializations of the same variable; such programs are considered
to be not sequentially constructive, and hence must be rejected.

Note that the classification of variable accesses (inits, updates, writes) and the choice
of protocol (iur) is somewhat arbitrary and not central to the SC MoC. For example, we
expect that most scl programs that do not happen to be synthesized from SCEst will not
have concurrent inits and updates of the same shared variable; for such programs, a simple
write-before-read protocol for concurrent, non-confluent accesses would suffice. Conversely,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:5

Variables Pure Signals Signal Values
C Esterel SCEst Esterel SCEst Esterel SCEst

Syntax x = y x := y x = y [x := y] emit x emit x, unemit x emit x(v) emit x(v), ?x
if (x) if x if (x) [if x] present x present x / if (x) [if x] ?x set x(v), unemit x

Type any any any present / present / any any
absent absent

Initialized no no no yes yes no no
each tick (absent) (absent)

Persistence yes yes yes no no yes yes
across ticks

Allow multiple yes yes yes no yes no yes
values per tick

Sequential sched. none none none first emit none emits none
constraints → reads → reads
Concurrent none read inits first emit unemits emits unemits
scheduling only → updates → reads → first emit → reads → sets
constraints → reads → reads → emits

→ reads
Determinate no yes yes yes yes yes yes

Table I: Comparison of data handling in C, Esterel, and SCEst (which includes scl). Note
the syntactic detail that SCEst variable assignments may equivalently be written “=” (C-
style, preferred) as well as “:=” (Esterel-style, for backwards compatibility, shown in square
brackets). Likewise the conditional may be written C-style or Esterel-style.

there might be cases where a scheme more elaborate than iur might be appropriate. The
iur protocol turns out to be convenient for, and was indeed motivated by, the emulation of
Esterel-style signals with ordinary shared variables. This should become apparent in Sec. 5.2.
The central point of the SC MoC is to take maximal advantage of the scheduling information
already present in the program as expressed by sequential control-flow. It uses an underlying
protocol (such as iur) only as fall-back when a scheduler is involved (concurrency) and
scheduling choices might result in non-determinacy (non-confluence).

3. DATA HANDLING—VARIABLES AND SIGNALS

A key aspect of a language, in particular of a concurrent language like SCEst, is how data are
handled. Like Esterel, SCEst provides variables as well as pure and valued signals. Table I
provides an overview of their characteristics.

Variables in C or other classical imperative languages may have arbitrary types, as
defined by the language. C does not have a built-in concept of a tick, thus there is no
implicit initialization of a variable at the beginning of a tick. Values persist (at least if
they are static), and there is no limitation on the number of assignments. There are no
scheduling constraints and causality errors. C compilers do not reject programs because of
the way variables are written and read. However, the price to pay for this freedom is that
C etc. do not guarantee I/O determinacy when concurrency or preemption are used.

Variables in Esterel are more restrictive in that concurrent accesses are limited to read
accesses to achieve determinacy. In contrast, variables in SCEst may be used concur-
rently as long as the accesses are schedulable under iur (see Sec. 2), which still provides
determinacy.

Pure signals in Esterel must follow the ebt discipline (Sec. 2), for both sequential
and concurrent accesses. They are initialized to absent each tick, they can be emitted/made
present, but then cannot be made absent again.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:6 S. Smyth et al.

module ReEmit:
signal A : combine boolean with or in

emit A(true);
if ?A then emit O end;
emit A(true)

end

Fig. 3: ReEmit is not valid in Esterel,
due to the emission of A after its
value is read with ?A, but valid in
SCEst.

Pure signals in SCEst can be used more liberally. They can be explicitly set to absent
with unemit, and as with SCEst variables, there are no scheduling constraints on sequential
accesses. To achieve determinate concurrency in SCEst, concurrent signal accesses follow
iur where unemits are considered initializations and emits are treated as updates, which
results in unemits being scheduled before concurrent emits. The signal status may be tested
with present or equivalently with if.

Valued signals in SCEst are an analogous extension of valued signals in Esterel. Both
carry a non-persistent signal presence/absence status like pure signals as well as a value
that is persistent across ticks. Like pure signals, their status can be initialized to absent
with unemit. Analogously, their value can be initialized with set. Emissions are considered
updates. Equivalent to Esterel, some combine function is required to handle concurrent
updates or an update concurrent with an initialization.

As explained, if variable accesses are ordered by sequential control flow, the SC MoC
uses that sequential ordering to schedule the variable accesses. No causality issues arise,
as already illustrated in the WriteAfterRead example in Fig. 1. This also applies to signal
values, as can be seen in ReEmit from Fig. 3 (taken from [Potop-Butucaru et al. 2007, p.
22]). Here A is a valued boolean signal, where multiple signal emissions are combined with
the logical or. Esterel rejects this, due to the second emission of A after the value access
?A, even though that second emission does not change the value of A anymore. In contrast,
SCEst accepts this program based on the schedule imposed by “;” that orders the read ?A
sequentially before the second emission. Hence, iur does not apply because the accesses to
A are not concurrent.

4. THE CONTROL EXAMPLE

WriteAfterRead and ReEmit provided a first indication of the additional capabilities of SCEst
over Esterel. To illustrate this in more detail, we consider the Control example presented
in Fig. 4. The original scl description is shown in Fig. 4a. As discussed elsewhere [von
Hanxleden et al. 2014b], this example is an abstracted version of Programmable Logic
Controller software used in the railway domain. To be clear, the functionality of Control as
shown here could be achieved with even less code (e.g., without the usage of checkReq or the
intermediate setting of pend to true), but we here follow the logic of the original application
and concentrate on the usage of the five shown flags. By revisiting this example here we now
take a more systematic look at the current capabilities and limitations of Esterel compared
to what is done before [von Hanxleden et al. 2014b].

The functionality of Control is as follows. A Request thread takes resource requests, in-
dicated by req, from the environment and internally signals requests with CheckReq to a
Dispatch thread. If a resource is available, indicated by the environment with free, the re-
quest is granted, signaled to the Request thread and the environment with grant. Otherwise,
the request is still pending, indicated by the Request thread with pend. An example trace
is shown in Fig. 4b. In the initial tick, the resource is free but not requested; in the second
tick, it is free, requested, and hence granted; in the third tick, the resource is requested but
not free, hence the request remains pending.

The functionality of Control can be expressed in a rather straightforward fashion with
scl and, as shown later, also with SCEst. However, this requires the extensions provided

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:7

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6

7 fork {
8 // Thread ”Request”
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend & grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }
19 par {
20 // Thread ”Dispatch”
21 Dispatch entry:
22 grant = false;
23 if (checkReq & free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join ;
29 }

(a) The scl program

-

free = true
req = false

grant = false
pend = false

free = true
req = true

grant = true
pend = false

free = false
req = true

grant = false
pend = true

(b) An example trace with three
ticks, shown as tick time line. In-
puts are above the time line, out-
puts below.

Request

checkReqreq

pend
freeDispatch

grant
Dispatch

Control

(c) The data-flow view

(d) The SC Graph (scg), indicating sequential flow (contin-
uous arrows), concurrent data dependencies (dashed, green
arrows), and the tick delimiter edges (dotted lines).

Fig. 4: The Control example, illustrating the sequential modification of shared variables.

by SCEst over Esterel. To illustrate, we now discuss different design alternatives for Control
with Esterel. This also serves as a brief review of Esterel’s signal and variable mechanisms.
A stumbling point is pend, which (1) serves to communicate with the (concurrent) environ-
ment, and (2) may change from false to true and back to false within a tick. Esterel signals
can handle (1), encoding true as signal presence and false as absence. However, signals can-
not deliver (2) because they must evolve monotonically within a tick and must obey the
ebt discipline. Conversely, Esterel variables allow (2), but don’t allow (1).

