Two Applications for Transient Views
in Software Development Environments

Christoph Daniel Schulze, Miro Sponemann, Christian Schneider, and Reinhard von Hanxleden
Dept. of Computer Science, Christian-Albrechts-Universitit zu Kiel, Germany
Email: {cds,msp,chsch,rvh}@informatik.uni-kiel.de

Abstract—Pragmatics-aware modeling refers to model-driven
engineering with designer productivity in mind. We apply this
concept to traditional software development by introducing two
exemplary applications for transient views geared at increasing
developer productivity: UML class diagram generation and debug
state visualization.

I. INTRODUCTION

Pragmatics-aware modeling [1] aims to increase designer
productivity by taking a human-centric approach of allowing
the modeler to focus on the model, and by having the modeling
tool create customized views automatically as required. This
is enabled by the fransient views approach, which allows the
efficient, automatic creation of graphical views, customized to
specific requirements [2].

However, transient views cannot be applied only to model-
based development. Developers using traditional programming
languages such as Java can make use of dynamic visualization
as well. In this paper, we apply the concept of pragmatics-
aware modeling to traditional development environments,
thereby introducing pragmatics-aware development.

Contribution: We present two applications for transient
views in traditional development environments: dynamic gen-
eration of UML class diagrams allows developers to quickly
generate graphical views of an application’s structure; debug
state visualization enables developers to graphically inspect
the state of suspended applications. Both applications were
implemented into the Eclipse development environment.

Related work: Eclipse-based tools for generating UML
class diagrams include EclipseUML' and ObjectAid.> Both
tools integrate into the development environment and generate
dedicated files that represent the diagrams. Both tools can
generate diagrams from Java code, EclipseUML can also
generate Java code from diagrams. Both tools focus on per-
sisted diagrams. Several tools exist to visualize data structures.
The Lightweight Java Visualizer library [3] can be used to
programmatically generate graphs that represent Java objects,
but does not explicitly allow specialized visualizations for
certain classes of objects. Javavis [4] is an application that
uses diagrams to control and inspect the execution of Java
programs, but does not allow specialized visualizations either.

II. UML CLASS DIAGRAM GENERATION

UML class diagrams are a an established way to help
understand a piece of software by visualizing its structure.

Traditional UML modeling tools integrated in development
environments usually treat the diagrams as first-class citizens
to be explicitly edited and persisted. The approach based on
transient views instead generates diagrams on the fly based on
a set of classes selected in the development environment. The
overhead associated with creating a new diagram file, dragging
the relevant classes into it, and positioning them properly is
replaced by selecting classes in the IDE and invoking a single
command from the context menu. Inheritance relationships and
associations are found and displayed automatically.

To implement the transient views approach to class diagram
generation, we used the KLighD framework, a part of the
KIELER project.> We added a simple diagram synthesis that
turns a selection from the Eclipse Project Viewer into a graph
structure. The graph structure is then laid out using the OGDF
Planarization algorithm* to produce a diagram. A sample
diagram generated this way is shown in Fig. 1.

The diagram can be customized by setting a number of
options, for example whether all or only explicitly selected
members of selected classes should be visualized, whether to
visualize the package hierarchy, and whether inheritance and
association edges should be visualized.

In addition, we provide a textual language through which
the exact content of the diagram and all visualization options
can be customized and persisted, if required.

III. DEBUG STATE VISUALIZATION

One of the common tasks in software development is
debugging a fault within an application. This often involves
running it in a dedicated debug mode that supports setting
breakpoints to suspend and inspect the running application.
Eclipse provides a number of views on suspended applications,
of which one shows the variables and fields in scope at a
given breakpoint. This view allows the programmer to inspect
and even change the current values of variables and fields and
find out whether they match the expectations. The variables
and fields are arranged in a tree view. While this is already
very helpful, the object graph is usually not a tree: any given
object can be referenced by multiple other objects, and back
references are common as well. In these cases, objects appear
more than once in the tree, causing it to become increasingly
unclear.

