
Model Checking for SCCharts

Andreas Achim Stange

Master’s Thesis
May 2019

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
M.Sc. Alexander Schulz-Rosengarten

Dipl.-Inf. Steven Smyth

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Correct and predictable behavior is mandatory for safety-critical applications and model checking can
verify important properties of these systems. Synchronous languages with mathematically formalized
semantics are particularly suited for model checking.

This thesis discusses means of model checking the synchronous language SCCharts. Characteristics
of reactive models are considered and how temporal properties can change in a translation to another
language. The model checkers SPIN and nuXmv have been integrated in the KIELER development
environment using translations from SCCharts to the imperative language PROMELA and to the data-flow
language SMV. Thereby, the translations utilize a low-level representation of SCCharts, namely the
Sequentially Constructive Graph.

This work shares observations and experiences with the model checkers and illustrates charac-
teristics of models that can affect the model checking performance. Further, an evaluation of the
implementation on small examples demonstrates potential for practical use. There are models that
SPIN could verify faster. However, the symbolic approach implemented in nuXmv performed better
than SPIN in many cases. In particular, the IC3 algorithm, K-liveness, and interpolation-based model
checking of nuXmv performed well.

v

Acknowledgements

I want to thank my advisers Alexander Schulz-Rosengarten and Steven Smyth as well as Professor Dr.
Reinhard von Hanxleden for the time they invested to countercheck and guide this thesis. Moreover, I
want to thank Dr. Eugene Yip and Professor Dr. Gerald Lüttgen from University of Bamberg for their
support of this thesis and hospitality. In particular, I want to thank for helping with the translation to
SMV, and with adapting temporal properties.

A special thanks is directed at all members of the Real-time and Embedded Stems Group of Kiel
University for the cooperative, fun and professional atmosphere that I experienced during my time
there.

vii

Contents

1 Introduction 1
1.1 SCCharts . 2
1.2 Model Checking . 3
1.3 Problem Statement . 4
1.4 Outline . 4

2 Used Technology 5
2.1 KIELER . 5

2.1.1 SCCharts . 5
2.1.2 SCG . 7
2.1.3 KTrace . 9

2.2 Model Checking . 9
2.2.1 Temporal Logics . 10
2.2.2 Synchronous Observer . 10
2.2.3 SPIN . 11
2.2.4 nuXmv . 12

3 Related Work 15
3.1 SCADE . 16
3.2 mbeddr . 17
3.3 Lesar . 17
3.4 Xeve . 18

4 Concept 19
4.1 Model Checker Selection . 19
4.2 Translation Considerations . 20

4.2.1 Persisting Temporal Properties . 21
4.3 Translation to SMV . 22

4.3.1 SMV Constructs . 22
4.3.2 Modeling the Tick Logic via Program Counter . 23
4.3.3 Modeling the Tick Logic via SSA . 24

4.4 Translation to PROMELA . 27
4.4.1 Modeling the Tick Logic . 27
4.4.2 Modeling Reactive Systems . 29
4.4.3 Specifying Properties . 29

4.5 Synchronous Observers in SCCharts . 31

5 Implementation 33
5.1 Plug-in Overview . 33
5.2 Common Data Structures . 34
5.3 Translation to PROMELA . 35
5.4 Translation to SMV . 36

ix

Contents

5.5 Interfacing with the Model Checkers . 37
5.5.1 Parsing Counterexamples . 39
5.5.2 Generated Files . 40

5.6 Automated Tests . 41
5.7 Graphical User Interface . 42

6 Evaluation and Experience Report 43
6.1 General Observations . 43

6.1.1 Model Checker Integration . 44
6.1.2 Model Characteristics that Affect Performance . 45

6.2 Comparison of Algorithms . 46
6.2.1 Tested Models . 46
6.2.2 Test Setup . 51
6.2.3 Results . 52
6.2.4 Comparison with Lesar . 55

7 Conclusion 57
7.1 Summary . 57
7.2 Possible Applications . 58

7.2.1 Teaching Temporal Logics . 58
7.2.2 Testing of SCCharts Compiler . 59

7.3 Future Work . 59
7.3.1 Extending the Translation to SMV and PROMELA 59
7.3.2 Further Model Checkers . 60
7.3.3 Further Synchronous Languages . 60
7.3.4 Visualization of State-Space . 60
7.3.5 Evaluation in Case Study . 60

Bibliography 61

List of Acronyms 65

List of Listings 67

List of Figures 69

List of Tables 71

x

Chapter 1

Introduction

Characteristic for reactive systems is an interdependence with their surrounding environment. Sensors
deliver inputs to the system, whereas calculated outputs control actuators that in turn influence the
environment. Such systems can be found at the heart of safety-critical applications, for example in
form of a controlling unit. It becomes obvious that correctness and reliability of such systems are
of special importance when imagining the possible impact of a software error in a plane or nuclear
power plant. This motivates the use of formal methods for specifying and verifying safety-critical
applications.

Model checking is a solution for formally verifying system properties that can be automated and
gives a counterexample in case a property is violated, which is useful for debugging [BK08]. To
verify that a property holds, it is checked in all reachable states of the system. Limitations of model
checking are imposed by large state-spaces in real-world applications (state-space explosion problem).
However, using optimized models and efficient algorithms the technique can already be used in many
applications or at least central parts of these. For example, model checking could have revealed bugs
that are today famous for their consequences, e.g. in the Ariane-5 missile, the Mars Pathfinder and
Intel’s Pentium II processor [BK08]. There is still ongoing research to improve the performance and
scope of application area for model checking.

Another tool to tackle the requirements of reactive systems development can be found in the
synchronous approach as pointed out by Halbwachs [Hal93]. He argues that classic approaches for
concurrency, such as threads, introduce an interleaving of execution paths that makes it difficult to
reason about system behavior. Low-level models of programs, e. g., Petri-nets and basic deterministic
automata, do not scale well because they lack means to abstract from concurrency or complex sub-
systems. On the other hand general-purpose parallel languages, such as Ada or Occam, provide
high-level features that abstract away process communication internals. However, Halbwachs pointed
out that their semantics are often vague in favor of portability. Berry has given an example for the
vague semantics of Ada when trying to broadcast an event MINUTE after 60 seconds [Ber89]. He
illustrates that the event will not be received by all listeners at the same instant, which contradicts the
event.

In contrast to this, the synchronous approach relies on fully deterministic semantics and the
idealized assumption that a reaction of the system happens in zero-delay. This is the synchrony hypothesis.
A single such reaction is often referred to as a tick or instant. An upper bound for its execution time can
be given because the system reaction is deterministic. This makes the implementation of the synchrony
hypothesis feasible for a given hardware platform [Ray08]. The concepts of the synchronous approach
are implemented in synchronous languages. Their formal and deterministic semantics make them well
suited for model checking.

Therefore synchronous languages and model checking are used in industry for developing safety-
critical applications [BCE+03]. For instance the synchronous language Lustre is the semantic root

1

1. Introduction

Interface

declaration

Final state

Connector

Initial state

Root state

Named

simple state

Transition

trigger/effect

Region ID

Transition

priority

Conditional

termination

Anonymous

simple state

History transition

Entry/During/Exit

actions

Termination

Superstate

Signal

Immediate

transition

Suspension

Strong abort

Local declaration

Weak abort

Deferred transition

Count Delay

Pre-Operator

Initialization

Complex final

state

Figure 1.1. Syntax overview of SCCharts [HDM+14].

of SCADE1, a development environment for safety-critical applications. SCADE supports automated
verification of its models and is used in various industries such as avionics and railways.

1.1 SCCharts

Sequentially Constructive StateCharts (SCCharts) is a synchronous language with graphical syn-
tax [HDM+14]. Syntactically SCCharts is based on SyncCharts [And95], in which program logic is
expressed as a state-machine extended with constructs for, among others, concurrency, hierarchy and
preemption. Figure 1.1 shows the syntactical elements of the language.

The semantics of SCCharts are based on the Sequentially Constructive Model of Computation
(SC MoC) [HMA+14]. In this model concurrent accesses to variables are handled by scheduling them
deterministically, such that writing of variables is done before reading them. Sequentially ordered
accesses to variables on the other hand are scheduled as given in the program. This approach is less
restrictive than classical Models of Computation for synchronous languages where a variable is only
allowed to have one single value within a tick.

1www.esterel-technologies.com/products/scade-suite/

2

1.2. Model Checking

Figure 1.2. Schematic of model checking [BK08]. A model of the system to be verified together with the property
to be checked are given as input to a model checker, which will output a counterexample or that the property
holds in the system. The counterexample can be used to debug the system.

KIELER2 is an IDE developed at Kiel University that implements SCCharts along with pragmatic
modeling tools, for instance automatic layout and quick navigation of graphs. In KIELER an SCChart

is written in a textual syntax and the corresponding visual representation is synthesized and laid
out automatically. This provides the benefits of a visually understandable model without sacrificing
efficient and common tools for coding [FH10].

Several approaches to compile SCCharts have been suggested [HDM+14] [Pei17] [SMH18]. KIELER

implements these in a compiler framework that uses an incremental compilation approach and
model-to-model transformations.

1.2 Model Checking

Model checking is a formal method used in practice to show that a property holds in a system model.
For this, the system model and the property are specified and given as input to a model checker. A
naive model checking solution could create the complete state space of the system model and check
properties via exhaustive search. When a property is found to be violated, the traversed states can be
output as counterexample of the property, so that a developer can retrace the cause and fix the broken
system. Figure 1.2 illustrates this.

Simple properties that are independent of other states require traversing the system once. More
complex properties, e. g., that there are no deadlocks in the system, requires finding a loop in the
system, such that it holds in all states of the loop and thus infinitely often. There is a whole theory of
the complexity and languages to formulate properties. In practice the set of safety properties ("something
bad will never happen") and liveness properties ("something good will eventually happen") are the most
important.

For formal verification it is necessary that the property to be checked is formulated without
ambiguity. Temporal logics have been found to be suited for this task. Temporal logics extend

2http://rtsys.informatik.uni-kiel.de/kieler

3

1. Introduction

traditional propositional logics with operators to refer to different states of the system in time. For
example, one can imagine operators that refer to the next, the last or a future tick of a reactive system.
Well known temporal logics are Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).
Although these describe different sets of properties in general, their intersection is in many cases
sufficient in practice.

The naive approach to model checking quickly suffers from the state space explosion problem,
as the state space grows exponentially. Therefore different algorithms and abstraction techniques
have been developed and extending the application area of model checking is still on-going research.
Systems with more than 1020 states have been checked successfully using smart model checking
techniques [BK08].

1.3 Problem Statement

The goal of this thesis is to find ways for model checking SCCharts that integrate with the KIELER

tooling. This can be achieved by re-using existing model checkers or by a custom model checker
implementation for SCCharts. Further, different abstraction levels of SCCharts in the KIELER compile chain
can be re-used. This thesis discusses these different approaches. For a translation to existing model
checker languages, it is necessary to identify characteristics of the synchronous MoC and how they can
be preserved.

The new tools have to be integrated in the KIELER tooling to enable a complete model checking
work-flow. As part of this, counterexamples from a model checker have to be refined for the original
high-level SCChart such that they can be used for debugging.

1.4 Outline

In Chapter 2 the technology used in this thesis is explained. Related work is presented in Chapter 3.
This includes papers that compare model checkers in case studies as well as other projects that use
model checking in a similar application area. Chapter 4 explains concepts for model checking a
synchronous language on an abstract level. Requirements for model checking a synchronous language
in general and SCCharts in particular are discussed. Afterwards the model checkers nuXmv and SPIN

that fit the requirements are identified so that a broad range of model checking techniques and input
languages can be evaluated for this task. Chapter 5 goes into details of the implementation in the
KIELER tool. In Chapter 6 the implementation is evaluated. First, general observations of the presented
translation and its limits when model checking SCCharts are discussed. Second, different options and
algorithms provided by the chosen model checkers are evaluated in a systematic comparison.

Finally, Chapter 7 summarizes the thesis and presents possible future work.

4

Chapter 2

Used Technology

The following presents technologies and concepts used in this thesis. First, KIELER and related tools are
introduced. Afterwards, temporal logics and the synchronous observer pattern are explained, which
can be used to specify properties for model checking. Finally, the model checkers nuXmv and SPIN are
introduced.

2.1 KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is an open source IDE devel-
oped at Kiel University. It is based on Eclipse1, which was originally started as a Java IDE but developed
to a general purpose rich client platform. An extensible plug-in mechanism in Eclipse enables to
implement large, modular applications within this framework. For instance, KIELER contributes several
plug-ins containing its compiler framework and SCCharts related tools. Furthermore, the Eclipse Public
License2 supports a wide application area for academic and commercial use. As a result, the Eclipse
platform has thrived to an ecosystem with many open source projects from academia and industry.

The KIELER project builds on these technologies, among other things, an implementation of SCCharts.
Thereby, heavy use is made of the Eclipse Modeling Framework (EMF)3 and Xtext4 to develop meta-
models and language tooling. For instance, parsers, editors, and static code analyzers are created from
an Xtext grammar of the textual SCCharts language.

Furthermore, KIELER implements an extensible framework for interactive compilation, namely the
KIELER Compiler (KiCo) [SSH18]. Compilation and simulation of SCCharts have been developed using
this framework.

A focus of the KIELER project is to enhance the pragmatics of model-based design by using automatic
layout and filtering mechanisms [FH10]. These enable graphical modeling from a textual syntax, thus
combining benefits of both approaches. KIELER SCCharts is a demonstration of this combined approach.

2.1.1 SCCharts

An SCChart is at its core a state-machine similar to a Mealy-machine extended with hierarchy and
concurrency. Figure 2.1 shows a simple SCChart, namely the ABRO model. States are linked through
transitions that can have a trigger and an effect, which are separated by a slash. The transition can be
taken only when the trigger condition evaluates to true. When the transition is taken then the effect
is executed before entering the next state. Concurrency is added using regions. Every region has a
state-machine on its own that starts in one initial state. In the ABRO example, the state WaitAB has two
regions, each waiting for one input.

1https://eclipse.org
2https://www.eclipse.org/legal/epl-2.0/
3https://www.eclipse.org/modeling/emf
4https://www.eclipse.org/Xtext

5

https://eclipse.org
https://www.eclipse.org/legal/epl-2.0/
https://www.eclipse.org/modeling/emf
https://www.eclipse.org/Xtext

2. Used Technology

ABRO
input bool a, b, r
output bool o

ABthenO
entry / o = false

WaitAB

wA dA
a

-

wB dB
b

-

done
/ o = true

-

r
-

Figure 2.1. Example for an SCChart. The ABRO model waits concurrently for the inputs a and b and sets the output
o to true when both have been received. Further, the input r is used to reset the system, which takes precedence
in this model.

There are two kinds of transitions namely delayed and immediate transitions. Immediate transitions
conceptually do not take time in the synchronous MoC and can always be taken. In contrast to this, a
delayed transition can only be taken when the control-flow of the previous reaction has ended in its
source state. Thus, delayed transitions separate one system reaction from the next. The ABRO model
uses delayed transitions in WaitAB, such that these will not react to inputs in the initial tick.

A state in SCCharts can contain further regions with one initial and multiple final states. Such a state
with inner behavior is called a superstate. A superstate is left trough a termination transition when all
of its regions have reached a final state. In the ABRO model, the termination transition that sets the
output to true is taken when the state WaitAB has reached the final states dA and dB, i. e., when the
inputs a and b have been received.

Furthermore an SCChart contains declarations that define which variables are used and which of
them are inputs or outputs to the model.

Most other language constructs of SCCharts can be expressed in terms of the ones described above.
Figure 1.1 gives an overview of SCCharts elements. One can differentiate extended SCCharts that can be
simplified from core SCCharts that cannot be expressed in terms of simpler features.

