Toward Object-oriented Modeling in SCCharts

ALEXANDER SCHULZ-ROSENGARTEN and STEVEN SMYTH, Kiel University, Germany
MICHAEL MENDLER, Bamberg University, Germany

Object orientation is a powerful and widely used paradigm for abstraction and structuring in programming.
Many languages are designed with this principle or support different degrees of object orientation. In syn-
chronous languages, originally developed to design embedded reactive systems, there are only few object-
oriented influences. However, especially in combination with a statechart notation, the modeling process can
be improved by facilitating object orientation as we argue here. At the same time the graphical representation
can be used to illustrate the object-oriented design of a system.

Synchronous statechart dialects, such as the SCCharts language, provide deterministic concurrency for
specifying safety-critical systems. Using SCCharts as an example, we illustrate how an object-oriented mod-
eling approach that supports inheritance can be introduced. We further present how external, i.e., host lan-
guage, objects can be included in the SCCharts language. Specifically, we discuss how the recently developed
concepts of scheduling directives and scheduling policies can be used to ensure the determinism of objects
while retaining encapsulation.

CCS Concepts: « Software and its engineering — Model-driven software engineering; Abstraction,
modeling and modularity; Object oriented languages; Inheritance; Classes and objects; Concurrent pro-
gramming structures; Visual languages; Orchestration languages; « Computer systems organization —
Embedded software;

Additional Key Words and Phrases: Synchronous languages, object orientation, inheritance, determinacy,
state machine modeling

ACM Reference format:

Alexander Schulz-Rosengarten, Steven Smyth, and Michael Mendler. 2021. Toward Object-oriented Modeling
in SCCharts. ACM Trans. Embed. Comput. Syst. 20, 4, Article 37 (May 2021), 26 pages.
https://doi.org/10.1145/3453482

1 INTRODUCTION

The object-oriented (OO) paradigm has proven to be a powerful design and programming con-
cept that facilitates an abstract and modular design of large and complex systems. Consequently,
most general-purpose programming languages popular today support OO concepts, such as encap-
sulation of data and functions, inheritance on abstract data types, and message passing. In software
engineering, the OO paradigm is often combined with a model-based approach, for example in

Authors’ addresses: A. Schulz-Rosengarten and S. Smyth, Department of Computer Science, Kiel University, Olshausenstr.
40, 24098, Kiel, Germany; emails: {als, ssm}@informatik.uni-kiel.de; M. Mendler, Faculty of Information Systems and
Applied Computer Sciences, Bamberg University, An der Weberei 5, 96047, Bamberg, Germany; email: michael. mendler@
uni-bamberg.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2021/05-ART37 $15.00

https://doi.org/10.1145/3453482

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://doi.org/10.1145/3453482
mailto:permissions@acm.org
https://doi.org/10.1145/3453482

37:2 A. Schulz-Rosengarten et al.

Unified Modeling Language (UML), to create well-designed software architectures. Today, software
engineers are well trained in Java and C++ programming, so that OO design techniques are second
nature to them. Even if the methodology of OO is sometimes controversially discussed, the con-
cepts have proven to be successful [4]. Hence, it is compelling to try and exploit the benefits of OO
also in a specialized domain such as embedded and safety-critical systems. This domain typically
involves complex interactions between system components and the environment, while imposing
stringent requirements on functional correctness, real-time performance and fault tolerance. Some
dynamic aspects of OO, such as runtime polymorphism, might seem unfit for such scenarios. How-
ever, a language like Ada [2] shows that OO is still feasible in this domain. In the presence of strict
typing and static verification, it is possible to prevent vulnerabilities and ensure real-time behavior.
This facilitates the use in complex applications, such as autonomous car control systems [27].

Synchronous languages (SL) are likewise designed for the programming of safety-critical
embedded systems. Synchronous languages are especially suited for that task, as they provide
deterministic and simple mathematical semantics based on Mealy machines. One of the key issues
addressed by SLs is the safe handling of concurrency, which is both a powerful programming
principle and intrinsic to the execution model for reactive embedded systems.

Traditionally, SLs are used with rather low-level target platforms, such as micro-controllers
often programmed in subsets of C. In such contexts there is no strong need for OO design con-
cepts. However, SLs are also used as high-level orchestration languages to control a larger software
system deterministically. This requires a close and convenient integration with the targeted host
languages, such as Java or C/C++. In the safety-critical domain such systems must satisfy high
standards regarding system architecture, documentation and code reviews. As experience in Ada
and other programming domains, OO has a lot to offer here. Also, object-based modeling has al-
ready long been recognized as a useful structuring principle in intermediate languages for the
modular compilation of traditional SLs [11, 20]. Despite this, however, the OO paradigm has not
yet been made available at the source level for the programmer in leading SLs.

Without entering into a wide-ranging discussion about OO programming, we aim to enrich
synchronous programming by OO facilities, as far as they fit. The objective of this article is to lay
the foundation for OO in SLs using Sequentially Constructive Statecharts (SCCharts) as an
example language, since it combines modern model-driven engineering with a powerful synchro-
nous semantics. This provides the benefits of OO modeling while remaining on safe semantical
terrain. Object-oriented features are compiled conservatively by basic semantic transformations
that can be inspected and verified on source level, thus grounding their semantics in the existing
well-established execution model of SCCharts. With this foundation more dynamic aspects can be
investigated and included into SLs in the future.

1.1 Brief Introduction to Synchronous Languages and SCCharts

Synchronous Languages provide built-in concurrency with deterministic well-defined semantics.
Concurrency in general is often a challenge and can compromise a safety-critical system by in-
troducing race conditions [24]. SLs solve this problem traditionally by two techniques. First, con-
current threads are forced to operate in lock-step, by synchronizing on a logical clock. The clock
acts as a global barrier that breaks the computation into a sequence of reaction instants where
the programs perform a reaction to the current state of its environment. Second, during each in-
stant, concurrent threads may only communicate through synchronous signals or channels. These
special-purpose shared memory structures are protected by an (intra-instant) synchronization pro-
tocol, which ensures a unique value per instant, despite possibly multiple concurrent write and
read accesses. As a result, the observable behavior of a program is that of a synchronous Mealy
machine providing a deterministic functional reaction to its environment. The compiler performs

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:3

Counting
output bool finished = false
int counter = 0

Counting

counter <10 (N\
/ counter++ Gl m>
Finish
@ __counter >= 10
/ finished = true

Fig. 1. Simple SCCharts example that counts to 10.

a static causality analysis to establish that a program is schedulable, i.e., is satisfying the synchro-
nization protocol for each memory reference. Programs are considered constructive if a scheduling
order can be found. Non-constructive programs are rejected.

Synchronous languages come in different programming styles and with slightly different syn-
chronization protocols. The most prominent SLs are Esterel [10] and Lustre [21]. Lustre is based on
dataflow equations and is commercially used by the Safety-Critical Application Development Envi-
ronment [16] that allows the graphical modeling of dataflow diagrams. In Lustre and its derivatives
communication is done via single-writer/multi-reader (1-place) channels. Esterel supports an im-
perative coding style and uses multi-writer/multi-reader signals. The intra-instant synchronization
of Esterel implements a write-before-read protocol. It first schedules all writers, The same applies
to Lustre, except that a combination function is not needed, since there is only one writer per
channel. However, Esterel is more expressive, since the concurrent multi-writer model supports
reaction to absence, which is not available in Lustre. Both Esterel and Lustre share the limitation of
the write-before-read protocol, which prohibits a shared signal or channel to be overwritten dur-
ing an instant. Destructive updates must be coded in thread-local variables that cannot be shared
concurrently.

The Sequentially Constructive (SC) model of computation [39] relaxes this rather strict pro-
tocol, unifying signals, channels and local variables in a single notion, the SC-variable. SC-variables
are synchronized under the initialize-update-read (iur) protocol, which supports at the same time
concurrent multi-writer/multi-reader accesses and destructive updates by a single thread. This re-
spects the sequential ordering of statements while still preserving deterministic concurrency. It
also supports reaction to absence, so that Esterel signals can be modeled as a special instance of
SC-variables.

SCCharts [39] are a dialect of Harel’s statecharts with SC semantics. They are inspired by
SyncCharts [5], a similar statecharts notation but with the synchronous semantics of Esterel.
Figure 1 illustrates a simple SCChart that waits 10 instants by counting them and then sets the
finished output and terminates. The root state Counting has two variables declared, the Boolean
output finished that is initially false, and the local variable counter initialized to zero. The behavior
is modeled in two concurrent regions. Region Counting has a single state, that is the initial (bold
border) and final state (double border) of that region, with a self-transition. This transition has
a triggering condition (counter < 10) and an effect (counter++). The solid line indicates that
this transitions is delayed, meaning that the statechart has to remain for at least one instant in
the source state before the transition can be taken. The counterpart are immediate transitions,
displayed as dashed lines, that can leave a state in the same instant it is entered. Hence, except
in the first instant, this region will increment the counter in each instant until it reaches 10. In
classical SLs that do not have SC semantics, testing the counter before incrementing it would
be rejected as non-constructive, since the trigger and the effect are treated as concurrent that

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:4 A. Schulz-Rosengarten et al.

results in a causality cycle under the read-before-write protocol. However, with SC the sequential
program-order is taken into account, which resolves the data dependency between the effect
and the trigger. Hence, the program is sequentially constructive. The second region Finish stays
in its initial state Wait until the counter reaches 10. SCCharts provide instantaneous concurrent
communication, hence the final state End will be entered in the same instant as the Counting
region increments the counter. The iur protocol is used to find a deterministic scheduling order
and orders the reading of counter in region Finish after its write access in the Counting region.
When state End is entered, both regions reach their final state and the program terminates.
Similarly to other SLs, SCCharts is defined with a minimal set of core language features that ease
the static analysis and facilitate code generation. Additionally, it provides many extended features,
that can be considered syntactical sugar. These are translated into equivalent structures built with
core features by performing model-to-model transformations in the compilation of SCCharts [26].
For example, a single during action could be used to replace the entire region Counting. Specifi-
cally, during if counter < 10 do counter++ would be transformed into the same region (except the
naming) as in Figure 1, without the need to explicitly model the region, state, and transition.

