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Problem Statement

Given:
C compiler (preferrably gcc)

+ programmer that knows C

What we want:
Deterministic concurrency . . . and maybe preemption, deadlock
avoidance, signal handling, instantaneous communication, dynamic
priorities, proper handling of schizophrenia, etc.

What we don’t want:
Heavy tools, special compilers, licenses, training courses, OS
overhead, custom hardware, platform dependence, adaptation
effort, . . .
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Problem Statement

Want to embed deterministic, concurrent semantics in traditional,
sequential language (C)

Embedding means:

I Just add language constructs that can be expressed in C

I Do not restrict/change/extend semantics of C language

I Do not require separate preprocessors, analysis tools or
compilers
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Motivating Example: Producer-Consumer-Observer

Precision Timed Architecture (PRET):

I Uses physical time to synchronize (DEAD instruction)

I Current programming model requires analysis of code +
execution platform

int main() {
  DEAD(28); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26);
    *buf = i;
  }
  return 0;
}

Producer
int main() {
  DEAD(41);
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  int arr[8];
  for (i =0; i<8; i++)
    arr[i] = 0;
  for (i = 0; ; i++) {
    DEAD(26);
    register int tmp = *buf;
    arr[i%8] = tmp;
  }
  return 0;
}

Consumer
int main() {
  DEAD(41); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  volatile unsigned int * fd =  
 (unsigned int*)(0x80000600);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26); 
    *fd = *buf;
  }
  return 0;
}

Observer

Figure 5: Simple Producer/Consumer Example

5.1 Mutual Exclusion

A general approach to managing shared data across separate threads is to have mutually exclusive critical

sections that only a single thread can access at a time. Our memory wheel already guarantees that any

accesses to a shared word will be atomic, so we only need to ensure that these accesses occur in the correct

order.

Figure 5 shows the C code for the producer, consumer, and an observer all accessing a shared variable

(underlined). The producer iterates and writes an integer value to a shared data. The consumer reads this

value from this shared data and stores it in an array. For simplicity, our consumer does not perform any other

operations on the consumed data or overwrite the data after reading it. The observer also reads the shared

data and writes it to a memory-mapped peripheral. We use staggered deadlines to offset the threads to force

a thread ordering. The deadline instructions are marked in bold.

As Figure 5 shows, every loop iteration first executes the critical section of the producer, and then the

observer and the consumer in parallel. The offsets to achieve this are given by deadlines at the beginning of

the program. The offset of the producer loop is 28∗6 = 168 cycles, which is 78 cycles less than the offset of

41 ∗ 6 = 246 for the consumer and observer. Since this difference is the same as the frequency with which

the wheel schedule repeats, this guarantees the producer thread will access the data an earlier rotation of the

wheel. Once inside the loop, deadlines force each thread to run at the same rate, maintaining the memory

access schedule. It is important for this rate to be a multiple of the wheel rate to maintain the schedule. In

this example, each loop iteration takes 26∗6 = 156 cycles: exactly two rotations of the wheel.

10

Lickly et al., CASES’08

Reinhard von Hanxleden SyncCharts in C Slide 5



Introduction
Concurrency in SC

Further SC Concepts
Wrap-Up

Producer-Consumer-Observer Example
Dynamic Coroutines
SC Thread Operators

Overview

Introduction

Concurrency in SC
Producer-Consumer-Observer Example
Dynamic Coroutines
SC Thread Operators

Further SC Concepts

Wrap-Up

Reinhard von Hanxleden SyncCharts in C Slide 6



int main() {
  DEAD(28); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26);
    *buf = i;
  }
  return 0;
}

Producer
int main() {
  DEAD(41);
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  unsigned int i = 0;
  int arr[8];
  for (i =0; i<8; i++)
    arr[i] = 0;
  for (i = 0; ; i++) {
    DEAD(26);
    register int tmp = *buf;
    arr[i%8] = tmp;
  }
  return 0;
}