Esterel with extra delay. One approach to resolve (2) is to split a reaction into multiple
ticks. This is achieved by inserting pause statements and pre-operators that access the signal
status in the previous tick, as realized in the ControlPause code in Fig. 5a. In the initial tick,
pend is emitted if req is present; in the next tick, pend will be emitted unless pend and grant

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:8 S. Smyth et al.

1 module ControlPause:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 % Thread ”Request”
6 loop
7 present req then
8 emit pend;
9 emit checkReq;

10 end present;
11 pause; % Extra delay
12 present pre(pend)
13 and pre(grant)
14 else emit pend;
15 end present;
16 present pre(grant)
17 then emit grant;
18 end present;
19 pause;
20 end loop
21 ||
22 % Thread ”Dispatch”
23 loop
24 present checkReq
25 and free then
26 emit grant;
27 end present;
28 pause;
29 pause % Extra delay
30 end loop
31 end signal
32 end module

(a) Esterel with extra delay

1 module ControlSSA:
2 input free, req;
3 output grant, pend;
4 signal checkReq, pend2 in
5 % Thread ”Request”
6 loop
7 present req then
8 emit pend2;
9 emit checkReq

10 end present;
11 present pend2 and
12 not grant then
13 emit pend
14 end present;
15 pause
16 end loop
17 ||
18 % Thread ”Dispatch”
19 loop
20 present checkReq
21 and free then
22 emit grant
23 end present;
24 pause
25 end loop
26 end signal
27 end module

(b) SSA-style Esterel

1 module ControlVar:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 % Thread ”Request”
6 loop
7 var pendv := false:
8 boolean in
9 present req then

10 pendv := true;
11 emit checkReq
12 end present;
13 if pendv then
14 present grant
15 then pendv := false
16 end present
17 end if ;
18 if pendv then emit pend
19 end if
20 end var;
21 pause
22 end loop
23 ||
24 % Thread ”Dispatch”
25 loop
26 present checkReq
27 and free then
28 emit grant
29 end present;
30 pause
31 end loop
32 end signal
33 end module

(c) Esterel with local variable

-
free

free
req

(pend)
(grant)

free
req

grant

req

(pend) pend

(d) Example trace for ControlPause, indicat-
ing the present (encoding true) input/output
signals. Output signals occurring outside of
output ticks are in parentheses.

-
free free, req

grant

req

pend

(e) Example trace for ControlSSA/ControlVar
and for ControlSCEstVar/ControlSCEstSig
(Fig. 6)

Fig. 5: The Control example in Esterel with extra delay, SSA-style Esterel, and Esterel with
local variables, illustrating the sequential modification of shared variables.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:9

have been present in the initial tick (note the else instead of a then). Thus, instead of the
standard behavior where at each tick inputs are consumed and outputs are produced, we
have a division into input ticks (in ControlPause these are ticks 1, 3, . . .) and output ticks
(2, 4, . . .). An example trace is shown in Fig. 5d. This, however, has several disadvantages:

— The environment cannot immediately access valid outputs in the same tick with the
inputs.

— Introducing pause statements may introduce timing issues and in general results in a
brittle design. This breaks the synchrony hypothesis which achieves robust designs by
abstracting from computation times. To keep the thread logic in synch in ControlPause,
the extra delay introduced in the Request thread must be matched by an extra delay in
Dispatch. Similarly, to keep the output of grant in synch with the output of pend, grant
must be re-emitted after the extra delay if it is present in an input tick.

— The clocking of the module must be doubled to achieve the same interaction rate with
the environment.

— The interaction with the environment becomes more complicated, as outputs are not in
the same tick as the inputs anymore. In Control, the environment should provide inputs
only every other tick, and it should access the outputs one tick after providing the inputs.

Note that these disadvantages are common to languages and models of computation that
do not support instantaneous reactions, e.g., by disallowing instantaneous reaction to signal
absence. It is a strength of Esterel that it does not have this limitation; however, in situations
as the one here, where values do not evolve monotonically, that strength cannot be applied.
Instead, a conceptually instantaneous computation must be broken into several parts, using
a mechanism (pause/pre) whose original purpose is to indicate the passage of physical time,
not to schedule computations. Note, we do not claim that SCEst produces faster code by
avoiding pauses. We are more concerned with separating the passage of physical time from
scheduling issues. In sum, the inability to handle (2) burdens the programmer with the task
to construct a disambiguating schedule across clock ticks. In SCEst this scheduling within
a tick is automatically done by the compiler.

SSA-style Esterel. Another approach to circumvent (2) is to split a signal into multiple
copies. This is akin to the well-known Static Single Assignment (SSA) paradigm [Cytron
et al. 1991], where variables are split up such that each copy of a variable is assigned a
value only once. This is illustrated in ControlSSA in Fig. 5b, where a new local signal pend2
serves as “intermediate signal.” ControlSSA, unlike ControlPause, retains the original timing
and input/output behavior of Control and thus seems preferable over ControlPause. However,
the disadvantage of this solution, apart from the need to introduce another signal, is that
this “manual SSA-conversion” requires a close analysis of potential emissions and tests of
the different instances of the re-instantiated signal. In ControlSSA, the programmer must
analyze that pend is emitted (true at the end of the tick) if pend2 is present but grant is
absent. Again, the programmer is burdened with a transformation task that could be taken
over by the compiler and in this case would be unnecessary if we were to permit variable
pend to be reset.

Esterel with variables. Finally, we may employ a combination of Esterel variables, which
allow (2), and signals, which handle (1). As in the SSA solution this retains the original
timing of Control, but is equally cumbersome as SSA since variable values must explicitly
be “copied” into signals, as illustrated in ControlVar in Fig. 5c (lines 18/19).

Sequentially Constructive Esterel. In contrast to Esterel, SCEst has no difficulties recon-
ciling (1) and (2). As discussed in Sec. 3, SCEst provides variables with the same capabilities
as scl. The SCEst-equivalent of Control based on variables is shown in Fig. 6a. In addition,
SCEst provides signals that can be used as in Esterel, but with fewer restrictions:

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:10 S. Smyth et al.

1 module ControlSCEstVar:
2 input bool free, req;
3 output bool grant, pend;
4 var checkReq: boolean in
5 % Thread ”Request”
6 loop
7 pend := false;
8 if req then
9 pend := true

10 end;
11 checkReq := req;
12 if pend and grant then
13 pend := false
14 end if ;
15 pause
16 end loop
17 ||
18 % Thread ”Dispatch”
19 loop
20 grant := false;
21 if checkReq and free then
22 grant := true
23 end;
24 pause
25 end loop
26 end var
27 end module

(a) SCEst with variables

1 module ControlSCEstSig:
2 input free, req;
3 output grant, pend;
4 signal checkReq in
5 [
6 % Thread ”Request”
7 loop
8 present req then
9 emit pend;

10 emit checkReq
11 end present;
12 present pend and
13 grant then
14 unemit pend
15 end present;
16 pause
17 end loop
18 ||
19 % Thread ”Dispatch”
20 loop
21 present checkReq
22 and free then
23 emit grant
24 end present;
25 pause
26 end loop
27]
28 end signal
29 end module

(b) SCEst with signals

1 module ControlSCEstSig
2 input bool free;
3 input bool req;
4 output bool grant;
5 output bool pend;
6

7 fork
8 l7 : grant = false;
9 pend = false;

10 pause;
11 goto l7;
12 par
13 bool checkReq;
14 fork
15 fork
16 l3 : if (req) {
17 pend |= true;
18 checkReq |= true };
19 if (pend & grant) {
20 pend = false };
21 pause;
22 goto l3
23 par
24 l5 : if (checkReq & free) {
25 grant |= true };
26 pause;
27 goto l5
28 join
29 par
30 l6 : checkReq = false;
31 pause;
32 goto l6;
33 join
34 join

(c) SCEst with signals trans-
formed to scl

Fig. 6: The Control example in SCEst with variables, and with signals, including transfor-
mation to scl.