Contributions and Outline

We first discuss related work in Section 2 and then present the following contributions’:

e We present the first statechart dialect that permits OO modeling under the principles of
SLs. It is built as an extension of SCCharts providing inheritance (Section 3.1) and class-
based data structures (Section 3.2) to facilitate abstraction and reusability. The benefits and
limitations of OO design in SCCharts are discussed in Section 3.3 and the integration into
the model-driven engineering tool KIELER is described in Section 3.4.

e We propose mechanisms to ensure the determinism of host language objects under the
shared memory concurrency of SLs while retaining their encapsulation under a black box
scheduling approach. In Section 4 we explain the integration of class-based host data struc-
tures from a syntactic and code generation perspective. Section 5 presents mechanisms for
determinism based on scheduling directives (Section 5.1) and scheduling policies (Section 5.2)
and discuss how these can enrich classes for subtype polymorphism (Section 5.3).

We conclude in Section 6 and give an outlook on future work in Section 7.

2 RELATED WORK

In the context of embedded systems, Ada [2] is the most notable OO language. It provides stan-
dardized imperative programming with a strong type system and non-deterministic concurrency
with locking mechanism for synchronization, while facilitating verifiability through a design-by-
contract methodology. OO features include encapsulation, generics, and subtyping with dynamic
dispatch. In contrast to Ada, SCCharts focuses on model-driven engineering and uses the synchro-
nous principle for deterministic concurrency.

Concepts from OO have also been adapted into statechart dialects. ObjectCharts [17] by
Coleman et al. characterize the communication behavior of state machines as objects based on
Harel’s statechart diagrams. In combination with a configuration diagram that specifies the object
relations such as instancing, inheritance, and communication, they allow a top-down design of a
system in an iterative development process. Following on from ObjectCharts, Harel and Gery [22]
present O-charts to specify classes and structures and use statecharts for the modeling of the
object’s behavior. They introduce an OO statecharts version, which resulted in the Rhapsody

I This article extends an earlier publication in the Forum on Specification and Design Languages (FDL 2019) [32].

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:5

semantics of statecharts [23] and an adoption by UML. These statecharts support C++ code for
specifying transition actions and provide inheritance that allows refining inherited statecharts by
decomposing states or adding orthogonal states, as well as adding or modifying transitions. IBM’s
Rational Rhapsody provides similar ways of refining statecharts.? It is possible to change triggers
and actions, as well as the target of transitions but not the source. Changes in the topology of
states, by reparenting, is not possible either. Such a fine-grained way of adjusting the inherited
state machine also requires tool support for modeling across inheritance relations. Model elements
can be set to inherited, propagating changes in super classes to its sub classes, overridden, ignoring
changes in super classes but still synchronizing deletion of states, or regular where the sub class
is decoupled from its super implementation. Syriani et al. propose a more restricted set of rules
for the refinement of statecharts to ease static verification [38]. For inheritance in SCCharts, we
use a simplified approach and allow overriding only on regions. This requires less restrictions and
synchronization effort as regions are completely replaced when overridden, corresponding to the
regular mode in Rhapsody. ROOMcharts [33] is another statecharts dialect, used in the real-time
object-orented modeling (ROOM) language, to specify the behavior of actors in the higher-
level ROOM model. ROOMcharts also support inheritance but prohibit concurrency, since the
authors consider synchronization mechanisms too inefficient for the targeted real-time domain.

The above OO statechart dialects inspired the OO modeling concepts introduced to SCCharts.
However, we do not follow the typical approach of separating the modeling of the system’s struc-
ture from the modeling of behavior, as will be discussed in Section 3.4. This encourages a uniform
semantics-oriented modeling as it is characteristic for SLs. Furthermore, in contrast to the above
OO statechart dialects, SCCharts reconcile behavioral decomposition and concurrency with deter-
minism and static verifiability.

There are many SLs that adapt some OO concepts into their language and semantics. An-
dré et al. [6] introduce synchronous objects (SO) based on the reactive object model [12]. This
approach divides the program into a collection of regular host code objects (RO) and SO that
communicate with each other. Messaging allows SO to communicate instantaneously and preserve
the synchronous semantics. The resulting directed interconnection graph is required to be acyclic,
because modules are considered black boxes that cannot interleave with each other. Communi-
cation with ROs is done via signals that can be read outside SO but inputs to SO require special
handling by interface objects to enter the synchronous messaging mechanism. The structure of
a system using SO is represented by an object-modeling technique class diagram augmented by
communication interfaces. André et al. support SyncCharts, among other SLs, for specifying the
internal behavior of an SO. The SyncCharts dialect is not extended by OO features, in contrast to
the SCCharts presented here, but the models are synthesized into separate interconnected objects
in an OO target language (C++). Also, André et al. do not address the integration of more complex
OO0 data structures and the preservation of determinism as we do here.

The synchronous dataflow languages Lustre has been extended by OO-like syntax for shared-
memory modularization [15]. Scheduling policies are used to expose and verify the execution order
of dataflow equations packaged in object structures. Our class policies for SCCharts play a simi-
lar role for the SC scheduling semantics that, unlike Reference [15], permits destructive memory
updates.

The synchronous OO language synERJY [13] provides synchronous reactive classes in a
Java-like syntax. Programs can be written as imperative code, dataflow equations, or textual state
machines. The resulting synchronous reactive objects use signals to communicate with each other

2https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_c_dm_
stchrt_inheritance.html.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_c_dm_stchrt_inheritance.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.2.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_c_dm_stchrt_inheritance.html

37:6 A. Schulz-Rosengarten et al.

and the environment, similar to SOs by André et al. For handling causality problems inside a
synchronous reactive class, synERJY provides a mechanism for specifying static precedences that
is similar to our Scheduling Directives (SDs), which will be discussed in Section 5.1. However,
it does not include a combination with graphical modeling or ways to deterministically include
host code objects. Inheritance and subtyping is only implemented in predefined types.

The imperative SL language Blech [18], recently introduced in an industrial context, provides
C++-like abstract data types that can be instantiated like classes and shared by concurrent threads.
The methods to access the data objects are normal procedure calls with call-by-reference parame-
ters. The determinism is guaranteed by the write-before-read protocol, which is generalized for
nested and composite memory structures, in contrast to Lustre or Esterel, which only permit
atomic signals or scalar dataflow variables to be shared concurrently. Blech permits sequential
memory updates on shared objects within an instant, like in SCCharts. Causality analysis is facil-
itated by labeling all methods statically as mutating or non-mutating (on the self-object) and all
method arguments as mutable or non-mutable. In this way, the compiler can abstract the body of
methods for modular (black box) scheduling or for integrating host code. In addition, all object ref-
erences are static. Hence, potential write-write conflicts on overlapping objects (e.g., by aliasing)
are statically resolvable. The write-before-read protocol of Blech forces a rather rigid form of sched-
uling that is not as flexible as our scheduling directives or as expressive as our policies discussed
in Section 5. Specifically, it does not permit concurrent writing to the same atomic memory cell,
and hence, it does not support reaction to absence, Esterel signals, or shared counter structures as
used in Section 3.2 below. Also, Blech does not support inheritance.

Lohstroh et al. [25] present a deterministic real-time refinement of the actor model, called reac-
tors. It uses OO principles for scopes of nested reactors with the aim eventually to include inheri-
tance, subtyping, and generic programming and to provide libraries with generic reactors, such as
parallel scatter-gather patterns.

3 OBJECT-ORIENTED MODELING IN SCCHARTS

Following the definition of Wegner [40], OO languages distinguish themselves from object-based
languages by providing classes and inheritance. Classes are templates for constructing objects and
inheritance establishes relations that allow reusing or altering code of a parent of the implementa-
tion. In the presence of a type system, inheritance often also expresses subtype relations, where an
object is allowed to substitute objects of its super classes or interfaces. With this polymorphism,
a method call needs to be bound to the actual implementation based on the type of the involved
object and the type of the parameters (in case of overloaded methods). There are many power-
ful static analyses, especially in functional OO languages, that resolve polymorphism at compile
time. This early binding enables method inlining and other optimizations. However, in the face of
unconstrained runtime-mutable object pointers, as present in general purpose OO languages, the
actual implementation of a method can only be determined at runtime, requiring dynamic bind-
ing. Without static type checking, it is not even ensured that a called method exists in an object.
Dynamic binding is an important aspect of OO languages [4] but at the same time it should be
considered carefully, due to the necessity of a lookup operation at each method invocation. In the
safety-critical domain and for embedded and real-time systems, this dynamic aspect can be prob-
lematic. For SLs, whose main feature is ruling out programs that are non-deterministic, this poses
the challenge of statically analyzing all possible runtime substitutions of a type and data accesses
at compile-time to rule out race conditions. This also includes dynamic memory allocation and
alias management when working with objects and mutable references.

Nonetheless, we are convinced that including OO features in SLs can greatly improve their ex-
pressiveness, effectiveness and convenience when it comes to modeling. In this work we focus on

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:7

introducing OO to SCCharts. At this point, we aim to implement our OO concepts in a conser-
vative manner and exclude features that may cause runtime overheads or jeopardize static code
analysis, such as runtime polymorphism. We build upon well-established and tested compilation
mechanisms of SCCharts without breaking existing concepts and with an overhead that is as small
as possible. Even without dynamic aspects, supporting inheritance (Section 3.1) and classes (Sec-
tion 3.2) in the modeling with SLs can help dealing with large and complex systems, especially in
combination with modern modeling techniques (see Section 3.4). It can also be seen as an alter-
native to procedural decomposition of models as in classical SLs. This can help developers used
to OO design and UML class diagrams and changes the cognitive perception of a synchronous
statechart model. Section 3.3 elaborates further on the implemented OO features and the effects
of OO modeling with SCCharts compared to a classical approach.

Based on the new work reported here, the SCCharts language can be further extended with
subtyping and generic programming principles. It also allows to handle polymorphism determin-
istically for SLs, which leads into a similar direction as behavioral subtyping. Section 5.3 gives an
idea how our concept for deterministic host code objects can facilitate this. However, subtyping
and polymorphism will be subject to future work and is only sketched in Section 7.

3.1 Inheritance

Inheritance is a core OO concept to express commonalities between entities of a system. It allows
(for class-based OO) to base the class for an object upon another class. This reuses, alters or extends
existing behavior (implementation) to create a new kind of objects adjusted to their purpose.