Consumer
int main() {
  DEAD(41); 
  volatile unsigned int * buf =  
 (unsigned int*)(0x3F800200);
  volatile unsigned int * fd =  
 (unsigned int*)(0x80000600);
  unsigned int i = 0;
  for (i = 0; ; i++ ) {
    DEAD(26); 
    *fd = *buf;
  }
  return 0;
}

Observer

Figure 5: Simple Producer/Consumer Example

5.1 Mutual Exclusion

A general approach to managing shared data across separate threads is to have mutually exclusive critical

sections that only a single thread can access at a time. Our memory wheel already guarantees that any

accesses to a shared word will be atomic, so we only need to ensure that these accesses occur in the correct

order.

Figure 5 shows the C code for the producer, consumer, and an observer all accessing a shared variable

(underlined). The producer iterates and writes an integer value to a shared data. The consumer reads this

value from this shared data and stores it in an array. For simplicity, our consumer does not perform any other

operations on the consumed data or overwrite the data after reading it. The observer also reads the shared

data and writes it to a memory-mapped peripheral. We use staggered deadlines to offset the threads to force

a thread ordering. The deadline instructions are marked in bold.

As Figure 5 shows, every loop iteration first executes the critical section of the producer, and then the

observer and the consumer in parallel. The offsets to achieve this are given by deadlines at the beginning of

the program. The offset of the producer loop is 28∗6 = 168 cycles, which is 78 cycles less than the offset of

41 ∗ 6 = 246 for the consumer and observer. Since this difference is the same as the frequency with which

the wheel schedule repeats, this guarantees the producer thread will access the data an earlier rotation of the

wheel. Once inside the loop, deadlines force each thread to run at the same rate, maintaining the memory

access schedule. It is important for this rate to be a multiple of the wheel rate to maintain the schedule. In

this example, each loop iteration takes 26∗6 = 156 cycles: exactly two rotations of the wheel.

10

1 #include ”sc.h”
2
3 // == MAIN FUNCTION ==
4 int main()
5 {
6 int notDone, init = 1;
7
8 do {
9 notDone = tick( init ) ;

10 //sleep(1) ;
11 init = 0;
12 } while (notDone);
13 return 0;
14 }

16 // == TICK FUNCTION ==
17 int tick ( int isInit )
18 {
19 static int BUF, fd, i , j ,
20 k = 0, tmp, arr [8];
21
22 TICKSTART(isInit, 1);
23
24 PCO:
25 FORK(Producer, 3);
26 FORK(Consumer, 2);
27 FORKE(Observer);
28
29 Producer:
30 for ( i = 0; ; i++) {
31 PAUSE;
32 BUF = i; }

33
34 Consumer:
35 for ( j = 0; j < 8; j++)
36 arr [ j ] = 0;
37 for ( j = 0; ; j++) {
38 PAUSE;
39 tmp = BUF;
40 arr [ j % 8] = tmp; }
41
42 Observer:
43 for ( ; ; ) {
44 PAUSE;
45 fd = BUF;
46 k++; }
47
48 TICKEND;
49 }
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Approach: Manage threads at application level

Problem: C does not provide access to program counter

Solution: Program labels + computed goto

I All possible continuation points of a thread get an ordinary C
label

I For each thread, maintain a coarse program counter that
points to continuation label
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SC Thread Operators

TICKSTART∗(init, p) Start (initial) tick, assign main thread priority p.

TICKEND Return true (1) iff there is still an enabled thread.

PAUSE∗+ Deactivate current thread for this tick.

TERM∗ Terminate current thread.

ABORT Abort descendant threads.

TRANS(l) Shorthand for ABORT; GOTO(l).

SUSPEND∗(cond) Suspend (pause) thread + descendants if cond holds.

FORK(l , p) Create a thread with start address l and priority p.

FORKE∗(l) Finalize FORK, resume at l .

JOINELSE∗+(lelse) If descendant threads have terminated normally, proceed;
else pause, jump to lelse .