The ABRO model contains extended features in form of an entry action that is used to reset the
output variable o when entering the state ABthenO. Other actions that are available in SCCharts are exit
actions and during actions. These are evaluated when a state is left, respectively as long as control-flow
stays in a state. Furthermore, in ABRO a strong abort is used to reset the model. Inner behavior of the
ABthenO superstate will be preempted when the strong abort transition is taken. A weak abort on the
other hand would allow the execution of inner behavior of a superstate before moving control-flow to
a new position.

In the synchronous MoC a single reaction happens in zero-time. For SCCharts this means that any
change to a variable is broadcast to all concurrent regions and immediately visible. This is implemented
in SCCharts semantics by scheduling rules for concurrent variable accesses, namely the Initialize-Update-
Read (IUR) protocol. This means that a concurrent initialization of a variable (i. e., setting a value that
does not depend on the current variable value) is done before any concurrent updates to a variable,

6

2.1. KIELER

tickend tickend tickend

micro-tick macro-tick macro-tick

Figure 2.2. A timeline of reactions. A bold vertical line corresponds to the end of a macro-tick. Such a computation
can be split into multiple micro-ticks depending on the abstraction level, illustrated here as smaller dashed vertical
lines.

which in turn are done before concurrently reading a variable. SCCharts that cannot be scheduled
consistently using these rules are rejected by the compiler.

In addition to the explained features, there are referencing mechanisms to instantiate re-usable
modules. In KIELER these are implemented similar to a macro expansion, i. e., by putting concrete
SCCharts instances in place of parameterized references. Furthermore, experimental data-flow regions
allow the definition of data-flow equations with sequentially constructive semantics. In a low-level
model each equation corresponds to a concurrent control-flow region that performs its corresponding
assignment every tick. As a result, dependencies between equations are handled by the IUR-protocol
when scheduling the concurrent regions. Other language constructs of SCCharts are introduced in this
thesis when needed.

A single discrete reaction of a synchronous model is called a macro-tick. In reality the conceptually
instantaneous macro-tick is implemented by a number of smaller elementary actions, which are called
micro-ticks or microsteps. A timeline of reactions with macro-ticks and micro-ticks is illustrated in
Figure 2.2. What is considered a micro-tick depends on the current point of view. On a hardware-level,
the propagation of a signal through a logic gate can be considered a micro-tick. Other possible
abstraction levels to look at micro-ticks are the nodes of an SCG, or lines of code in the textual SCCharts

model. However, on the high-level synchronous MoC, only macro-ticks are considered as observable.
As a result, temporal properties for SCCharts are formulated on macro-tick level.

The implementation of SCCharts in KIELER is using a textual syntax to create models. In this textual
language it is possible to add meta-information in form of annotations to many elements, for instance
states, variables and transitions. This is a general mechanism to augment a model with information
that does not affect its semantics, but is relevant for the tooling. For example, this mechanism can be
used in KIELER to add information about how the synthesized diagram should be laid out.

KIELER includes different interactive compile chains for SCCharts that include data-flow-based,
priority-based, and state-based compilation approaches [HDM+14] [Pei17] [smyth2018synthesizing].
Thereby, compilation is done incrementally. For example, there are semantics-preserving model-to-
model transformations to reduce complex SCCharts features to simpler ones. After these transformations
have been applied and the model contains only core language features of SCCharts, it can be further
processed and compiled more easily to other languages such as C or VHDL.

2.1.2 SCG

The Sequentially Constructive Graph (SCG) is a control-flow based data structure to express sequentially
constructive programs. As a result, it can be seen as low-level representation of SCCharts. An SCG is
written in a textual syntax in KIELER, namely the Sequentially Constructive Language (SCL)[HMA+14].
Figure 2.3 illustrates the syntax of an SCG and its semantic equivalence to SCL and other data-structures.

7

2. Used Technology

Region Superstate Trigger Effect State
(Thread) (Concurrency) (Conditional) (Assignment) (Delay)

SCCharts

SCG

SCL t fork t1 par t2 join if (c) s1 else s2 x = e pause

Data-
Flow
Code

d = gexit

m = ¬
∨

surf ∈ t

gsurf

gjoin=(d1 ∨ m1) ∧
(d2 ∨ m2) ∧
(d1 ∨ d2)

g =
∨

gin

gtrue = g ∧ c

gfalse = g ∧ ¬c

g =
∨

gin

x′ = g ? e : x
gdepth =
pre(gsurf)

Circuits
surf1

surf2
m

m1

d1

m2

d2

d1
d2

gjoin

c

g

gfalse

gtrue

x

e

g

x′

Figure 2.3. Transformation matrix of normalized SCCharts, SCG, data-flow and circuits [HDM+14].

The main nodes of an SCG are entry, exit, fork and join, surface, depth, conditional, and assignment.
Each concurrent thread has an entry-node and an exit-node in which the control-flow starts, respectively
terminates. A fork splits the control-flow into multiple threads that are conceptually executed at the
same time. When all forked threads have reached their exit-node, control flow continues in the
corresponding join-node. Surface and depth represent a tick border. This means that when the surface-
node of a thread is reached then the control-flow will continue in the corresponding depth-node in the
next tick. Conditional-nodes have two outgoing control-flow edges. One is used when the condition
evaluates to true, whereas the other is used when it evaluates to false. Assignment-nodes set the value
of variables.

Another SCG construct is the pre-operator, which can be used on the right side of an assignment.
Its operand is a variable. The pre-operator refers to the variable’s value at the end of the previous tick.
In the initial tick, the returned value is false for Booleans and 0 for integers. This operator is typically
implemented by an additional register or variable that stores the operand’s value at the end of a tick
to make it accessible in the following tick. Such a variable that implements a pre-operator is called
pre-variable.

Normalized SCCharts can be mapped directly to SCG constructs, which can be expressed in data-flow
and hardware circuits. The variables that are introduced by a translation to data-flow are called guards.

8

2.2. Model Checking

1 a=true => o=1;

2 => o=2;

3 loop_start:

4 a=false => o=2

5 goto loop_start;

Listing 2.1. A small KTrace example. In the first tick, the input a is true and the output o is 1. In the second tick,
a stays true and o is 2. The third tick has a label, which is used in line 5 as jump target. In this tick, a is false and
o stays 2. The following goto indicates that the trace should be continued with the tick that has the corresponding
label, namely the third tick. In this trace, the visible state of the system does not change anymore in following
ticks.

They encode which parts of the SCG are executed in a reaction. For instance, consider the data-flow row
from Figure 2.3 for a Conditional. The guard gtrue determines when the true-branch of the conditional
is executed, whereas g f alse determines when the false-branch of the conditional is executed. The
conditional itself is executed when any of its incoming transitions are taken. This is expressed by a
disjunction over the guards that represent the transitions.

A special input to the SCG in data-flow form is the GO-signal. It marks the entry point to the tick
logic, i. e., the initial reaction. Therefore this variable must be set to true in the first tick and to false

in all following ticks. More elements are needed to create a complete SCG that can be compiled, e. g.,
input and output declarations. However, these elements are of little relevance for understanding its
behavior and are thus not further explained here.

The netlist-based compilation approach implemented in KIELER maps SCG constructs to their data-
flow equivalent. Semantics of sequential constructiveness are then applied to schedule concurrent
statements, thus resulting in a sequentialized SCG. Compared to general SCGs, the sequentialized version
is free of concurrency and pauses. Stepping through this control-flow graph from entry to exit
corresponds to a single system reaction.

2.1.3 KTrace

SCCharts in KIELER can be simulated. The behavior of such a simulation can be recorded and later
re-played. A recording of visible behavior is called a trace. A trace is thus a sequence of input-output
pairs. A pair (I, O) at position n in the sequence means that when given the inputs I in the n-th
reaction to the model then it will produce the outputs O.

The format for traces in KIELER is called KTrace. It is a simple textual language that is illustrated
in Listing 2.1. Inputs are separated from outputs using an equals-sign followed by greater-than (=>).
Multiple ticks are separated using a semicolon. The value of variables is carried over to the next tick if
not explicitly given. Thus, in the example the input a has the value true in the second tick. Optionally,
a label can precede a tick. Afterwards the label can be used as jump target to create infinite traces.

2.2 Model Checking

The following introduces concepts and technologies related to model checking that are used in
this thesis. First, temporal logics are explained with a focus on LTL. Afterwards, the synchronous
observer pattern is discussed, which can be used instead temporal logics to formulate certain temporal
properties in synchronous languages. Finally, the model checkers nuXmv and SPIN are introduced.

9

2. Used Technology

2.2.1 Temporal Logics

Temporal logics are an extension to propositional logic. The term temporal, however, does not necessarily
mean that they formulate statements relative to real-time. Instead, the abstract order in which events
occur is expressed, e. g., event B occurs after event A, rather-than event A occurs and 300ms later event B
occurs. However, some temporal logics focus on real-time properties, for example Timed Computation
Tree Logic (CTL). In this thesis Linear Temporal Logic (LTL) is used in examples because it is well
supported by model checkers and is well suited to describe discrete system reactions of synchronous
programs.

LTL formulas over the set AP of atomic propositions and a P AP are formed by the following
abstract syntax rules:

ϕ ::= true a ϕ1 ^ ϕ2 ϕ Xϕ ϕ1 U ϕ2
X is representing the next-operator, whereas U is representing the until-operator. Atomic proposi-

tions that occur in this thesis follow intuitively from the context and are not further defined. Formal
semantics of LTL are not discussed here but are explained in detail in other literature, for example by
Baier and Katoen [BK08]. Figure 2.4 illustrates the intuitive semantics of LTL. Operators G for "always"
(now and forever in the future) and F for "eventually" (eventually in the future) can be expressed using the
until operator as follows:

Fϕ ” true U ϕ Gϕ ” F ϕ
The following illustrates the use of LTL to define the key properties of the mutual exclusion problem.

Thereby, the first property is a safety-property, whereas the second is a liveness-property.

Ź Access to the critical section is given only to one actor at a time:
G(crit1 _ crit2)

Ź Access to the critical section is always given at some point in the future:
(G F crit1)^ (G F crit2)

2.2.2 Synchronous Observer

The synchronous observer pattern is an alternative to temporal logics for formulation of safety-
properties when working with synchronous languages [Rus14]. In this pattern the system to be verified
is monitored by a program that runs in parallel and which will raise an error flag if it observes
undesired behavior. Running the observer in parallel to the main system works in the synchronous
MoC because the system state is broadcast immediately and thus no behavior is missed because of
timing issues or lost messages. The task of verification is then to ensure that the error flag is never
raised.

The pattern has the advantage that the same language to describe the system can be used to
formulate the desired properties. Thus, no new formalism has to be learned, which can be useful to
establish formal methods in practice. Furthermore, temporal aspects of properties, e. g., in the next tick
there shall be no error, is handled by the compiler of the synchronous language. This enables the use of
relatively simple algorithms for invariant checking instead of complex ones for, e. g., LTL. Halbwachs
et al. have shown how to use the synchronous data-flow language Lustre for checking non-trivial
safety-properties [HLR92]. The use of algorithms for checking invariants instead temporal properties
could improve performance.

Rushby points out that the synchronous observer pattern does not only allow to formulate safety-
properties but also to specify assumptions and axioms [Rus14]. For instance, it is possible to ignore
misbehavior or undefined behavior that would not occur in the real target environment of the system.

10

2.2. Model Checking

a
a arbitrary arbitrary arbitrary arbitrary

...

X a
arbitrary a arbitrary arbitrary arbitrary

...

a U b
a^ b a^ b a^ b b arbitrary

...

F a
 a a a a arbitrary

...

G a
a a a a a

...

Figure 2.4. Illustration of the intuitive semantics of LTL for atomic propositions a and b [BK08].

A downside of the synchronous observer is that not all properties known from temporal logics
can be expressed. Only past and current behavior can be observed but not the future in general. As a
result, it is not possible to formulate unbounded liveness properties using this approach. Furthermore,
the system that is given to a model checker is a composition of the main model and its observer. This
composition is more complex than the main model alone, which can have a negative impact on the
performance.

2.2.3 SPIN

The Simple PROMELA Interpreter (SPIN)5 is a model checker for the the Process Meta Language
(PROMELA). SPIN is one of the oldest model checkers and uses an explicit model checking algorithm.
The state-space is constructed on-the-fly for checking a property. The verification of assertions and
LTL formulas is supported. In SPIN this is done by first creating a verifier in C code, which is then
compiled and executed to perform the model checking. The user can chose whether a breadth-first or
a depth-first (default) search should be performed to find counterexamples. Unreachable states do not
have a significant performance impact because they are not traversed in the constructed state-space.

The PROMELA syntax has been inspired by C and is designed to model parallel processes that
communicate via shared variables and message passing. The program logic is described imperatively.
However, if-statements and loops allow multiple parallel conditions and the next statement to be
executed is chosen non-deterministically from all running processes.

The explicit model checking of SPIN allows to check dynamic behavior, meaning that processes
can be spawned and started at run-time. SPIN has been used successfully to verify and detect bugs in
real-world protocols. However, it is limited by the reachable state-space. For example, when an integer
can reach all its possible values, then this will dramatically impact the time and memory required for

5https://spinroot.com

11

https://spinroot.com

2. Used Technology

checking a property using SPIN. Thus, it is necessary to abstract from irrelevant states when writing
PROMELA models.

2.2.4 NUXMV

nuXmv
6 is a symbolic model checker for synchronous finite-state and infinite-state systems. It extends

the open source model checker NuSMV, which in turn was a re-implementation of SMV, the first
model checker using Binary Decision Diagrams (BDDs). nuXmv offers a wide range of algorithms for
model checking and its performance in certain categories is well placed when compared to other
modern model checking systems [CCD+14]. Among others, available techniques make use of BDDs,
Satisfiability (SAT) solving or Satisfiability Modulo Theories (SMT) solving.

This is reflected in the nuXmv command palette, which is illustrated in Figure 2.5. Model checking
algorithms that are reachable via the go command or ending in _bmc typically use BDDs. Algorithms
reachable via the go_bmc command or ending in _bmc typically use bounded model checking and SAT

techniques. Algorithms reachable via the go_msat command or starting with msat_ typically use SMT

techniques.
Moreover, abstraction/refinement algorithms are available, which is reflected in command names

that contain the term _cegar (i. e., Counterexample Guided Abstraction Refinement) or _predabs (Pred-
icate Abstraction). The suffix _inc indicates an incremental algorithm and the suffix _inc_coi indicates
an incremental cone of influence approach. Several commands of nuXmv implement a combination of
different approaches, for instance, check_ltlspec_inc_coi_bdd. Some of the new commands in nuXmv

allow to check models with infinite domain variables, namely integers and real numbers. However,
the explicit model checking approach that is used in SPIN is not available in nuXmv.

The SMV language has been designed to describe synchronous transition systems. This is done
logically by giving equations that define the initial and following value of variables. The equations
must not have cycles in their dependencies and must be deterministic. SMV allows for hierarchical
models by abstracting and instantiating modules.

Depending on the model and used algorithm, nuXmv can check properties that are expressed
in CTL, LTL (optionally extended with Past Operators), or the standardized Property Specification
Language (PSL) [IEEE1850][EF07].

6https://nuxmv.fbk.eu

12

https://nuxmv.fbk.eu

2.2. Model Checking

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

Figure 2.5. Overview of the available commands in nuXmv and in which order they can be used. Commands
with an asterisk (*) are new compared to the commands available in NuSMV. Most of the commands can be
further parameterized and fine-tuned.

13

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

Chapter 3

Related Work

There are model checkers designed for different logics, models, and domains. A comparison of some
model checkers can be obtained from various case studies.