Reusing code in SLs, such as Esterel [9], SyncCharts or Lustre, is traditionally handled by a
macro expansion mechanism. A program is split up into several self-contained modules, which
then can reference other modules and rebind their interface variables. These references are stati-
cally expanded at compile time, similar to function inlining or macros of the C preprocessor. This
mechanism fits well with SLs, as it eases static analysis of programs and is semantically solid. SC-
Charts also provide such a macro expansion mechanism: A state can reference another SCChart
and rebind its inputs and output variables. However, redefining common variables in each mod-
ule again and binding them at each use are tedious tasks and do not facilitate a smooth modeling
process. SCCharts were used in a number of student projects in the last years [34]. Especially for
larger projects, such as modeling a controller for a model railway installation with multiple differ-
ent trains, we found that expressing commonalities between modules improves the design struc-
ture. Similarly, experience from our collaboration with industry partners suggests the usefulness
of common default behavior for states with the option of adjusting it in instantiation contexts.
To address this issue, we improve the expressiveness of SCCharts and make the modeling pro-
cess more similar to design principles known from modern (usually OO) programming languages.
Hence, we decided to extend SCCharts further toward OO and to introduce inheritance.

Inheritance in SCCharts now allows to derive states from one or more base states® using the
extend keyword. A state inherits all variables and behavior from all its base states. In principle,
inheritance in SCCharts is an advanced macro expansion that statically expands base states. Inher-
itance unfolds its full potential when allowing overriding the inherited behavior to adapt it for the
purpose of the extending object. Harel’s statecharts with inheritance support fine-grained altering
of states and transitions. However, here we follow a more conservative approach and allow only
region overriding. This corresponds more to common OO programming languages, such as Java or
C++, where methods are the units that are subject to overriding.

3The term “superstate,” following super class, might be more obvious here. However, in SCCharts a superstate is already
defined as a state that contains inner behavior such as regions [39].

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:8

MessageReceiver

input signal string messageA, messageB \

DefaultLogger extends MessageReceiver

extern Logger.info loginfo
extern Logger.error logError

HandleA

((Receive I\ messat%%\a . ;<<L0998d>>

""Togin

HandleB

A. Schulz-Rosengarten et al.

LoggingApplication
input signal string messageA, messageB
input signal next

s 2

ACausesError

extern Logger.info loginfo
extern Logger.error logError

HandleA

@ __messageA |
I'logError("Error: A occured")

((Receive I_ ;rlleslsa eB . N :((Logged) HandleB
oglnfo(va) | (Receive X . messageB _:((Logged))
/'loglnfo(val(B))
\ J

LoggingApplication extends MessageReceiver
input signal next

ACausesError extends DefaultLogger
override HandleA

1

T

next

BCausesError

next

v

extern Logger.info loginfo
extern Logger.error logError

HandleA

messageA
@ /'logError("Error: A occured")

1 | ((Receive]_ messageA _:((Logged)
next next /NoglInfo(val(| A))
l * HandleB

BCausesError extends DefaultLogger
override HandleB

@ __messageB |
I'logError("Error: B occured™)
@ messageB
I'logError("Error: B occured")

Fig. 2. Example for usage of inheritance in SCCharts (left) and the result after inheritance is statically
expanded by the compiler (right). Red arrows indicate where the parts of the model are expanded into.

Figure 2 shows on the left-hand side how inheritance can be used in SCCharts. The SCChart
is a simplified model of a real-world example.* In the underlying scenario, incoming messages,
here reduced to messageA and messageB, must be processed differently depending on the state of
the application. By default, a receive message must be logged. This common behavior is modeled
in the DefaultLogger, which has separate regions for each message. The state machine in these
regions immediately logs the message content on an info level if received, switches to the Logged
state, and returns to the receiving state in the next instant to process further messages. The input
messages are declared in MessageReceiver and available due to inheritance. In the actual appli-
cation represented by LoggingApplication, the behavior differs from the default logging behavior
depending on the state. In this abstract example there are two states in the application, ACausesEr-
ror and BCausesError, that alternate triggered by the next input. Each state inherits the behavior
of the DefaultLogger. In state ACausesError the handling of messageA is altered by overriding
region HandleA, indicated by the override keyword and the green color. If messageA is received,
then an error is logged and the Error state is entered but not left until next occurs, ignoring future
occurrences of messageA. Analogously the state BCausesError is designed for MessageB.

Inheritance is considered an extended feature [39] in SCCharts and removed by a model-to-
model transformation in the first step of the compilation. Figure 2 presents on the right-hand side
the result of this transformation. We perform a macro expansion with finer granularity and static
dispatch for overriding of regions. All variables and regions are copied into their extending states

4Qur industrial partner from the railway domain uses SCCharts to replace hand-written state machine code by models
and generated code. In the context of a C++ project, the developers found the need for states to have common default
behaviors. An example is the described logging of messages. It is only reasonable to address such a use case by means of
0O, especially since C++ developers are already used to this methodology.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:9

w.r.t. overriding. The red arrows in the figure indicate this process. In a macro expansion, input and
output variables must be bound, since only top level SCCharts can have an input output interface.
Inheritance handles this aspect in the same way. In this example the input messages declared in
MessageReceiver and inherited by DefaultLogger are automatically bound to the input messages
of LoggingApplication, since they share the same base state.

If the inheritance hierarchy of a state is cyclic, then it cannot be statically expanded and
the compiler rejects the model. Furthermore, the support of multiple inheritance, by allowing more
than one base state, introduces challenges such as the diamond problem. If base states contribute
variables or regions with the same id but defined in different states, then we require that the re-
gion must be overridden to define a single behavior for that element or the model is rejected (as
for conflicting variables, since they have no overriding support). This allows us to statically handle
this feature. It corresponds to the strategy for default methods in Java 8 interfaces.

Furthermore, we extend the variable scoping of SCCharts and add access modifiers for variables
and regions to allow visibility restrictions. When expanding inheritance, variables with restricted
visibility (e.g., private) are renamed to prevent name clashes with variables in the extending scope.
We also support accessing the scope of the base state while overriding, by using the super keyword,
as known from languages such as Java.

We have implemented inheritance in the open-source KIELER tool® that provides the reference
implementation for SCCharts and also facilitates the modeling and understanding of inheritance
in SCCharts, see Section 3.4.

3.2 Class Modeling

Traditionally, SCCharts are primarily used to model a system as a statechart, such as the logger
example in Figure 2. However, in line with the new OO view that we wish to advance here,
SCCharts can also be used to model complex data structures. In SCCharts a state has a name,
can contain variables and provides behavior usually associated with its regions. However, the
behavior in regions is always executed when the state is active. To adhere to the concept of objects,
we introduce methods in SCCharts that are only executed when invoked and can be modeled
alongside regions. This corresponds to Blech where a struct may contain variables, instantaneous
functions to invoke, and activities that can run stateful behavior when started. Accordingly,
methods in SCCharts are currently restricted to perform only instantaneous behavior, i.e., they
must not contain any synchronous delay (pause) as this would introduce states.

Figure 3(a) shows the UML class diagram of a Counter class. It consists of a private integer field
counter and three methods, to increment and decrement the counter and a getter method to return
its value. The same information is also available in the SCChart in Figure 3(b). Additionally, the
given SCChart includes implementations for the three methods, illustrated by the detailed view
on increment. In contrast to regions, the methods do not contain a state machine but immediate
imperative code, written in a subset of SCL [39], a synchronous subset of C. Graphically, they are
displayed in gray and contain the controlflow graph (SCG [39]) representation of the SCL code.

Currently, like for inheritance, our compiler handles methods by macro expansion. The default
transformation statically expands the method bodies into their invocation site, known as function
inlining. Parameters are passed by reference. Regarding compile time and code size, it might
be more efficient to keep invocations. Hence, there is also an alternative transformation that
synthesizes code with unexpanded methods. However, in this approach we consider each method
invocation atomic, since we do not want to split up method bodies into multiple methods for
interleaving. As a consequence, this restricts the number of SCCharts programs that can be

Shttps://rtsys.informatik.uni-kiel.de/kieler.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://rtsys.informatik.uni-kiel.de/kieler

37:10 A. Schulz-Rosengarten et al.

Counter
private int counter

— CounterApplication
void increment ()

ref Counter counter

/ counter.increment() GO
@ / print(counter.getValue()) (;O

y’ void decrement ()

Counter

- counter: int

+ increment(void): void
+ decrement(void): void

+ getValue(void): int int getValue () / counter.decrement() GO
(a) UML notation (b) SCCharts notation
Fig. 3. Visual representation of a Counter class. Fig. 4. CounterApplication SCChart

using Counter class.

accepted. For without interleaving of concurrent method bodies, the compiler might not be able
to schedule the shared memory accesses into a deterministic order. If this is unacceptable, then
efficient “gray-box” techniques can be used to preserve the causality information of the method
body [29]. Leveraging our method of policies as scheduling interfaces, described in Section 5, we
envisage a future extension for modular compilation in which methods may remain opaque.

Now, consider Figure 3(a) as a class interface and Figure 3(b) as its implementation. In our
extended SCCharts, the Counter SCChart can act as a class type for variables. The SCChart in
Figure 4 declares an instance in the counter variable by referencing the Counter SCChart with ref
Counter counter. The three regions invoke the methods counter.increment(), counter.decrement(),
and counter.getValue() concurrently in every instant. The SCCharts semantics prescribes a sched-
uling that orders the printing of the value after the other concurrent method invocations. The
consequence is that the counter value always stays zero. This may not look reasonable, but the
semantics of this example will be used in Section 5 to illustrate scheduling on host objects and has
no further implications on the example in this context.

There are fields and methods in SCCharts to design classes as usual in OO design. However,
SCCharts used as classes can still have regions. Such classes implement inherently active behav-
ior that runs alongside the regular program. For example, a class with its own worker thread
that processes an input queue or a simple state machine that tracks the inner state of the object.
Figure 5(a) presents a simple scenario based on the counter example. The CountingCounter ex-
tends the Counter SCChart, in such a way that it will autonomously increment the counter in
every instant. This is done by adding the region Counting containing a state with a self-transition
that invokes increment.