JOIN∗+ Waits for descendant threads to terminated normally.
Shorthand for lelse : JOINE(lelse).

PRIO∗+(p) Set current thread priority to p.

∗ possible thread dispatcher call
+ automatically generates continuation label
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FORKE∗(l) Finalize FORK, resume at l .

JOINELSE∗+(lelse) If descendant threads have terminated normally, proceed;
else pause, jump to lelse .

JOIN∗+ Waits for descendant threads to terminated normally.
Shorthand for lelse : JOINE(lelse).

PRIO∗+(p) Set current thread priority to p.

∗ possible thread dispatcher call
+ automatically generates continuation label
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Recall: Producer-Consumer-Observer in SC

1 #include ”sc.h”
2
3 // == MAIN FUNCTION ==
4 int main()
5 {
6 int notDone, init = 1;
7
8 do {
9 notDone = tick( init ) ;

10 //sleep(1) ;
11 init = 0;
12 } while (notDone);
13 return 0;
14 }
15
16 // == TICK FUNCTION ==
17 int tick ( int isInit )
18 {
19 static int BUF, fd, i , j ,
20 k = 0, tmp, arr [8];
21
22 TICKSTART(isInit, 1);
23
24 PCO:
25 FORK(Producer, 3);
26 FORK(Consumer, 2);
27 FORKE(Observer);

29 Producer:
30 for ( i = 0; ; i++) {
31 PAUSE;
32 BUF = i; }
33
34 Consumer:
35 for ( j = 0; j < 8; j++)
36 arr [ j ] = 0;
37 for ( j = 0; ; j++) {
38 PAUSE;
39 tmp = BUF;
40 arr [ j % 8] = tmp; }
41
42 Observer:
43 for ( ; ; ) {
44 PAUSE;
45 fd = BUF;
46 k++; }
47
48 TICKEND;
49 }
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Producer-Consumer-Observer + Preemptions

1 #include ”sc.h”
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3 // == MAIN FUNCTION ==
4 int main()
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Producer-Consumer-Observer + Preemptions

1 #include ”sc.h”
2
3 // == MAIN FUNCTION ==
4 int main()
5 {
6 int notDone, init = 1;
7
8 do {
9 notDone = tick( init ) ;

10 //sleep(1) ;
11 init = 0;
12 } while (notDone);
13 return 0;
14 }
15
16 // == TICK FUNCTION ==
17 int tick ( int isInit )
18 {
19 static int BUF, fd, i , j ,
20 k = 0, tmp, arr [8];
21
22 TICKSTART(isInit, 1);
23
24 PCO:
25 FORK(Producer, 4);
26 FORK(Consumer, 2);
27 FORK(Observer, 3);
28 FORKE(Parent);

30 Producer:
31 for ( i = 0; ; i++) {
32 PAUSE;
33 BUF = i; }
34
35 Consumer:
36 for ( j = 0; j < 8; j++)
37 arr [ j ] = 0;
38 for ( j = 0; ; j++) {
39 PAUSE;
40 tmp = BUF;
41 arr [ j % 8] = tmp; }
42
43 Observer:
44 for ( ; ; ) {
45 PAUSE;
46 fd = BUF;
47 k++; }
48
49 Parent:
50 while (1) {
51 PAUSE;
52 if (k == 20)
53 TRANS(Done);
54 if (BUF == 10)
55 TRANS(PCO);
56 }
57
58 Done:
59 TERM;
60 TICKEND;
61 }



Edwards et al., JES’07; Prochnow et al., LCTES’06



1 TICKSTART(isInit, 1);
2 FORK(T1, 6);
3 FORK(T2, 5);
4 FORK(T3, 3);
5 FORKE(TMain);
6
7 T1: if (PRESENT(A)) {
8 EMIT(B);
9 PRIO(4);

