Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Department of Computer Science
Christian-Albrechts-University Kiel

6. April 2014 / RePP’14 Workshop
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Reactive Systems
Reactive Systems

Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Reactive Systems

input: accelerator

input: bumper
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Reactive Systems

input: accelerator

output: motor

input: bumper
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Reactive Systems

input: accelerator

max: 400 tu

output: motor

input: bumper

inputs

outputs
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

SCCharts:
v. Hanxleden et. al., SCCharts: Sequentially Constructive Statecharts for safety-critical applications, PLDI’14

Modeling Reactive Systems

![Diagram of SCCharts](image-url)
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Timing Information

WCET flat/deep
Improved Robot Example
Issues

1. Different meanings and aggregation of timing values possible
2. Flow of timing information through abstraction layers
3. Analysis must be highly responsive
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Issues

1. Different meanings and aggregation of timing values possible
2. Flow of timing information through abstraction layers
3. Analysis must be highly responsive
Issues

1. Different meanings and aggregation of timing values possible
2. Flow of timing information through abstraction layers
3. Analysis must be highly responsive
Contributions

1. Classification of timing values
2. General timing information propagation concept (work-in-progress toolchain)
3. Formal interface between modeling and analysis tool, separate analysis for tick function and called functions
Contributions

1. Classification of timing values
2. General timing information propagation concept (work-in-progress toolchain)
3. Formal interface between modeling and analysis tool, separate analysis for tick function and called functions
Contributions

1. Classification of timing values
2. General timing information propagation concept (work-in-progress toolchain)
3. Formal interface between modeling and analysis tool, separate analysis for tick function and called functions
Contributions

1. Classification of timing values
2. General timing information propagation concept (work-in-progress toolchain)
3. Formal interface between modeling and analysis tool, separate analysis for tick function and called functions
Types of Timing Information

- **Fractional** WCET (or BCET) of a model element: Cost of its share of the overall WCET or BCET path.
- **Local** WCET (or BCET) of a model element: Cost of the most (least) expensive execution path that lies in this element.
Timing Information Flow Chain I

Model

Code

Assembler

Processor
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Timing Information Flow Chain I

SCCharts → Model

C Code → Code

Assembler

FlexPRET → Processor
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Timing Information Flow Chain I

SCCharts → Model → Timing Program Points (TPP) → C Code → Code → Assembler → FlexPRET → Processor
Program Points

```plaintext
1 tick() {
2    //main
3    // implicit TPP
4    g0 = _GO;
5    if (g0) {
6        motor = false;
7        g0._F = true;
8        g4._T = true;
9        g10._T = true;
10    };
11    //handleEmergency
12    TPP(1);
13    g7 = g0;
14    if (g10) {
15        g9 = pre (g8);
16        g10 = g9 & bumper;
17        if (g10) {
18            stop = true;
19        }
20    };
21    g8 = g7 | (g9 & ! bumper);
22    };
23    //handleMotor
24    TPP(2);
25    g1 = g0;
26    if (g4._T) {
27        g3 = pre (g2);
28        g3b = g3;
29        g4 = g3b & stop;
30        if (g4) {
31            writeLog();
32        }
33        g5 = g3b & ! stop;
34        g6 = g5 & accelerator;
35        g2 = g1 | (g6 | (g5 & ! accelerator));
36    }
37    if (g6) {
38        getImage();
39        motor = true;
40    };
41    g2 = g1 | (g6 | (g5 & ! accelerator));
42    }
43    //main
44    TPP(3);
45    g11 = g0._F & ! (g4._T | g10._T);
46    if (g11) {
47        g0._F = false;
48    };
49    // implicit TPP
50    }
51    if (g11) {
52        g0._F = false;
53    }
```
Contributions - Revisited

1. Classification of timing values
2. General timing information propagation concept (work-in-progress toolchain)
3. Formal interface between modeling and analysis tool, separate analysis for tick function and called functions
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions F, a set of global variables G, and a timing analysis request t_{req}, return a timing response t_{res}.

$$t_{req} = (f, a, g, e, P, R).$$ (1)

- $f \in F$: function to be analysed
- Assumptions: a for arguments, g for global variables, and e for called functions
- P: set of timing program points in function f
- R: set of requested analyses (will be defined shortly)
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions F, a set of global variables G, and a timing analysis request t_{req}, return a timing response t_{res}.

$$t_{req} = (f, a, g, e, P, R).$$ (1)