To illustrate how SCCharts-based classes are translated, Figure 5(b) presents the SCChart
CountingCounterApplication that creates a variable counter based on the CountingCounter.
The SCChart simply waits until 10 instants have passed and then terminates. This is done by a
transition from the initial state to the final state triggered when the counter value reaches 10.

Similarly to inheritance, SCCharts-based classes are not part of the kernel language but an ex-
tended feature that is replaced statically in the first steps of the compilation. Figure 5(c) shows
the result of this translation step. First, the inheritance hierarchy of CountingCounter is statically
expanded, as described in Section 3.1. Then the referenced type is translated into a native class
declaration. They allow a more classical, not model-based, approach for defining classes, strongly
inspired by the Java syntax. They are mainly designed to provide an integration of objects and
classes from the host languages into SCCharts, as described in Section 4. In this case, they are used

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:11

CountingCounter extends Counter
Counting CountingCounterApplication
output bool finished = false

/increment() ref CountingCounter counter

f)
4 " ~counter.getValue() >= 10 .
(Sounting) /finished = true @
(@) CountingCounter extending (b) Use of CountingCounter class

Counter by automatic increments

CountingCounterApplication

output bool finished = false
class CountingCounter {

int counter

void increment () { counter++ }

void decrement () { counter--}

int getValue () { return counter }
} counter

‘ counter.getValue() >=10
/ finished = true
counterCounting
/ counter.increment()

)

(c) Handling of referenced SCCharts types

Fig. 5. Example for using and handling of regions in class design with SCCharts.

to bring SCCharts into a form that can be easily represented by a host language class. Such a class
declaration may only contain variables and methods.

In Figure 5(c), the class CountingCounter contains the counter variable and the three imple-
mented methods, taken from the SCChart. The region Counting is directly added to the Counting-
CounterApplication SCChart, since it now contains the class declaration. The region is renamed to
counterCounting to allow multiple instances of such a class. The method call counter.increment
is also adjusted to refer to the instance variable.

Transforming regions of SCCharts-based classes like this is possible, since we decided to stat-
ically instantiate variables of class types. We want to circumvent the need to adapt to different
memory management mechanisms in target languages, such as C/C++ and Java. Hence, memory
for object variables is allocated globally once at program start or can be allocated and deallocated
based on the scope and lifetime of the local variable together with its state or region. However,
this is handled by the generated code and not the user. Furthermore, we currently do not allow
assignments on object variables. Hence, each such variable can be considered a constant pointer
to the data structure. In the future, we want to extend SCCharts to support references similar to
the capabilities of Blech (Section 7), but we first decided for a more conservative approach as ref-
erences may easily compromise the deterministic semantics of SCCharts. As a consequence, this
currently limits the ability to use designs that pass and store objects with different, yet compatible,
subtypes. We here lay a foundation that can enable such designs in the future, to a limit where
determinism can still be guaranteed. Note that classes from a host language might require different
handling in memory allocation (Section 4) and do not automatically ensure determinism, which
requires special scheduling (Section 5).

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:12 A. Schulz-Rosengarten et al.

Table 1. Object-oriented Characteristics in SCCharts

Feature Current Support/Restriction
objects supported (Section 3.2)

- composition class-based, defined classical or as SCChart
- creation/destruction only static, only read-only object variables
- encapsulation private/protected/public visibility
inheritance supported (Section 3.1)

- relations multiple inheritance, no virtual inheritance, static expansion
- override only for regions, planned for methods
subtyping future work (Section 7)

- parametric polymorphism planned

- dispatching planned, static with policies (Section 5.3)

With SCCharts now supporting methods and regions to specify instantaneous imperative func-
tionality and non-instantaneous stateful behavior for objects, it shares some similarities with
Blech. Methods correspond to functions and regions resemble activities. The main difference to
activities is that regions are not directly parameterized, statically instantiated (singletons for each
instance), and automatically start with the SCCharts programs.

3.3 Benefits and Limitations of Object Orientation in SCCharts

With the introduction of classes, methods, and inheritance with overriding, SCCharts now sup-
ports important features of an OO language. Table 1 gives an overview of the current OO features
and those that will be included in the future. As initially described the dynamic runtime aspects
of OO are challenging to adapt to the safety-critical and embedded domain. We decided to conser-
vatively focus the presented work and the current implementation in SCCharts on static analyz-
ability, memory boundedness and good predictability for execution time. Consequently, objects
are currently restricted to static instantiation and read-only instance variables, which rules out
runtime polymorphism and dynamic dispatching. Nonetheless, some restrictions can be partially
lifted in the future based on extensions of the concepts presented here, as Section 5.3 and Section 7
describe.

Including OO in SCCharts also allows a different methodology of designing SCCharts. To com-
pare this OO approach with the traditional way of modeling SCCharts, we need to consider that
modularity and reusability is classically achieved by module expansion. If we wanted to model the
LoggingApplication in Figure 2 with reusable modules, then each of the different regions for han-
dling logging behavior (logInfo vs. logError) would require its own SCChart. Only this way, they
could be referenced and correctly composed in the two modes of LoggingApplication to achieve the
same behavior. This is a more procedural approach to decomposing the problem compared to the
OO design. The more important difference is that there is no longer a notion of a default behavior
for logging, inherent to each state. The reason is that the module concept in its basic form can-
not express common default behavior and classically only allows to parametrize input data rather
than behavior. Of course, procedural parameters in combination with default values or special
forms of function overloading could be introduced to tackle this problem and allow generalizable
and adjustable behavior. Otherwise, the developer has to circumvent comment default behavior
by modeling fine- grained modules that are composed explicitly in each instance. However, we
think the OO paradigm is a more natural and well-established way to approach this use case. The
result is a more expressive language with generalization and parameterization capabilities due to
inheritance and overloading.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:13

In terms of performance, our approach of transforming inheritance early on in the compilation
comes at no real cost compared to classical macro expansion. We modeled the LoggingApplica-
tion, all previously presented Counter examples, and a small robot controller both in the new
OO design and in the classical way using SCCharts modules. When expanding modules and
inheritance respectively, there are only minimal differences. They are mainly caused by fact
that SCCharts modules can only reference states and thus require an additional hierarchy level,
whereas inheritance allows to override regions directly. The support for classes and methods also
resolves naturally by inlining and produces very similar results. In our tests we could not identify
any indication that our approach is more costly than classical modeling. Instead, we see great
potential in a code generation that does not transform away the OO characteristics, as in our
currently quite conservative approach, but reflects these structures in an OO target language to
improve code size and performance.

Regarding the time effort needed to model SCCharts using the OO methodology, we likewise
have not experienced any significant drawback over a procedural approach. However, to get a
reliable evaluation of the effects of OO in SCCharts on the design time, a larger user study is
necessary, which we consider future work.

To test the presented OO concepts in a small case study, we modeled a controller for the steam
boiler example [1]. It is a well-known model for cyber-physical systems. In the scenario, a control
program maintains a safe water level in a steam boiler by communicating with its physical
devices, such as multiple pumps and sensors for throughput, water and steam. The program has
to be able to detect different device and operation failures and react by switching the operation
mode until the devices are repaired or issue an emergency stop. Steam boiler controllers have
been implemented in several languages. For example, Biissow and Weber [14] use an OO approach
to decompose the problem and derive an architectural view. In their implementation they use
classical statecharts and the specification language Z. In our SCCharts model we identified very
similar entities and inheritance relations between components. The entire controller is too large to
be presented in full. Figure 6 shows selected SCCharts and their inheritance relations, visualized
as additional generalization edges. It focuses on the components that best utilize the new OO
features. Most notable is the common failure and repair protocol that is specified for most physical
units. We implement it abstractly in the RepairHandling region of the PhysicalUnit SCChart. It is
extended by the different controllers for the sensors and actuators, each of which handles failures
specific to the unit. The general process of reporting the failure, awaiting an acknowledgment
and then the repair message is inherited from the base SCCharts and bound to the device-specific
communication messages. The AbstractFailiure interface is separated from the PhysicalUnit,
because there is the MonitoredPump that is not a physical unit itself. It has no repair protocol
itself but accumulates the Pump and PumpControl and signals a failure if one of these fails.
Another commonality is modeled in the AbstractWaterLevel, that is able to compute and return
the abstract water levels, such as normal or critical, based on the current level. It is extended by the
WaterSensor that communicates with the actual device to retrieve the level. Whereas, Computed-
WaterLevel is used to replace the WaterSensor if it failed and the program is in the rescue mode. It
computes the water level based on the throughput at the pump controls and steam sensor. In the
design by Biissow and Weber [14], they also model an abstract physical unit and aggregate the
pump and pump control into a monitored pump. They do not specify a water level independent
from the sensor, but they describe that a more fine-grained decomposition could further improve
modularity.

The specification of the steam boiler problem itself does not assume any specific design para-
digm. Hence, there are alternative implementations of this problem that do not have such an archi-
tecture and achieve the same functionality. However, our example and the version by Biissow and

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:14 A. Schulz-Rosengarten et al.

AbstractFailure
protected bool transmissionFailure = false
protected bool deviceFailure = false

Pbool hasTransmissionFailure () |
PPbool hasDeviceFailure ()]

A

MonitoredPump extends PumpsCommunication, AbstractFailure
ref Pump pump
ref PumpControl control
during / control.pumpFailed = pump.hasDeviceFailure()
Pvoid start ()] pP’void stop () |Pbool getThroughput () |
‘override bool hasDeviceFailure ()| p¥ bool hasMonitoringDeviceFailure () |

PhysicalUnit extends AbstractFailure
input signal repairMsg
input signal failAckMsg
output signal failMsg
output signal repairAckMsg

RepairHandiing

Failed - failAckMsg —> — / deviceFailure = false;

Lo UnexpectedAck irAckM:
deviceFailure repairAckMsg
Normal |~ /tailMsg =» [PUnexpectedRepair)) -
UnexpectedRepait MissingAck L /I ':q;\‘nceFanure _' Repaired
failMs
UnexpectedAck \ 9 / UnexpectedAck
2:
[
PumpControl extends PhysicalUnit extends SteamCi i PhysicalUnit Pump extends PhysicalUnit AbstractWaterLevel
m‘:ﬂ?&:h S‘;‘a‘fs':sﬂi PPool getThroughput () DetectingDeviceFailure ior:.lpl:‘ufisgi;:lalsf:e’\:;ﬁmpMsg protectsd Int|level =0
bool pumpFailed = false Missing Transmission output signal closePumpMsg = \sL|g [§)
PPbool getThroughput () | FlowState bool enabled = false ol isLow ()
Missing Transmission PumpState ol isNormal ()
Missing Transmission PPbool isCrifical ()
extends WaterLevelC ication, PhysicalUnit, evel C evel extends AbstractWaterLevel
DetectingDeviceFailure Missing Transmission ref SteamSensor steam
ref MonitoredPumpsControl pumps
input int base

ComputingVirtualWarterLevel
Fig. 6. Selection of SCCharts used in the steam boiler controller and their inheritance relations.