10 if (PRESENT(C))
11 EMIT(D);
12 PRIO(2);
13 if (PRESENT(E)) {
14 EMIT(T );
15 TERM; }
16 }
17 PAUSE;
18 EMIT(B);
19 TERM;
20
21 T2: if (PRESENT(B))
22 EMIT(C);
23 TERM;
24
25 T3: if (PRESENT(D))
26 EMIT(E);
27 TERM;
28
29 TMain: if (PRESENT(T )) {
30 ABORT;
31 TERM; }
32 JOINELSE(TMain);
33 TICKEND;
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1 TICKSTART(isInit, 1);
2 FORK(T1, 6);
3 FORK(T2, 5);
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6
7 T1: if (PRESENT(A)) {
8 EMIT(B);
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21 T2: if (PRESENT(B))
22 EMIT(C);
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24
25 T3: if (PRESENT(D))
26 EMIT(E);
27 TERM;
28
29 TMain: if (PRESENT(T )) {
30 ABORT;
31 TERM; }
32 JOINELSE(TMain);
33 TICKEND;

Sample Execution

1 ==== TICK 0 STARTS, inputs = 01, enabled = 00
2 ==== Inputs (id/name): 0/A
3 ==== Enabled (id/state): <init>
4 FORK: 1/<init> forks 6/T1, active = 0103
5 FORK: 1/<init> forks 5/T2, active = 0143
6 FORK: 1/<init> forks 3/T3, active = 0153
7 FORKE: 1/<init>
8 PRESENT: 6/T1 determines A/0 as present
9 EMIT: 6/T1 emits B/1

10 PRIO: 6/T1 set to priority 4
11 PRESENT: 5/T2 determines B/1 as present
12 EMIT: 5/T2 emits C/2
13 TERM: 5/T2 terminates, enabled = 073
14 PRESENT: 4/ L73 determines C/2 as present
15 EMIT: 4/ L73 emits D/3
16 PRIO: 4/ L73 set to priority 2
17 PRESENT: 3/T3 determines D/3 as present
18 EMIT: 3/T3 emits E/4
19 TERM: 3/T3 terminates, enabled = 017
20 PRESENT: 2/ L76 determines E/4 as present
21 EMIT: 2/ L76 emits T /5
22 TERM: 2/ L76 terminates , enabled = 07
23 PRESENT: 1/TMain determines T /5 as present
24 ABORT: 1/TMain disables 070, enabled = 03
25 TERM: 1/TMain terminates, enabled = 03
26 ==== TICK 0 terminates after 22 instructions.
27 ==== Enabled (id/state): 0/ L TICKEND
28 ==== Resulting signals (name/id): 0/A, 1/B, 2/C, 3/D, 4/E, 5/T ,

Outputs OK.
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Introduction
Concurrency in SC

Further SC Concepts
Wrap-Up

Assessment
Summary
Where This Might be Going

How Light-Weight is It?
Program perspective

Thread management

I Context: PC (1 word), descs (1 thread bit vector), parent (1
thread id), active and enabled (2 bits in thread bitvector)

I Context switch: 1 BSR instruction (on x86) + array lookup

Source code

I Very dense operator encoding

Executable

I Most operators translate to handful of assembler statements
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Introduction
Concurrency in SC

Further SC Concepts
Wrap-Up

Assessment
Summary
Where This Might be Going

How Light-Weight is It?
Programmer perspective

Installation effort

I Free download and documentation:
http://www.informatik.uni-kiel.de/rtsys/sc/

I Total tar ball is ≈ 50 K, mostly examples

I Really need just sc.h (and, on non-x86, selectCid.c)

I No further tools or Makefile adaptations

Mental effort

I Operators needed to get started fit on one slide

I For exact understanding, can look at sc.h (< 1 Kloc)
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Limitations

SC Programming model

I Shared address space

I Continuation labels must be in tick function, not nested in
functions

I Instantaneous communication patterns require manual priority
assignment

Current implementation

I Uses computed goto (gcc)