Mazzanti et al. present a case study, in which a deadlock avoidance algorithm for train scheduling
has been checked using ten different model checking systems [MF18]. Thereby, characteristics of
the modeling languages and their impact on the algorithm implementation are identified. They did
not focus on comparing the performance of model checkers. A fair comparison is difficult due to
the strength and weaknesses of different model checking techniques. In general, model checking
performance depends on the concrete model to be checked and the used algorithm and its configuration,
for instance variable order in BDDs. However, their experiences with the different model checking
systems can give a rough approximation of their potential. The fastest times were measured for
NuSMV/nuXmv and SPIN.

Frappier et al. used 6 model checkers to verify an information system for a library [FFC+10]. They
highlight the different aspects of the modeling as well as property specification languages and give an
overview of the used model checking techniques. Also they compare the run-time needed to check
increasingly complex instances of their problem. In this case study, the model checkers Fdr4 and
Alloy outperformed the others.

An indirect comparison of model checkers can also be found in papers migrating from one tool
to another, for example in the work of Choi, who migrated from NuSMV to SPIN for the design of a
Flight Guidance System at Rockwell-Collins [Cho07]. SPIN was able to verify properties after applying
optimizations to the SPIN model. NuSMV on the other hand was not able to verify these properties.
However, it is noted that on unoptimized models NuSMV often performed better. Furthermore, results
of SPIN may be unsound when bit-state hashing is used and the performance depends not only on
the model, but also on the property to be checked. The author argues that creating efficient models
for automatic verification requires expertise of the used model checking tool. This makes it difficult
for developers to choose the optimal model checker for a specific task and thus to establish formal
methods in the industry. Creating an optimized model for every property is not ideal because it is
costly and can lead to inconsistencies between models.

A case study that compared model checking tools to verify a real-world example of a critical
real-time system were done by Boniol, Wiels and Ledinot [BWL06]. For this case study three different
versions of the system, two versions of the property and two different sets of hypothesis have been
formulated to achieve a better comparison of the tools. Further, the target environment of the model
has been designed as well to get a realistic setting. The model checkers that were tested are Lesar,
SMV, Uppaal and the Prover Plug-in for SCADE. Lesar is a symbolic model checker for the synchronous
language Lustre and is explained in Section 3.3. Uppaal1 is a model checker and modeling environment
for real-time systems specified in a visual state-machine language. SCADE and the Prover Plug-in are
explained in Section 3.1.

1uppaal.org

15

uppaal.org

3. Related Work

The original specifications of the models were provided by a company in form of Esterel code.
Motivation for the case study was that, at the time, the Esterel model checker failed to verify some
properties. This is why the models have been re-implemented in Uppaal and Lustre to make use
of other verification systems. As Lustre is the semantic root of SCADE, it is supported by the Prover
Plug-in. Further, an automated translation from Lustre to SMV exists. Thus a Lustre and Uppaal model
were sufficient to use all model checkers of the case study.

SMV was the only tool that successfully checked all properties of the study. SMV outperformed
Lesar, although both use symbolic model checking techniques. The authors were not able to benefit
from the real-time modeling of Uppaal. A possible explanation for this is given. They triggered the
controller model with a fixed frequency so that the continuous clock domain of Uppaal is discretized.
This could be a reason why the real-time domain of Uppaal was not beneficial in the case study. The
authors were not able to get positive results from the Prover Plug-in. They argue that this may be due
to the number of induction steps needed by the Prover Plug-in to verify these particular properties of
the models. In another experiment that did not have these hurdle, the Prover Plug-in showed very
good performance, much better than Lesar.

Another kind of case study can be found by investigating solutions for the Steam-boiler Control
Specification Problem [ABL96]. It gives an informal, realistic specification of a steam-boiler as an
example for a safety-critical system. The idea was to have a practical, non-trivial, non-academic
example to compare techniques for formal specification and verification in a competition. The authors
received contributions from all over the world. Models of the steam-boiler specification have been
written in various languages including Lustre [CD96], Esterel [Bou97b] and StateCharts [BW96].

3.1 SCADE

The Safety-Critical Application Development Environment (SCADE)2 is a commercial tool that is used
in various industries with high requirements for correctness and reliability, e. g., avionics, railway and
nuclear power plants. SCADE uses a visual language for modeling system behavior, which is also done
in KIELER using SCCharts. However, the semantic root of SCADE is the synchronous language Lustre. A
certified compiler can generate C and Ada code from SCADE models.

SCADE features tools for the specification of system properties and their formal verification. This can
be done by modeling a synchronous observer that monitors the property to be checked. There exists a
library of predefined elements to ease the creation of synchronous observers in SCADE. Included are
common patterns such as logical implication. The library can be extended by users to express complex
properties using the synchronous observer pattern. In a similar way, an extensible library of models
could be created that ease the use of synchronous observers in SCCharts.

Model checking in SCADE is done via the Prover Plug-in, which is provided by Prover Technologies3.
Two modes are available in this model checker, namely proof and debug. The debug mode can quickly
find counterexamples when they exist. This has been experienced in the case study by Boniol, Wiels
and Ledinot [BWL06]. Thus this mode is suited in early development stages, where the developer
is not sure whether the designed property is true or even well expressed. However, the proof mode
should be used when the developer thinks that the property holds to get a complete verification.

2esterel-technologies.com/products/scade-suite
3prover.com

16

esterel-technologies.com/products/scade-suite
prover.com

3.2. mbeddr

3.2 mbeddr

The open-source tool mbeddr4 aims at providing a complete solution for embedded system develop-
ment from requirements specification to implementation, testing and verification. Therefore, mbeddr
provides an extensible set of Domain Specific Languages (DSLs) for the C language. For instance, there
is an extension that enables to add physical unit information to members of C structs. Expressions
with these members are then checked to produce sound units, e. g., when used in an assignment. This
can help in avoiding bugs. The language tooling of mbeddr builds on the Meta Programming System
from JetBrains, which is based on Projectional Editing. This means the Abstract Syntax Tree (AST) of
code is modified directly instead of textual languages that have to be parsed first. This allows for
very flexible code representations and editing in mbeddr. In contrast to this, KIELER uses Xtext for
implementation of its DSLs, thus using a traditional parser-based approach.

Noteworthy of mbeddr in the context of this thesis is how the verification is implemented. The
backend tools for verification that are used in mbeddr are NuSMV, CBMC and Yices. A paper illustrates
how CBMC has been used to automatically create inductive proofs about mbeddr’s state-machine
extensions for C [MVR14]. Such state-machines and certain other code constructs can be automatically
visualized in the mbeddr IDE. This is similar to how SCCharts are visualized from a textual syntax in
KIELER. However, concurrent state-machines with a synchronous semantics are not part of the mbeddr
system.

Verification in mbeddr is not limited to state-machines. For instance, an interface can be defined
with methods to be implemented and pre and post conditions that define a contract for the methods.
Implementations of that interface can then be checked against that contract using formal methods. An
execution stack trace is given as counterexample if a property does not hold.

3.3 Lesar

Lesar is a model checker for the synchronous language Lustre. Lesar implements both, an explicit
approach that enumerates all states, and a symbolic approach that uses BDDs for model checking. The
internals of Lesar’s symbolic model checking approach are explained by Raymond [Ray08]. The paper
gives technical details about the BDD algorithms. Furthermore, it is explained how Boolean abstraction
can be used to reduce the amount of system configurations when checking safety properties. The
discussed algorithms could be adapted to implement model checkers for other synchronous languages,
e. g., SCCharts. Raymond also illustrates that the synchronous observer approach is used in Lesar instead
temporal logics to specify safety properties. As a result, it is not possible to check, e. g., liveness
properties using Lesar as these cannot be expressed using the synchronous observer approach. This
limitation has been accepted in favor of handling real-life safety properties by means of abstraction
techniques.

How Lesar can be used for specification and verification of safety properties is illustrated on a
small example by Halbwachs et al. [HLR92]. The authors pointed out that there are cases in which
the explicit approach implemented in Lesar performs better than the symbolic approach and vice
versa. Anyhow, the version of Lesar that was used in the paper was able to check about 1,000,000
states in less than an hour, which was considered a "reasonable time". Since computing hardware has
seen noteworthy improvements over the last decades, the Lesar model checker is likely to handle
more states in the same time today. Furthermore, the paper explains how modular verification of a
composed system S can be achieved for suited properties. This is done by first verifying properties of

4mbeddr.com

17

mbeddr.com

3. Related Work

smaller components that are used in S. Afterwards this knowledge can be used as assumption about
the components instead of their concrete implementation, thus resulting in an abstraction of S, which
can be much easier to prove.

3.4 Xeve

Xeve is a graphical verification environment for the synchronous language Esterel [Bou97a]. It utilizes
a library for handling BDDs to minimize and verify the finite state machines that are implicitly encoded
as sequential circuits during the compilation of Esterel programs. Xeve takes the circuit in the Berkeley
Logic Interchange Format (BLIF). Minimized state machines are stored in a textual format (Fc2) that
can be visualized for graphical navigation of the state space.

Esterel semantics are based on signals. A signal is either present or absent in any given tick. A signal
is present when it must be emitted and it is absent when it cannot be emitted. Xeve verifies that an
input or output signal of the program can be emitted or not. A minimal execution trace is given that
shows how to reach a state with the corresponding emission status of the signal. Such a trace can be
loaded in the graphical Esterel simulator to replay the program logic. Furthermore, the graphical tools
of Xeve can be used to restrict inputs and outputs to a fixed value (present or absent) when doing a
verification. Inputs and outputs can be marked as ignored when determining the equivalence of states
for minimization of the transition system.

Xeve requires the synchronous observer approach to formulate properties, similar to Lesar.

18

Chapter 4

Concept

This chapter discusses the integration of model checking features for SCCharts in KIELER. The imple-
mentation of a dedicated model checker for SCCharts is considered but dismissed in favor of re-using
and evaluating existing model checker implementations. The model checkers nuXmv and SPIN have
been identified for this task. Properties of a reactive model such as SCCharts are considered and how
temporal properties change when a model is translated to another language.

These considerations are respected when giving a translation from a low-level representation of
SCCharts, namely the sequentialized SCG, to the input languages of the chosen model checkers. nuXmv

uses the SMV language, in which a transition system is described using data-flow equations. Two
possible translations of the tick logic to this language are discussed. The first uses a program counter
approach to implement the control-flow of the SCG. The second uses an Static Single Assignment (SSA)
form of the sequentialized SCG to express its underlying data-flow in the SMV language. Thereby, this
thesis focuses on the SSA approach because it preserves temporal properties of the original model.

SPIN is a model checker for PROMELA. Thus, a translation from the sequentialized SCG to PROMELA

is presented to enable the use of this model checker for SCCharts.
Finally, it is illustrated how the synchronous observer pattern can be implemented in SCCharts to

express the model, its safety-properties and assumptions within the same language.

4.1 Model Checker Selection

There are various model checking algorithms and implementations as explained in Chapter 3. Model
checkers are often dedicated to do verification on a specific problem. For instance, the model checkers
Xeve and Lesar have been implemented to verify programs written in Esterel, respectively Lustre. In a
similar way it is possible to write a dedicated model checker for SCCharts. However, it is not trivial to
find an optimal model checking algorithm for this task. The explicit and symbolic approach can both
be more efficient in some cases, which has been experienced in several case studies. Further, efficient
model checking algorithms are typically complex to handle large state-spaces. As a result, they are not
trivial to implement.

An alternative to the implementation of a particular model checking algorithm for SCCharts is
re-using existing model checkers. SCCharts can be translated to a language that is supported by existing
model checking solutions to evaluate different algorithms. In the scope of this thesis, the model

Table 4.1. Comparison of nuXmv and SPIN. The model checkers differ in their modeling language, semantics and
model checking algorithm.

NUXMV SPIN

Language Logical (data-flow) Imperative
Semantics Synchronous Asynchronous

Model Checking Approach Symbolic (various) Explicit

19

4. Concept

checkers nuXmv and SPIN have been identified to evaluate different model checking approaches for
SCCharts. Table 4.1 names differences between SPIN and nuXmv.

KIELER is a cross-platform tool that runs on Windows, MacOS and Linux. As a result, it is desirable
that related tooling such as model checkers are available for these platforms as well. Both nuXmv and
SPIN meet this requirement.

nuXmv is a model checker that implements high-performance symbolic model checking techniques,
which has been demonstrated in the hardware model checking competition of 2013 [CCD+14]. SMV
has been evaluated before and performed well in different case studies as discussed in Chapter 3.
Furthermore, translations from the synchronous language Signal to SMV have been proposed to
leverage the model checking limitations of its dedicated model checker [PG09].

nuXmv provides a wide range of model checking algorithms. This is useful in the evaluation to
find an optimal model checking algorithm for SCCharts. An advanced feature of nuXmv is the support
for unbounded integers and real numbers. Properties can be formulated in different temporal logics,
including LTL and CTL.

Thus, nuXmv allows for a wide range of models and properties. Different algorithms can be
evaluated and it meets the requirements for cross-platform tooling. As a result, it has been chosen in
this thesis for model checking of SCCharts.

On the other hand, SPIN complements nuXmv and the SMV language in several ways. First, it uses
an explicit model checking algorithm that constructs the traversed state-space on-the-fly. This method
is not available in nuXmv. Second, the modeling languages of SPIN and nuXmv are different. PROMELA

is an imperative language to model asynchronous processes that communicate via messages and
shared memory. In contrast to this, the SMV language is a data-flow language to describe synchronous
transition systems. As a result, a translation from SCCharts to PROMELA and SMV allows to evaluate
different approaches.

Both model checkers are used as verification back-end in other tools [CCD+14][Hol97]. There are
plugins to translate the object oriented, reactive language Rebeca1 to SMV and PROMELA. SATABS is a
tool for model checking ANSI-C and supports (among others) NuSMV and SPIN as back-end [CKS+05].
NuSMV is used for model checking state-machines in mbeddr [VRK+13].

4.2 Translation Considerations

Reactive systems have some features that must be considered when doing model checking. First, the
reaction can happen infinitely often. Second, inputs to the system can be different for every reaction,
but they are constant within a reaction. Depending on the Model of Computation, these properties are
either implicit or must be modeled explicitly.

An important consideration for model checking a language is the abstraction level on which it
is done. The model is more abstract on a high-level. Using this information can help to implement
efficient model checking. The abstraction is lost when translating high-level features to simpler ones.
On the other hand, models with high-level features are still subject to compilation. Therefore, a bug in
the compiler could change the behavior of the system, such that properties of the original model do
not hold anymore.

The exact semantics of language constructs must be preserved in a translation when doing model
checking. A direct mapping of high-level features to another language is not possible in most cases
such that a non-trivial translation must be given. Thereby, semantic equivalence is difficult to establish.

1rebeca-lang.org

20

rebeca-lang.org

4.2. Translation Considerations

Semantics of low-level features on the other hand are typically easier to grasp and thus to translate.
Additionally, there are typically fewer low-level than high-level features. As a result, giving a translation
on this level has less potential for errors. A bug in the compiler can lead to code in which properties
of the original model do not hold. In contrast to this, doing model checking on the final code meets
the principle "What You Prove Is What You Execute" as mentioned by Berry [Ber89].

As a result, this thesis focuses on a low-level representation of SCCharts, namely the sequentialized
SCG that is explained in Section 2.1.2. In this form, only conditionals, assignments, pre-operators and
the sequential execution of statements remain. This drastically eases the translation to other languages,
including existing model checking systems. Another advantage is that other high-level languages
are also compiled to a sequentialized SCG in KIELER. For instance there is a sequentially constructive
version of Esterel (SCEst) [SMR+17]. As a result, doing model checking on this level can be beneficial
not only for SCCharts.

