
KIELER: Building on Automatic Layout
for Pragmatics-Aware Modeling

Miro Spönemann, Christoph Daniel Schulze, Christian Motika, Christian Schneider, and Reinhard von Hanxleden
Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany

{msp,cds,cmot,chsch,rvh}@informatik.uni-kiel.de

Abstract—Automatic layout is a key enabler for pragmatics-
aware modeling, which refers to model-driven engineering with
designer productivity in mind. This showpiece introduces an
infrastructure for the integration of graph layout libraries and
their configuration with regard to graphical views of modeling
applications.

I. INTRODUCTION

Graphical modeling languages, such as the UML, are an
established means to design complex systems. However, the
actual process of creating and maintaining graphical models
is often rather tedious in practice. In particular, the standard
paradigm of drawing graphical models manually typically
results in a difficult trade-off between model degradation and
continuous manual effort. Klauske estimates the effort required
for manually creating layouts at 25% of the time spent for
modeling automotive systems [1, p. 4].

Pragmatics-aware modeling [2] aims to help designer
productivity by allowing the modeler to focus on the model,
and having the modeling tool create customized views auto-
matically. This is enabled by the transient views approach,
which allows the efficient, automatic creation of graphical
views, customized to specific requirements [3].

Contribution: We here present new techniques for the
integration of automatic layout in graph-based modeling tools.
This is an essential building block upon which the tran-
sient views approach as well as other methods addressing
pragmatics-aware modeling are built. An essential aspect is the
set of interfaces for the selection and configuration of layout
algorithms (meta layout). We introduce four types of config-
uration interfaces that are implemented in the Kiel Integrated
Environment for Layout Eclipse Rich Client (KIELER)1.

Related work: Of course there are already many applica-
tions that integrate automatic layout for visual languages. How-
ever, most of these tools are limited to only few, sometimes
rather primitive layout algorithms, and hardly offer any con-
figuration parameters. Maier and Minas propose to configure
automatic layout with a pattern-based approach [4]. The focus
of this paper, in contrast, is to find a configuration approach
that integrates well with the capabilities of existing libraries
and makes them available for a wide range of modeling
applications.

II. AN INFRASTRUCTURE FOR META LAYOUT

Numerous approaches for the automatic layout of graphs
have been developed [5], but due to the even more numerous

1http://www.informatik.uni-kiel.de/rtsys/kieler/

applications, requirements, and constraints none of the existing
graph layout algorithms are applicable to all kinds of diagrams.
Therefore it is desirable to be able to select from multiple al-
gorithms and to customize them according to the requirements
of particular applications. Since the implementation of graph
layout algorithms requires a lot of effort, it is advisable to
reuse existing libraries such as OGDF2 or Graphviz3. However,
each of these libraries has its own API, and integrating such C
or C++ libraries in Java applications is an intricate task. We
solve these problems in the KIELER Infrastructure for Meta
Layout (KIML) [2] by offering a common API for multiple
frontends, i. e. diagram editors and viewers, and multiple
backends, i. e. layout algorithms from various libraries. With
this infrastructure the effort for integrating automatic layout in
Eclipse-based applications is greatly reduced.

An important question is how to design a common interface
for the selection and configuration of layout algorithms. We
propose a design where each configuration option (denoted
as layout option in the following) is represented by a key-
value pair that is attached to a graph or graph element. We
call the set of key-value pairs attached as layout options to
a graph G the abstract layout of G. In contrast, concrete
layout refers to the actual positions of the elements of G.
When a layout algorithm is executed on a graph, it transforms
the abstract layout into a concrete layout. By meta layout
we denote the process of generating an abstract layout. The
choice of layout algorithm is also encoded as a layout option
named “Algorithm”, hence it can be processed in the same
way as other options. Other examples for commonly used
options are the minimal spacing between nodes, the overall
direction of edges, or the edge routing style. In KIML, graphs
are represented with a data structure that includes abstract as
well as concrete layout data [3]. When a layout for a graph is
requested, our infrastructure generates an abstract layout and
then applies the selected algorithms to the graph to compute
a concrete layout.