I Thread sets represented as bit vectors (unsigned int)

I No. of threads limited by word size

Reinhard von Hanxleden SyncCharts in C Slide 22



Introduction
Concurrency in SC

Further SC Concepts
Wrap-Up

Assessment
Summary
Where This Might be Going

Limitations

SC Programming model

I Shared address space

I Continuation labels must be in tick function, not nested in
functions

I Instantaneous communication patterns require manual priority
assignment

Current implementation

I Uses computed goto (gcc)

I Thread sets represented as bit vectors (unsigned int)

I No. of threads limited by word size

Reinhard von Hanxleden SyncCharts in C Slide 22



Introduction
Concurrency in SC

Further SC Concepts
Wrap-Up
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Summary

SyncCharts in C

I Light-weight approach to embed deterministic reactive control
flow constructs into widely used programming language

I Fairly small number of primitives suffices to cover all of
SyncCharts

I Multi-threaded, priority-based approach inspired by
synchronous reactive processing—where it required special hw
+ special compiler
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Not Covered Today

In the paper (proceedings, frozen at SC 1.3.3)

I Reactive processing heritage

I Experimental results

I Related work (lots of it)

In the full report (on-line, at SC 1.5)

I Valued signals, PRE, suspension, schizophrenia handling

I Realization

I Many further examples
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Where This Might be Going
SC can be used . . .

I . . . as programming language

I . . . as intermediate target language for synthesizing graphical
SyncChart models into tracable executable code

I . . . as language for programming PRET/reactive architectures

I . . . as a virtual machine instruction set

Further future work

I Get people to try it out (some already did—thanks!)

I Assistance with priority assignment

I Adapt to C++, Java

I Consider multi core

Questions/Comments?
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Inspiration: Reactive Processing

Explaining the (Original) Title: SyncCharts . . .

Reactive control flow:

I Sequentiality

I + Concurrency

I + Preemption

Statecharts [Harel 1987]:

I Reactive control flow

I + Visual syntax

SyncCharts [André 1996]:

I Statecharts concept

I + Synchronous semantics
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I Statecharts concept

I + Synchronous semantics

Reinhard von Hanxleden SyncCharts in C Slide 28



Background
Other SC Operators

Experimental Results
Related Work

Explaining the (Original) Title
Inspiration: Reactive Processing

Explaining the (Original) Title: SyncCharts . . .

Reactive control flow:

I Sequentiality

I + Concurrency

I + Preemption

Statecharts [Harel 1987]:

I Reactive control flow

I + Visual syntax

SyncCharts [André 1996]:
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Background
Other SC Operators

Experimental Results
Related Work

Explaining the (Original) Title
Inspiration: Reactive Processing

. . . in C
Today’s Scenario 1: Develop model in SyncCharts, synthesize C

, Can use visual syntax

/ Need special modeling tool

/ Cannot directly use full power of classical imperative language

Today’s Scenario 2: Program “State Machine Pattern” in C

, Just need regular compiler

/ Relies on scheduler of run time system—no determinism

/ Typically rather heavyweight

SyncCharts in C scenario: Use SC Operators

, Light weight to implement and to execute

, Just need regular compiler

, Semantics grounded in synchronous model
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Background
Other SC Operators

Experimental Results
Related Work

Explaining the (Original) Title
Inspiration: Reactive Processing

The inspiration: Reactive processing

Li et al., ASPLOS’06

I SC multi-threading very close to Kiel Esterel Processor

I Difference: KEP dispatches at every instrClk, SC only at
specific SC operators (such as PAUSE, PRIO)
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Background
Other SC Operators

Experimental Results
Related Work

The SC Signal Operators
Further Operators

The SC Signal Operators

SIGNAL(S) Initialize a local signal S .

EMIT(S) Emit signal S .

PRESENT(S , lelse) If S is present, proceed normally; else, jump to lelse .

EMITINT(S , val) Emit valued signal S , of type integer, with value val .