Weber illustrate that the steam boiler fits into the well-established methodology of OO software
design. With our approach in SCCharts we are able to naturally express OO architecture and its
implementation in one model. Furthermore, it has already been demonstrated elsewhere that such
a design can facilitate modeling for embedded systems, see for instance Mouelhi et al. [27] who
present an OO design for autonomous control systems based on Ada.

3.4 Automatic Diagram Synthesis and KIELER

In software development there is often the problem that the actual implementation starts to di-
verge from the architecture defined in an earlier phase or that the architecture of an implemen-
tation needs to be documented, for example in UML diagrams. When modeling with statecharts,
such as SCCharts, such problems are reduced by a graphical notation. The model acts as docu-
mentation and source for the generated code. However, as discussed in Section 2, most statecharts
approaches use separate diagrams to model object relations and behavior. Using the concept of
transient views [31] in SCCharts, the implemented model can be augmented or shaped into different
forms to represent different aspects of a system. As a result, the tasks of designing, implementing,
and documenting a system start to merge while handling a single model.

The open-source KIELER tool implements this concept of transient views for SCCharts. Lan-
guages available in KIELER, such as SCCharts, are implemented with the Xtext framework® that
allows to create textual domain-specific languages for models. These models are then visualized in

Chttps://www.eclipse.org/Xtext/.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://www.eclipse.org/Xtext/

Toward Object-oriented Modeling in SCCharts 37:15

graphical views with the KLighD framework [31] that uses automatic layout’ for arranging these
diagrams.

Textual editing with automatically generated graphical views combines many features that facil-
itate the modeling experience, especially for OO SCCharts. The on-demand visualization of models
as diagrams can be configured and adjusted in various ways to serve the developer’s needs and
assist in the modeling process. The generalization edges in Figure 6 are such an example. They
provide the information usually expected of a UML class diagram in the documentation of such a
project. However, in this case the entire program structure can be interactively explored in varying
granularity, down to the implementation level, by expanding and collapsing regions and filtering
details. With an interactive model-based compiler [36], as in KIELER, the intermediate steps of
the compilation also become inspectable. This allows the user to get a deeper understanding on
how the compilation actually translates a program and enables the user to inspect and verify each
step, which, e.g., facilitates debugging. Similarly to Figure 2, the source models and the expanded
model can be shown side by side. There are also views dedicated to detecting causality issues or
improving the understanding of the generated code [35].

At the same time, there is still a textual variant available to offer the benefits of modern editors
and source control. For example, syntax highlighting, jump-to-declaration, and content-assist. Fur-
thermore, the textual syntax is closer to OO programming in major languages, such as Java and
C++, which lowers the entry burden for new developers. Compared to O-charts or Rhapsody where
class relations are modeled separately from the behavior implementation, SCCharts has a single
source language with all relations automatically inferred and configurable visualized.

4 OBJECT-ORIENTED HOST LANGUAGE INTEGRATION

Section 3.2 shows that SCCharts now can be used to model data structures and that static
expansion creates one self-contained program that can be processed by the existing compiler
without further extension of the lower-level semantics. This might suffice when a SL is used as
the only or primary programming language in a project. However, in practice it is more common
that SLs are used as a high-level orchestration languages. SCCharts, for example, are currently
employed by an industrial partner to replace hand-written state machines in Java and C++
projects. Such a use-case requires close integration with the targeted host language, frameworks,
and other host code. For SLs we propose a host language integration that (1) uses and supports
basic OO capabilities of the host language and itself, (2) uses syntactical concepts a programmer
is familiar with from major synchronous and general-purpose languages, (3) is independent
from a specific host language to allow code generation into different target platforms, and
(4) provides a robust synchronous semantics, especially regarding deterministic concurrency
(Section 5).

Furthermore, the ability to integrate elements of an OO host language in a likewise structured
model, facilitates a more modular or incremental code generation, which can utilize the explicitly
designed structure of the model, especially separation. An approach similar to synERJY and SOs,
presented in Section 2, interconnects separate components rather than expanding them into one
monolithic program.

Regarding host language integration, all established SLs, such as Esterel and Lustre, support
some degree of generalized host code integration into their language, such as external function
invocation and access to the host’s type system. In accordance to that, SCCharts allows the
declaration of external functions, such as “extern @C “rand”, @Java “Math.random” random”.
Then the random function can be used in the SCChart and will be replaced by the given string

"https://www.eclipse.org/elk/.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://www.eclipse.org/elk/

37:16 A. Schulz-Rosengarten et al.

HostCounterApplication
host class Counter {

class Counter {

1
2 private int value = 0; 1 scchart HostCounterApplication { vold increment ()
3 2 host class Counter { void decrement ()
4 public void increment() { 3 void increment() int getValue ()
. } counter

5 value++; 4 void decrement()
6} 5 intgetValue() / counter.increment() C;O
7 public void decrement() { 6 }counter
8 value——; 7
9 1} s during do counter.increment() [print(counter.getValue()) \:;O
10 public int getValue() { 9 during do counter.decrement()
11 return value; 10 during do print(counter.
12 } getvalue()) / counter.decrement() C;O
13} 1}

(a) Counter class in Java (b) HostCounterApplication in (c) HostCounterApplication in graphical

textual SCCharts notation SCCharts notation (with expanded during

actions)

Fig. 7. HostCounterApplication modeled in SCCharts using the Java class Counter.

variants in the generated code, depending on the targeted host language. Later, when compiling
the generated code, the invoked methods must be (manually) linked with an implementation. This
is a common practice for host code integration in SLs. Additionally, variables can be declared with
a specific host code type. For example, if a host implementation for the Counter class presented in
Figure 3(a) is available, such as the Java class in Figure 7(a), then this type can be used in SCCharts
using the declaration notation “host “Counter” counter”.

This integration might suffice for simple function calls in C but has no concepts of OO. One could
argue, for example in the integration of the Counter, that the integrated development environment
(IDE) could parse all related sources to give the modeler access to the members of that object. How-
ever, such support is not available in the current SCCharts implementation, mostly because a cer-
tain degree of independence from the target platform is desired. Furthermore, in SCCharts as well
as Esterel, Lustre, and other SLs, the traditional host integration is considered semantically unsafe,
when it comes to side effects and stateful behavior in such functions and types, see Section 5.

We propose an OO extension to the host language integration in SCCharts that is based on
class declarations, as introduced in Section 3.2. The results can be inspected in the example in
Figure 7 that adapts the CounterApplication in Figure 4 by using the Counter implemented in Java
as external host code. The Counter class in Figure 7(a) implements the specification of the UML
diagram in Figure 3(a). Figure 7(b) shows the textual representation of the HostCounterApplica-
tion SCChart importing this Java class. The SCChart declares a counter variable with the external
host class Counter specification, including the method signatures that must be available for this
class. The behavior of this SCChart is defined by during actions that invoke each method in every
reaction instant of the model and concurrent to each other. In the graphical SCChart in Figure 7(c),
which is automatically generated from the textual notation, the during actions are replaced by
their equivalent state machine representation. It corresponds to the SCChart in Figure 4.

The host class declaration allows to define available class members, including methods, as pre-
sented in Figure 7(b). Variables with this class type are statically instantiated, same as ref types
referencing other SCCharts. Hence, it is possible to have multiple instances but no dynamic in-
stantiation. The host keyword in the declaration specifies that an implementation will be available
in the host language. This is the main difference to non-host class declarations introduced by the
user or by ref types. They need to be synthesized appropriately when generating code, further
discussed in Section 4.1.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:17

typedef struct {

1
1 #hostcode "import java.util.List;" 2 struct Counter { 15 printf("%d", d—>
2 #hostcode "import java.util.ArrayList;" 3 int counter; _counter_getValue_return);
3 4 }counter; 16}
4 scchart Javalist { 5 int _counter_getValue_return; 17 }
5 input int value 6 char_GO; 18
6 7 char _TERM; 19 void reset(TickData «d) {
7 host class "List<Integer>" { 8 } TickData; 20 d->_GO=1;
8 bool add(int value) 9 21 d—>_TERM =0;
9 intsize() 10 void logic(TickData «d) { 22 }
10 }list="new ArrayList<Integer>(50)" 11 if (Ild—>_GO) { 23
11 12 d—>counter.counter++; 24 void tick(TickData «d) {
12 during if value > 0 13 d—>counter.counter——; 25 logic(d);
13 do list.add(value); print(list.size()) 14 d—>_counter_getValue_return =d—> 26 d—->_GO =0;
14 } counter.counter; 27 }

(a) SCChart using an ArraylList (b) Generated C code for the CounterApplication example using the netlist-
from the Java Collections frame- based approach.
work.

Fig. 8. Examples for host language specific classes and code generation.

We think this host language integration matches our goals by (1) supporting classes of the host
language including member access, (2) providing common Java/C++ like class syntax, and (3) re-
taining a certain independence from the host language. This concerns the language of SCCharts
itself, which is uncoupled from different strategies in object creation and memory management,
for example with Java vs. C++, and allows to support various target languages in code generation
as described in Section 4.1. The last aspect (4) is a robust synchronous semantics, discussed in
Section 5.

