Automatic Layout in the Face
of Unattached Comments

Christoph Daniel Schulze
Department of Computer Science
Christian-Albrechts-Universitit zu Kiel
Kiel, Germany
Email: cds@informatik.uni-kiel.de

Abstract—Visual languages based on node-link diagrams are
widely used for systems modeling. As in textual languages,
comments can make diagrams easier to understand. In the
absence of an explicit attachment between comments and the
diagram elements they relate to, that relationship is usually given
implicitly by the manual placement of comments near the related
elements. While algorithms for the automatic layout of diagrams
can make working with diagrams more effective, they usually
fail to preserve implicit attachments by placing comments at
arbitrary positions.

In this paper, we propose a comment attachment algorithm
that extracts implicit attachments and makes them accessible
to layout algorithms. We implemented the algorithm in an
application for browsing Ptolemy diagrams and achieved success
rates, i.e. attachments as intended by the user, of up to 90%.

I. INTRODUCTION

The automotive industry has widely adopted visual lan-
guages to model software systems. Languages such as
Simulink (The MathWorks), SCADE (Esterel Technologies),
ASCET (ETAS), or Ptolemy (UC Berkeley) allow developers
to define complex software systems graphically through node-
link diagrams: nodes (also called vertices) consume and pro-
duce data that is transferred between them through links (also
called edges), as seen in Fig. 1. The general assumption is that
diagrams are easier to read and understand than traditional
textual languages. This is not automatically true, however.
Petre for example argues that visual languages are not easier
to understand simply because they are visual [1]. Just like
in textual languages, one tool for helping developers produce
diagrams that are easier to understand are comments.

In diagrams, comments are usually represented as a special
kind of vertex that contains text entered by the developer.
Some visual languages allow comments to be explicitly at-
tached to the diagram elements they relate to, if any; such
an explicit attachment is usually visualized as a direct line
between comment and diagram element. Other languages do
not provide such explicit attachments; instead, the developer
has to rely on other cues. The diagram in Fig. 1 has very well
placed comments, making this an easy task. Usually, though,
figuring out attachments is more complex, and is generally
more difficult than in textual languages, where comments
directly precede or follow the code they relate to, without much
ambiguity.

Since the readability of diagrams strongly depends on
their layout, developers often spend a lot of time moving

Reinhard von Hanxleden
Department of Computer Science
Christian-Albrechts-Universitit zu Kiel
Kiel, Germany
Email: rvh@informatik.uni-kiel.de

vertices around [2]. Automatic layout algorithms are a way to
free developers from constantly having to rearrange diagram
elements while editing a diagram, allowing them to focus
on the semantics they want to express. If there are explicit
attachments between comments and diagram elements, layout
algorithms can easily place them in close proximity. In the
absence of explicit attachments, however, most layout algo-
rithms will place comments at arbitrary locations, destroying
any implicit attachment cues in the process, perhaps even
introducing misleading ones. What is required for layout
algorithms to properly place comments, thus, is a way to infer
implicit attachments and make use of them to place comments
and attached vertices in close proximity.

In this paper, we propose a simple distance-based algorithm
for inferring attached vertices, explicitly excluding cases where
comments may be attached to other elements of a graph, such
as ports and edges. We evaluate the algorithm with a subset
of the demo models that ship with Ptolemy.

We will start with a brief review of related work, followed
by theoretical foundations. We then describe our algorithm,
evaluate the results it produces and conclude the paper with a
discussion.

A. Related Work

When it comes to automatic layout algorithms, Misue et al.
distinguish between layout adjustment and layout creation [3].
Layout adjustment algorithms try to preserve a diagram’s
topology and will thus be better at preserving the visual cues
present in the diagram. Layout creation algorithms compute
new layouts from scratch and can easily remove the visual
cues if no further effort is made. In this paper, we address
layout creation algorithms.