EMITINTMUL(S , val) Emit valued signal S , of type integer, combined with
multiplication, with value val .

VAL(S , reg) Retrieve value of signal S , into register/variable reg .

PRESENTPRE(S , lelse) If S was present in previous tick, proceed normally;
else, jump to lelse . If S is a signal local to thread t,
consider last preceeding tick in which t was active,
i. e., not suspended.

VALPRE(S , reg) Retrieve value of signal S at previous tick, into reg-
ister/variable reg .
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Background
Other SC Operators

Experimental Results
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The SC Signal Operators
Further Operators

Further Operators

GOTO(l) Jump to label l .

CALL(l , lret) Call function l (eg, an on exit function), return
to lret .

RET Return from function call.

ISAT(id , lstate , l) If thread id is at state lstate , then proceed to next
instruction (e. g., an on exit function associated
with id at state lstate). Else, jump to label l .

PPAUSE∗(p, l) Shorthand for PRIO(p, l ′); l ′: PAUSE(l) (saves
one call to dispatcher).

JPPAUSE∗(p, lthen, lelse) Shorthand for JOIN(lthen, l); l : PPAUSE(p, lelse)
(saves another call to dispatcher).

ISATCALL(id , lstate , laction, l) Shorthand for ISAT(id , lstate , l); CALL(laction, l)
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Background
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Conciseness Tabelle1

Seite 1

Module  SC  GRC 
PCO 32 126 68
grcbal3 31 86 176

22 54 66
count2suspend 26 119 85

41 90 209
14 45 51
25 73 77
23 136 95
10 28 49

shifter3 18 72 46
AVERAGE 24,2 82,9 92,2

1,00E+000 32 126 68
31 86 176
22 54 66
26 119 85
41 90 209
14 45 51
25 73 77
23 136 95
10 28 49
18 72 46

 Circuit 

abro 

exits 
filteredSR 
preAndSuspend 
primeFactor 
reincarnation 

PCO 

grcbal3 

abro 

count2suspend 

exits 

filteredSR 

preAndSuspend 

primeFactor 

reincarnation 

shifter3 

AVERAGE

0 50 100 150 200 250

 SC
 Circuit 
 GRC 

Size of tick function in C source code, line count without empty
lines and comments
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Code Size
Tabelle1

Seite 1

Module  SC  GRC 
PCO 2,95 2,22 2,22
grcbal3 2,8 2,11 2,97

2,84 1,91 1,85
count2suspend 2,7 2,46 2,26

3,68 2,41 2,96
1,93 2,04 1,88

3,2 2,16 2,23
2,66 2,82 2,86
1,78 1,8 1,82

shifter3 2,59 2,24 2,3
AVERAGE 2,71 2,22 2,33

1,00E-003 2948 2220 2216
2804 2108 2968
2840 1912 1848
2700 2464 2260
3676 2408 2956
1928 2036 1884
3204 2164 2228
2664 2820 2860
1784 1804 1824
2588 2244 2304

 Circuit 

abro 

exits 
filteredSR 
preAndSuspend 
primeFactor 
reincarnation 

PCO 

grcbal3 

abro 

count2suspend 

exits 

filteredSR 

preAndSuspend 

primeFactor 

reincarnation 

shifter3 

AVERAGE

0 0,5 1 1,5 2 2,5 3 3,5 4

 SC
 Circuit 
 GRC 

Size of tick function object code, in Kbytes
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Code Size
Tabelle1

Seite 1

Module  SC  GRC 
PCO 9,98 14,84 14,84
grcbal3 10,11 14,87 14,97

10,24 14,9 14,85
count2suspend 10,25 15,21 15,07

10,26 15,14 15,07
10,29 10,99 10,88
10,37 15,21 15,12
10,19 15,08 14,97
10,08 10,75 10,74

shifter3 10,56 15,52 15,44
AVERAGE 10,23 14,25 14,19

1,00E-003 9980 14842 14837
10114 14870 14974
10239 14899 14845
10248 15213 15066
10264 15139 15072
10288 10987 10875
10365 15211 15118
10187 15078 14973
10080 10750 10740
10564 15521 15439