III. LAYOUT CONFIGURATION INTERFACES

We present four interfaces for the meta layout process, i. e.
the generation of layout configuration data, of which some
address the user and others address the application developer.

a) Defaults and user preferences: For many layout
options it is reasonable to set fixed default values in a particular
context. Tool developers may want to predefine the layout
for their diagram editors, and users may want to modify

2http://www.ogdf.net/
3http://www.graphviz.org/



Figure 1. A process network diagram imported from the Ptolemy project [6] with sliders and buttons for direct manipulation of layout options.

some parameters for their own environment. For each affected
layout option o, a specific diagram element class C is stored
together with the respective value v. The class C can either
represent a component of the concrete syntax, e. g. a diagram
editor canvas, or a component of the abstract syntax, e. g. a
meta model class of a domain-specific language. The option
mapping o 7→ v is applied to the layout of all instances of
C. The tool developer’s settings are shipped together with the
diagram editor, while the user’s settings are kept in the local
preference storage.

b) Diagram-bound settings: In order to allow a cus-
tomized configuration for each diagram, layout option map-
pings must be linked directly with diagram elements. This
can be done with annotations of either the concrete syntax
model or the abstract syntax model. In the former case the
options are applied only to the respective diagram, while in
the latter case they are applied to all diagrams derived from
the model. This distinction only makes sense if the model and
view are separated, like in most UML editors. The diagram-
bound configuration is displayed in the user interface in form
of a table similar to the “Properties” view of Eclipse.

c) View management: The handling of graphical views
can be improved with the concept of view management [2],
where a simple interface for the combination of triggers and
effects of the modeling environment is provided. In this context
it is often necessary to perform automatic layout as an effect
on a graphical view, and to apply different configurations to
the layout depending on the state of the overall system. This
is done with an interface for setting layout option mappings in
a single layout execution; these mappings are held in a hash
map, which is discarded after the layout is applied.

d) Transient views: The light-weight approach of creat-
ing transient graphical views allows a much faster application
of automatic layout compared to editor-based solutions [3].
As a consequence, it is possible to manipulate layout options
in a more interactive manner: Figure 1 shows a process
network diagram together with a section of controls for directly
changing a number of layout options. Moving a slider or
clicking a button immediately triggers a re-layout of the view

with the updated option value. For diagrams that are not too
large (up to several hundreds of nodes on normal computers)
the computation of a new layout and its application to the view
is fluid enough to respond seamlessly to the user’s actions.

IV. CONCLUSION

We presented concepts for the design of layout config-
uration interfaces. These interfaces allow a highly flexible
integration of graph layout algorithms into modeling appli-
cations, both from the application programmer’s perspective
and from the user’s perspective. By employing light-weight
transient views it is possible to directly interact with the
automatically computed layout through sliders and buttons.
This is a confirmation of the usefulness of the transient
views approach, which aims at supporting pragmatics-aware
modeling with graph-based views that are optimized for the
integration of automatic layout. Since the speed and fluidity of
this approach is difficult to convey in a paper, we demonstrate
it in a video that is available on the KIELER web page (see
Section I) and distributed at the VL/HCC conference.

REFERENCES

[1] L. K. Klauske, “Effizientes Bearbeiten von Simulink Modellen mit Hilfe
eines spezifisch angepassten Layoutalgorithmus,” Ph.D. dissertation,
Technische Universität Berlin, 2012.

[2] H. Fuhrmann and R. von Hanxleden, “Taming graphical modeling,” in
Proceedings of the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), ser. LNCS,
vol. 6394. Springer, Oct. 2010, pp. 196–210.

[3] C. Schneider, M. Spönemann, and R. von Hanxleden, “Just model!
– Putting automatic synthesis of node-link-diagrams into practice,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’13), San Jose, CA, USA, Sep.15–19 2013.

[4] S. Maier and M. Minas, “Combination of different layout approaches,” in
Proceedings of the Second International Workshop on Visual Formalisms
for Patterns (VFfP’10), ser. Electronic Communications of the EASST,
vol. 31, Berlin, Germany, 2010.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity—the Ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.