4.2.1 Persisting Temporal Properties

It is important to note how the number of visible reactions and thus temporal properties changes
when a model is translated to another language or abstraction level. In SCCharts only the system
behavior of macro-ticks is relevant and visible from the outside as discussed in Section 2.1.1. Thus,
invariants of the system hold when the reaction is complete but not necessarily during its computation.
Similarly, a next-operator in LTL refers to the end of the next tick in the context of SCCharts. The complete
code of a sequentialized SCG is meant to be executed as a single macro-tick. Thus, invariants and
temporal properties must be checked after the last statement of the SCG has been executed. This must
be considered in a translation. However, in PROMELA every statement is per default considered a
reaction and can be referenced by a next-operator in LTL.

Temporal properties formulated from a macro-tick perspective can be adapted to models with
observable micro-ticks. A timeline of reactions containing micro-ticks and macro-ticks is illustrated in
Figure 2.2. Intuitively, an observable state that does not correspond to the end of a macro-tick must be
ignored because at this point the computation of the reaction is incomplete. This leads to the following
LTL operators:

Ź F1 a := F (tickend^ a)

Ź G1 a := G (tickend_ a)

Ź a U1 b := ((tickend_ a)U (tickend^ b))

Ź X1 p := X (tickend U (tickend^ p))

For example, consider the LTL property G X (a Ñ o) of the ao-model from Listing 5.1.
This property can be translated to ignore intermediate system configurations, for example,
G (tickend_ X (tickend U (tickend^ (a Ñ o)))).

A proof for the correctness of the adapted LTL operators is not given here as they have not been
used in the implementation of this thesis. However, intuitively temporal properties get more complex
when losing a one-to-one relation between reactions of the original high-level model and its translation.

An alternative to adapting temporal properties is to preserve what is considered a macro-tick. For
instance, PROMELA features an atomic keyword to consider multiple statements as a single reaction.

21

4. Concept

4.3 Translation to SMV

SMV is a data-flow language in which a transition system is expressed using equations. Thereby, the
order of equations is irrelevant for the semantics. However, no cycle in the dependencies between
equations and only one defining equation per variable is allowed. There is an equivalence between
data-flow code and hardware circuits. Each equation represents one wire of the circuit and operators
in equations correspond to logic gates.

Sequentially writing to the same variable, which can be done in imperative languages, must be
split to different equations in data-flow. Why this is necessary becomes clear when thinking about the
corresponding hardware circuit. Each wire of the circuit can only carry one distinct value in a reaction.
Otherwise the circuit would be unstable.

Defining a dedicated variable for each distinct value of a sequentially written variable is done when
creating the SSA form of a program. This has been done for the SCG by Schulz-Rosengarten [Sch16]. In
the following, a sequentialized SCG in SSA form is called an SSA SCG.

A translation from control-flow to data-flow can be done in several ways. The following first
discusses general constructs of the SMV language. Afterwards two approaches are discussed to
express the tick logic of the sequentialized SCG in SMV. The first is using a program counter whereas the
second is using the SSA form of a sequentialized SCG. Thereby, this thesis focuses on the SSA approach
because it preserves temporal properties of the sequentialized SCG.

4.3.1 SMV Constructs

An SMV program for nuXmv is structured using keywords. A MODULE with the name main is used as
entry point to the system, similar to how the main function is the entry point to a program in C.

In a module, VAR is used to start the declaration of variables that contribute to the state-space.
Undefined variables in SMV can take any value of their domain non-deterministically. Thus, to model
all possible values for an input variable in SCCharts, it can be declared in SMV without following
defining equations. This is different from PROMELA semantics. In PROMELA variables are persisted
and initialized with false for Booleans and with 0 for integers such that they must be assigned
non-deterministically to model all possible inputs.

The ASSIGN keyword starts the code block in which variables can be defined. This is done using
one equation for the initial reaction (init(x) := ...), and one equation for all following reactions
(next(x) := ...). If both are the same for the initial and following reactions then this can be written
in a single equation (x := ...). However, the variables that are defined in the ASSIGN-block must have
been declared in the VAR-block.

The DEFINE-block works differently. It associates an identifier on the left side with an expression on
the right side. The nuXmv manual explains it as follows:

A define statement can be considered as a macro. Whenever a define identifier occurs in an
expression, the identifier is syntactically replaced by the expression it is associated with.

This means the expressions from a DEFINE-block do not contribute to the actual state-space. They are
merely used to express the logic of the reaction. All variables from a sequentialized SCG that do not
impact the following tick can be defined this way.

A special signal named GO is used in the sequentialized SCG to provide the entry point of the
tick logic as discussed in Section 2.1.2. It must be set to true in the initial tick and to false in all
following ticks. When translating a sequentialized SCG, the GO variable must be set accordingly in the
ASSIGN-block.

22

4.3. Translation to SMV

1 @Invariant "i -> !o"

2 scchart ivar_example {

3 input bool i

4 output bool o = i

5 }

1 o0 = pre(o);

2 if (_GO) {

3 o1 = i;

4 o = o1;

5 } else {

6 o = o0;

7 }

Listing 4.2. Textual SCChart with
a failing property and the
resulting logic in SCL

1 -> State: 1.1 <-

2 i = TRUE

3 _GO = TRUE

4 _po = FALSE

5 o = TRUE

6 o1 = TRUE

7 o0 = FALSE

Listing 4.3. SMV
counterexample when using
VAR for inputs

1 -> State: 1.1 <-

2 _GO = TRUE

3 _po = FALSE

4 o0 = FALSE

5 o = TRUE

6 -> Input: 1.2 <-

7 i = TRUE

8 o1 = TRUE

9 -> State: 1.2 <-

10 _GO = FALSE

11 _po = TRUE

12 o0 = TRUE

Listing 4.4. SMV
counterexample when using
IVAR for inputs

In SMV it is possible to define inputs in a dedicated block, namely as part of IVAR instead with
all other variables in the VAR-block. However, there are some restrictions on variables defined as part
of IVAR. They cannot be used in CTL formulas, init-statements of the ASSIGN-block, and invariants.
Furthermore, counterexamples change when IVAR variables are present. Listing 4.3 and Listing 4.4
show the difference for a small counterexample. When using IVAR, the input variables are named
separately, conceptually for the following tick. Per definition, the initial state in SMV is not allowed to
depend on IVAR variables (they cannot be used in init-statements). DEFINE identifiers that depend on
input variables are named as part of the input-block in the counterexample. However, from an SCCharts

perspective IVAR variables belong to the previous SMV state. In Listing 4.4 the input i is considered an
input to the state 1.2 but from an SCCharts perspective it belongs to the previous state 1.1. Thus, when
parsing SMV counterexamples the separation marks -> Input: ... <- can be ignored as the following
variables still belong to the same state from an SCCharts perspective.

This thesis focuses on a translation where inputs of the system are declared in the VAR-block of
SMV modules because of the limitations on IVAR variables and how they are handled in SMV, which
breaks with the SCCharts perspective on input variables. Nonetheless, a translation from SCCharts to
SMV that uses IVAR for input variables has been implemented and can be enabled from the graphical
user interface.

The interested reader can find further features of the SMV language in the nuXmv user manual2.

4.3.2 Modeling the Tick Logic via Program Counter

A program counter is used in processors to sequentially execute instructions on synchronous hardware.
Similarly, it is possible to express control-flow statements in a synchronous data-flow language. This is
illustrated in Listing 4.6. A new program counter variable is introduced. The domain of this variable
are the statements that can be executed. Data-flow equations are then written to reflect the statement
that is selected by the program counter. The next value of the program counter is selected to reflect the
control-flow of the original model.

2https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

23

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

4. Concept

1 x = 1; // l1

2 if (x > 0)

3 x = 2; // l2

4 else

5 x = 3; // l3

6 halt; // l4

Listing 4.5. A program with
control-flow.

1 // pc is one of l1, l2, l3, l4

2 pc = if (pc == l1) { if (x > 0) pc = l2 else pc = l3 }

3 else if (pc == l2) { pc = l4 }

4 else if (pc == l3) { pc = l4 };

5

6 x = if (pc == l1) 1

7 else if (pc == l2) 2

8 else if (pc == l3) 3;

Listing 4.6. The control-flow program in data-flow using a program
counter (pc).

An advantage of the program counter approach is that it can express any control-flow, including
jumps. Furthermore, no variables besides the program counter need to be added. In contrast to this,
the translation to an SSA form introduces a new variable for every distinct value that is assigned to a
variable. However, these variables can be defined in the DEFINE-block of SMV and do not contribute to
the state-space of the model.

A disadvantage of the program counter approach is that the number of reactions increase because
each program counter step requires one reaction. Thus, temporal properties must be adapted to
express that they hold only when the reaction of the original model has been completed as explained
in Section 4.2.1.

In the sequentialized SCG there are many Boolean guards that define which statements should be
executed in the current tick. However, only pre-operators carry information about guards across tick
borders and must be persisted in the form of flip-flops or registers. When using the program counter
approach, all variables must be persisted, which results in an increased number of variables in the
VAR-block. The evaluation in Chapter 6 shows that this can have a negative effect on performance, for
instance, in algorithms that make use of Binary Decision Diagrams. The impact becomes clear when
thinking about the underlying hardware circuit that is represented by data-flow equations. Values of
guards correspond to wires and gates. Now, when using the program counter approach these must be
persisted as well, requiring a register for what was modeled as a simple wire before.

In conclusion the program counter approach can express any control-flow but increases the number
of global variables and requires adaptation of temporal properties. As a result, this thesis focuses on a
translation to SMV without program counters by using an SSA form of the sequentialized SCG.

4.3.3 Modeling the Tick Logic via SSA

The sequentialized SCG encodes its tick logic using data-flow guards as explained in Section 2.1.2. This
eases the translation to a data-flow language such as SMV without using a program counter. In SSA

form there is one distinct variable for each value. This makes it possible to use data-flow equations
to describe the logic of a sequentialized SCG in a single reaction. Listing 4.7 gives an example of the
resulting code using the translation presented in this section.

Few changes to the SSA SCG that is created from the work of Schulz-Rosengarten were necessary
for the translation to work. First, the pre-operator must return the value of a variable at the end of
the previous tick. Thus, the operand is always the last version of a variable in case the SSA form has
introduced multiple versions for different values.

Second, the SSA form implemented by Schulz-Rosengarten does not retain the variable names
of the original model. However, it is easier to work with an SSA SCG that retains the variable names

24

4.3. Translation to SMV

ao-int
input bool a
output int o = 0

waitA gotA

a
/ o = 1

-

entry

_g2 = pre(_g1)

_g1 = _GO || _g2 && !a

_g3 = _g2 && a

exit

_GO

o1 = 0

_g3

o3 = 1

o2 = o1o2 = o0

o = o3o = o2

o0 = pre(o)

true

true

Figure 4.1. The ao-int model and its sequentialized
SCG in SSA form

1 MODULE main

2 VAR

3 a : boolean; -- input a

4 _pg1 : boolean; -- pre(g1)

5 _po : 0..1; -- pre(o)

6 _GO : boolean; -- GO signal

7

8 DEFINE

9 o0 := _po;

10 o1 := 0;

11 o2 :=

12 case

13 _GO : o1;

14 TRUE : o0;

15 esac;

16 o3 := 1;

17 _g1 := _GO | _g2 & !a;

18 _g2 := _pg1;

19 _g3 := _g2 & a;

20 o :=

21 case

22 _g3 : o3;

23 TRUE : o2;

24 esac;

25

26 ASSIGN

27 init(_GO) := TRUE;

28 next(_GO) := FALSE;

29

30 init(_pg1) := FALSE;

31 next(_pg1) := _g1;

32

33 init(_po) := FALSE;

34 next(_po) := o;

35

36 LTLSPEC

37 G X(a -> o=1);

Listing 4.7. SMV code for the SSA SCG

25

4. Concept

of the original SCChart. Thus, a renaming of the last variable version in SSA form to the name of its
counterpart in the original SCCharts model has been added. This makes sense, because the observable
system reaction of an SCCharts is always at the end of a tick, such that only the last SSA version of a
variable corresponds to an output of the original model.

Third, the first version of a variable in the SSA SCG refers to its last version from the previous tick.
This relation was implicit in the original SSA SCG implementation and has been made explicit using an
assignment with a pre-operator at the beginning of the reaction.

The resulting SSA SCG with these additional changes is presented for the ao-int model in Figure 4.1.
Four intermediate versions of the variable o have been introduced, namely o0 to o3. The last version of
the variable is called o, just as in the original SCChart. The first version o0 is equal to the last version
from the previous tick, which is made explicit using an assignment with the pre-operator. Also, g2
depends on the last version of g1 from the previous tick.

The SSA SCG is still a control-flow representation of the reaction with multiple assignments to the
same variable depending on the branch that is taken in conditionals. However, these assignments
are mutually exclusive and thus can be expressed in data-flow using a single equation. Therefore,
the value to be written is selected depending on which assignment would be executed. For instance,
if (c) {a=1} else {a=2} can be written as a = if (c) 1 else 2. In SMV the case-construct is used
for such selections. Thereby, the condition TRUE can be used to define a default case. As soon as there
is only a single defining equation for each variable, they can be written in data-flow. At this point
conditionals have been encoded in the equations and control-flow edges of the SCG are handled by
dependencies between the data-flow equations.

The data-flow guards and all variables that are introduced via SSA can be defined in the DEFINE-
block of an SMV module because they do not need to be persisted and thus do not contribute to the
state-space. This makes sense as guards represent wires of a hardware circuit. The following state of a
well-formed circuit depends only on inputs and the current values of its registers. In SMV, these are
the variables that are declared inside a VAR-block.

In the translation presented here, variables that implement the pre-operator correspond to registers
of the circuit because they must be persisted across tick-borders. As a result, all pre-variables must
be listed in the VAR-block. When resetting a hardware circuit, registers are reset to their default
value. This can be implemented in SMV by defining the initial value of pre-variables. For Boolean
pre-variables the initial value is false whereas for integers the value is 0. Thus, a pre-operator pre(e)

can be implemented using a pre-variable pe that is initialized in the ASSIGN-block as init(pe) = FALSE,
respectively init(pe) = 0. In all following reactions the current value of the operand is persisted, thus
next(pe) = e. Thereby, pe must be declared as global variable in the VAR-block.

The presented translation from the SSA SCG to SMV cannot handle variables that are input and
output at the same time. The variable would be added to the VAR-block because it is an input to the
model. There would also be an equation that sets the variable according to the tick logic in the original
model. Thus, there are either two definitions of the same variable and the SMV model is rejected, or
the input is defined, such that not all input configurations are considered and model checking would
be incomplete. From a hardware perspective, having the very same variable as input and output is
only possible for the trivial case that it stays constant inside the reaction, thus representing a wire.
Having the same variable as input and output works in SCCharts and the PROMELA model, because
the reaction is computed sequentially in control-flow. A translation to hardware-like SMV code as
presented in this thesis cannot handle this. Anyhow, this restriction can easily be worked around by
having two separate variables in the original model, one for the input, and one for the output.

The SSA SCG approach to translate SCCharts to SMV is limited to models that can be transformed
into an equivalent hardware circuit. This includes all models that are accepted in the netlist-based

26

4.4. Translation to PROMELA

Table 4.2. Translation patterns from SCL to PROMELA.

SCL PROMELA

Assignment x = e; x = e;

Conditional 1

if (c) {

stmt1

} else {

stmt2

}

if

:: (c) -> stmt1;

:: else -> stmt2;

fi

Conditional 2
if (c) {

stmt

}

if

:: (c) -> stmt;

:: else -> skip;

fi

Ternary operator p ? q : r (p -> q : r)

Pre-operator pre(e)

// Introduce new pre-variable

TYPE_OF_E pe;

...

// After tick logic (set pre-variable)

pe = e;

...

compilation approach in KIELER. A more general set of SCCharts can be compiled using the priority-
based compilation approach [HMA+14]. However, the resulting control-flow code can contain jumps
that are taken multiple times within the same tick to dynamically schedule the nodes of an SCG. Such
control-flow can be translated to an SMV model via the program counter approach explained in
Section 4.3.2.