(1) SCEst signals may be emitted after they have been tested and possibly have been de-
termined to be absent. There is no general ebt requirement.

(2) SCEst signals can be re-initialized to absent, with the newly added unemit statement.

This allows modeling the behavior of pend in Control directly with a signal, without extra
delays, signal splitting or variable copying. The resulting ControlSCEstSig code is shown in
Fig. 6b. This is also more concise than the original scl version since pend and grant need
not be explicitly initialized to false/absent at the beginning of each tick.

5. SCEST LANGUAGE DEFINITION

The SCEst language extends Esterel in two ways. First, it uses sequential scheduling infor-
mation to reduce causality problems. Second, SCEst adds three new statements: the signal
handling statement unemit that re-initializes a signal status, the data-handling statement
set that initializes a signal value, both as introduced in Sec. 3, and a new control flow
statement, a restricted form of goto.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:11

loop p end
(loop)

	 l : p; goto l p || q
(parallel)

	 fork p par q join

Fig. 7: Transforming loop and parallel from SCEst to scl.

A nice feature of Esterel is that it is grounded on a small number of kernel statements,
from which the remaining statements can be derived with simple structural translations.
These derived statements are thus syntactic sugar that helps to write concise programs.
There are some Esterel features not covered by the kernel statements, such as the interfacing
with a host language, but these do not pose particular semantic challenges. Our baseline
is Esterel v5, although most features of Esterel v7, such as its rich type system, should be
straightforward to adopt as well. Berry [Potop-Butucaru et al. 2007] defined the following
eleven pure Esterel kernel statements (with the classification suggested by us), where p and q
are Esterel statements, S is a signal name, and T is a trap name: the control-flow statements
nothing, pause, p; q, loop p end, p || q (see Sec. 5.1), the signal handling statements signal S
in p end, emit S, present S then p else q end (Sec. 5.2), and the preemption statements trap T ,
exit T , and suspend p when S (Sec. 5.3).

In our definition of SCEst, we build on this concept by reducing the Esterel kernel state-
ments and the aforementioned new SCEst statements to another kernel language, namely
scl, which is already formally defined [von Hanxleden et al. 2014b].

In the following, we present the necessary transformation rules from SCEst to scl. These
transformation rules must be applied inside-out (bottom-up in the abstract syntax tree) to
generate the corresponding scl program.

5.1. Control-Flow Statements

SCEst’s control-flow statements are rather simple to map to scl. The nothing statement is
not really meant to be used in programming, but helps in formalizations, e.g., to ensure
well-formed conditionals when a branch is missing. It corresponds to the empty statement
in scl. Esterel’s pause corresponds to scl’s pause, the same for the sequence operator ; and
for SCEst’s goto. As in scl, SCEst’s goto is not allowed to cross thread boundaries. The
remaining control-flow transformation rules are shown in Fig. 7.

Notation: p, q are arbitrary (possibly compound) statements. Some transformations
produce fresh variables or labels, indicated in their names with a leading underscore “ ”. p
[s1 → s2 | . . .] replaces all s1 in p by s2, for an arbitrary number of replacement patterns.

5.2. Signal Handling Statements

To emulate a signal s, we map it to a boolean variable s, and encode present as true and
absent as false. The non-trivial question is how to initialize s to absent at each tick, before
it is potentially emitted. One approach to handle initialization is to unemit s (i.e., set it to
false) whenever the scope of s is entered and, within the scope of s, to unemit it again after
each tick boundary, i.e., after each pause statement. This approach was used to derive the
scl version of WriteAfterRead (Fig. 1b). However, this does not scale well to signal scopes
with an arbitrary number of internal tick boundaries.

For a more general solution that makes do with only one signal initialization per tick,
we make use of concurrency and the iur protocol, which permits concurrent writes under
certain conditions. In particular, an initialization will be scheduled before any number of
updates. What remains then is to ensure that the scl scheduler considers emit as an update
and only unemit as initialization. To achieve this, we encode emit not as an absolute write
“s = true,” but instead as a relative write “s = s | true,” abbreviated “s | = true.” Note that
multiple concurrent unemits do not pose a scheduling problem, as they are confluent.

The resulting transformation rules are shown in Fig. 8. The flag term indicates when the
signal scope is left and the signal initialization thread should terminate. Braces delineate

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:12 S. Smyth et al.

signal s in p end
(signal)

	

1 { bool s, s reg, pre s = false, term = false;
2 fork
3 l : s = false; s reg = s;
4 if (! term) { pause; pre s = s reg; goto l }
5 par
6 p [pre(s) → pre s]; term = true
7 join }

unemit s
(unemit)

	 s = false

emit s
(emit)

	 s |= true

present s then p else q end
(present)

	 if (s) {p} else {q}

Fig. 8: Transformations for pure signals.

suspend p when s
(suspend)

	 p [pause → l: pause; if (s) goto l]

trap t in p end
(trap/exit)

	
{ bool t = false;

p [exit t → t = true; gotoj l
| pause → if (t) gotoj l ; pause
| join → join; if (t) gotoj l];

l : }

Fig. 9: Transformations for preemption statements.

the scope of s and term. Signals may also be reincarnated, meaning that their signal scope
is instantaneously left and entered again, in which case they are correctly re-initialized. The
(signal) rule also supports Esterel’s pre operator, which allows us to access the status of a
signal in the previous tick. To implement pre, we store the value of s at the end of a tick
in s reg, and make this available at the next tick as pre s. One might also attempt to do
without the s reg, by simply assigning pre s = s, but this would result in a causality loop if
s would depend on pre(s). Note that this makes use of sequentiality: in a tick, we first read
s reg (line 4), and then sequentially overwrite it (line 3). Obviously, if pre(s) is not used,
we do not need the bookkeeping in s reg and pre s.

The rule for output signals is similar to the rule for local signals. Input signals are ini-
tialized by the environment and hence need no initialization to absence, they are mapped
directly to scl boolean inputs.

5.3. Preemption Statements

A suspend statement prevents the execution of the current tick’s micro steps when a specified
signal s is present after the initial tick. The execution continues in the next tick in which
s is absent. In scl, suspend is realized by a conditional goto loop surrounding every pause
in the body of the statement, see Fig. 9. Hence, at the beginning of each tick, i.e., after
each pause, the condition is checked and, when evaluated to true, the pause is repeated.
Note that Esterel does not allow self-suspension. I.e., if s is emitted after the initial tick of
entering the suspend and while control is still inside the suspend (we then say that we are
in the depth of the suspend, as opposed to its surface), then s must be emitted outside of
the body of the suspend statement. In principle, it could additionally be emitted inside the
suspend, except that that emission is suspended. Thus we should avoid a situation where for
example a suspend includes concurrent threads A and B, we are in the depth of the suspend,

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:13

1 bool s = false;
2 trap t in
3 trap u in
4 fork
5 exit t
6 par
7 exit u
8 join
9 end trap;

10 s = true;
11 end trap

(trap u)

	

1 bool s = false;
2 trap t in
3 { bool u = false;
4 fork
5 exit t
6 par
7 u = true;
8 // gotoj l1
9 goto exit2 ;

10 exit2 :
11 join ;
12 if (u) goto l1;
13 l1 :}
14 s = true;
15 end trap

(trap t)

	

1 bool s = false;
2 { bool t = false;
3 { bool u = false;
4 fork
5 t = true;
6 // gotoj l2
7 goto exit1 ;
8 exit1 :
9 par

10 u = true;
11 // gotoj l1
12 goto exit2 ;
13 exit2 :
14 join ;
15 if (t) goto l2;
16 if (u) goto l1;
17 l1 :}
18 s = true;
19 l2 : }

Fig. 10: Illustration of proper handling of nested traps

and thread A is the only emitter of s. This would suspend thread B but not A because
A sequentially first checked s and then emitted it. A conservative approach for preventing
that situation is to simply forbid emissions of s inside the body of the suspend.