4.1 Remarks on Class Declarations in SCCharts and Code Generation

The new class declarations allow us to integrate host classes into SCCharts and enable the user
to define own classes that are directly translated into the generated code. The code generation
for SCCharts in the KIELER tool currently supports two main target languages, C as a low-level
language for embedded devices and Java as a platform independent and more high-level language.
This implementation is extended by class declarations. For host classes, which can be expected to
be available in the host language, the code generation is fairly simple as the objects can be used
directly. Sometimes it might be necessary to add host code specific annotations in the SCCharts
to ensure the compiler imports the class correctly. Figure 8(a) shows an SCChart that uses a Java
ArrayList. There are special hostcode annotations to import the correct classes and the host
class declaration uses host code specific object creation. Due to natural differences in program-
ming languages and their approaches to memory management, we favor the concept of statically
instantiated classes in SCCharts. For flexibility, we still allow to adjust this behavior, since in this
case a default instantiation with new List() would not work. As a consequence, this SCChart can
only be compiled into Java code. The SCChart JavalList declares and uses only the add and size
method of the Java List interface. In each instant where the input value is greater than zero,
it is added to the list and the new size is printed. To prevent non-deterministic behavior of such
host code objects, the techniques discussed in Section 5 can be used. This example illustrates how
SCCharts achieve a certain independence from host languages w.r.t. to the syntax. It is possible
to integrate specific host language types and classes but the same languages constructs can be
used to integrate objects from C++, Python or JavaScript if supported by a code generation in the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:18 A. Schulz-Rosengarten et al.

compilation back-end of SCCharts. The SCCharts language itself does not need to be adjusted to
these languages. This polyglot nature is also present in other orchestration languages for embedded
systems, such as Reactors [25].

When synthesizing code for classes declared in SCCharts, the code generation might have to
adjust to the capabilities of the host language. For Java, code generation is fairly straight-forward,
due to the syntactical similarities. In C, a struct can be used to represent a class, since the inlining
of methods removes them from the classes beforehand, as discussed in Section 3.2. If methods
are not inlined, then they need to be defined separately and the struct needs to be passed to the
function to allow access to the object members. Figure 8(b) shows the generated C code for the
CounterApplication in Figure 4 using the netlist-based compilation approach [39]. Without going
into much detail about this approach and the structure of the code, the struct representing the
Counter class is located in the TickData struct that holds the state of the statechart. In the logic
function, which performs a single step of the statechart, the inlined method bodies manipulate and
read the counter value in every but the first instant indicated by !GO.

5 DETERMINISTIC OBJECTS

The most important feature of SLs is their deterministic concurrency, which makes them predes-
tined for safety-critical applications. On the face of it, this seems to preclude shared data structures
and thus inhibits genuine object integration. The CounterApplication in Figure 4 uses an object
with methods defined in SCCharts. Hence, everything in the program is subject to the SCCharts
semantics checked by a static analysis for SC schedulability [39]. According to this semantics, the
concurrent regions will be scheduled into a deterministic order such that increment and decrement
will be executed before getValue. However, this is only possible since the analysis can use a white
box approach for the entire program. When using host objects, as in the HostCounterApplication
example in Figure 7, the implementation is usually not available when the synchronous program
is analyzed. This is a general problem and renders the program vulnerable to non-determinism.
Without the knowledge about memory accesses in methods, the regions of the HostCounterAp-
plication could be ordered randomly. The concurrent calls to increment, decrement and getValue,
which access the internal counter value, are prone to race conditions: The return value of getValue
is different depending on whether it is executed before or after an increment/decrement. Addi-
tionally, if the increment and decrement methods are not atomic, then their interleaved or parallel
execution may also lead to a race condition. Note that for SCCharts, in the absence of data depen-
dencies induced by memory access, the scheduling falls back to the syntactical order in the source
code. However, this still yields a different behavior of the program, since the value is printed before
it is decremented.

The issue of non-determinism with black box function calls is well-known to SLs. It is usually
avoided by demanding that external functions must not have any side effects through shared mem-
ory. Hence, to realize the HostCounterApplication in Figure 7(c), we must code the method calls
as function calls increment(&value), decrement(&value) and getValue(value) where value exposes
the internal memory of the object. To ensure deterministic interaction of such host code functions,
most major SLs implement a strict write-before-read scheduling protocol regarding function
parameters. Call-by-value parameters are considered read and call-by-reference parameters are
write accesses on the respective variable. In Blech, the mutating behavior of function arguments is
controlled statically by the position of the parameter in the argument list of the function call. Since
the scheduling protocol forbids concurrent writes, our HostCounterApplication with concurrent
calls increment(&value), decrement(&value) is unschedulable and thus rejected. The problem
with HostCounterApplication is typical for OO host integration in SLs, because each method call,
by default, has a side effect on the object’s memory. This corresponds to the basic OO principle of

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:19

encapsulation. Blech supports side effects on objects by marking the functions mutating but forbids
the concurrent invocation of these functions, consequently rejecting HostCounterApplication as
well.

A solution for host integration comes from relaxing the standard notion of constructiveness
by sequential constructiveness, as in SCCharts. It permits multiple destructive memory updates,
provided these are commuting® with each other. This is the case for increment(&value) and decre-
ment(&value) assuming they are atomic. As a consequence, the method calls counter.increment
and counter.decrement may be classified as (commuting) updates and counter.getValue as a read.
Then, the HostCounterApplication is sequentially constructive and schedulable under the iur
protocol.

As it turns out, sequential constructiveness facilitates deterministic usage of host code objects
without either exposing internal variables in parameters or following a white box scheduling ap-
proach and analyzing the implementation of external functions. We propose to augment classes
and objects with the necessary scheduling information to avoid data races, acting as a contract
between the synchronous program and the host object. The program context uses the contract
as a restriction for the admissible scheduling of host method calls and the host code guarantees
memory determinism under all admissible schedules. If supported by the host language, then such
contracts can also be added to objects as annotations, such as suggested by Caspi et al. [15]. This
approach fits well into the OO paradigm. Scheduling contracts may act as interface types extending
the existing objects or classes to provide deterministic behavior in the context of SLs. Our proposal
builds on recent work on SD [37] and Scheduling Policies (SP) [3], which are applicable for stat-
echarts in general. The former allow to define static indices that directly prescribe the ordering of
statements. The latter augment an object by an automaton that controls concurrent method calls
to that object. This allows to specify a wide range of (state-dependent) access regimes.

For illustration, we present the HostCounterApplication example from Figure 7(c) in the follow-
ing. It is extended by a contract that allows clients to invoke increment and decrement potentially
multiple times in any order, but strictly before any calls to getValue. This results in a deterministic
value read from a counter object in every instant and corresponds to the semantics under a white
box iur scheduling.

5.1 Scheduling Directives

An SD associates a scheduling unit, such as a single assignment or a whole method, with a named
schedule and an index.” All SDs associated with the same named schedule must be scheduled ac-
cording to their index, lowest index first. This induces a new schedule that may alter the pre-
defined synchronization protocol of the SL. Conservatively, scheduling units with the same indices
are considered conflicting by default. Indices can be set to commuting if the order of their execu-
tion does not matter. For example, as said before, it is common in SLs to order variable accesses
according to a strict write-before-read regime. An SD can be used to override this scheduling or-
der, e.g., to assign new values to variables after they have been read concurrently. For black box
host code SDs are a way of defining non-trivial schedules beyond the simple conventions such as
call-by-value/call-by-reference discussed above.

Figure 9 shows the HostCounterApplication example with SDs in SCCharts. The current
SCCharts compilation ensures atomicity of black box method calls that, therefore, can be seen

8In Reference [39], this is called “confluent,” but we feel “commuting” is more precise in this context. Method execution is
“confluent,” because the methods are pairwise “commuting.”

9We here avoid the term “priority” to avoid confusion with the priorities of priority-based scheduling [39], where the
highest priority is executed first.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:20 A. Schulz-Rosengarten et al.

HostCounterApplicationWithSDs

host class Counter {
schedule {commuting,commuting} CounterSD
void increment () schedule CounterSD 0
void decrement () schedule CounterSD 0
int getValue () schedule CounterSD 1
} counter

/ counter.increment()

\Z
/ print(counter.getValue())
A

/ counter.decrement()

Fig. 9. Deterministic usage of host language object Counter in HostCounterApplication by using to assign
scheduling indices. Resulting dependencies are visualized as green arrows.

as scheduling units. Our aim is to state that increment and decrement can be scheduled in any
order, but must be scheduled before getValue. Therefore, a named schedule CounterSD with two
commuting indices is declared. The index 0 is assigned to increment and decrement, meaning
that their invocations can be ordered arbitrarily but before any calls to getValue, which has
assigned the higher index 1. Note that it is reasonable to set index 1 also commuting, which
enables multiple readers to call getValue concurrently, but strictly after all updates occurred.
Esterel’s valued signals can be coded using the iur protocol [30] that is at the heart of the
notion of sequential constructiveness [39]. This protocol is also expressible as an SD using three
scheduling indices, a noncommuting index 0 (“init”) and commuting indices 1 (“‘update”) and
2 (“read”). Hence, it is possible to create access schedules, which are common for SLs, also for
black box host code objects. Moreover, this approach provides a more flexible and powerful way
of influencing scheduling compared to predefined regimes in SLs. Even for Blech, which allows
functions to mutate objects and exposes read and write accesses on parameters, SDs give the
programmer the opportunity to write deterministic programs that would be rejected by the Blech
compiler. Such an example is HostCounterApplication: Since increment and decrement are both
mutating they could not be invoked concurrently in Blech. Assigning scheduling indices with
SDs follows the same principle as the manual precedences for conflicting writers in synERJY [13].

5.2 Scheduling Policies

The SDs can be generalized to SPs [3], which provide even more advanced scheduling rules. SPs
augment an object by a policy automaton that controls concurrent method calls to that object such
that the scheduling order can be an arbitrary precedence graph and also be state dependent. The
iur protocol and the static indices of SDs mentioned above are special cases.