4.4 Translation to PROMELA

The following presents a translation from the sequentialized SCG to PROMELA. First, it is presented how
the tick logic from the SCG can be expressed in PROMELA. Second, general features of reactive systems
are considered and expressed using PROMELA constructs. Finally, it is discussed how assumptions and
temporal properties of the original model can be mapped to PROMELA.

Figure 4.2 shows an SCChart and its corresponding sequentialized SCG. The PROMELA code that
results from the translation presented in this section is shown in Listing 4.8.

4.4.1 Modeling the Tick Logic

The sequentialized SCG that is created when doing netlist-based compilation of KIELER SCCharts repre-
sents the tick logic using control-flow. Language constructs required to express this are conditionals,
assignments, variables, and sequentiality. These are available in imperative languages such as PROMELA

or C. The translation patterns for conditionals, assignments and the pre-operator are presented in
Table 4.2.

The translation of the pre-operator for a variable e requires a new variable pe that must be declared
globally because it contributes to the state-space. Setting the new variable to the value of e can then
be done after the tick logic is complete. For this to work, pe must be declared with the same type

27

4. Concept

ao-int
input bool a
output int o = 0

waitA gotA

a
/ o = 1

-

entry

_g2 = pre(_g1)

_g1 = _GO || _g2 && !a

_g2 = _g2 && a

exit

_GO

o = 0

_g2

o = 1

true

true

Figure 4.2. The ao-int model and its sequen-
tialized SCG.

1 ltl always_in_next_tick_a_implies_o

{ X([](X(!a || o==1))) }

2

3 bool a; // input a

4 int o; // output o

5 bool _pg1 = 0; // pre(g1)

6 bool _GO = 1; // GO-signal

7

8 init {

9 do

10 ::

11 atomic {

12 bool pmltickend = 0;

13

14 // Set random inputs

15 if

16 :: (1) -> a = true;

17 :: (1) -> a = false;

18 fi

19

20 d_step {

21 bool _g1;

22 bool _g2;

23 bool _cg2;

24

25 // Tick logic

26 if :: (_GO) ->

27 o = 0;

28 :: else -> skip;

29 fi

30 _g2 = _pg1;

31 _g1 = _GO || _g2 && !a;

32 _g2 = _g2 && a;

33 if :: (_g2) ->

34 o = 1;

35 :: else -> skip;

36 fi

37 // After tick logic

38 _pg1 = _g1;

39 _GO = 0;

40

41 pmltickend = 1;

42 }

43 }

44 od

45 }

Listing 4.8. PROMELA code for the
sequentialized SCG. The LTL property at the
top is G X (a Ñ o = 1) plus an initial next-
operator to enter the tick-loop. A variable
pmltickend is used to identify the start and
end of a tick for parsing counterexamples.28

4.4. Translation to PROMELA

as e. This way pe stores the value of e from the previous tick, thus implementing the pre-operator.
Occurrences of pre(e) are replaced with a reference to pe.

When using a modeling language that supports non-determinism, care must be taken that the
tick logic from the SCG is kept deterministic. For a translation to PROMELA this means that every
if-statement must have an else-branch. Otherwise the PROMELA model will wait until the if-condition
evaluates to true. PROMELA semantics differ in this case from if-statement semantics known from C or
SCL.

A special signal of the sequentialized SCG model is the GO variable as explained in Section 2.1.2. It
must be set to true in the initial tick and to false in all following ticks. PROMELA uses Boolean values
in the same way as C. Thus, 0 represents false and all other values represent true. As a result, the GO

variable is set accordingly in the translated PROMELA code. Thereby, it is important that the variable is
set to zero after the pre-variables because a pre-operator can depend on GO (i. e., pre(GO) in the SCG).

4.4.2 Modeling Reactive Systems

It is necessary to encode the characteristics of reactive systems in the PROMELA model. The tick logic
must be called infinitely often and with random inputs. Code patterns that achieve this are presented
in Table 4.3. To keep temporal properties of the original model, the reaction has been made atomic
inside the infinite loop. This keeps the one-to-one relation of an SCCharts reaction and PROMELA such
that an adaptation of temporal properties as discussed in Section 4.2.1 is not necessary. However, an
exception to this is an initial setup needed to enter the tick loop. SPIN needs one reaction for this. As a
result, the LTL formula for an SCCharts model is prepended by a next-operator in the PROMELA model.

There are two language constructs in PROMELA to make multiple statements atomic, namely the
atomic-block and the d_step-block. The SPIN manual states that d_step is more efficient but it can be
used only for code that is fully deterministic3. However, inside the atomic-block of the presented tick
loop translation there are non-deterministic constructs to set random inputs. Nonetheless, d_step can
be used for the tick logic of the sequentialized SCG in PROMELA, which can improve performance. For
instance, the time required for model checking the DVD-Player model that is described in Section 6.2.1
dropped from 5.18 seconds to 2.00 seconds when using d_step to indicate the deterministic reaction of
the tick logic.

There are potentially many guards in the sequentialized SCG that encode the statements to be
executed as explained in Section 2.1.2. These are re-calculated in every tick and do not contribute to
the global state-space. As a result, they do not need to be declared in the global scope. Instead, they
can be declared locally for the reaction. It has been found that declaring the guards locally reduces
the traversed number of states by SPIN when using a breadth-first-search. For instance, in the ao-int

example it reduces the number of stored states from 66 to 53 and the number of traversed transitions
from 80 to 66.

4.4.3 Specifying Properties

The semantics of LTL formulas in SPIN depends on how they are given to the system. When given an
LTL formula from the command line, SPIN will check that the negation of this formula holds. This is
because the formula is directly translated to a PROMELA never-claim, which describes a property that
should never hold in the model. Another option to declare an LTL formula to be checked is inside
the PROMELA code using the keyword ltl. Formulas provided this way are checked by SPIN in their

3http://spinroot.com/spin/Man/d_step.html

29

http://spinroot.com/spin/Man/d_step.html

4. Concept

Table 4.3. Translation patterns for reactive systems in PROMELA.

PROMELA

Infinite loop
with atomic reaction

do

:: atomic {

...

}

od

Set random Boolean

if

:: (1) -> b = true;

:: (1) -> b = false;

fi

Set random integer
that ranges from MIN to MAX select(i : MIN..MAX);

Set random integer
without range assumptions

do

:: i++;

:: i--;

:: break;

od

Complete file structure

// LTL-formula to be checked (if any)

ltl PROP_NAME { X(ORIGINAL_PROPERTY) }

// Variable declarations

...

init { // The main process in PROMELA

do // Infinite loop

:: atomic { // Atomicity of the reaction

// Set random inputs

...

d_step { // Deterministic step

// Guard declarations

...

// Tick logic

...

// After tick logic (set pre-variables)

...

// assert-statement for invariant

// to be checked (if any)

...

}

}

od

}

30

4.5. Synchronous Observers in SCCharts

Table 4.4. Translation pattern for assumptions in PROMELA.

PROMELA

Assertion under Assumption

if

:: (ASSUMPTION) -> assert(PROPERTY);

:: else -> skip;

fi

positive form. Formulating properties is more natural in a positive form, such that the variant inside
the PROMELA code has been used in this thesis.

Invariants to be checked of the original model can be added as assert-statement after the tick logic
has been fully computed. The new model checking features for SCCharts use an annotation to add
assumptions about the model. System configurations in which these assumptions do not hold have
to be ignored in model checking. This can be implemented in the translation to PROMELA by putting
the assert-statement in the corresponding branch of an if-statement. This way, the assertion is only
reachable when the assumptions are met. The pattern is illustrated in Table 4.4. However, this does
not prevent SPIN from visiting all system configurations and thus does not improve performance. It
only calls the assert-statement in a subset of the system configurations that are traversed in the explicit
model checking approach of SPIN. Thus, system configurations in which the assumption holds are
still checked, even though the previous configuration violated the assumption. A pattern to avoid
such inconsistent states is initializing a variable assumption with true and updating it every tick as
assumption &= ASSUMED_PROPERTY.

The presented approach for translating assumptions to PROMELA only works with simple proposi-
tional formulas. For an LTL property an implication can be used to ignore invalid system states, for
instance, (G assumption) -> (G property).

4.5 Synchronous Observers in SCCharts

The synchronous observer pattern can be implemented in SCCharts using concurrent regions, which
is illustrated in Figure 4.4. One region contains the behavior of the main model, for instance, using
referenced SCCharts. A second concurrent region contains the observer model that raises an error flag if
undesired behavior has been detected in the main model, optionally under certain assumptions.

Assumptions for a model can be formulated in SCCharts using another concurrent region. These
assumptions can then be given to the model checker to rule out counterexamples from inconsistent
system configurations. One approach to formulate assumptions is by creating a concrete model of
the surrounding target environment. Also thinkable is the definition of properties that define the
environment’s behavior in an abstract way.

The latter approach is used in the example to formulate the assumption that no error signal is
received. Model checking the example shows that the variable ok stays true in all cases when the
assumption holds.

31

4. Concept

TRAFFIC_LIGHT

NORMAL

Pred
entry / PR = true;

PG = false

Pgreen
entry / PG = true;

PR = false

Pgo!Pgo

- Pedestrian

Cred
entry / CR = true;

CY = false;
CG = false

Credyellow
entry / CR = true;

CY = true;
CG = false

Cgreen
entry / CR = false;

CY = false;
CG = true

Cyellow
entry / CR = false;

CY = true;
CG = false

Sec
/ Pgo = false

Sec

SecSec
/ Pgo = true

- Car

ERROR

Pnone
entry / PG = false;

PR = false

- Pedestrian

Cnone
entry / CR = false;

CY = false;
CG = false

Cyellow
entry / CR = false;

CY = true;
CG = false

SecSec

- Car

Error

!Error

-

Figure 4.3. A model of a simple traffic light in SCCharts [HLM+12]. As long as no error is received, the lights of
cars and pedestrians are controlled normally. Thereby, the variable Pgo is set to signal when the cars have red,
such that the pedestrian light is set accordingly. As soon as an error is received, it changes its mode, turns off the
pedestrian light, and toggles the yellow light for cars.

traffic_light_observed

main_model @ TRAFFIC_LIGHT
+

- main_model

observer
immediate during / not_all_green = !(PG && CG)
immediate during / PG_iff_Pgo = (!Pgo || PG) && (Pgo || !PG)
immediate during / ok = not_all_green && PG_iff_Pgo

- observer

assumptions
immediate during / assumptions = !Error

- assumptions

Figure 4.4. The synchronous observer pattern applied to the traffic light model from Figure 4.3. The invariant to
be checked is ok. An assumed property of the model is that assumptions is always true, i. e., that no error signal is
received.

32

Chapter 5

Implementation

The following describes the implementation of concepts discussed in Chapter 4. Thereby, only a subset
of SCCharts is considered due to a fixed time frame for this thesis. The basic data types integer and
Boolean are allowed in models but no arrays, floating point numbers or strings. Mechanisms to include
code in the model from a hosting target environment are not considered. KIELER is open source and
the code that has been contributed as part of this thesis is available in the corresponding KIELER

repositories.
The two model checkers nuXmv and SPIN have been integrated into the KIELER tool for model

checking SCCharts. Therefore, the discussed translation from the sequentialized SCG to PROMELA and
SMV have been implemented. The translation to SMV uses the SSA SCG approach because it preserves
temporal properties of the original model.

After the model has been translated, the corresponding model checker is started. Next, the model
checker’s output is parsed to present the result inside KIELER. In case the model checker gives a
counterexample, it is translated to the KTrace format, such that it can be re-played on the original
model.

Properties to be checked and meta-information about the model (e. g., integer ranges) are added via
annotations directly inside an SCChart. An Eclipse view for the new model checking features has been
implemented. It contains controls to start the model checking task, present the results and also to start
counterexamples if a property fails. This enables a smooth work-flow for model checking. Furthermore,
options to configure the code generation as well as model checker arguments are available from the
GUI.

5.1 Plug-in Overview

An overview of relevant plug-ins is presented in Figure 5.1.The presented separation in plug-ins fits
the existing application architecture, separates UI code from non-UI code, and makes it possible to use
the new model checking features for other languages supported by KIELER.

verification

scchartsscg verification.ui

Figure 5.1. Overview of relevant plug-ins. The base plug-in is verification. The UI plug-in uses a class of the
sccharts plug-in to read annotations from models. The scg plug-in references the sccharts plug-in to implement
the translation from SCCharts to the SCG. Similarly, the translation from the sequentialized SCG to SMV and
PROMELA has been implemented in the scg plug-in.

33

5. Implementation

type

status

VerificationProperty
+ formula : String
+ name : String
+ runningTaskDescription : String
+ counterexampleFile : IFile
+ processOutputFile : IFile
+ modelCheckerModelFile : IFile

InvariantAssumption

+ formula : String
+ name : String

<<abstract>>
VerificationAssumption

0..*0..*

<<enumeration>>
VerificationPropertyType
INVARIANT
LTL
CTL

RangeAssumption

+ minValue : int
+ maxValue : int
+ valuedObject : ValuedObject

<<enumeration>>
VerificationPropertyStatus
PENDING
RUNNING
PASSED
FAILED
EXCEPTION

VerificationContext

+ createCounterexamplesWithOutputs : bool
+ createCounterexamples : bool

+ smvUseIVAR : bool
+ smvIgnoreRangeAssumptions : bool
+ customSmvInvarCommands : List<String>
+ customSmvLtlCommands : List<String>
+ customSmvCtlCommands : List<String>

+ customSpinCommands : List<String>

Figure 5.2. Common data structures that hold information for model checking tasks.

Two new plug-ins have been contributed to the KIELER project. The verification plug-in contains
common data structures and code to interface with the model checkers, whereas the verification.ui

plug-in contains code that contributes to the GUI. The translation from SCG to PROMELA and SMV has
been added to the scg plug-in, which is also the host for other already existing code generations, e. g.,
from SCG to Java. Code specific for SCCharts has been added in the sccharts plug-in. This code is for
reading annotations in the model to create instances of common data structures. Using abstract data-
structures rather-than concrete annotations in the model simplifies the reuse of the implementation for
other languages that can be compiled to a sequentialized SCG in KIELER.

5.2 Common Data Structures

There are some common data structures to keep the implementation independent from the concrete
SCCharts language and model checker that is used. Important ones are shown as UML class diagram
in Figure 5.2. Model checking requires three main inputs, namely the model itself, properties to
be checked, and assumptions that are made about the model. In the KIELER compiler the model is
represented as an EMF data structure that is processed in a compile chain. VerificationProperty and
VerificationAssumption represent the other two inputs for model checking.

VerificationProperty holds the formula to be checked and an optional name for the property. A
name is useful when having multiple properties for the same model, which is a common use case.
Furthermore, it holds the status of the property, such as to-be-checked, passed, or failed. A counterexample
or exception that occurred during the model checking task is also held in this container.

VerificationAssumption is defined abstract and is specialized in other classes that provide concrete
assumptions of some kind. For instance, a RangeAssumption has been implemented that holds the
minimum and maximum value for integers. Another useful assumption is the InvariantAssumption

that stores a propositional logic formula, which is assumed to always hold in the model.
Instances of these classes are created from Annotations in the model. Listing 5.1 illustrates the

use of annotations to augment an SCChart with model checking information. Thus, the three main
components for model checking are declared in the model itself. They are handled depending on the
concrete model checker to be used. For instance, the RangeAssumption is used in SMV as domain for

34

5.3. Translation to PROMELA

1 @LTL "G(X(a -> o==1))"

2 scchart ao_int {

3 input bool a

4 @AssumeRange 0, 1

5 output int o = 0

6

7 initial state waitA

8 if a do o = 1 go to gotA

9

10 state gotA

11 }

Listing 5.1. Textual SCChart with annotations for model checking. Starting with the second tick, it will set the
output o to 1 when the input a is true. This is expressed using an LTL annotation. An assumption about the integer
range is provided in form of another annotation. Such properties are often trivial for a developer to see but can
drastically reduce the resources required for model checking.