- $f \in F$: function to be analysed
- Assumptions: a for arguments, g for global variables, and e for called functions
- P: set of timing program points in function f
- R: set of requested analyses (will be defined shortly)
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions F, a set of global variables G, and a timing analysis request t_{req}, return a timing response t_{res}.

$$t_{req} = (f, a, g, e, P, R).$$ (1)

- $f \in F$: function to be analysed
- Assumptions: a for arguments, g for global variables, and e for called functions
- P: set of timing program points in function f
- R: set of requested analyses (will be defined shortly)
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions F, a set of global variables G, and a timing analysis request t_{req}, return a timing response t_{res}.

$$t_{req} = (f, a, g, e, P, R).$$ \hspace{1cm} (1)

- $f \in F$: function to be analysed
- Assumptions: a for arguments, g for global variables, and e for called functions
- P: set of timing program points in function f
- R: set of requested analyses (will be defined shortly)
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions \(F \), a set of global variables \(G \), and a timing analysis request \(t_{req} \), return a timing response \(t_{res} \).

\[
t_{req} = (f, a, g, e, P, R).
\]

- \(f \in F \): function to be analysed
- Assumptions: \(a \) for arguments, \(g \) for global variables, and \(e \) for called functions
- \(P \): set of timing program points in function \(f \)
- \(R \): set of requested analyses (will be defined shortly)
Definition (Interactive Timing Analysis)

Given a program consisting of a set of functions F, a set of global variables G, and a timing analysis request t_{req}, return a timing response t_{res}.

$$t_{req} = (f, a, g, e, P, R).$$ \hspace{1cm} (1)

- $f \in F$: function to be analysed
- Assumptions: a for arguments, g for global variables, and e for called functions
- P: set of timing program points in function f
- R: set of requested analyses (will be defined shortly)
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP

Formal Interface

Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Motivation
Contributions
Classifications
Tool Chain and TPP

Formal Interface
Related Work
Conclusion and Future Work

Timing Graph
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
 Contributions
 Classifications
 Tool Chain and TPP
 Formal Interface
 Related Work
 Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Analysis Request

- Each element of R is a triple (y, p_a, p_b)
- $p_a \in P$ and $p_b \in P$ start and end TPP
- $y \in Y$: type of requested analysis value

$$Y = \{WCP, BCP, LWCET, LBCET, FWCET, FBCET\} \quad (2)$$
Timing Response

The timing response t_{res} for a specific timing request t_{req} is a function

$$t_{res} : R \rightarrow \mathbb{N}_{\perp \epsilon} \cup \mathcal{P}(\bar{p})$$ \hspace{1cm} (3)

i.e. the return value is a number, one of the values infinity and unknown, or an element of the set of finite paths of program points.

SCADE, aiT
Conclusion

- Classification of timing values
- Formalization of interaction of modeling tool and timing analysis
- General concept of TPP for timing information propagation
- Separation of concerns will hopefully allow for fast analysis
Future Work

- Finish implementation, Evaluation
- Experimental studies
- TPP in cycles
Thanks for your attention! Do you have questions?
Towards Interactive Timing Analysis for Designing Reactive Systems

Insa Fuhrmann, David Broman, Steven Smyth, Reinhard von Hanxleden

Motivation
Contributions
Classifications
Tool Chain and TPP
Formal Interface
Related Work
Conclusion and Future Work

Additional Material: Timing Response II

\[
\text{t}_{\text{res}}(r) = \begin{cases}
\mathcal{T}(\bar{v}^w_{p_1,p_2}) & \text{if } r = (\text{WCP}, p_1, p_2) \\
\mathcal{T}(\bar{v}^b_{p_1,p_2}) & \text{if } r = (\text{BCP}, p_1, p_2) \\
\mathcal{E}(\bar{v}^w_{p_1,p_2}) & \text{if } r = (\text{LWCET}, p_1, p_2) \\
\mathcal{E}(\bar{v}^b_{p_1,p_2}) & \text{if } r = (\text{LBCET}, p_1, p_2) \\
\mathcal{E}(\mathcal{F}_{p_1,p_2}(\bar{v}^w_{p_e,p_x})) & \text{if } r = (\text{FWCET}, p_1, p_2) \\
\mathcal{E}(\mathcal{F}_{p_1,p_2}(\bar{v}^b_{p_e,p_x})) & \text{if } r = (\text{FBCET}, p_1, p_2)
\end{cases}
\]