A trap t preempts its body when the body executes an exit t, see Fig. 9. Notation: gotoj
l stands for either (i) goto l, if label l is in the immediately enclosing thread, or otherwise
(ii) goto exit, where exit is a fresh label added at the end of the current thread.

As gotos in scl cannot jump across joins, we must create a chain of jumps from the exit
through any intermediate joins to l. This is implemented by using gotoj l instead of goto
l, and by checking not only at each pause but also at each join whether an exception has
occurred. For an illustration of gotoj, consider the expansion shown in Fig. 10. For example,
exit u (line 7) produces a goto exit2, which jumps to the end of the enclosing thread (which
is ineffective here since we are already at the end of the thread); then in line 12, after the
join, we check again the trap condition and jump to the end of the trap scope (l1), which
is again ineffective here.

The exit statements can only be executed within the trap statement scope for which they
were defined. Threads that run concurrently in the statement body execute the current tick,
even if the trap statement is triggered, and are preempted when the control reaches a tick
boundary. This is signaled with the flag t. Concurrent exit statements result in concurrent
initializations of t, which does not pose a scheduling problem for iur as the initializations
are confluent. Before each pause, t is checked. As an optimization, it suffices to do so only
in pause statements for which there is a concurrent exit T. If t is true, the control jumps to
the label l at end of the trap statement.

As transformations are applied inside-out, as stated before, this also nicely handles Es-
terel’s trap priorities which require that if nested traps are exited concurrently, the outer-
most trap should have priority. This is illustrated in the example in Fig. 10, where after
the join, first the outer trap u is tested, and hence s is not emitted. The jumps in lines 7/12
in the transformed program result from the gotoj l1/ l2 generated for the exit statements;
these jumps could clearly be eliminated, since the exit took place at the end of the enclosing
thread. Likewise, the jump in line 16 is superfluous.

Note that the translation rule for traps provided here serves well to define its semantics,
but is not necessarily the most efficient one for implementation purposes, both in terms of
code size and execution time. Depending on the application characteristics (trap nesting
depth, number of pause statements within trap scope) and the synthesis target (hardware or

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:14 S. Smyth et al.

signal s := s init :
combine type with f in

p
end

(signalv)

	

1 { bool s, s set , s reg, pre s = false, term = false;
2 type s val = s init , s cur , s val reg , pre s val ;
3

4 fork
5 l : s = false; s set = false; s reg = s; s val reg = s val ;
6 if (! s set) s cur = f neutral ;
7 if (s) s val = s cur ;
8 if (! term) {
9 pause; pre s = s reg; pre s val = s val reg ; goto l }

10 par
11 p [?s → s val |
12 pre(s) → pre s |
13 pre(?s) → pre s val];
14 term = true
15 join }

set s(v)
(set)

	 s |= true; s set |= true; s cur = v

emit s(v)
(emitv)

	 s |= true; s cur = f (s cur , v)

Fig. 11: Transformation for valued signals of some type with initial value s init, combine
function f, and its neutral element f neutral

software), other translation approaches might be preferable, e.g., by encoding trap priorities
with completion codes as done in Esterel.

5.4. Data Handling Statements

SCEst variables map directly to scl variables. To emulate SCEst valued signals, we adopt
the approach followed in Quartz [Schneider 2001] and Potop-Butucaru’s encoding of Esterel
valued signals [Potop-Butucaru et al. 2007] of splitting a valued signal into a pure signal s
and a signal value s val.

Esterel provides a construct to declare combine functions for signals to allow the concur-
rent emission of valued signals without compromising determinacy. For example, a signal
might be combined with the addition function. We realize this by initializing the signal
value to the neutral element of the combine function, denoted by f neutral (which is 0 for
addition), at the beginning of each tick by an absolute write. Whenever the signal is emitted
with some value v, that value is combined (e.g., added) with the current signal value, which
constitutes an update. One technical issue is that if the signal is not emitted in a tick, it
should keep its value from the previous tick, and should not be overwritten with the neutral
element. To resolve this, the transformations shown in Fig. 11 build the new value first,
with the (emitv) rule, in a temporary value s cur, which is copied to s val by the (signalv)
rule only if s is emitted. The (signalv) rule also contains the machinery for accessing the
status and value of s in the previous tick (pre(s) and pre(?s), respectively), using the same
logic as in the (signal) rule for pure signals.

To allow concurrent emits, the assignment to s cur generated by (emitv) must be not an
initialization, but an update of s cur. This not only requires that f is a valid combination
function, but also that v does not reference s cur.

The set differs from the emit in that it uses an absolute write (initialization) to s cur
instead of a relative write (update). Thus, iur ensures that a set is scheduled before a
concurrent emit. As usual in the SC MoC, sequential accesses can be made in any order.

The purpose of the flag s set is to make sure that only one of the initializations of s cur
produced by the (signalv) and (set) takes place, as these are concurrent and in general
not confluent; otherwise, these would result in a scheduling conflict under the iur proto-

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:15

await s
(await)

	

pause;
trap t in

loop
present s then

exit t
else

pause
end present

end loop
end trap

(scl)

	

pause;
{ bool t = false;

l : if (s) {
t = true;

goto l1 }
else {

if (t)
goto l1;

pause };
goto l ;
l1 : }

(opt1)

	

pause;
l : if (s)
goto l1;

else
pause;

goto l ;
l1 :

(opt2)

	
l :

pause;
if (! s)
goto l ;

Fig. 12: The await transformation: (await) is the Esterel definition for await, (scl) are the
rules for expanding SCEst to scl, (opt1) propagates false to the test of t, as control leaves
the scope of t after it is set to true since the pause is not concurrent to the exit, (opt2)
simplifies control-flow.

col. The downstream scl compiler performs the (fairly straightforward) analysis that the
initializations are mutually exclusive at run time because of the guard by s set.

Again, the rule for output valued signals is similar, we only must consider that both
the status and value become an output. Input valued signals are again initialized by the
environment at each tick.

5.5. Derived Statements

The above definitions are complete in that they allow to map all of SCEst to scl. For the
semantic definition of the part of SCEst not defined yet in the previous sections, we simply
adopt the expansion rules already provided for Esterel. This for example applies to the
reduction of await s shown in Fig. 12, which pauses for a tick and from the next tick on
terminates as soon as s becomes present. As illustrated there, the grounding in scl may
offer optimization opportunities that can be exploited with transformation rules that map
derived SCEst/Esterel statements (such as await) directly to efficient scl.

Fig. 13 shows further derived preemption statement transformations. As for await, the
transformations are not constructed ad-hoc but based on the SCEst rules for the Esterel
kernel statements plus classical Esterel expansion rules and subsequent optimizations. The
await immediate s differs from (“delayed”) await s in that it potentially terminates from the
initial tick on.

The immediate form of suspend differs from the non-immediate form (suspend rule in
Fig. 9) in that the statement blocks in the initial tick if the suspension trigger s is present.

Similar to Esterel, a signal can be qualified by an integer n to form a count delay. The await
will wait for n occurrences of the signal before it terminates. Therefore the transformation
generates a new scope and counts the emissions of a signal. As long as the value of the
counter is below the desired amount of signal occurrences a pause is iterated.