SCCharts to seq. SCG

SCCharts normalized SCCharts scg seq. SCG
- PROMELA

Figure 5.3. Compile chain to PROMELA.

the variable, whereas in the PROMELA code it is used as range in a non-deterministic assignment of a
PROMELA int.

Another important data structure is the VerificationContext, which is also presented in Figure 5.1.
It is the container for all information about a concrete model checking run. As such, it contains a list
of VerificationProperty as well as a list of VerificationAssumption. Furthermore, there are fields to
fine-tune the code generation. User-defined commands that should be sent to the model checker are
also persisted in this class. The VerificationContext extends CompilationContext, which is the central
container for information about a concrete compilation run in KIELER. As a result, the model, the
compile chain, and additional configuration and information for model checking is available in the
VerificationContext.

The presented implementation for model checking is similar to how simulation is handled in
KIELER. A SimulationContext is set up and started for a new simulation, thereby utilizing the existing
compile chain infrastructure of KIELER. The VerificationContext has been inspired by this approach.

5.3 Translation to PROMELA

The compile chain that is used in the translation to PROMELA is illustrated in Figure 5.3. It re-uses
the translation from SCCharts to the sequentialized SCG that has already been present in KIELER. As a
result, only the translation patterns discussed in Section 4.4 needed to be implemented. For instance,
Listing 5.2 shows an excerpt from the translation that is used to create the infinite loop, which
corresponds to the pattern presented in Table 4.3.

The SPIN syntax for LTL operators uses brackets and angle brackets for globally, respectively
eventually. The expected syntax for these operators in annotations on SCCharts level is G for globally,

35

5. Implementation

1 def void generateTickLoop() {

2 appendIndentedLine("do") // loop

3 appendIndentedLine("::")

4 appendIndentedLine("atomic { ") // atomic

5 incIndentationLevel()

6 appendIndentedLine(’’’bool «TICK_END» = 0;’’’)

7 generateSettingRandomInputs()

8 appendIndentedLine("d_step {") // d_step

9 incIndentationLevel()

10 generateLocalDeclarations()

11 generateSequentialScgLogic()

12 generateAfterTickLogic()

13 appendIndentedLine(’’’«TICK_END» = 1;’’’)

14 generateAssertions()

15 decIndentationLevel()

16 appendIndentedLine("}") // d_step end

17 decIndentationLevel()

18 appendIndentedLine("}") // atomic end

19 appendIndentedLine("od") // loop end

20 }

Listing 5.2. Main method for the translation of the SCG tick
logic to PROMELA.

1 def String toSpinLtlFormula(String

ltlFormula) {

2 // Replace with SPIN syntax

3 val spinLtlFormula =

4 ltlFormula

5 .replaceAll(’’’\bG\b’’’, "[]")

6 .replaceAll(’’’\bF\b’’’, "<>")

7 // Prepended next operator

8 val spinLtlFormulaWithNext =

9 ’’’X(«spinLtlFormula»)’’’

10 return spinLtlFormulaWithNext

11 }

Listing 5.3. Adapting LTL formulas to SPIN syntax
with an initial setup reaction.

SCCharts to seq. SCG
+

seq. SCG to SSA

SSA Pre of Final Values Simplify Names Define Unbound
- SMV

Figure 5.4. Compile chain to SMV.

and F for eventually. Therefore, they must be translated to the SPIN syntax. Further, SPIN needs one
reaction to enter the tick loop, which is why an LTL formula must be prepended with an initial next
operator. The code that implements the required changes to LTL formulas is presented in Listing 5.3.
The current implementation uses a string replacement. However, this could be enhanced in future
work by providing LTL constructs as part of the textual SCCharts grammar. This would enable to do a
translation of the operators on the level of an abstract syntax tree.

5.4 Translation to SMV

The compile chain that is used in the translation to SMV is illustrated in Figure 5.4. The first part,
namely the translation to a sequentialized SCG, is the same as in the translation to PROMELA and was
present in the KIELER tool before this thesis. Similarly, a translation from the sequentialized SCG to an
SSA form existed. However, it was not directly fit for a translation to SMV and thus has been adapted
as discussed in Section 4.3.

First, a pre-operator always refers to the last version of a variable. Thus, a processor has been
implemented that replaces references to variables that are used in a pre-operator with the correspond-

36

5.5. Interfacing with the Model Checkers

ing last version. For instance, consider two sequential assignments to the variable x and reading
the previous value of x in between, i. e., x=1; y=pre(x); x=2. The SSA transformation will introduce
multiple variables for x and y still should be set to the last version of x from the previous tick, thus it
should be translated to x1=1; y=pre(x2); x2=2.

Second, it is easier to work with models that preserve the original names of variables, which is
why the last version of a variable is renamed to its original form. In the example above this means that
x2 is renamed to x, which results in x1=1; y=pre(x);x=2.

Third, there are undefined variables in the resulting SSA form. These implicitly represent the last
version of a variable from the previous tick. This relation has been made explicit with an additional
assignment to a pre-operator. For instance, x0=pre(x). After these changes to the SSA SCG have been
executed, it can be translated to SMV code.

As discussed in Section 4.3.3, there are still mutually exclusive assignments to the same variable
in the SSA SCG depending on which path is taken in conditionals. These are expressed in SMV using
a single equation with the case-construct. For instance, the control flow if(cond) { x = 1 } else {

x = 2 } can be translated to x := case cond : 1; TRUE : 2; esac;. Note, that the else-branch of the
if-statement is implemented as the default case in SMV, which is expressed using the condition TRUE.
Creating a single defining equation for variables has been implemented in two steps. First, the complete
SSA SCG is traversed. Thereby, two HashMap instances are filled. One instance maps valued objects to
their assignment-nodes, whereas the other instance maps assignment-nodes to their corresponding
conditionals. Afterwards, the keys of the first HashMap are iterated over, which are the valued objects
to be defined. If there is only a single assignment-node in the HashMap for this key with no associated
conditionals then it can be written without case-construct. Otherwise the case-construct is used and
the conditionals that lead to the corresponding assignment-nodes are fetched from the second HashMap.

General assumptions about the model can be added in SCCharts using an annotation @Assume. These
annotations will be translated to an invariant in the SMV code. Such invariants are specified in SMV
using the keyword INVAR. For instance, when having two Boolean inputs a and b then the annotation
@Assume "a != b" could be used to declare that these two inputs will never have the same value. The
annotation will be translated to the SMV model as INVAR a != b;. Range assumptions on the other
hand are translated to the domain of integer variables. For instance, an annotation @AssumeRange 0, 255

for a variable x will be translated to x : 0..255; in the SMV module.
In contrast to SPIN, the syntax for the LTL operators globally and eventually is G, respectively F in

SMV. Thus, these do not need to be adapted. However, expressions in SCCharts and PROMELA use a
C-like syntax. For instance, equals is written as == and logical conjunction is written as &&. In SMV
such expressions are written using a single character, i. e., = and & respectively. Listing 5.4 shows a
code excerpt that adapts expressions to SMV syntax. A string replacement takes care of adapting the
expressions taken from annotations inside the original SCChart to the expression syntax of SMV. This
could be improved by extending the SCCharts grammar with constructs for model checking, e. g., LTL

expressions. The translation to SMV could then be done on the level of an abstract syntax tree. Further,
the Boolean literals true and false are written in upper-case in SMV. As a result, these also need to be
adapted.

5.5 Interfacing with the Model Checkers

After the original model has been translated to SMV or PROMELA, the model checker needs to be
executed. Both nuXmv and SPIN are command line tools. As such, running the model checkers can be
done manually from the console. However, for this thesis communication with the model checkers

37

5. Implementation

1 def String toSmvExpression(CharSequence kexpression) {

2 val result = exp.toString

3 .replace("==", "=").replace("&&", "&").replace("||", "|")

4 .replaceAll(’’’\bfalse\b’’’, " FALSE ")

5 .replaceAll(’’’\btrue\b’’’, " TRUE ")

6 .replace("%", " mod ")

7 return result

8 }

Listing 5.4. Method that adapts expressions to SMV syntax using a string replacement. Note that replace and
replaceAll both replace all occurences of the given pattern. The difference is that replaceAll uses a regular
expression as pattern, whereas replace uses a simple String.

has been integrated in the KIELER tool. Therefore, the model checking process is started with suitable
arguments and communication with it is done using stdin and stdout.

nuXmv and SPIN require different commands and interactions to perform model checking. For
instance, in SPIN counterexamples are saved to a separate file. A counterexample can be printed in
different variations by issuing corresponding commands to the SPIN model checker. In contrast to this,
nuXmv prints counterexamples directly to stdout. Further, model checking using SPIN can be started
from a single command that contains all relevant options. This is also true for nuXmv in some cases.
However to access all options and algorithms that nuXmv provides, it is necessary to issue commands
sequentially in a shell-like interface.

Communication with the model checkers has been implemented in the classes RunSpinProcessor,
respectively RunNuxmvProcessor. These implement general processing units of the KIELER compiler
infrastructure. This way running the model checkers is a general building block that can be integrated
in a compile chain inside KIELER. For instance, a compile chain can start with the original SCCharts

model as input. The following compilation units will transform the model to the sequentialized SCG.
This is the input for the PROMELA code generation. The resulting PROMELA code is the input to the
RunSpinProcessor, which will save the code in a suitable place, start the SPIN model checker, parse
its output and issue events according to the result. The central configuration unit for such a model
checking task is the VerificationContext as explained in Section 5.2.

It is assumed that nuXmv and SPIN have been added to the PATH environment variable to start the
model checking process from within KIELER. The implemented command to start the nuXmv process
is nuXmv -int SMVFILE. The -int option will start nuXmv in interactive mode. In this mode, further
commands can be issued to configure the tool and choose which model checking algorithm to be
executed. Figure 2.5 gives an overview of available commands. The commands that are sent to nuXmv

in interactive mode are configured in the VerificationContext.
The implemented command to start the SPIN process is spin -run PMLFILE. The -run argument will

prepare and perform a complete verification of the given PROMELA file. Additional arguments can
be configured in the VerificationContext. They will be added after -run and before the path to the
PROMELA file. Arguments that can be set this way include -bfs (use breadth-first search) and -m100000

(sets the maximal search-depth to 100000).
The model checking process that is started from within KIELER can be canceled from the graphical

user interface. When the user clicks the corresponding button, a flag is set to cancel following
compilation units of the currently executed compile chain. Furthermore, if the model checking process
is already running it will be stopped. Such an option is important as model checking can be costly
with respect to time and memory. In a first implementation, it has been found that the default API of

38

5.5. Interfacing with the Model Checkers

Java 8 on Linux was not reliably killing the process together with all sub-processes. Instead, the model
checking process continued to use RAM and CPU time as an orphan. As a result, killing the process
on Linux was implemented in three steps. First, the ID of the process that was started from within
KIELER is identified. Second, the IDs of child processes are identified recursively. Third, processes
with the corresponding IDs are terminated. The first step can be done using Java-API and reflection.
The second and third step have been implemented by issuing common Linux system commands,
namely pgrep -P PARENTID to find the ID of child processes and kill ID for killing the process. The
implementation can be found in the class ProcessExtensions. On other operating systems, the standard
Java API is used to kill processes.

5.5.1 Parsing Counterexamples

In this thesis, SCCharts are translated to a language that is supported by model checkers. As a result,
any counterexample from the model checkers will be in terms of the translated model. Presenting
the counterexample in terms of the original model is an important step to get a practical work-flow
because it is the original model that users work with. Therefore, the output of the model checker
is parsed and counterexamples are translated to the KTrace format from Section 2.1.3. This way the
counterexample from a model checker can be replayed on the original SCCharts.

A counterexample for SCCharts corresponds to a list of system reactions. It can contain a loop marker
to indicate repeating system reactions that violate a liveness property. A data-structure to store such
counterexamples has been implemented. It contains a list of key-value maps. Each key-value map
holds the variable-value pairs for a single system reaction. Further, the data-structure can store the
index of the reaction that marks the beginning of a loop.

Listing 4.3 shows a counterexample from nuXmv. Parsing the model checker output can be done
line-by-line using regular expressions. nuXmv clearly states whether a property is true or false. Parsing
the counterexample is started in case a false property is reported. In this case -> State:...<- indicates
the beginning of a new reaction. Thus, a new key-value map will be added to the counterexample
data-structure when such a line is found. A line containing Loop starts here indicates that the next
reported reaction is the first of the loop. The loop index in the counterexample data-structure is
set accordingly. Finally, the current value of a variable is reported by nuXmv as VARIABLE = VALUE.
Thus, when finding such a line, the corresponding pair will be added to the key-value map of the
counterexample data-structure.

SPIN does not print its counterexample directly to stdout. Instead, it saves it in a separate file called
trail-file. Using specific SPIN commands, such a trail can be replayed or printed to stdout in different
levels of detail. Parsing the SPIN output is done line-by-line using regular expressions. When it is found
that a trail-file has been created then a second SPIN process is started that prints the counterexample
to stdout. Therefor, the model checker is called as spin -t -p -g PMLFILE. The argument -t is used
to printout a trail-file, -p is used to print the statements that were executed, and -g is used to print
the changed values of global variables after an executed statement. Note that inputs and outputs of
the original SCCharts are declared globally in the generated PROMELA code. Thus, the values of locally
defined variables in PROMELA are irrelevant from an SCCharts perspective.

To separate the counterexample into discrete reactions of the original model, a special variable
pmltickend is added to the PROMELA model during translation. It is set before and after each reaction
to indicate its start, respectively end. An example of the resulting PROMELA code is given in Listing 4.8.

The data-structure for storing counterexamples is filled from the output that SPIN prints for the
trail-file. A change of pmltickend from 1 to 0 and its very first assignment to 0 indicate a new system
reaction in the counterexample. A new key-value map is created in the counterexample data-structure

39

5. Implementation

1 i = true => o = true ;

2 i = false ;

3 loop_start:

4 goto loop_start;

Listing 5.5. KTrace counterexample for
Listing 4.3

... L1 L2 ... Ln L1

gotonuXmv loop start

KTrace loop start

Figure 5.5. Schematic of a counterexample
from nuXmv with n different looping states.
nuXmv prints the first state of the loop again
at the end of the counterexample. The loop-
start in the KTrace format is adjusted accord-
ingly.

when a new reaction is indicated this way. When an assignment to a variable is found then the
variable-value pair is added to the current map. SPIN will print <<<<<START OF CYCLE>>>>> to mark
the beginning of a loop in the counterexample. When this marker is found then the index in the
data-structure is set accordingly.

The filled counterexample data-structure can be printed in the KTrace format with little effort.
Listing 5.5 shows a generated KTrace. Each entry in the list of the counterexample data-structure
is printed as a tick in the KTrace format, which is INPUTASSIGNMENTS => OUTPUTASSIGNMENTS;. The
separator => is omitted when there are no changed outputs in this tick. Recorded variable-value pairs
are printed as VARIABLE = VALUE. Thereby, the syntax of TRUE and FALSE from SMV has to be adapted
to true and false in KTrace.

Any variables that are neither input nor output of the original SCChart are omitted in the KTrace
because they are not necessary to understand and replay the counterexample on the original high-level
model. Low-level variables such as guards, will be recomputed when providing the same inputs to the
model. This follows from the deterministic nature of the synchronous semantics.

The presented way of obtaining counterexamples from the model checkers will only record variables
that have been changed from the last reaction to the current. This matches the semantics of the KTrace
format such that no additional information has to be added.