 Circuit 

abro 

exits 
filteredSR 
preAndSuspend 
primeFactor 
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Performance Tabelle1

Seite 1

Module  SC  GRC 
PCO 1,56 1,54 1,12
grcbal3 1,04 0,5 0,43

1,28 0,99 0,85
count2suspend 0,97 1,15 0,82

2,62 0,99 1,37
0,82 0,83 0,71
1,42 1,27 1,03
0,51 0,77 0,51
0,32 0,3 0,28

shifter3 2,14 1,35 1,35
AVERAGE 1,27 0,97 0,85

1 0,76 0,67

1,00E-003 1557 1539 1116
1035 504 432
1278 990 846
972 1152 819

2619 990 1368
819 828 711

1422 1269 1026
513 774 513
324 297 279

2142 1350 1350

PCO 1062 1044 774

 Circuit 

abro 

exits 
filteredSR 
preAndSuspend 
primeFactor 
reincarnation 

Factor

SC with exits inlined: approx. 2850
SC with exits not inlined, ISAT+CALL: approx. 2600
SC with exits not inlined, CHKCALL: approx. 2600

Mit Server,exits wto (no inlining)
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cycles
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Operator Density

Tabelle1

Seite 1

Module  SC  GRC 

PCO 1,56 1,54 1,12 Module 

grcbal3 1,04 0,5 0,43 grcbal3 40 25,88

1,28 0,99 0,85 83 15,4

count2suspend 0,97 1,15 0,82 count2suspend 66 14,73

2,62 0,99 1,37 111 23,59

0,82 0,83 0,71 30 27,3

1,42 1,27 1,03 81 17,56

0,51 0,77 0,51 43 11,93

0,32 0,3 0,28 13 24,92

shifter3 2,14 1,35 1,35 shifter3 108 19,83

AVERAGE 1,27 0,97 0,85 AVERAGE 20,13

1 0,76 0,67

1,00E-003 1557 1539 1116

1035 504 432

1278 990 846

972 1152 819

2619 990 1368

819 828 711

1422 1269 1026

513 774 513

324 297 279

2142 1350 1350

PCO 1062 1044 774

grcbal3 1026 333 288

927 792 531

count2suspend 576 864 567

3114 801 783

522 684 468

1098 846 657

360 495 342

198 207 162

shifter3 1188 855 855

AVERAGE 1007,1 692,1 542,7

1 0,69 0,54

PCO 1557 1539 1116

grcbal3 1035 504 432

1278 990 846

count2suspend 972 1152 819

2619 990 1368

819 828 711

1422 1269 1026

513 774 513

324 297 279

shifter3 2142 1350 1350

AVERAGE 1268,1 969,3 846

1 0,76 0,67
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SC with exits not inlined, CHKCALL: approx. 2600
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Related Work (Lots Of It . . . )

I Synchronous language extensions: Reactive C [Boussinot ’91], ECL
[Lavagno & Sentovich ’99], FairThreads [Boussinot ’06], Lusteral
[Mendler & Pouzet ’08]

I Compilation of synchronous programs [Berry, Edwards,
Potop-Butucaru, . . . ]

I BAL virtual machine [Edwards & Zeng ’07]

I PRET [Edwards, Lee et al.’08], PRET-C [Roop et al.’09], SHIM
[Tardieu & Edwards ’06]

I Numerous Statechart dialects (Statemate, Stateflow, SCADE,
ASCET, UML, . . . )

I Statecharts and FMSs in C/C++ [Samek ’08, Wagner et al.’06]

I Compilation of Statecharts [Ali & Tanaka ’00, Wasowski ’03],
SyncCharts [André ’03]

I Compilation for reactive processors [Li et al.’06, Yuan et al.’08]
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