To our knowledge, there has been no previous work on in-
tegrating comment positioning with layout creation algorithms.
However, much research has centered around the related topic
of integrating labels into layout algorithms. To name just
two papers, Klau and Mutzel showed how to integrate edge
labels into the orthogonal approach to graph drawing [4]
and Kakoulis and Tollis proposed a method for placing node
and edge labels in arbitrary drawings of graphs [5]. Contrary
to comments, the attachment between labels and diagram
elements is known in most graphical editing frameworks.

This model shows a simple adaptive cruise control system,
illustrating model-integrated control strategies. A leading

car model produces information that is observed with possible
flaws by a following car. If the following car detects flaws, it
uses a conservative strategy. Otherwise, it tracks the leading
car closely.

Continuous Director o ¢, isareTime: 50.0

o faultStopTime: 70.0

CurrentTime Simulate a car

f Simulate a wireless that attempts
network that corrupts to detect faults
the data when the fault in communication
input is true. and adapt its

Grandma Simulator Periodicsampler NetworkModel behavior.

spes E FollowingCar
Ly packelol acceleration
e]

Simulate a car
that matches
driver of the the desired speed
leading car. using feedback
Output is the control with a
driver's specified time
desired speed. constant.

ca RecordAssembler
<

Simulate the

Author: Xiaoljun Liu and Edward A. Lee

Fig. 1. A sample diagram taken from the repository of demo models that ship
with Ptolemy. Vertices consume and produce data that is transported through
the edges. The comments describe either the model as a whole or individual
vertices. Note how the placement of the comments makes attachments readily
visible, even if the text may be too small to read here.

ContinuousSinewave

; " *
B L
ModalModel

TimedPlotter
00|

Look inside the ModalModel to
see how this is implemented.

Authors: Edward A. Lee and Haiyang Zheng

Fig. 2. Part of another of Ptolemy’s demo diagrams. Here, proximity alone
does not suffice to infer the attachments. The comment to the right actually
belongs to the vertex in the center, which becomes apparent only from reading
the comment’s text. The comment at the bottom has no relation to the vertex
it is near to; it follows the Ptolemy convention of placing the names of the
authors at the bottom left corner of the diagram.

II. GRAPHS AND ANNOTATIONS

We model diagrams as graphs and define a graph to be a
pair G = (V, E) of a finite set of vertices V and a set E of
edges, either directed or undirected. For this paper, we augment
this definition with a finite set C' of comments. Vertices and
comments have a width and a height as well as a position in
the plane.

A comment attachment algorithm takes a graph with
comments G = (V,C, E) as its input, along with the size
and coordinates of each vertex and comment. The aim is
to compute a (possibly partial) comment attachment function
att: C — V that defines which vertex a comment relates to,
if any. If a comment ¢ € C' is not attached to a vertex, att(c)
is undefined and we write att(c) =L.

III. ATTACHING COMMENTS

When viewing a diagram, a human viewer will use several
cues to determine the vertex a comment relates to. The easiest
cue is an explicit attachment, shown for example as a direct
link between comment and vertex in the diagram. Its advantage
is clarity: an explicitly shown attachment makes the relation
between comment and vertex unambiguously clear. In its
absence we have to resort to other, less clear cues.

Fig. 3. Measuring the distances d; and do between a comment ¢ and two
vertices v, and va.

The most obvious cue is proximity: the closer a comment
is to a vertex, the more likely we will assume the two to be
attached. This principle seems very basic, and one might be
tempted to expect every developer to follow it instinctively.
However, we have found examples of diagrams that violate
this principle. Fig. 2 shows parts of a diagram whose author
comment was placed in close proximity to a vertex it has no
relation to. The reason for this can often be found in other
design considerations that were deemed more important, for
example to produce as compact a diagram as possible, or
in explicit or implicit conventions of the modeling language.
Whatever the cause, the implication is that proximity alone is
not sufficient to infer implicit attachments.

