Interactive Esterel to SyncCharts Transformation for executing Esterel with Ptolemy

Christian Motika

Real-Time Systems and Embedded Systems Group
Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Germany

SYNCHRON ’11, Dammarie-les-Lys
01. DEC 2011
Motivation

- Synchronous model of computation (MoC):
 - Esterel, SyncCharts, SC (control flow)
 - Lustre, Signal, SCADE (data flow)
 - Ptolemy (SR domain)

- SyncCharts a synchronous statechart dialect
 - Primary example for KIELER framework

- KlePto: Executing SyncCharts w/ Ptolemy

- KIES: Esterel to SyncCharts transformation
 - Execute Esterel w/ Ptolemy
Overview

- Esterel to SyncCharts transformation (KIES)
- SyncCharts Execution (KlePto)
 - Demo
- Summary
Esterel

module ABRO:

input A, B, R;
output O;

loop
 [await A || await B];
 emit O;
 each R

end module

- Synchronous, imperative, control flow language
 - Developed by J.-P. Marmorat and J.-P. Rigault
 - G. Berry developed a formal semantics for Esterel in 1983

- Synchrony hypothesis
 - Discrete ticks
 - Computations take no time

- Signal coherence rule
SyncCharts

- Invented by Charles André
- Statechart dialect
- Mealy machine with
 - Parallelism, hierarchy, compound events, broadcast
- Built on Esterel semantics

Interface: A, B, Reset, arm, disarm, AB,
Example: ABRO

```python
module ABRO:
    input A, B, R;
    output O;
    loop
        [ await A || await B ];
        emit O;
        each R
    end module
```

![ABRO diagram](image-url)
Model transformations

▶ Applications
 ▶ Synthesize multiple (graphical/textual) views from one model
 ▶ Edit a model (refactoring, optimization)
 ▶ Code generation
 ▶ Simulation desires

▶ Drawbacks
 ▶ Large and inflexible
 ▶ Hard to visualize
 ▶ Hard to debug
 ▶ Not interactive

▶ Goal of KIES: Address the above drawbacks
 → Use case: KIELER Esterel to SyncCharts transformation
Esterel to SyncCharts

Motivation and Concept
Transformation Rules
SyncCharts Optimization

Esterel to SyncCharts

Transformation Optimization

Christian Motika - CAU Kiel
Transformation Rule

“A transformation rule is a description of how one or more constructs in the source language can be transformed into one or more constructs in the target language” (Mens and Gorp)

- Esterel to SyncCharts
 - One rule for each Esterel statement
 - Rules presented by Lars Kühl (also formal proofs for Esterel to SyncCharts)
 - [Synthesizing Safe State Machines from Esterel, LCTES 2006]

- SyncCharts Optimization
 - One rule for a SyncCharts meeting certain criteria
Implementation

[Interactive Transformations for Visual Models, MEMWe 2011]
Esterel to SyncCharts - *emit*, *loop-each*

emit

```
emit sig1
```

loop-each

```
loop s each e
```
SyncCharts Optimization

rule 7

any

any

1

2

any

any

1

2

Christian Motika - CAU Kiel
Overview

- Esterel to SyncCharts transformation (KIES)
- SyncCharts Execution (KlePto)
 - Demo
- Summary
What is KIELER?

- Kiel Integrated Environment for Layout Eclipse Rich Client
- Modeling platform and test bed
 - Improve pragmatics
- Open source and Eclipse based (plug-ins)
- General concepts:
 - Generic approaches
 - Symbiosis w/ Eclipse technologies (e.g., EMF, GMF, TMF, Xpand, Xtend)
 - Interfaces to other tools (Ptolemy, Papyrus)
SyncCharts Execution in KIELER
Ptolemy

▶ „The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent systems."

Introduction to Ptolemy II, UC Berkeley

▶ Executable Models to describe behavior of reactive systems

▶ Ptolemy models are a set of interacting components → Actor-Oriented Design
SyncCharts in Ptolemy

- Mapping SyncCharts to Ptolemy:
 - Mealy machine ↔ ModalModel
 - Orthogonality ↔ Concurrent Actors (inherent)
 - Hierarchy ↔ Compound Actors, state refinements
 - Compound events ↔ Expression language

- Interesting:
 - Implicit broadcast vs. explicit signal representation
 - Signal coherence (must/cannot analysis)
SyncCharts in Ptolemy - Example
KIELER Demo

LIVE DEMO
Summary

▶ Research goals (long term)
 ▶ Investigate on synchronous languages
 ▶ Bringing together graphical and textual syntax
 ▶ Integrate Esterel in KIELER
 ▶ Improve pragmatics
 ▶ Validation purposes (SC and KlePto)
 ▶ Current work in progress: Simulation/Debugging with CEC

▶ Research goals (short term)
 ▶ Modular and interactive transformations
 ▶ Understand
 ▶ Debug
 ▶ Teaching

▶ Acknowledgements: Ulf Rüegg
To Go Further

CHARLES ANDRÉ.

GÉRARD BERRY.
The Esterel v5 Language Primer, 2000.

RÜEGG, U., MOTIKA, C., AND VON HANXLEDEN, R.
Interactive transformations for visual models.

UC BERKELEY, EECS DEPT.
Ptolemy webpage.
http://ptolemy.eecs.berkeley.edu/.

UNI KIEL, REAL-TIME AND EMBEDDED SYSTEMS GROUP.
KIELER webpage.
http://www.informatik.uni-kiel.de/en/rtsys/kieler/.
Thank you for your attention and participation!

Any questions or suggestions?