A loop-label will be added to the KTrace file when the loop-start index is set in the counterexample
data-structure. More specifically, a loop-label is prepended to the corresponding tick and a goto-
statement to this label is added at the end of the KTrace. Thereby, an important detail in nuXmv

counterexamples has to be considered. nuXmv repeats the first state of a loop at the end of the
counterexample. The loop-start label in KTrace format has to be positioned accordingly. This is
illustrated in Figure 5.5.

5.5.2 Generated Files

Several files are created during a model checking task. First, the model to be checked is saved in a
PROMELA or SMV file. Second, the output of the model checker is saved. This is not needed most of
the time because the results are presented within KIELER. Nonetheless, it can be useful in debugging
and understanding the tools. Third, a counterexample will be created in KTrace format if necessary.
Further files can be created by the model checker itself. For instance, SPIN saves counterexamples in a
separate trail-file.

40

5.6. Automated Tests

Files that are generated by KIELER when doing a simulation are stored using a common file structure.
More specifically, generated files are placed inside the folder kieler-gen, which is created separately
for each project.

There are several advantages to this approach.

Ź It keeps logically connected files in one place.

Ź It indicates why and when files have been generated.

Ź KIELER developers can view and check their content to get a better understanding of the tooling.

As a result, this approach has also been used for files that are created as part of the model checking
task. They are placed in a sub-folder called verification inside kieler-gen. Thereby, a naming scheme
for files is used to avoid name conflicts.

The base name of generated files is taken from the original model to be checked. For instance, the
ao-int model would result in SMV and PROMELA files named ao-int.smv and ao-int.pml respectively.
Output of model checkers is indicated by the suffix .log. However, a model can contain multiple
properties. Thus, the name of the checked property is added to the corresponding output file name to
make it unique. Additionally, white-space and special characters are replaced in the file name, such
that only alphanumeric letters and dots remain.

In conclusion, the output of nuXmv for the property "o is a boolean" in ao-int will result in
a file called ao-int-o_is_a_boolean.smv.log, which is saved in the verification sub-folder inside
kieler-gen.

5.6 Automated Tests

The new model checking features presented in this thesis are tested automatically using the test
infrastructure of KIELER. JUnit is used for automated tests in KIELER. A custom JUnit TestRunner is
available that searches for models (e. g., SCCharts) in a repository and executes tests with these. Metadata
about the models is stored alongside them in the repository. This metadata is used, for instance, to
filter the models that should be used in a specific test run.

To test the new model checking features, this framework has been reused. Models to be tested have
been marked as such inside the models-repository. An abstract JUnit test class has been written that
performs a model checking task and compares the actual result with the expected result for the current
property. This abstract test class is the bases for concrete test classes that perform model checking of
SCCharts using nuXmv and SPIN. A VerificationContext is configured depending on the concrete test
case.

There are tests for both, properties that must fail and properties that are true. Each test has a
time-out that will cancel the model checking task and fail the current test in case the time is exceeded.
This is useful as the tests are run frequently on a test server and are potentially costly in case of a bug.

The test performs a complete model checking task, starting with reading properties and assump-
tions from the model, translating it to SMV and PROMELA, running the corresponding model checker
and comparing the actual and the expected result. Thus, the core features discussed in this thesis for
model checking SCCharts in KIELER are tested.

41

5. Implementation

Figure 5.6. Screenshot of the model checking view. The properties and the model checking result are presented in
a table. In the screenshot, SPIN is currently selected as back-end for model checking. From left to right the toolbar
buttons are to reload properties and assumptions, start model checking, replay a counterexample, stop model checking. The
small down arrow at the right-hand side opens a menu with further options.

5.7 Graphical User Interface

The code that contributes to the UI of KIELER has been added in the plugin verification.ui. It contains
an Eclipse view for model checking. The view is shown in Figure 5.6. The toolbar contains a drop-down
menu to select the model checking back-end. Toolbar buttons provide access to most commonly used
functionality. These are loading properties and assumptions from a model, starting or stopping a
model checking task, and re-playing a counterexample of the selected property.

Furthermore, a context menu provides options to define how a VerificationContext will be
configured for a concrete verification run. For instance, there are menu items that open dialogs to
configure the commands for nuXmv and SPIN.

An observer pattern (often referred to as listener in Java) has been implemented on top of
VerificationProperty to update the view dynamically when the status of a property changes. More
specifically, the event VerificationPropertyChanged is issued as part of the model checking task to
notify listeners about its progress. The graphical user interface implements such a listener to update
the status of a property in the Result column.

42

Chapter 6

Evaluation and Experience Report

The following presents experiences with nuXmv (version 1.1.1) and SPIN (version 6.4.8) on different
models that have been created from SCCharts using the translations discussed in Chapter 4. First,
general observations are presented in Section 6.1. This includes strengths and weaknesses of the model
checkers. Furthermore, characteristics of models are illustrated that can affect the performance when
doing model checking. Afterwards, Section 6.2 explains the setup that has been used to evaluate options
and algorithms of the model checkers. The results of this evaluation are presented in Section 6.2.3.

6.1 General Observations

nuXmv can detect division-by-zero errors. Thereby, it states the problem and line where it occurred.
In contrast to this, SPIN crashes with a floating point exception when encountering a division-by-
zero and no information in which line the error occurred is given. This has been experienced when
model checking the SCChart from Listing 6.1. However, nuXmv also gives a division-by-zero error
for this listing when the variable x is initialized to 1. In this case no such error will occur when
using SPIN. nuXmv on the other hand seems to do an analysis in which the potential for a division-
by-zero is detected and as a result an error is returned. Changing the transition in the example to
if x > 0 do y = (10 / x) go to init still results in a division-by-zero error from nuXmv.

1 @Invariant "y <= 255"

2 scchart div_by_zero {

3 @AssumeRange 0, 255

4 output int x=0, y = 0

5

6 initial state init

7 do y = (10 / x) go to done

8

9 state done

10 }

Listing 6.1. Textual SCChart that performs a
division-by-zero.

1 int a;

2 bool o;

3

4 init {

5 do

6 :: a++;

7 :: a--;

8 :: break;

9 od;

10

11 if

12 :: (a == 0) -> o = 1;

13 :: else -> skip;

14 fi;

15

16 assert(!(a==0) || o);

17 }

Listing 6.2. PROMELA model exploring the
full range of an int.

43

6. Evaluation and Experience Report

The BDD construction in nuXmv can detect range violations of integers. This happens for example,
when the go-command is processed. Checking the ranges of integers this way can be useful to verify
the sufficiency of range assumptions in the original SCChart. However, nuXmv can give false errors
when the integer range is not trivially bounded. Consider the following transition that increments
an integer: initial state S0 do x++ go to S1. nuXmv will give an error for the resulting SMV code
when processing the go-command even though this transition can only be taken once. However, it
works when adding a range check before doing the increment. For example, when x is an unsigned
8 bit integer: initial state S0 if x < 255 do x++ go to S1. Here, the condition x < 255 will result
in SMV code that gives no out-of-range error when doing the BDD construction. BMC algorithms of
nuXmv do not abort model checking when encountering an out-of-range violation. Instead, a warning
is given. As a result, these algorithms can also handle the first transition without range check.

Big integers can affect the time required for model checking in nuXmv. This is also the case
when using an algorithm that can handle unbounded integers (e. g., IC3 with -i option). For instance,
changing the range assumption of the output in the ao-int model of Listing 5.1 to @AssumeRange 0,
10000 will increase the time required to do model checking considerably when using IC3 with the -i
option. On the other hand, omitting the range assumption (such that an unbounded integer is used in
the SMV model) and using the same algorithm will perform model checking in fractions of a second.

The explicit model checking approach of SPIN has difficulties when the full state-space of an integer
must be explored. The unbounded non-deterministic selection of an int in PROMELA creates such a
state-space. This has been modeled in Listing 6.2. A similar model will be created by the translation
presented in this thesis when using an integer without range annotation as input in SCCharts. In general,
when using SPIN it is better for model checking performance to declare the bounds of input integers
in an SCChart as small as possible via a range annotation. However, on output and internal integers
they do not have an effect when doing model checking with SPIN because the explicit model checking
approach will traverse all reachable values. In contrast to this, the translation to SMV also uses the
range assumptions on output and internal integers to declare their bounds.

An interesting behavior can be observed when specifying invariants that are false in the initial
tick. In this case, there is no system configuration that satisfies the assumption, such that a checked
property is trivially true. For instance, consider the assumption pre(cond) && cond. The presented
translation will initialize the pre-variable with false, such that this assumption is always false in the
initial tick. Now, when checking a model with this assumption using nuXmv, every property will
trivially be true. This is because the set of system configurations in which the assumption has always
been true is empty, and thus all of them satisfy the property to be checked. The model checker will
give no warning in this case. As a result, care must be taken that specified assumptions do not rule out
all possible system configurations. This can be achieved by checking a false property that is known to
fail. The translation to PROMELA handles assumptions differently as discussed in Section 4.4.3. SPIN will
ignore system configurations in model checking that do not satisfy the assumption. In the example
above this means SPIN will ignore the system configuration for the initial tick but could check the
property in following ticks. To specify a proper invariant assumption for SPIN, the formula must be
adapted to stay false when it has been false once.

6.1.1 Model Checker Integration

This thesis integrates the model checkers nuXmv and SPIN in the KIELER development environment for
SCCharts. This is a different use case than the manual usage. The model checking output is parsed to
present the results within the IDE, such that the back-end for verification is hidden from the user. Thus,

44

6.1. General Observations

model
output int d, s, m
const int MOD_D = 100, MOD_S = 60, MOD_M = 60

S0
immediate during / d = (d + 1) % MOD_D
immediate during d < pre(d) / s = (s + 1) % MOD_S
immediate during s < pre(s) / m = (m + 1) % MOD_M

-

Figure 6.1. An SCChart implementing count-
ing. The variable d is increased in every tick,
whereas s counts the falling flanks of d and m

counts the falling flanks of s.

model
output int d, s, m
const int MOD_D = 100, MOD_S = 60, MOD_M = 60

S0
immediate during / d = (d + 1) % MOD_D
immediate during d == 0 && pre(d) == MOD_D - 1 / s = (s + 1) % MOD_S
immediate during s == 0 && pre(s) == MOD_S - 1 / m = (m + 1) % MOD_M

-

Figure 6.2. The model Figure 6.1 re-implemented using a compar-
ison with constants instead with another variable. This model has
better performance when doing model checking.

a regular and unambiguous output from the model checker is useful. In this thesis, understanding
and parsing the output of SPIN has been perceived as more challenging than the output of nuXmv.

nuXmv gives a clear statement whether a property is true, or false, or could not be proved.
Furthermore, a counterexample is presented in a way that reflects discrete reactions and only changed
variables in a reaction are printed. This fits the KTrace format of KIELER and allows for simple yet
complete parsing rules to present relevant model checking results to the user. When a property is not
clearly stated as true by nuXmv, then it will not be presented as such to the user.

The output of SPIN on the other side only gives a clear statement when a property fails. In this case
the name of a trail file is printed, which contains the counterexample. However, a passing property
or a property that has not been fully verified is not clearly stated as such. This information must be
taken from the context. For instance, the -bfs option of SPIN will not perform a detection of acceptance
cycles, which means that a liveness property will not be disproved. The information of an incomplete
liveness check is printed in the output as cycle checks - (disabled by -DSAFETY). However, there is
no statement about the property and that the -bfs option implies the -DSAFETY option. Furthermore,
when the SPIN process terminates forcibly (e. g., because of a division-by-zero error), then the output
may not contain the name of a trail file and thus may wrongly be interpreted as a true property. Thus,
the SPIN output must not only be parsed for a statement about a created trail file, but also that it
corresponds to a successful and complete verification.

Besides this, the output for a counterexample from SPIN is not given in discrete reactions of the
original SCChart. This makes sense because PROMELA is not dedicated to synchronous systems. As a
result, from an SCCharts perspective a SPIN counterexample contains more irrelevant information than a
nuXmv counterexample.

6.1.2 Model Characteristics that Affect Performance

Some features of models have been found to affect the performance when doing model checking using
nuXmv. First, the comparison of variables with constants can yield better performance than comparing
with other variables. For example, consider the SCChart in Figure 6.1. This model compares a variable
with its previous version to detect falling flanks (d < pre(d)). In contrast to this, Figure 6.2 is doing a
comparison with constants to detect the falling flank. Note that both versions use the pre-operator but
at different places. It has been found that the IC3 algorithm with -i option can check the property
m <= 60 in Figure 6.2 within fractions of a second, whereas the version that uses the pre-operator
requires minutes.

It seems that the constant can be used by the algorithm to determine the bounds of the integers,
which greatly improves model checking performance. This information seems to be missing in the

45

6. Evaluation and Experience Report

Table 6.1. Statistics about the tested models. The abbreviations stand for Lines of Code (LoC), global variables
(GV), local variables (LV). Global variables in PROMELA are the ones defined outside of any process, whereas for
SMV models it refers to the number of variables in the VAR-block. This includes inputs and the GO-signal. Local
variables are the data-flow guards from the sequentialized SCG and the pmltickend variable. Defines refers to the
number of symbols in the DEFINE-block of SMV.

PROMELA SMV
Model GV LV LoC GV Defines LoC
ABRO 8 16 90 8 20 61
Counting 2 ints 9 9 77 9 18 66
Counting 3 ints 13 13 102 13 27 92
Counting 6 ints 25 25 177 25 54 170
DVD Player 43 142 523 33 226 465
Chrono 22 49 226 21 104 260
TLCS constant wait-time 22 52 270 22 152 407
TLCS variable wait-time 30 52 286 30 176 495
UMS 176 152 1090 127 545 1474

model checking process when comparing with other variables. As a result, comparisons of integer
variables should be done with constants instead of variables when possible.

Second, the number of integer variables affects the performance. This is true even in the case where
an integer always holds the same value when it is used, such that it could be declared as constant. This
has been experienced in the evaluation of the TLCS, which is described in Section 6.2. Two versions of
this model have been evaluated. The first uses a constant, whereas the second uses a normal integer.
The increased number of integers in the second model resulted in a timeout with all evaluated nuXmv

commands. The explicit model checking approach of SPIN was not affected as much by this change.

As a result, the number of integers should be kept small in models and constants should be
declared as such to avoid unnecessary complexity when doing model checking.

6.2 Comparison of Algorithms

Different options and algorithms of the model checkers SPIN and nuXmv have been tested on models
that have been created from SCCharts using the translation presented in Chapter 4. The following first
explains the models and test setup that were used. Each model was tested with one invariant and one
LTL property. Statistics of the models are presented in Table 6.1. The comparison results are presented
in Section 6.2.3. The UMS model has been re-created in SCCharts from a Lustre model such that the
results for the UMS are especially suited for a comparison with Lesar. This is done in Section 6.2.4.

6.2.1 Tested Models

The following discusses the models that have been used for the evaluation of different model checking
options. Further, a true invariant and LTL property is given for each model. These are the properties
that have been verified by the model checkers.

46

6.2. Comparison of Algorithms

count
input bool a, b, c, d, e, f
output int x, y, z, u, v, w

init
immediate during a / x++;

x = x % 256
immediate during b / y++;

y = y % 256
immediate during c / z++;

z = z % 256
immediate during d / u++;

u = u % 256
immediate during e / v++;

v = v % 256
immediate during f / w++;

w = w % 256

-

Figure 6.3. An SCChart that
counts concurrently from 0 to
255 with 6 integers.

DVDPlayer

Off
during / off

On
during / on

OpenedTray
during / openedtray

ClosedTray
during / closedtray

Playing
during / playing

Paused
during / paused

Stopped
during / stopped

PLAY

PLAY

2: PLAY

1: STOP

- _R0

English
during / english German

during / german

French
during / frenchAUDIO AUDIO

AUDIO
- _R1

EJECTEJECT

- _R0

POWER

POWER

- _R0

Figure 6.4. The DVD-Player example adapted from the work of
Fuhrmann [Fuh11].

