Visual Comparison of Graphical Models

Arne Schipper Hauke Fuhrmann Reinhard von Hanxleden

Real-Time Systems and Embedded Systems Group,
Department of Computer Science,
Christian-Albrechts-Universität zu Kiel
{ars, haf, rvh}@informatik.uni-kiel.de

UML&AADL’09
Outline

1. Motivation
2. Visual Comparison
3. Implementation
4. Summary and Outlook
5. End
Motivation

Problem:

- Graphical models very often used, quite easy to create and browse, but pain to compare.
Motivation

Problem:

- Graphical models very often used, quite easy to create and browse, but pain to compare.
Motivation

Problem:

- Graphical models very often used, quite easy to create and browse, but pain to compare.
Motivation

Problem:

- Graphical models very often used, quite easy to create and browse, but pain to compare.

Screenshot of a real model from a project, Version 1

Screenshot of a real model from a project, Version 2
Motivation

Problem cont’d:

▶ Means exist to compare graphical models textually, but ...
▶ User has to switch between different abstraction levels.
Motivation

Problem cont’d:

▶ Means exist to compare graphical models textually, but ...
▶ User has to switch between different abstraction levels.

Solution:

▶ Develop means to aid the user in performing a real visual comparison of graphical models.
▶ Some tools exist, but have drawbacks.
Motivation

Problem cont’d:

▶ Means exist to compare graphical models textually, but ...
▶ User has to switch between different abstraction levels.

Solution:

▶ Develop means to aid the user in performing a real **visual comparison** of graphical models.
▶ Some tools exist, but have drawbacks.

Method:

▶ Identify and improve those drawbacks.
▶ Implement as Eclipse plug-in using existing techniques where appropriate.
▶ Use generic approach to cope with various graphical languages.
Visual Comparison

Textual diff/comparison:
- Known to everyone, compare texts side by side.
- One-dimensional or linear arrangement with *holes* in the texts.
Visual Comparison

Textual diff/comparison:

- Known to everyone, compare texts side by side.
- One-dimensional or linear arrangement with *holes* in the texts.

Figure: Two article versions in Wikipedia
Visual Comparison

Common comparison of graphical models:
- Generate a textual description of the changes.
- Is sometimes structured, but ...
- User has to find these changes in the graphical representation.
Common comparison of graphical models:

- Generate a textual description of the changes.
- Is sometimes structured, but ...
- User has to find these changes in the graphical representation.

Figure: Model diff of Expert Control
Visual Comparison

Visual comparison:

▶ Show the changes in the graphical model itself.
▶ Prevents the user from switching between text and graphical model.
Visual Comparison

Visual comparison:

▶ Show the changes in the graphical model itself.
▶ Prevents the user from switching between text and graphical model.

Figure: Scade model diff
Visual Comparison

Challenges:
- Graphical models at least two-dimensional, in contrast to text.
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for *holes* like in textual diff.
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for holes like in textual diff.
- Some models have information which is not shown visually.
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.

Questions:

- Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?
- Alter the layout or leave it intact?
- Does a readable automatic layout help?
Visual Comparison

Challenges:

▶ Graphical models at least two-dimensional, in contrast to text.
▶ No trivial solution for holes like in textual diff.
▶ Some models have information which is not shown visually.
▶ Large models.
▶ Mental map of the user.
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- *Mental map* of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation.

Questions:
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- *Mental map* of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation.

Questions:

- Use just the structure of the graphical model or also the layout information of the elements?
Visual Comparison

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for holes like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation.

Questions:

- Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?
Visual Comparison

Challenges:
- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for holes like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation

Questions:
- Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?
- Alter the layout or leave it intact?
Visual Comparison

Challenges:

▶ Graphical models at least two-dimensional, in contrast to text.
▶ No trivial solution for holes like in textual diff.
▶ Some models have information which is not shown visually.
▶ Large models.
▶ Mental map of the user.
▶ Difference detection. However, solved by an existing engine and we focus on graphical presentation

Questions:

▶ Use just the structure of the graphical model or also the layout information of the elements?
▶ Use one model or both versions to display the changes?
▶ Alter the layout or leave it intact?
▶ Does a readable automatic layout help?
Visual Comparison

The two versions of the model:

(a) Version 1

(b) Version 2

Figure: The two original versions of the example diagram.
Visual Comparison

Possible representation of the changes 1:

(a) Version 1

(b) Version 2

Figure: Plain visual diff. Color legend: green/additions, red/deletions, blue/changes.
Possible representation of the changes 3:

Figure: Freely merged visual diff.
Visual Comparison

Which representation?