Like Esterel, SCEst provides four forms of abort, which differ along two independent
dimensions. (1) If the abort is triggered in some tick, weak aborts let their body still execute
in that tick, whereas strong aborts do not give their body control in that tick. Thus, the
transformations for the weak aborts check the abort condition at the end of a tick, i.e.,
before a pause, whereas the strong aborts check the abort at the beginning of a tick/after
a pause. (2) Immediate aborts are sensitive to their trigger immediately, whereas delayed
aborts are insensitive to their trigger in the initial tick that they are entered, and become
sensitive to their trigger only from the subsequent tick onwards. If s holds in the initial
tick when the abort is started, it is ignored by the delayed abort. Thus, and this is often
a cause for confusion, if s is present in the initial tick, this does not mean that the abort
is simply delayed by one tick. Instead, the presence of s in the initial tick is ignored all

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:16 S. Smyth et al.

suspend p when immediate s
(suspendi)

	
l : if (! s) { pause; goto l }

p [pause → l1: pause; if (s) goto l1]

await immediate s
(awaiti)

	 l : if (! s) { pause; goto l }

await n s
(count delay)

	
{ int i = 0;

l : pause; if (s) i ++;
if (i < n) goto l }

abort
p

when s

(abort)

	
{ bool t = false;

p [pause → pause; if (s) { t = true; gotoj l }
| join → join; if (t) gotoj l];

l : }

abort
p

when immediate s

(aborti)

	
if (s) goto l ;
p [pause → pause; if (s) gotoj l
| join → join; if (s) gotoj l];

l :

weak abort
p

when s

(wabort)

	
{ bool t = false, depth = false;

p [pause → if (s & depth) { t = true; gotoj l };
pause; depth = true

| join → join; if (t) gotoj l];
l : }

weak abort
p

when immediate s

(waborti)

	
p [pause → if (s) gotoj l; pause
| join → join; if (s) gotoj l];

l :

loop
p

each s

(loope)

	
l : { bool t = false;
p [pause → pause; if (s) { t = true; gotoj l }
| join → join; if (t) gotoj l];

pause;
l1 : if (s) goto l ;

goto l1 }

loop
% No join in p
% instantaneously
% reachable
p

each s

(loope-opt)

	
l : p [pause → pause; if (s) gotoj l;

| join → join; if (s) gotoj l];
pause;
l1 : if (s) goto l ;

goto l1;

sustain s
(sustain)

	 l : emit s; pause; goto l

Fig. 13: Selected derived statement transformations.

together. The delayed aborts therefore do not test the abort condition directly at each join,
but use an auxiliary flag t instead. The flag t is set if the abort condition S holds after a
pause statement. Thus t never holds in the initial tick, which enforces the desired delayed
semantics. We cannot use the abort condition S directly, in particular when propagating
the delay after the join statements, since the join statement may in general be executed in
the initial tick as well. Furthermore, the weak delayed abort also uses a depth flag, which
indicates that we are in the depth of the abort.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:17

1 module ABRO:
2 input A,B,R;
3 output O;
4 loop
5 [await A
6 ||
7 await B];
8 emit O;
9 each R

10 end module

	

1 module ABRO:
2 input bool A,B,R;
3 output bool O;
4 fork
5 l8 : O = false;
6 pause;
7 goto l8
8 par
9 l7 : fork

10 l1 : pause;
11 if (R) goto l4;
12 if (! A) goto l1;
13 l4 :

14 par
15 l2 : pause;
16 if (R) goto l5;
17 if (! B) goto l2;
18 l5 :
19 join ;
20 if (R) goto l7;
21 O |= true;
22 l3 : pause;
23 if (R) goto l7;
24 goto l3
25 join
26 end module

Fig. 14: Transforming ABRO from Esterel/SCEst to scl.

The loop p each s restarts p whenever s holds. As an optimization, one can check whether
no join is potentially reachable in the initial tick of the abort; if so, then one can do without
the t flag. This leads to the optimized loope-opt rule. Similar optimized rules for the delayed
aborts are omitted here.

A sustain emits a specific signal infinitely resulting in an emit in a paused loop.
Fig. 14 illustrates the transformation (including loope-opt) applied to ABRO, the “hello

world” program of Esterel. Lines 5–7 of the transformed version contain the thread initial-
izing output signal O to absent (false). Lines 9–24 correspond to the original program. Lines
10–13 are the thread awaiting A (line 5 of the original program), lines 15–18 await B; see
also the await-rule in Fig. 12. After the initial tick, the reset signal R restarts the loop,
according to the loope-opt-rule in Fig. 13.

6. EXPERIMENTAL VALIDATION

To validate that the definition of SCEst is indeed conservative with respect to Esterel, we
have implemented an SCCharts compiler in the open-source, Eclipse-based KIELER frame-
work1. The SCEst to SCL translation rules are implemented with Xtend2. For downstream
compilation of scl to C, we reused the KIELER’s SCCharts compiler [von Hanxleden et al.
2014a], which also (conservatively) checks for sequential constructiveness by statically ana-
lyzing the SCG. For numerous benchmarks that tested individual language features, Eclipse
unit tests compared the outputs of the generated code with what was expected. The test
cases that were valid Esterel programs, i.e., that did not use any new feature of SCEst, were
also compared with the Columbia Esterel Compiler (CEC, version 0.4) [Edwards 2003].

6.1. SCL Compilation

To complete the picture for how SCEst can be synthesized into hardware or software, we
show how our running Control example is compiled into a tick function using a data-flow-
based code generation approach. Essentially, the initial core constructs depicted in Fig. 2
can be mapped directly to data-flow code and netlists as illustrated in Fig. 15. The data-
flow equations compute a guard for each statement; for example, in the conditional, g
indicates whether the conditional is executed, gtrue is set if the true-branch is taken, and
gfalse is set when the false-branch is taken. These guards correspond to clocks in data-flow
synchronous programming. For further details on this and an alternative, priority-based
compilation approach we refer the reader elsewhere [von Hanxleden et al. 2014a; Smyth

1http://www.informatik.uni-kiel.de/rtsys/kieler
2http://www.eclipse.org/xtend

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.eclipse.org/xtend

1:18 S. Smyth et al.

Thread Parallel Conditional Assignment Delay
scl t fork t1 par t2 join if (c) s1 else s2 x = e pause

scg

Data-
Flow

d = gexit

m = ¬
(

gentry∨∨
gdepth

) gjoin =
(d1 ∨ m1) ∧
(d2 ∨ m2) ∧
(d1 ∨ d2)

g =
∨

gin

gtrue = g ∧ c

gfalse = g ∧ ¬c

g =
∨

gin

x′ = g ? e : x

gsurf =
∨

gin

gdepth =
pre(gsurf)

Netlist
gentry
gdepth1

gdepth2

m

m1

d1

m2

d2

d1
d2

gjoin

c

g

gfalse

gtrue

x

e

g

x′
gsurf gdepth

Fig. 15: Conceptual matrix (adopted from [von Hanxleden et al. 2014a]) showing the map-
ping between the SCG and the data-flow code leading to a synthesized netlist.

et al. 2015]. Subsequently, each schedulable SCL program w.r.t. the iur protocol can be
directly translated to hardware or software.

Fig. 4d in Sec. 4 already illustrates the first analysis step after the mapping of an SCL
program to its corresponding SCG, the dependency analysis. The three write–read depen-
dencies between the two concurrent threads are displayed as green, dashed arrows. Hence,
the execution order is determined by the iur discipline. In the control example, grant = false
and grant = true in Dispatch are initializations and must be scheduled before the read pend
& grant in Request. Similarly, checkReq = req in Request must be scheduled before the read
checkReq & free in Dispatch. As explained in Sec. 2, if the concurrent dependencies form a
dependency cycle, the program is not constructive and must be rejected.

After dependency analysis, the SCG is divided in basic blocks and a guard is added to
each block determining the activity state of its block. This is depicted in Fig. 16. The purple
rectangles enclosing the SCG nodes represent the basic blocks. They are annotated with
their guard at the upper left. Below the guard variables, there are the guard expressions
defining the guards. E.g., the first pend = false node of the Request thread is enclosed in the
basic block guarded by g2. The corresponding guard expression is g7 || GO meaning that
this block becomes active, if either the GO signal, which indicates a program restart, or the
guard g7 are true. Dead code is illustrated as blocks with gray background in our tooling.