Figure 10 presents the HostCounterApplication with its associated policy automaton depicted
as an SCChart in a region called CounterPolicy. The automaton has two states, count and read,
which capture the two different scheduling modes, before and after the first reading. Initially,
in state count, all three methods calls increment, decrement, and getValue are admissible as

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:21

HostCounterApplicationWithPolicy

host class Counter {
policy CounterPolicy
void increment ()
void decrement ()
int getValue ()

} counter

/ counter.increment() / print(counter.getValue()) | counter.decrement()

Ppolicy CounterPolicy
decrement: ©

SIS

/ \

inérement:\@
[E

N

1

| ,’cl't tick‘\| getvalue: ©
[| / o\
[o tick—__ ¥ !
~- - -getValue: {increment, decrement}- - --~

Fig. 10. Deterministic usage of host language object Counter in HostCounterApplication by augmenting it
with an policy automaton.

expressed by the dashed (instantaneous) transitions starting from count. Each transition is labeled
by the name of the method call and a so-called blocking set, separated by a colon. Specifically, the
transition labeled getValue: {increment, decrement} states that getValue is admissible but must
wait for any concurrent call to increment or decrement, which take precedence. The admissible
calls increment: 0 and decrement: 0, however, have an empty blocking set. Hence, they are not
blocked by getValue and also do not block each other. As seen in Figure 10, when getValue is
executed the automaton moves into state read. There, no increment or decrement is admissible
any more, only calls to getValue. The solid (non-instantaneous) transitions labeled o tick are the
synchronous clock, which starts a new instant and resets the SP to the initial count mode.

SD schedules (Section 5.1) are special cases of single-state SP automata. Each method labeled m
is a self-loop m : L,, on the only policy state with a blocking set L,,. If index m is declared com-
muting, then it is blocked only by indices smaller than itself m, i.e., L, = {k | k < m}. Otherwise,
L, = {k | kK < m}. Using general policy automata we can express state-dependent schedules. For
example, we could implement bounded queues in which the enqueue method is only admissible
until the queue is full and the dequeue is only admissible while it is not empty. This case can be
efficiently implemented and is supported by the current SCCharts compiler. Other tractable state-
dependent policies are pure Esterel signals [3], runtime enforcers [28], and the synchronous object
policies [15].

5.3 Deterministic Polymorphism

SPs, as well as SDs, specify custom scheduling regimes that can replace or augment the com-
putational model of a language. Such user/library-defined scheduling rules allow us to achieve
determinism while adhering to OO principles [19]. When an SCCharts class is defined with a
custom SD/SP scheduling contract then each (static or dynamic) instance of the class guarantees
determinism (memory coherence [3]) of the method calls for all policy-conformant schedules,
including concurrent object accesses. Policy contracts generate static or dynamic schedules
depending on whether the class typing and method binding can be resolved statically or only at

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:22 A. Schulz-Rosengarten et al.

runtime. Using the notions of policy interfaces and interface extensions, as recently proposed by
Gretz et al. [19], we briefly sketch how SD/SP contracts can be leveraged for polymorphism and
subtyping. The central invariant to be preserved is that well-typed programs exhibit deterministic
behavior that is functionally dependent on controllable input alone rather than unobservable
internal scheduling choices.

The semantics for synchronous activities [19] permits black box procedural abstraction under
the SC model of computation. The scheduling of black box procedures is controlled by precedence
policies so as to preserve memory coherence and determinism at runtime. At any moment in the
execution, the store is protected by a memory interface C = (O, =) where O is the set of acces-
sible and typed object paths and 7 is a precedence policy that specifies which qualified methods
m € Mtd[O] are admissible along the paths O and how these must be ordered in a C-conformant
schedule. If 7 does not specify any precedence between two admissible methods, then they are
concurrent independent (commuting) and can be scheduled in any order. Such precedence policies
[19] are a superset of SDs [37] and correspond to state-less SP [3]. Note that the memory interface
C may be static or change at runtime as new objects are instantiated and deallocated.

The idea is to treat a method call 0.m(0y,02,...,0,) that passes objects o; to method m in
object o like a black box procedure call with call-by-reference parameters. When the method m
is resolved, statically or via dynamic dispatch tables, a memory interface C,, = (O, 1) is re-
trieved that over-approximates a prediction of the memory accesses in the method’s body for the
current synchronous instant. The interface C of the current store at the call site and the formal
interface C,, of the called method m € Mtd[O] provide sufficient information for safe schedul-
ing [19]. Each method call o.m(01, 0z, ...,0,) with actual parameter objects o; induces a path
map f, : Mtd[O,,] — Mtd[O] that translates the formal method calls of the generic method to
the associated actual method calls in the current memory. Memory aliasing is captured by the
fact that f}, is not injective in general. The sets O,, and O must be predictive (static or dynamic)
over-approximations of locations potentially accessible during the current instant, also consid-
ering any indirections via object pointers. For the method call to be memory safe, the path map
fm must preserve the path types associated with O,, and preserve admissibility and concurrent
independence as expressed in 7,,. The former is the standard type checking problem of OO. The
latter is the extension of type checking for memory coherence and determinacy. Specifically, it
requires that if two admissible methods a, b are concurrently independent under 7,,, then their
instantiations f;,(a), f»(b) must be concurrently independent in 7. This ensures that the instan-
tiated method code respects the scheduling precedences required by the current store and does
not introduce non-determinacy. Path maps f satisfying the above induce an extension f : C; E C,
of interfaces that correspond to a subtyping relation: Every store that is coherent (i.e., behaves
deterministically) under C; is also coherent for C; under the (aliasing) map f. A program that
is deadlock-free under C; will also be deadlock-free under the more generous C, and in a C;-
coherent store and exhibit the same behavior as when scheduled under the more restrictive in-
terface C;. For safety-critical applications it will be important that the applicable policy inter-
faces and aliasing maps at all call sites can be determined statically. This must be ensured by
syntactic restrictions limiting the flexibility of OO programming style, such as banning mutable
object references. Programs can thus be locally optimized by shifting along the C relation in the
spectrum between purely sequential and purely concurrent schedules while preserving program
behavior.

6 SUMMARY

We have presented approaches to introduce some aspects of the OO paradigm to a synchronous
statecharts dialect and extended the SCCharts language to implement our concepts. To improve

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

Toward Object-oriented Modeling in SCCharts 37:23

scchart GenericState
<T extends Datalnterface,
P extends AbstractProcessor> {
private ref T data

initial state main is P<T>(data)
/s

}
Fig. 11. A generic SCChart mockup.

1
2
3
4
5
6
7
8

structuring of large systems and to allow efficient modeling of commonalities, we introduced in-
heritance. In the face of the synchronous semantics and the influence of the safety-critical domain
in SCCharts, we decided to follow a static approach in handling this feature and to allow overriding
of regions. Inheritance in combination with the new possibility for specifying and implementing
methods enables modeling of complex class structures in SCCharts. We presented how these mod-
eled classes are translated and discussed the role of transient views in the development process.

We further investigated how objects of an OO host language can be integrated into SCCharts,
while retaining a deterministic behavior and the OO paradigm. We proposed to mimic the class
definition of the host’s objects and extend it, if necessary, by a set of rules to ensure determinism
in a concurrent context. To specify a contract between the synchronous program and external
objects, regarding its method invocations, we integrated two recently proposed approaches. With
scheduling directives SDs it is possible to specify a scheduling order based on static indices, while
a scheduling policy SPs allows to model state-dependent precedences between method calls. Both
approaches match the OO idea of extending an object by a contract and permit more flexibility
than other synchronous scheduling schemes, such as used by SyncCharts or Blech. Finally, we
have sketched how (state-less) precedence policies can be leveraged to induce a form of subtype
polymorphism.

7 OUTLOOK

In this work, we focused on introducing basic OO features and principles in the context of synchro-
nous statecharts that lay the foundation for future developments toward OO and their evaluation
with SCCharts. OO aspects, such as class instances and methods are handled conservatively here
to ease their conformance with the synchronous semantics and application for the embedded
and safety-critical domain. We plan to continue this cautious path not to overload SCCharts with
semantically unwieldy dynamic OO concepts, such as dynamic dispatch for regions and methods.

Nonetheless, we want to improve the convenience and expressiveness of objects in SCCharts.
For example by improving the support for abstract classes and interfaces. With static instantiation
and read-only references on classes, there is currently no opportunity for subtyping and polymor-
phism. Parameterized states would give the user more possibilities to generalize the design of the
system and reuse code. Figure 11 shows a mockup from our ongoing work of a generic SCChart
that has two type parameters. T is the type for the data that should be processed and P is an ab-
stract SCChart for processing such data. The mockup shows how T could be used to declare a data
variable and P is instantiated via regular macro expansion but bound to the data variable and type
T. Such a feature could be handled statically and fits well into the OO concepts introduced so far. In
particular, the extends relation on classes corresponds to interface extension C in the sense of Sec-
tion 5.3. If the code for a state main(x : Datalnterface) : P is deterministic and deadlock-free, then
main(data : T) will also be deadlock-free and deterministic provided DataInterface C T. The ar-
gument data : T supports all methods of DataInterface under no more scheduling constraints

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

37:24 A. Schulz-Rosengarten et al.

as specified by DataInterface. Moreover, if the methods of data are functionally equivalent to
those in x, and data implements T coherently, then the behavior of main(x : DataInterface) :
P and main(data:T):P is identical. Similarly, if AbstractProcessor C P, then the state
main(data : T) : P can be substituted for s : AbstractProcessor in any scheduling context. This
preserves determinacy and deadlock-freeness if the code of main(x : DataInterface) : P is sound
for the interface specifications DataInterface and P. The crucial next step for the development of
sound semantics of inheritance and subtyping will be the integration of precedence policies [19]
into the existing interface theories for SLs such as developed by Pouzet et al. [29] and Benveniste
etal. [8]. A related open problem is to define a compositional semantics for SCCharts modules that
is compatible with the policy-based operational semantics [3] and permits us to provide seman-
tical invariants preserved under inheritance. A promising setting for such a theory might be the
general notion of contracts proposed by Benveniste et al. [7].

Furthermore, with OO there are new opportunities for a more modular code generation. For
example the approach of André et al. [6] could be used to synthesize SOs from SCCharts modules.

ACKNOWLEDGMENT

The authors thank the FDL and Synchron workshop community for their feedback and inspiring
discussions. We are especially grateful for the suggestions of Albert Benveniste and Benoit Caillaud
regarding the relation of synchronous semantics and OO. We also thank the anonymous reviewers
for their valuable comments.

REFERENCES

[1] Jean-Raymond Abrial. 1996. Steam-Boiler Control Specification Problem. Springer, Berlin, 500-509. DOI : https://doi.
org/10.1007/BFb0027252

[2] AdaCore. 2016. High-Integrity Object-Oriented Programming in Ada, v1.4. Retrieved from http://extranet.eu.adacore.
com/articles/HighIntegrityAda.pdf.