Debug state visualization presents the variables and fields
as a diagram, as shown in Fig. 2. Also based on the KLighD

Uhttp://www.ejb3.org
Zhttp://www.objectaid.com

3http://www.informatik.uni-kiel.de/en/rtsys/kieler/
“http://www.ogdf.net/

o7} de.cau.cs.kieler.lay.layered 32

(AbstractGraphPlacer

“ moveGraph (destGraph : LGraph, sourceGraph : LGraph, offsetx : double, offsety : double) : void
0.1

- offsetGraph (graph : LGraph, offsetx : double, offsety : double) : void

‘f

(& ComponentGroupGraphPlacer

E addComponent (component : LGraph) : void

0..1

@ SimpleRowGraphPlacer

S id Y=
b .
Diagram Options

General
@ Color Gradient
@] Icons

Package Hierarchy

Visualization of Attributes/Methods:
(%) Visualize Selection
() Visualize All

Classes

(& ComponentGroup Fully Qualified Name

Attributes

™ Private Attributes
™ Type

Methods

@ Private Methods
™ Type

™ Parameters

© ComponentGroup 0 : void

© ComponentGroup (compenent : LGraph) : void
0.*

© add (component : LGraph) : boolean

@

getComponents () : Collection<LGraph>

(3 ComponentsProcessor
B SPACING_FACTOR : float

0..1 Edges
0.1 ™ Inheritance
@Assn:iaﬂons
G KlayLayered Layout Options
é Direction:
0 ILayoutProcessor © doCompoundLayout (Igraph : LGraph, monitor : IKielerProgressMonitor) : void b
0..* ./ Down
© dolayout (Igraph : LGraph, monitor : IKielerProgressMonitor) : void | Left
@ Right
\Up
@& jLayoutPhase Spacing:

[

Fig. 1.

< =
)= Variables 22 <+ 5 = B
Mame Value
[v ® movies ___________|HashMap<K.V> (id=26)
B entrySet null
& hashSeed 0
a keySet null
& loadFactor 0.75
a modCount 3
- [N -
o7 Variable 23 S SR R TIN = = B
"The Dark krughl" 'L)j:im_]lo"
value value
'Ea'lrni;n Begins" "Chrlslophc\r Nolan” IQIJL'II!I‘[I. Ialrarllmu"

value

Fig. 2. The debug visualization showing a graphical view of a HashMap
selected in the variables view provided by Eclipse. Note that two keys map
to the same object, which is easy to see in the diagram.

framework, selecting data in the variables view provided by
Eclipse opens a view with a node-link diagram representing
the objects and their relationships.

The debug state visualization is based on small transforma-
tions that specify how to represent instances of a specific class
in the diagram. For example, the St ringTransformation
represents a String instance as a single node in the dia-
gram labeled with the String, while the LinkedList—
Transformation adds a node that represents a Linked-
List, triggers a transformation for each contained object, and
adds links between them. Through an Eclipse extension point,

A class diagram drawn by our implementation of transient views UML class diagram generation.

the visualization can easily be extended by adding custom
transformations.

IV. CONCLUSION

With UML class diagram generation and debug state
visualization we have shown two applications for transient
views in traditional development environments. UML class
diagram generation allows to gain a quick overview without
the overhead normally associated with UML tools. Debug
state visualization offers a visual presentation of the state of
suspended applications.

Future work could go into supporting more UML diagrams,
such as the automatic generation of sequence diagrams. Re-
garding debug state visualization, visualizations for many more
classes could be added.

REFERENCES

[1] H. Fuhrmann and R. von Hanxleden, “Taming graphical modeling,” in
Proceedings of the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), ser. LNCS,
vol. 6394. Springer, Oct. 2010, pp. 196-210.

[2] C. Schneider, M. Sponemann, and R. von Hanxleden, “Just model!
— Putting automatic synthesis of node-link-diagrams into practice,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’13), San Jose, CA, USA, 15-19 Sep. 2013,
pp. 75-82.

[3] J. Hamer, “A lightweight visualizer for Java,” in Proceedings of the
third program visualization workshop, Research Report CS-RR-407.
Department of Computer Science, University of Warwick, 2004, pp. 54—
61.

[4] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic program visualization
with object and sequence diagrams using the Java debug interface (JDI),”
in Software Visualization, ser. Lecture Notes on Computer Science.
Springer, 2002, vol. 2269, pp. 176—190.