Subsequently, the scheduler creates a schedule for the SCG w.r.t. its control-flow and
data dependencies. The order of the schedule is colored as the purple path in Fig. 16. In
the Control example the schedule starts at the beginning of the program and proceeds with
thread Request after the fork until it reaches checkReq = true. Then the schedule switches
to the thread Dispatch because Request cannot continue with the read access pend & grant
due to the iur discipline. Hence, the schedule proceeds with Dispatch. Here, the read access
checkReq & free can be executed immediately since it follows the ordering enforced by the
iur protocol. After the assignment to grant thread Request resumes execution. Then, the
remaining blocks are scheduled.

One might want to reduce the number of context switches between threads, especially
when performing timing analyses or measurements [Fuhrmann et al. 2014]. Since there are

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:19

Fig. 16: The SCG for the Control example (Fig. 4d) after analysis for data-flow code syn-
thesis, with scheduling path (purple edges). Basic blocks (purple rectangles) are annotated
with guards (upper left) and guard expressions. Basic blocks with gray background indicate
dead code.

no further interfering dependencies between the two threads subsequent to g11, Dispatch
would also be eligible to finish its execution before rescheduling to the Request thread.

Once the program is scheduled, a new sequentialized SCG representing the data-flow
netlist is created. Fig. 17 depicts the generated sequentialized SCG for the Control example.
The assignments compute the guards and the conditionals guard actions of the correspond-
ing basic blocks. The new SCG can directly be synthesized into a software tick function.

For hardware synthesis, one must in addition resolve multiple assignments to the same
variable into different variable instances (wires), akin to SSA. This, however, is now straight-
forward, as all variable accesses are sequentially ordered. Furthermore, one typically wants
to separate registers from combinational logic. Here, the registers are the guards that corre-
spond to the surface nodes of the pause statements, as indicated by the pre-operators that
refer to the previous tick. In the Control example, these are the guards g6 and g12.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:20 S. Smyth et al.

Fig. 17: The scg of the Control example during the data-flow code synthesis, derived by
sequentializing the scg from Fig. 16.

6.2. Regression Testing

As stated at the beginning of Sec. 6, the tests used for validation and benchmarking were
performed with the KIELER Automated Regression Testing (KART) system. Fig. 18 shows
the setup of the testing system. Each Esterel test case is compiled with SCEst (upper region)
and the CEC (lower region). SCEst compiles to C via the SCL. The CEC produces C code
directly. Then, the gcc generates two executables and the test systems runs a simulation for
each using identical input data. The output is compared to validate the results.

6.3. Experimental Results

Even though the development of a new Esterel compiler was not our primary objective, a
natural question to ask is how competitive the transformation from SCEst/Esterel to scl
and further to C and ultimately executable code is with existing compilation approaches for
Esterel. To that end, we evaluated our data-flow-based compilation approach by comparing
sizes and reaction times of the generated code from the SCEst compiler with the CEC.
We used a system with an Intel Core 2 Duo T9800 (2.93GHz) architecture. Fig. 19 shows
the evaluation results, where the reaction times were averaged for 1000 ticks. These bench-
marks are admittedly rather small (29 lines of code for the Control-Sig, to 93/171 lines of
code before/after module expansion for MSRCSFlipFlop), and we did not extensively try the
compile options offered by the CEC. Thus the results should be treated with care. However,
the trend so far is that the reaction time of the SCEst is quite competitive (on average
about 30% faster than CEC), but code size so far is not (on average about double). At this
point, we suspect that the main culprit regarding code size is the downstream compilation
from scl to C, since for example the generation of synchronizers for the join statements
so far induces unnecessary redundancies for nested threads. We see these preliminary re-
sults as indication that the approach of compiling SCEst (Esterel) by applying source-level
transformations down to a very elementary language (SCL), which, for example, does not
have any kind of built-in preemption or signal initialization mechanism, can be competitive
with existing, sophisticated Esterel compilers. Furthermore, the fact that SCEst accepts
more programs than Esterel by allowing sequential variable accesses does not seem to be
an impediment to efficient compilation; put another way, we would not expect significant
improvement potential if we were to forbid sequential accesses. A detailed comparison, or
ideally an open evaluation platform with a benchmark suite, sample data, and an interface
where compiler developers can compete, is still future work.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:21

GCC

Esterel
Program

T
e
s
t

C
a
s
e
s

SCEst2SCL

CEC

C Code

SCL2C

GCC

C Code

SCEst Executable

SCEst Runner

CEC Executable

CEC Runner

Input
Data

I
SCEst
Output

O

CEC
Output

O

Compare

 Ok
 Error

SCL
Program

Fig. 18: Test cases setup depicting the compilation, simulation, and comparison steps be-
tween SCEst and the CEC.

05101520

Executable Size [KBytes]

SCEst

CEC

0 1 2 3 4 5 6

Control-Sig

Control-SSA

FilteredSR

Shifter3

RCSFlipFlop

Backhoe

MSRCSFlipFlop

Reaction Time [MSec/Tick]

SCEst

CEC

Fig. 19: Size and speed comparison of SCEst and CEC compilations. The Control-Sig example
is not Berry constructive (see Sec. 4) and hence rejected by the CEC.

7. RELATED WORK

The proper handling of concurrency has a long tradition in computer science, yet, as argued
by Lee [2006], still has not found its way into mainstream programming languages such as
Java. Synchronous languages were largely motivated by the desire to bring determinacy to
reactive control-flow, which covers concurrency and preemption [Benveniste et al. 2003].

There have been several proposals that extend C or Java with concurrency constructs.
However, these typically induce race conditions for shared variables, as addressed for ex-
ample by Yu et al. [2012] for OpenMP. Some of these proposed concurrency extensions
avoid race conditions by building on synchronous programming principles. ECL extends
C as well with Esterel-like reactive constructs [Lavagno and Sentovich 1999]; ECL pro-
grams are compiled into a reactive part (Esterel) and a data-part (C), plus some “glue
logic”. FairThreads [Boussinot 2006] are an extension introducing concurrency via native

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:22 S. Smyth et al.

threads. Synchronous C, a.k.a. SyncCharts in C [von Hanxleden 2009], augments C with
synchronous, determinate concurrency and preemption. It provides a coroutine-like thread
scheduling mechanism, with thread priorities that have to be explicitly set by the pro-
grammer. PRET-C [Andalam et al. 2009] also provides determinate reactive control-flow;
however, PRET-C assumes fixed priorities per thread, and thus could not execute SC pro-
grams that require back-and-forth context switching between threads. Even more restrictive
is the synchronous approach ForeC [Yip et al. 2013] for multi-core execution which does not
permit any communication during a tick at all. SHIM [Tardieu and Edwards 2006] provides
concurrent Kahn process networks with CSP-like rendezvous communication [Hoare 1985]
and exception handling. None of these language proposals embeds the concept of Esterel-
style constructiveness into shared variables as we do here. As far as these language proposals
include signals, they come as “closed packages” that do not, for example, allow to separate
initialisations from updates.

Concerning extensions of Esterel, Tardieu and Edwards have presented two control-flow
constructs, namely gotopause [Tardieu 2004] and goto [Tardieu and Edwards 2007]. These
have been motivated in part by the desire to synthesize SyncCharts [André 2003], where
state transitions correspond to jumps that are difficult to map to the structured control-flow
offered by Esterel. They are also helpful for handling signal reincarnation. SCEst’s goto is
more restricted in that it only allows jumps within the same thread. However, the SCEst
goto is still capable of implementing SyncChart/SCChart transitions (which have the same
restriction) and, together with the iur protocol, of handling signal reincarnation.