Another cue is the content of a comment: if the comment
mentions a specific vertex or gives enough information to
constrain the vertices the comment can logically relate to, this
will help to infer the correct attachment. A simple example of
this is shown in Fig. 2, where the rightmost comment mentions
a particular vertex.

A third cue are conventions of the visual language at hand:
just like Java stipulates how method comments should be
written, a visual language may stipulate where certain kinds
of comments should be placed. For example, general diagram
comments might always be placed at the top of the diagram,
or the names of the authors might always be mentioned in the
bottom left corner of the diagram (the diagram in Fig. 1 follows
these conventions). Petre argues that knowing and making use
of such conventions is what distinguishes expert programmers
from novice ones [1].

The Algorithm

To achieve a near-perfect success rate, a comment at-
tachment algorithm would have to make use of all of the
cues mentioned above. However, some are harder to grasp
algorithmically than others. Proximity is fairly easy to define
and to compute, as are the conventions mentioned so far.
Parsing the content of a comment, e.g. to retrieve vertex names,
however, may be more complex.

Based on these considerations, we decided to have our
algorithm rely only on proximity to infer attachments and
evaluate if this already yields acceptable success rates.

To compute proximity, we need an exact definition. Let
G = (V,C,E) be a graph with comments. Let ¢ € C and
v € V be a comment and a vertex, respectively. We define

the proximity of ¢ and v as the smallest distance between any
two points on their border, as shown in Fig. 3. If v extends
into the space above, below, left, or right of ¢, this is equal to
the distance between the closest sides of the borders of ¢ and
v; otherwise, it is equal to the distance between the closest
corners of ¢ and v. In the algorithm and in the evaluation,
we actually use the square of this distance to avoid having to
compute square roots that we would need when computing the
distance between corners.

For each unattached comment the algorithm now simply
computes the vertex it is closest to. If the distance between
the two does not exceed a certain threshold value, called the
maximum attachment distance, the algorithm deems them to
be attached; otherwise, the comment is not considered to be
attached to any vertex. As the evaluation will show, finding a
suitable maximum attachment distance greatly influences the
success rate of the algorithm.

One detail that should be considered is whether to run
the algorithm even if a diagram already contains at least one
explicit attachment. In our view, the presence of explicit attach-
ments suggests that unattached comments were left unattached
for a reason. We therefore disable the algorithm if we find
explicit attachments.

IV. EVALUATION

We implemented the algorithm in the KIELER Ptolemy
Browser,' an application for browsing Ptolemy models. To
compute layouts, we use KLay Layered, a layout algorithm
based on the layer-based approach to graph drawing introduced
by Sugiyama et al. [6]. The algorithm was extended to place
comments directly above or below the vertex they are attached
to.

For the evaluation, we selected diagrams from the set of ex-
ample models shipping with the Ptolemy tool that we were able
to open properly in the KIELER Ptolemy Browser. Diagrams
were selected if they contained at least one comment (which
148 diagrams did not), if they did not contain comments that
relate to diagram elements other than vertices or that relate to
more than one vertex (which 67 diagrams did), and if they did
not contain attachments already explicitly defined by the user
(which further 14 diagrams did). The remaining 308 diagrams
had between 2 and 156 vertices (averaging 18.46) and between
0.02 and 1.5 comments per vertex (averaging 0.29).

We first determined the attachment of each comment for all
diagrams manually, using all the clues mentioned in Sec. III,
thereby defining a reference attachment function att,.s. To
determine the quality of our algorithm, the attachment func-
tions atty, computed by our algorithm for various maximum
attachment distances d, were compared to att,.r. For every
comment ¢ € C, we distinguished four cases:

o Correct attachments: attq(c) = attres(c)

o Spurious attachments: attq(c) #L Aattyer(c) =1
o Lost attachments: attq(c) =L Aatter(c) #L

o Changed attachments: L+# atty(c) # att,ef(c) #L

We then counted how often each event occurred.

Thttp://informatik.uni-kiel.de/rtsys/kieler/

Continuous Director @ fauliStartTime: 50.0

@ faultStopTime: 70.0

Simulate faults. Simulate the
driver of the
leading car.
Output is the
driver's
desired speed.