- Manual tests showed that \textit{plain} visual diff is best.
Visual Comparison

Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.

Other issues:

- The diff is performed just against the structural/domain model.
- Non-graphical changes (e.g., of properties) are also displayed; blue in the previous slides.
Visual Comparison

Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
Visual Comparison

Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.

Additional means like panning, zooming and folding needed to cope with large models.

Other issues:

- The diff is performed just against the structural/domain model.
- Non graphical changes (e.g. of properties) are also displayed; blue in the previous slides.
Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.
Visual Comparison

Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.

Other issues:

- The diff is performed just against the structural/domain model.
Visual Comparison

Which representation?

- Manual tests showed that *plain* visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.

Other issues:

- The diff is performed just against the structural/domain model.
- Non graphical changes (e.g. of properties) are also displayed; blue in the previous slides.
Outline

1. Motivation
2. Visual Comparison
3. Implementation
4. Summary and Outlook

End
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

▶ EMF to create the domain models.
▶ GMF to build the corresponding graphical editor.
▶ EMF Compare to compute the differences of the EMF model.
▶ KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.

Use original layout of diagrams and display them side by side.
Annotate the structural changes with different colors.
Use third panel on top to display just the structural changes textually (like EMF Compare).
Equip the comparison view with means to navigate and zoom.
Collapse composite items with no changes inside (a layout algorithm is needed then) .
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
- EMF Compare to compute the differences of the EMF model.
- **KiViK** *(Kieler Visual Comparison)* to get EMF Compare output into GMF.

▶ Use original layout of diagrams and display them side by side.
▶ Annotate the structural changes with different colors.
▶ Use third panel on top to display just the structural changes textually (like EMF Compare).
▶ Equip the comparison view with means to navigate and zoom.
▶ Collapse composite items with no changes inside (a layout algorithm is needed then).
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
- EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
- EMF Compare to compute the differences of the EMF model.
- **KiViK (Kieler Visual Comparison)** to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- **EMF** to create the domain models.
- **GMF** to build the corresponding graphical editor.
- **EMF Compare** to compute the differences of the EMF model.
- **KiViK** (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
- EMF Compare to compute the differences of the EMF model.
- **KiViK** (*Kieler Visual Comparison*) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).
 - Equip the comparison view with means to navigate and zoom.
Implementation

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.
- EMF Compare to compute the differences of the EMF model.
- **KiViK (Kieler Visual Comparison)** to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).
 - Equip the comparison view with means to navigate and zoom.
 - Collapse composite items with no changes inside (a layout algorithm is needed then).
Implementation

General implementation:
Implementation

Example of collapsing:

- 7 change(s) in Region
 - 1 change(s) in Simple State S 1
 - Weak Abortion has been removed
 - Simple State S 2 has been removed
 - Weak Abortion B has been removed
 - Simple State S 3 has been added
 - Weak Abortion H has been added
 - Weak Abortion has been added

 Visualization of Diagram Differences

<table>
<thead>
<tr>
<th>models/ssm/u....ssm_diagram</th>
<th>models/ssm/um...2.ssm_diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Diff</td>
<td>Advanced Diff</td>
</tr>
</tbody>
</table>

Diagram Differences
Implementation

Example of automatic zoom:

- 7 changes in Region
 - 1 change in Simple State S 1
 - Weak Abortion B has been removed
 - Simple State S 2 has been removed
 - Weak Abortion has been removed
 - Weak Abortion H has been added
 - Weak Abortion has been added
 - Simple State S 3 has been added

Visualization of Diagram Differences

<table>
<thead>
<tr>
<th>models/ssm/usssm_diagram</th>
<th>models/ssm/um...2.ssm_diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagram Differences</td>
<td>Diagram Differences</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementation

Comparison of Dataflow models:
Outline

1. Motivation
2. Visual Comparison
3. Implementation
4. Summary and Outlook
5. End
Summary and Outlook

Feedback:

▶ Students and professionals gave an overall positive feedback for this approach.
▶ Representation directly in the diagram seen as benefit.
▶ Visualization of small (or invisible) changes very useful.
▶ User interface with collapsing, panning and zooming intuitive.
▶ Generic approach enables support for various diagrams with none or little adaption.
Summary and Outlook

Outlook:

- Large models are still challenging; time for comparison as well as navigation.
- Next step would be to support merging graphically.
- Maybe implement also the other approaches presented to see how they perform.
Visual Comparison of Graphical Models
Visual Comparison of Graphical Models

Thanks!