Caspi et al. [Caspi et al. 2009] have extended Lustre with a shared memory model.
However, they adhere to the current synchronous model of execution in that they forbid
multiple writes even when they are sequentially ordered. Potop-Butucaru [Potop-Butucaru
et al. 2007] introduced data-handling kernel statements to Esterel and with them formalized
Esterel variables and valued signals. The SCEst realization of valued signals follows the
approach of splitting it into a pure signal and a value, as also done in Quartz.

The functional synchronous Lucid Synchrone [Colaço et al. 2006] allows the definition of
local names, which can be used to encode sequential orderings, as in let x = . . . in x = x + 1;
the same effect can be achieved by converting a program into SSA form [Appel 1998]. In
Lucid Synchrone, this is motivated also by the desire to sequentialize external function calls
with side effects, such as “print.” Unlike these Lustre variants, SCEest is not restricted to
constructiveness in Berry’s sense [Berry 2000], but relaxes this requirement to sequential
constructiveness (SC).

Edwards [Edwards 2003] and Potop-Butucaru et al. [Potop-Butucaru et al. 2007] provide
good overviews of compilation challenges and approaches for concurrent languages, including
synchronous languages. We present an alternative compilation approach that handles most
constructs that are challenging for a synchronous languages compiler by transformation
into the minimal scl language. This applies in particular to aborts in combination with
concurrency, which we, as part of the high-level compilation phase, reduce to (normal)
terminations. Compared to existing approaches, this significantly simplifies down-stream
compilation. Our scg, which results from the compilation from SCEst to scl, is closely
related to the concurrent control-flow graph (CCFG) used by the Columbia Esterel Compiler
(CEC) as its intermediate representation [Edwards 2003], the main difference being that we
permit arbitrary control-flow including loops and that we have more refined types of data
dependencies. The scg is also related to the GRaph Code (GRC) [Potop-Butucaru et al.
2007] that, like the CCFG, has a separate structure to keep state across tick boundaries
(“reconstruction tree”). In comparison, the scg has a rather simple means to express state,
namely registers that correspond to the non-transient SCChart states.

Sequentially Constructive Charts (SCCharts) [von Hanxleden et al. 2014a] is a graphical
language that relates to SCEst as SyncCharts relate to Esterel. Both SCCharts and SCEst
build on the SC MoC which relaxes Berry’s notion of constructiveness. Yet, like Esterel, they

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:23

still assume a locally asynchronous, globally synchronous (LAGS) model of computation.
A different, largely orthogonal approach is the notion of constructive polychrony by Talpin
et.al. [Talpin et al. 2014] to extend Esterel for multi-clocked data-flow in order to capture
globally asynchronous locally synchronous (GALS) systems.

8. CONCLUSIONS AND OUTLOOK

SCEst is a new language for designing reactive systems with determinate behavior that com-
bines the rich feature set of Esterel, in particular concerning reactive control-flow, with a
data handling flexibility familiar from standard imperative languages. SCEst resolves “spu-
rious” causality issues introduced by sequential control-flow, thus accepting a larger class of
programs than Esterel. SCEst makes use of the recently proposed Sequentially Constructive
model of computation, and we have defined the semantics of SCEst by providing transla-
tion rules from SCEst to scl. Our extension of Esterel is “minimally invasive” in that we
provide translation rules for the Esterel kernel statements plus three new SCEst statements
(unemit, set, goto). We reuse existing derivations of non-kernel Esterel statements. However,
for some derived statements, their expansion into kernel statements and further to scl opens
optimization possibilities. As illustrated with the await statement, this is made possible by
having elementary features such as the goto available directly in scl.

There are several issues that we did not have the space to discuss here, but for which we
refer the reader to Rathlev’s thesis on SCEst [Rathlev 2015]. In particular, when compiling
scl with a data-flow-based approach that demands acyclic SC schedulability [von Hanxleden
et al. 2014b], care has to be taken to not inadvertently introduce cycles in the resulting scg.
Rathlev also discusses the—still largely open— inclusion of weak suspend, as introduced by
Esterel v7 and Quartz, which would facilitate for example multi-clock hardware design.

While the translation rules from SCEst to scl primarily serve to unambiguously define
the semantics of SCEst, first experiments indicate that they can also be a basis for synthesis
to executable code. However, we expect that there is still room for improvement.

Experience will show how significant the extensions of SCEst over Esterel really are,
both in terms of increased expressiveness and ease of use. Experienced Esterel program-
mers might prefer to keep sequential modifications (Esterel variables) and shared accesses
(Esterel signals) separate, which is of course still possible in SCEst. However, experience in
the classroom both with SCEst and its graphical counterpart SCCharts indicates that the
SC MoC eases the learning curve for getting into synchronous programming, without giving
up the advantages offered by Esterel and its synchronous language cousins. An interesting
question, currently under investigation, is whether every SCEst program can be “easily”
translated into equivalent, SSA-style Esterel, as presented for the Control example in Sec. 4.
For purely sequential programs this seems fairly straightforward, using standard techniques.
For concurrent programs, preliminary results indicate that at least in most cases a concur-
rent SSA is also feasible, building on Esterel’s valued signal mechanism. This could also
lead to an alternative, slightly more restrictive definition of sequential constructiveness that
forbids speculation [Potop-Butucaru et al. 2007]; the idea would be to define such programs
as sequentially constructive where the equivalent, SSA-style program is constructive in the
sense of Esterel.

Apart from the language extensions of SCEst, we consider the “unification” of shared
signals and sequential variables as valuable, even in the context of Esterel alone. As ex-
plained elsewhere [Aguado et al. 2014], this allows, for example, a more efficient handling of
schizophrenic signals at source code level, with worst-case linear instead of quadratic code
increase. This is made possible by exposing the initialization of signals part at the language
level, rather than hiding it within a pre-packaged signal semantics.

More generally, one of the lessons learned—or reinforced—from this work is that when
used carefully, “low-level features” for the handling of data, control and state can add
significantly to the power of a language. SCEst has explored this mostly in the data direction

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

1:24 S. Smyth et al.

and, to a lesser extent, regarding control with its restricted form of goto. We currently
experiment with more flexible control and state handling mechanisms, in part following the
work by Tardieu and Edwards [Tardieu 2004; Tardieu and Edwards 2007]. For example,
the pause statement may seem very elementary, but is in fact a high-level, pre-packaged
control/state construct: it causes one thread to deactivate itself in the current tick at a
certain continuation point, and in the next tick causes the same thread to activate itself again
at the same continuation point. Tardieu’s gotopause already makes this a bit more flexible
by allowing that thread to activate itself again at a different continuation point, however,
for some applications (such as the weak suspend) one might wish even more flexibility.

Finally, we expect that the further work on SCEst—and SCCharts—will also lead to
new insights and variations on the underlying SC MoC. E.g., adding a “pre-init” stage to
iur would facilitate to distinguish local and global initializations, as would be suitable for
multi-core implementations. More generally, an interesting question is how to exploit the
concurrent nature of SCEst for truly parallel/distributed execution. Girault conducted a
nice survey on the distribution of synchronous programs [Girault 2005], and some of the
techniques presented there should be applicable for SCEst as well. One starting point might
be the data-flow-based code generation technique (see Sec. 6.1), since the resulting data-flow
equations and the corresponding netlist are already highly parallel.

ACKNOWLEDGMENTS

We thank the participants of the SYNCHRON 2014 workshop and the MEMOCODE 2015 conference, in
particular Gérard Berry, for the valuable feedback on the initial ideas regarding SCEst. We also thank
Nis Wechselberg and Insa Fuhrmann for their suggestions on a draft of this paper, as well as the anonymous
reviewers for their very helpful comments.