Author: Xiaoljun Liu and Edward A. Lee

Simulate a car

that attempts

to detect faults

in communication

and adapt its control with a

behavior. specified time
constant.

Simulate a car
that matches

the desired speed
using feedback

Simulate a wireless
network that corrupts
the data when the fault
input is true.

This model shows a simple adaptive cruise control system,
illustrating model-integrated control strategies. A leading

car model produces information that is observed with possible
flaws by a following car. If the following car detects flaws, it
uses a conservative strategy. Otherwise, it tracks the leading
car closely.

——f——3—[}-[B

DiscreteClock

CurrentTime

Grandma Simulator Car Model

(a) If the comment attachment heuristic is switched off, the comments are
placed arbitrarily, without any hint as to the vertex they relate to.

TimedPlotter
o)

Continuous Director ® fulstartTime: 50.0

@ faulstopTime: 70,0

Author: Xiaoljun Liu and Edward A. Lee This model shows a simple adaptive cruise control system,
illustrating model-integrated control strategies. A leading

car model produces information that is observed with possible
flaws by a following car. If the following car detects flaws, it
uses a conservative strategy. Otherwise, it tracks the leading
car closely.

Simulate a wireless
network that corrupts
the data when the fault
input is true.

FollowingCar

——

DiscreteClock

CurrentTime Simulate a car
that attempts

to detect faults

in communication
and adapt its
behavior.

Grandma Simulator Car Model

Simulate faults. TimedPlotter

Simulate a car
that matches
leading car. the desired speed

Simulate the
driver of the

using feedback
control with a
specified time
constant

Output is the

desired speed.

(b) If the heuristic is switched on, the layout algorithm can place comments
and vertices in close proximity. Even if the text is too small to read here, the
attachments are readily visible.

Fig. 4. The diagram from Fig. 1 as drawn by our Ptolemy browser, with a
layout computed by our automatic layout algorithm.

40%
07
30% B Spurious
Lost
Changed
8 20% g
-
=
10%1 —--.lIIIII
0% 0 I I 50 I Ilr()I I250‘ I-100I ‘1000‘ I2()00I I3000I
25 100 o 200 300 500 1500 2500

Maximum Attachment Distance (non-linear scale)

Fig. 5. Error rate of the comment attachment algorithm for different maximum
attachment distances.

The results are shown in Fig. 5. Overall, the lowest error
rates are to be found where the maximum attachment distance
is low, which causes the number of spurious attachments to be
very low. As the maximum attachment distance increases, so
does the number of spurious attachments, while the number
of lost attachments decreases. Interestingly, the number of
changed attachments increases as well, but is very low over

100%7

80%1
Lost

Changed
60% 1

Error

40%1

20% 1

0% -—
0 50 150 250 400 1000 2000 3000
25 100 200 o 300 500 1500 2500

Maximum Attachment Distance (non-linear scale)

Fig. 6. Error rate of the comment attachment algorithm for different maximum
attachment distances, constrained to attachments present in the reference
attachment function (84 of the 308 diagrams selected for the evaluation). Note
that spurious attachments are not shown here since such attachments are by
definition not in the set of attachments from the reference run.

the whole range.

These results include many comments that were left
unattached in the reference attachment. If we focus our at-
tention on comments ¢ € C with attyr(c) #L, we get
the results shown in Fig. 6. Since the number of comments
with attachments is lower than the number of comments
without attachments, the error rate is expectedly higher. The
trends remain, however: as the maximum attachment distance
increases, the number of lost attachments decreases, and the
number of changed attachments increases.

Interpretation

The low number of changed attachments suggests that
users indeed seem to place comments closest to the vertices
they relate to. How close a comment has to be to a vertex
to signify an attachment, however, tends to vary: as the
number of lost attachments decreases, the number of spurious
attachments increases. Indeed, we have already seen that very
close proximity can be found even between comments and
vertices that are not at all related. The maximum attachment
distance should be selected based on what should be most
avoided: lost or spurious attachments.