[3] Joaquin Aguado, Michael Mendler, Marc Pouzet, Partha S. Roop, and Reinhard von Hanxleden. 2018. Deterministic
concurrency: A clock-synchronised shared memory approach. In Proceedings of the 27th European Symposium on
Programming (ESOP’18). 86—113. DOI : https://doi.org/10.1007/978-3-319-89884-1_4

[4] Jonathan Aldrich. 2013. The power of interoperability: Why objects are inevitable. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (Onward!’13).
Association for Computing Machinery, New York, NY, 101-116. DOI : https://doi.org/10.1145/2509578.2514738

[5] Charles André. 2004. Computing SyncCharts reactions. Electr. Notes Theor. Comput. Sci. 88 (2004), 3-19.

[6] Charles André, Frédéric Boulanger, Marie-Agnes Péraldi, Jean-Paul Rigault, and Guy Vidal-Naquet. 1997. Objects and
synchronous programming. . Eur. Syst. Automat. 31, 3 (1997), 417-432.

[7] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste Raclet, Philipp Reinkemeier,
Alberto Sangiovanni-Vincentelli, Werner Damm, Thomas Henzinger, and Kim Guldstrand Larsen. 2018. Contracts for
System Design. Now, Foundations and Trends.

[8] Albert Benveniste, Benoit Caillaud, and Jean-Baptiste Raclet. 2012. Application of interface theories to the sepa-
rate compilation of synchronous programs. In Proceedings of the IEEE Conference on Decision and Control (CDC’12).
7252-7258.

[9] Gérard Berry. 1999. The Esterel v5 Language Primer. Retrieved from ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.
ps.

[10] Gérard Berry. 2000. The foundations of Esterel. In Proof, Language, and Interaction: Essays in Honour of Robin Milner.
MIT Press, Cambridge, MA, 425-454.

[11] Darek Biernacki, Jean-Louis Colaco, Grégoire Hamon, and Marc Pouzet. 2008. Clock-directed modular code genera-
tion of synchronous data-flow languages. In Proceedings of the ACM SIGPLAN/SIGBED 2008 Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES 08). ACM, 121-130.

[12] Frédéric Boussinot, Guillaume Doumenc, and Jean-Bernard Stefani. 1996. Reactive objects. Ann. Télécommun. 51, 9
(Sep. 1996), 459-473. DOI : https://doi.org/10.1007/BF02997708

[13] Reinhard Budde, Axel Poigné, and Karl-Heinz Sylla. 2006. synER]JY an object-oriented synchronous language. Electr.
Notes Theor. Comput. Sci. 153, 4 (2006), 99-115.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://doi.org/10.1007/BFb0027252
https://doi.org/10.1007/BFb0027252
http://extranet.eu.adacore.com/articles/HighIntegrityAda.pdf
http://extranet.eu.adacore.com/articles/HighIntegrityAda.pdf
https://doi.org/10.1007/978-3-319-89884-1_4
https://doi.org/10.1145/2509578.2514738
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
https://doi.org/10.1007/BF02997708

Toward Object-oriented Modeling in SCCharts 37:25

(14]

(15]

[16]

(17]
(18]

(19]

[20]

[21]

(32]
(33]

(34]

(35]

Robert Biissow and Matthias Weber. 1996. A steam-boiler control specification with statecharts and Z. In Formal
Methods for Industrial Applications, Specifying and Programming the Steam Boiler Control.Springer-Verlag, Berlin,
109-128.

Paul Caspi, Jean-Louis Colaco, Léonard Gérard, Marc Pouzet, and Pascal Raymond. 2009. Synchronous objects with
scheduling policies: Introducing safe shared memory in Lustre. In Proceedings of the ACM International Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’09). ACM,11-20.

Jean-Louis Colaco, Bruno Pagano, and Marc Pouzet. 2017. SCADE 6: A formal language for embedded critical software
development (invited paper). In Proceedings of the 11th International Symposium on Theoretical Aspects of Software
Engineering (TASE’17). Sophia Antipolis, France, 1-11.

Derek Coleman, Fiona Hayes, and Stephen Bear. 1992. Introducing objectcharts or how to use statecharts in object-
oriented design. IEEE Trans. Softw. Eng. 18, 1 (Jan. 1992), 8—18. DOI : https://doi.org/10.1109/32.120312

Friedrich Gretz and Franz-Josef Grosch. 2018. Blech, imperative synchronous programming!. In Proceedings of the
Forum on Specification Design Languages (FDL’18). 5-16. DOI : https://doi.org/10.1109/FDL.2018.8524036

Friedrich Gretz, Franz-Josef Grosch, Michael Mendler, and Stephan Scheele. 2020. Synchronized shared memory and
procedural abstraction: Towards a formal semantics of Blech. In Proceedings of the Forum on Specification and Design
Languages (FDL’20). DOI : https://doi.org/10.1109/FDL50818.2020.9232942

Olivier Hainque, Laurent Pautet, Yann Le Biannic, and Eric Nassor. 1999. Cronos: A separate compilation toolset for
modular Esterel applications. In Proceedings of the World Congress on Formal Methods, Lecture Notes in Computer
Science, Vol. 1709. Springer, 1836-1853.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchronous data flow programming
language LUSTRE. Proc. IEEE 79, 9 (Sep. 1991), 1305-1320.

David Harel and Eran Gery. 1996. Executable object modeling with statecharts. In Proceedings of the 18th International
Conference on Software Engineering (ICSE’96). IEEE Computer Society, 246-257.

David Harel and Hillel Kugler. 2004. The Rhapsody Semantics of Statecharts (or, On the Executable Core of the UML).
Springer, Berlin, 325-354. DOI : https://doi.org/10.1007/978-3-540-27863-4_19

Edward A. Lee. 2006. The problem with threads. IEEE Comput. 39, 5 (2006), 33—-42.

Marten Lohstroh, Martin Schoeberl, Andres Goens, Armin Wasicek, Christopher Gill, Marjan Sirjani, and Edward A.
Lee. 2019. Invited: Actors revisited for time-critical systems. In Proceedings of the 56th ACM/IEEE Design Automation
Conference (DAC’19).

Christian Motika, Steven Smyth, and Reinhard von Hanxleden. 2014. Compiling SCCharts—A case-study on in-
teractive model-based compilation. In Proceedings of the 6th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (IS0OLA’14), Lecture Notes in Computer Science, Vol. 8802. 461-480.
DOI:https://doi.org/10.1007/978-3-662-45234-9

Sebti Mouelhi, Daniela Cancila, and Amar Ramdane-Cherif. 2017. Distributed object-oriented design of autonomous
control systems for connected vehicle platoons. In Proceedings of the 2017 22nd International Conference on Engineering
of Complex Computer Systems (ICECCS’17). 40-49. DOI : https://doi.org/10.1109/ICECCS.2017.32

Srinivas Pinisetty, Partha S. Roop, Steven Smyth, Stavros Tripakis, and Reinhard von Hanxleden. 2017. Runtime
enforcement of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16, 5s (2017), 178:1-178:25.

Marc Pouzet and Pascal Raymond. 2010. Modular static scheduling of synchronous data-flow networks—An efficient
symbolic representation. Des. Autom. Emb. Syst. 14, 3 (2010), 165-192.

Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von Hanxleden, and Michael Mendler. 2015. SCEst: Se-
quentially constructive Esterel. In Proceedings of the 13th ACM-IEEE International Conference on Formal Methods and
Models for System Design (MEMOCODE’15).

Christian Schneider, Miro Sponemann, and Reinhard von Hanxleden. 2013. Just model!—Putting automatic synthesis
of node-link-diagrams into practice. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’13). IEEE, 75-82. DOI : https://doi.org/10.1109/VLHCC.2013.6645246

Alexander Schulz-Rosengarten, Steven Smyth, and Michael Mendler. 2019. Towards object-oriented modeling in SC-
Charts. In Proceedings of the Forum on Specification and Design Languages (FDL’19). Southampton, UK.

Bran Selic. 1996. Real-time object-oriented modeling. IFAC Proc. Vol. 29, 5 (1996), 1-6. DOI : https://doi.org/10.1016/
S1474-6670(17)46346-4

Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Séren Domrds, Lena Grimm, Andreas Stange,
and Reinhard von Hanxleden. 2019. SCCharts: The Mindstorms Report. Technical Report 1904. Christian-Albrechts-
Universitat zu Kiel, Department of Computer Science.

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. 2018. Guidance in model-based compi-
lations. In Proceedings of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (IS0)LA’18), Doctoral Symposium (Electronic Communications of the EASST), Vol. 78.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://doi.org/10.1109/32.120312
https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1109/FDL50818.2020.9232942
https://doi.org/10.1007/978-3-540-27863-4_19
https://doi.org/10.1007/978-3-662-45234-9
https://doi.org/10.1109/ICECCS.2017.32
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1016/S1474-6670(17)46346-4
https://doi.org/10.1016/S1474-6670(17)46346-4

37:26 A. Schulz-Rosengarten et al.

(36]

(37]
(38]

(39]

[40]

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. 2018. Towards interactive compilation
models. In Proceedings of the 8th International Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (IS)LA’18), Lecture Notes in Computer Science, Vol. 11244. Springer, 246-260.

Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. 2019. Practical causality handling for
synchronous languages. In Proceedings of the Design, Automation and Test in Europe Conference (DATE’19). IEEE.
Eugene Syriani, Vasco Sousa, and Levi Lucio. 2019. Structure and behavior preserving statecharts refinements. Sci.
Comput. Program. 170 (2019), 45-79. DOI : https://doi.org/10.1016/].scic0.2018.10.005

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquin Aguado,
Stephen Mercer, and Owen O’Brien. 2014. SCCharts: Sequentially constructive statecharts for safety-critical applica-
tions. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’'14).
ACM, 372-383.

Peter Wegner. 1987. Dimensions of object-based language design. In Conference Proceedings on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA’87). Association for Computing Machinery, New York, NY,
168-182. DOI : https://doi.org/10.1145/38765.38823

Received February 2020; revised February 2021; accepted March 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 4, Article 37. Publication date: May 2021.

https://doi.org/10.1016/j.scico.2018.10.005
https://doi.org/10.1145/38765.38823