REFERENCES

Joaqúın Aguado, Michael Mendler, Reinhard von Hanxleden, and Insa Fuhrmann. 2014. Grounding Syn-
chronous Deterministic Concurrency in Sequential Programming. In Proceedings of the 23rd European
Symposium on Programming (ESOP’14), LNCS 8410. Springer, Grenoble, France, 229–248. Long ver-
sion: Technical Report 94, Bamberger Beiträge zur Wirtschaftsinformatik und Angewandten Informatik,
Bamberg University, August 2014, ISSN 0937-3349.

Sidharta Andalam, Partha Roop, Alain Girault, and Claus Traulsen. 2009. PRET-C: A new language for
programming precision timed architectures. Workshop on Reconciling Performance with Predictability
(RePP’09), Embedded Systems Week, Grenoble, France.

Charles André. 2003. Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–FR. I3S Labora-
tory, Sophia-Antipolis, France.

Andrew W. Appel. 1998. SSA is functional programming. SIGPLAN Not. 33, 4 (April 1998), 17–20.
Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert

de Simone. 2003. The Synchronous Languages Twelve Years Later. In Proc. IEEE, Special Issue on
Embedded Systems, Vol. 91. IEEE, Piscataway, NJ, USA, 64–83.

Gérard Berry. 2000. The Foundations of Esterel. In Proof, Language, and Interaction: Essays in Honour
of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte (Eds.). MIT Press, Cambridge, MA,
USA, 425–454.

Frédéric Boussinot. 2006. FairThreads: mixing cooperative and preemptive threads in C. Concurrency and
Computation: Practice and Experience 18, 5 (April 2006), 445–469.

Paul Caspi, Jean-Louis Colaço, Léonard Gérard, Marc Pouzet, and Pascal Raymond. 2009. Synchronous
Objects with Scheduling Policies: Introducing Safe Shared Memory in Lustre. In ACM Int’l Conf. on
Languages, Compilers, and Tools for Embedded Systems (LCTES’09). ACM, Dublin, Ireland, 11–20.

Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing Signals and Modes in Synchronous
Data-flow Systems. In ACM International Conference on Embedded Software (EMSOFT’06). ACM,
Seoul, South Korea, 73–82.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph. ACM Transactions on
Programming Languages and Systems 13, 4 (October 1991), 451–490.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

SCEst: Sequentially Constructive Esterel 1:25

Stephen A. Edwards. 2003. Tutorial: Compiling concurrent languages for sequential processors. ACM Trans-
actions on Design Automation of Electronic Systems 8, 2 (April 2003), 141–187.

M. Fuchs and M. Mendler. 1995. A functional semantics for delta-delay VHDL based on FOCUS. In Formal
Semantics for VHDL, C. D. Kloos and P. Breuer (Eds.). Kluwer, 9–42.

Insa Fuhrmann, David Broman, Steven Smyth, and Reinhard von Hanxleden. 2014. Towards Interac-
tive Timing Analysis for Designing Reactive Systems. Reconciling Performance and Predictability
(RePP’14), satellite event of ETAPS’14. (April 2014).

Alain Girault. 2005. A Survey of Automatic Distribution Method for Synchronous Programs. In Interna-
tional Workshop on Synchronous Languages, Applications and Programs (SLAP ’05) (Electronic Notes
in Theoretical Computer Science), F. Maraninchi, M. Pouzet, and V. Roy (Eds.). Elsevier Science, Ed-
inburgh, UK.

C. A. R. Hoare. 1985. Communicating Sequential Processes. Prentice Hall, Upper Saddle River, NJ.
Luciano Lavagno and Ellen Sentovich. 1999. ECL: a specification environment for system-level design. In

Proc. 36th ACM/IEEE Conf. on Design Automation (DAC’99). ACM, 511–516.
Edward A. Lee. 2006. The Problem with Threads. IEEE Computer 39, 5 (2006), 33–42.
Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. 2007. Compiling Esterel. Springer.
Karsten Rathlev. 2015. From Esterel to SCL. Master thesis. Kiel University, Department of Computer

Science. http://rtsys.informatik.uni-kiel.de/∼biblio/downloads/theses/krat-mt.pdf.
Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von Hanxleden, and Michael Mendler. 2015.

SCEst: Sequentially Constructive Esterel. In Proceedings of the 13th ACM-IEEE International Con-
ference on Formal Methods and Models for System Design (MEMOCODE’15). Austin, TX, USA.

K. Schneider. 2001. Embedding Imperative Synchronous Languages in Interactive Theorem Provers. In
Conference on Application of Concurrency to System Design (ACSD’01). IEEE Computer Society,
Newcastle upon Tyne, UK, 143–156.

P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O. Myreen. 2010. x86-TSO: A rigorous and usable
programmer’s model for x86 multiprocessors. CACM (2010), 89–97.

Steven Smyth, Christian Motika, and Reinhard von Hanxleden. 2015. A Data-Flow Approach for Com-
piling the Sequentially Constructive Language (SCL). In 18. Kolloquium Programmiersprachen und
Grundlagen der Programmierung (KPS 2015). Pörtschach, Austria.

J.-P. Talpin, J. Brandt, M. Gemünde, K. Schneider, and S.K. Shukla. 2014. Constructive polychronous
systems. Science of Computer Programming 96, 3 (Dec. 2014), 377–394.

Olivier Tardieu. 2004. Goto and Concurrency—Introducing Safe Jumps in Esterel. In Proceedings of Syn-
chronous Languages, Applications, and Programming (SLAP’04). Barcelona, Spain.

Olivier Tardieu and Stephen A. Edwards. 2006. Scheduling-Independent Threads and Exceptions in SHIM.
In Proceedings of the International Conference on Embedded Software (EMSOFT’06). ACM, Seoul,
South Korea, 142–151.

Olivier Tardieu and Stephen A. Edwards. 2007. Instantaneous Transitions in Esterel. In Proc. Model Driven
High-Level Programming of Embedded Systems (SLA++P’07). Braga, Portugal.

Reinhard von Hanxleden. 2009. SyncCharts in C—A Proposal for Light-Weight, Deterministic Concurrency.
In Proc. Int’l Conference on Embedded Software (EMSOFT’09). ACM, Grenoble, France, 225–234.

Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaqúın
Aguado, Stephen Mercer, and Owen O’Brien. 2014a. SCCharts: Sequentially Constructive Statecharts
for Safety-Critical Applications. In Proc. ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’14). ACM, Edinburgh, UK.

Reinhard von Hanxleden, Michael Mendler, Joaqúın Aguado, Björn Duderstadt, Insa Fuhrmann, Chris-
tian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. 2014b. Sequentially Constructive
Concurrency—A Conservative Extension of the Synchronous Model of Computation. ACM Trans-
actions on Embedded Computing Systems, Special Issue on Applications of Concurrency to System
Design 13, 4s (July 2014), 144:1–144:26.

Eugene Yip, Partha S. Roop, Morteza Biglari-Abhari, and Alain Girault. 2013. Programming and Tim-
ing Analysis of Parallel Programs on Multicores. In 13th International Conference on Application of
Concurrency to System Design (ACSD’13), Barcelona, Spain, 8-10 July, 2013. 160–169.

Fang Yu, Shun-Ching Yang, Farn Wang, Guan-Cheng Chen, and Che-Chang Chan. 2012. Symbolic Con-
sistency Checking of OpenMp Parallel Programs. In Proceedings of the 13th ACM Int’l Conf. on Lan-
guages, Compilers, Tools and Theory for Embedded Systems (LCTES’12). ACM, 139–148.

Received January 2016; revised September 2016; accepted March 2017

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2017.

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/krat-mt.pdf

	Introduction
	Sequential Constructiveness
	Data Handling—Variables and Signals
	The Control Example
	SCEst Language Definition
	Control-Flow Statements
	Signal Handling Statements
	Preemption Statements
	Data Handling Statements
	Derived Statements

	Experimental Validation
	SCL Compilation
	Regression Testing
	Experimental Results

	Related Work
	Conclusions and Outlook