A limitation of this experiment is that it only focusses on
Ptolemy diagrams created by a limited set of developers. The
extent to which the results generalize to other visual languages
has yet to be determined.

V. CONCLUSION

We have presented a simple distance-based algorithm for
computing attachments between comments and vertices in
diagrams. These attachments can be used by automatic layout
algorithms to place comments and attached vertices in close
proximity, thus preserving visual cues for their attachment. The
algorithm as implemented is currently restricted to comment-
vertex attachments, but could easily be extended to include
attachments to ports and edges as well.

In our evaluation, we ran the algorithm on a set of Ptolemy
diagrams, with success rates of up to 90%. Thus, there is room
for improvement.

LI | 1
InstanceOfSampler6

Sampling Process

Clock2 TimeDelay2

This example is illustrative of the
problems faced by real-time multitasking
software when interacting with physical
processes periodically, but with random
delays.

Author: Steve Neuendorffer

Fig. 7. Part of a Ptolemy diagram where one comment, “Sampling Process”,
describes a whole group of vertices while the other comment describes the
diagram as a whole. It would be challenging for attachment algorithms to
understand the difference since the two comments are similarly placed.

First and most importantly, our definition of proximity
could be enhanced to use a weighting function that takes the
alignment between comments and vertices into account. A
comment placed beside a vertex should probably be attached
to that vertex, even if one of the comment’s corners is closer
to another vertex.

Second, further attachment cues could be included. Con-
ventions of visual languages would lend themselves well to
the task since they are comparatively easy to integrate. In the
case of Ptolemy diagrams, for example, comments containing
the names of authors can be detected both by their position
and through the fact that they contain the word author.

Third, more diagram elements should be considered for
attachment. While the vast majority of comments in the
Ptolemy example models relate to vertices, we have found a
number of diagrams where comments relate to ports and edges.
Comments are also often used to describe groups of vertices,
as shown in Fig. 7. It is not immediately apparent how such
attachments can be discovered.

Finally, if a comment mentions the name of a vertex, this
might be a cue worth considering.

ACKNOWLEDGMENTS

We thank Edward A. Lee for his kind permission to use the
Ptolemy diagrams as examples. We also thank the reviewers
for their valuable suggestions.

REFERENCES

[1] M. Petre, “Why looking isn’t always seeing: Readership skills and
graphical programming,” Communications of the ACM, vol. 38, no. 6,
pp. 3344, Jun. 1995.

[2] L. K. Klauske, “Effizientes Bearbeiten von Simulink Modellen mit Hilfe
eines spezifisch angepassten Layoutalgorithmus,” Ph.D. dissertation,
Technische Universitit Berlin, 2012.

[3] K. Misue, P. Eades, W. Lai, and K. Sugiyama, “Layout adjustment and

the mental map,” Journal of Visual Languages & Computing, vol. 6,
no. 2, pp. 183-210, Jun. 1995.

[4] G. W. Klau and P. Mutzel, “Combining graph labeling and compaction,”
in Proceedings of the 7th International Symposium on Graph Drawing
(GD’99), ser. LNCS, vol. 1731. Springer, 1999, pp. 27-37.

[5] K. G. Kakoulis and I. G. Tollis, “A unified approach to labeling
graphical features,” in Proceedings of the Fourteenth Annual
Symposium on Computational Geometry, ser. SCG ’98. New
York, NY, USA: ACM, 1998, pp. 347-356. [Online]. Available:
http://doi.acm.org/10.1145/276884.276923

[6] C. D. Schulze, M. Sponemann, and R. von Hanxleden, “Drawing
layered graphs with port constraints,” Journal of Visual Languages and
Computing, Special Issue on on Diagram Aesthetics and Layout, vol. 25,
no. 2, pp. 89-106, 2014.