ABRO

The ABRO model is shown in Figure 2.1. It is a well-known synchronous program that is often used to
illustrate concurrency, hierarchy and strong aborts. The model waits concurrently for the inputs a and
b to be received. When both have been received then the output o is set to true. The input signal r is
used to reset the model, such that o is (re-)set to false and a and b must be received again before the
output is set to true. ABRO has a very limited state-space such that a model checking solution for
SCCharts should handle this easily.

Ź Invariant Property: r -> !o

Ź LTL Property: G X ((a && b && !r) -> o)

Counting 8 Bit Integers in Parallel

Models with increasing state-spaces have been tested by incrementing integers in parallel. More
specifically, it is counted from 0 to 255, which is the range that can be represented by 8 bit. This has
been done with 2, 3 and 6 integers. Figure 6.3 shows the version for 6 integers. Note that only one
variable is relevant for the tested property.

Ź Invariant Property: x <= 255

Ź LTL Property: G (x <= 255)

47

6. Evaluation and Experience Report

MAIN

CHRONO
entry / d = 0; s = 0; m = 0; running = false

STOP

START

/ d++; d = d % D_MOD

- A

pre(d) >= D_MOD - 1 && d == 0 / s++; s = s % S_MOD

- B

pre(s) >= S_MOD - 1 && s == 0 / m++; m = m % M_MOD

- CStSt / running = true

StSt / running = false

-

Rst

- A

Figure 6.5. A simple example for a chronometer that counts seconds and minutes.

DVD-Player

The DVD-Player presented in Figure 6.4 has been taken from the SCCharts website1 and is based on an
example from Hauke Fuhrmann [Fuh11]. The model starts in the state Off and switches to On when
the POWER button is pressed. A second press of the POWER button will transition back to Off. There is
further behavior inside the On state. The tray can be opened and closed. In the closed state, the inputs
PLAY and STOP control the playback by switching between Paused, Stopped and Playing. Further, the
language can be toggled with the input AUDIO. During actions emit signals depending on the current
state.

The DVD-Player model uses aborts and during actions, which are extended SCCharts features.
Further, there are multiple hierarchy levels. The model does not make use of integers. However,
different states in which the control-flow can stay, the hierarchy and extended features result in an
SCChart that is more complex than the ABRO example.

Ź Invariant Property: !(on && off)

Ź LTL Property: G ((on && POWER) -> off)

Chrono

The Chrono model is shown in Figure 6.5. This model counts seconds and minutes. Thereby, a second is
increased every 100 ticks that pass in the START state, which is counted in the variable d. The constants
S_MOD and M_MOD are set to 60, whereas D_MOD is set to 100 to achieve the desired counting behavior.
Two inputs are used to control the model, namely Rst for reset and StSt for start, respectively stop. The
Chrono model has an increased state-space because it counts with integers sequentially.

Ź Invariant Property: Rst -> (s == 0 && m == 0)

1https://sccharts.com

48

https://sccharts.com

6.2. Comparison of Algorithms

Ź LTL Property: G (Rst -> (s == 0 && m == 0))

Traffic Light Control System

A Traffic Light Control System (TLCS) has been modeled based on a paper by Yu et al. [YDT14]. The
authors describe it as an example for a “simple but practical TLCS” to demonstrate their model
checking technique. The model is for a crossing of roads in south-north and east-west direction. It
has two modes: one normal mode, and one for the rush-our, which requires slightly different pauses
between light phases. The description of the system in the paper is as follows:

(1) The system starts at 0 o’clock and the next step is (2);

(2) The mode of the system is set as 0. The green light of the east-west direction and the red
light of the south-north direction are on. This state lasts 25 seconds and the next step is (3);

(3) The yellow light of the east-west direction flashes and the red light of the south-north
direction is on. This state lasts 5 seconds and the next step is (4);

(4) The red light of the east-west direction and the green light of the south-north direction
are on. This state lasts 25 seconds and the next step is (5);

(5) The red light of the east-west direction is on and the yellow light of the south-north
direction flashes. This state lasts 5 seconds. According to the current time, the mode is
set for the next state. If the current time is between 7 o’clock and 9 o’clock or between 17
o’clock and 19 o’clock, the next step is (6), otherwise the next step is (2);

(6) The mode of the system is set as 1. The green light of the east-west direction and the red
light of the south-north direction are on. This state lasts 30 seconds and the next step is (7);

(7) The yellow light of the east-west direction flashes and the red light of the south-north
direction is on. This state lasts 5 seconds and the next step is (8);

(8) The red light of the east-west direction and the green light of the south-north direction
are on. This state lasts 20 seconds and the next step is (9);

(9) The red light of the east-west direction is on and the yellow light of the south-north
direction flashes. This state lasts 5 seconds. According to the current time, the mode is
set for the next state. If the current time is between 7 o’clock and 9 o’clock or between 17
o’clock and 19 o’clock, the next step is (6), otherwise the next step is (2).

The SCCharts that have been created based on this description are shown in Figure 6.6. The modeled
SCCharts make use of referencing features that are implemented similar to a macro-expansion during
compilation. The encapsulation of a single light-phase makes it possible to add further phases with
little effort. The graphical syntax of SCCharts helps to visualize the textual specification from the paper.

This model has been tested twice in the evaluation of this paper with a subtle difference. The first
version declares the waitTime in the lightPhase model as a constant. As a result, occurrences of this
variable will be replaced during compilation with the constant literal that it is bound to. In the second
version, the integer is not explicitly marked as a constant, such that local variables will be set to the
bounded parameter when entering the light-phases in the main model. The evaluation shows that
this makes a significant difference in the model checking performance when using nuXmv but not as
much when using SPIN.

Ź Invariant Property: !(snG && ewG)

Ź LTL Property: G F (ewG)

49

6. Evaluation and Experience Report

tlcsMain
immediate during / ewR = ewColor == RED; ewY = ewColor == YELLOW; ewG = ewColor == GREEN
immediate during / snR = snColor == RED; snY = snColor == YELLOW; snG = snColor == GREEN

one

normal

two @ lightPhase (GREEN, RED, 25)
+

three @ lightPhase (YELLOW, RED, 5)
+

four @ lightPhase (RED, GREEN, 25)
+

five @ lightPhase (RED, YELLOW, 5)
+

normal_done

-

rush_hour

six @ lightPhase (GREEN, RED, 30)
+

seven @ lightPhase (YELLOW, RED, 5)
+

eight @ lightPhase (RED, GREEN, 20)
+

nine @ lightPhase (RED, YELLOW, 5)
+

rush_hour_done

-

2:

1: hour >= 7 &&
hour <= 9 ||
hour >= 17 &&
hour <= 19

- ctrl

lightPhase

init wait done

/ ewColor = ewTargetColor;
 snColor = snTargetColor;
 sec_cnt = 0

2: sec
/ sec_cnt++

1: sec && sec_cnt >= waitTime - 1

-

Figure 6.6. SCChart for the TLCS described by Yu et al. [YDT14]. The main model references the SCChart for a single
light-phase multiple times with different arguments. The first argument is ewTargetColor, the second argument
is snTargetColor, and the third argument is waitTime. The variables sec and hour are inputs to the model. sec is
assumed to be true once per second, whereas hour is set to the current hour of the day ranging from 0 to 23. For
simplicity, sec has been assumed to be true in every tick in this evaluation.

U-turn Management System

A U-turn Management System (UMS) for trains is used in a paper by Halbwachs et al. to demonstrate
model checking with Lesar [HLR92]. Thereby, the synchronous observer pattern is used to formulate
the properties to be checked and assumptions about the environment. A schematic of the UMS is
illustrated in Figure 6.7. When a train enters through segment A then the switch S is set to connect it
with segment B. As soon as the train arrives there, the switch is adjusted to connect it with segment C,
such that the train can leave this way.

The UMS model has been re-created in SCCharts to compare the model checking features introduced
in this thesis with Lesar. Lustre is a data-flow language such that the SCCharts version makes heavy use
of data-flow regions. These are an extended feature in KIELER SCCharts. Each equation in a data-flow
region is translated to its own concurrent control-flow region during compilation. Dependencies
between the equations are thus handled by the IUR-protocol and the sequentially constructive MoC as
described in Section 2.1.1.

The UMS itself consists only of 6 equations with no references to external modules. This model
is presented in Listing 6.3. However, the synchronous observer to formulate its properties and
assumptions about the environment add to the complexity of the final model that is given to the model
checker. As a result, it is the largest model that has been used for the evaluation of this thesis. The
statistics presented in Table 6.1 illustrate its complexity.

50

6.2. Comparison of Algorithms

Figure 6.7. Schematic of a U-turn area for
trains by Halbwachs et al. [HLR92]. A train
enters through A, moves to B, and leaves
through C.

1 scchart ums {

2 input bool on_A, on_B, on_C, ack_AB, ack_BC

3 output bool grant_access, grant_exit,

do_AB, do_BC

4 bool empty_section, only_on_B

5

6 dataflow:

7 empty_section = !(on_A || on_B || on_C)

8 only_on_B = on_B && !(on_A || on_C)

9 grant_access = empty_section && ack_AB

10 grant_exit = only_on_B && ack_BC

11 do_AB = !ack_AB && empty_section

12 do_BC = !ack_BC && only_on_B

13 }

Listing 6.3. The UMS model implemented in SCCharts
using a data-flow region.

The final property to be checked is called ok. It is the conjunction of the properties discussed in the
Lustre paper, namely no_collision, exclusive_req, no_derail_AB, no_derail_BC. Similarly, the assump-
tions about the environment are expressed in a single Boolean by combining separate assumptions via
logical AND.

Ź Invariant Property: ok

Ź LTL Property: G (ok)

6.2.2 Test Setup

The described SCCharts have been translated to SMV and PROMELA. These models were then checked by
nuXmv and SPIN using different options. Thereby, the required time and memory for model checking
have been measured using GNU time (/usr/bin/time on Ubuntu). A timeout of 2 minutes was set, such
that the model checking process was killed after this duration. The fastest model checking algorithms
finished verification within fractions of a second, such that a timeout of 2 minutes can be considered
reasonable for the given models. The evaluation was done on server hardware with more than 40GB of
RAM and 2.53 GHz CPUs. Thereby, only a single core has been used for the model checking process.

PROMELA and SMV models differ in their MoC. Further, different translation approaches have
been used in their creation. For instance, the PROMELA code is generated without translating the
sequentialized SCG to SSA form. As a result, no direct conclusion of the general model checking
capabilities of nuXmv and SPIN can be deduced from this evaluation. However, the goal is to find
a suited model checker option for automated verification of SCCharts. Both translations preserve the
features of the original model as they originate from the same sequentialized SCG. Comparing model
checking options of SPIN and nuXmv on these models can indicate sensible defaults for future use.

Each of the described models was tested using one true invariant and one true LTL property. Failing
properties were not tested as this typically reduces the required resources for model checking. For
instance, the explicit model checking approach implemented in SPIN will traverse more states when a

51

6. Evaluation and Experience Report

true property is checked. As soon as a violation of a property is found, it will stop and output the
counterexample.

This thesis focuses on LTL, hence CTL and other temporal logic dialects of nuXmv were not
considered. Further, not all options of the nuXmv command palette that is illustrated in Section 2.2.4
have been used in this evaluation for different reasons. First, compositional reasoning algorithms (e.g.,
check_ltlspec_compositional) require a proof file and thus have been considered as unfit for fully
automated verification of SCCharts.

Second, some commands have been tried but discarded. They were not able to verify the models as
expected, which could be related to the concrete translation from SCCharts to SMV that has been used
to perform model checking with nuXmv.

Ź msat_check_invar_bmc_implabs finds an abstract counterexample in ABRO. The command requires
predicates specified in the input file and thus has been considered unfit for fully automated
verification of SCCharts. For comparison, msat_check_invar_bmc_cegar_implabs does automatically
refine its property when finding a spurious counterexample, which is why this command has been
evaluated.

Ź check_invar_bmc_itp performs interpolation-based BMC. There are several algorithms available
for verification with this command. The algorithms falsification and mcmillan gave a wrong
counterexample for the trivial property o || !o in ABRO. As a result, only the algorithms mcmillan2,
avy, itp_seq and itp_seq2 have been evaluated.

Ź check_invar_bmc -a classic did not prove all properties of the evaluated models. For instance,
in the DVD-Player model it returns cannot prove the invariant !(off & on) is true or false.
Similarly, the command msat_check_invar_bmc -a classic fails to prove the invariant r -> !o of
ABRO.

Ź Several nuXmv commands for LTL model checking were not able to verify ABRO and counting with
two 8-bit integers in parallel. As a result, they were not further evaluated on larger models. The corre-
sponding commands are: check_ltlspec_bmc, check_ltlspec_bmc_inc, check_ltlspec_inc_coi_bmc,
msat_check_ltlspec_bmc, msat_check_ltlspec_inc_coi, msat_check_ltlspec_sbmc_inc,
check_ltlspec_sbmc, check_ltlspec_sbmc_inc.

6.2.3 Results

The run-time of evaluated algorithms are presented in Figure 6.8 for LTL properties and in Figure 6.9 for
invariant properties. In these figures, the models are labeled using abbreviations. tlcs-const represents
the TLCS where waitTime has been declared as constant. On the other hand, tlcs-var represents the
model in which waitTime is declared as normal variable. The labels that end with int-par represent the
models for counting 8-bit integers in parallel.

The plots do not show every tested combination of arguments. Instead, representatives that
performed well have been chosen for better readability. The omitted results are explained in the
following.

Ź check_invar has a parameter to select whether a forward search (i. e., from initial states to errors) or
backward search (i. e., from errors to initial states) or a mixture of both should be done. The mea-
sured results are similar in most cases. However, the pure forward search required approximately
70 seconds in the Chrono model, whereas the other two options required 0.7 seconds. A mixture of
both approaches, namely forward-backward has been chosen as representative in the diagram.

52

6.2. Comparison of Algorithms

ab
ro

2i
nt

-p
ar

3i
nt

-p
ar

6i
nt

-p
ar

dv
d-

pl
ay

er

tl
cs

-c
on

st

tl
cs

-v
ar

ch
ro

no

um
s

10´1

100

101

Timeout

Se
co

nd
s

check_ltlspec
check_ltlspec_klive -i
check_ltlspec_klive

spin dfs
spin bfs

Figure 6.8. Run-time of model checking algorithms for LTL properties. Missing points represent a timeout. Black
lines are BDD algorithms, blue lines are K-liveness algorithms, and brown lines are SPIN algorithms.

Ź check_invar_cegar_predabs performed similar to msat_check_invar_bmc_cegar_implabs. A note-
worthy difference was measured in tlcs-const where msat_check_invar_bmc_cegar_implabs re-
quired approximately 48 seconds whereas check_invar_cegar_predabs required 0.9 seconds. Thus,
check_invar_cegar_predabs is shown in Figure 6.9.

Ź There are multiple options to choose from when doing interpolation-based BMC

(check_invar_bmc_itp). The itp_seq option timed out in the DVD-player, Chrono, and UMS models.
The other evaluated options avy, mcmillan2, and itp_seq2 performed similar in the test and did not
time out. The mcmillan2 option has been chosen as representative in the diagram.

Ź Several BMC commands for invariant properties have shown similar results. check_invar_bmc

-a een-sorensson, check_invar_bmc_inc, check_invar_inc_coi_bmc, msat_check_invar_bmc -a

een-sorensson, msat_check_invar_inc_coi all performed similar and failed in the same models. The
interpolation-based BMC algorithms were able to handle more models without timing out, which is
why the others are omitted in the graphic.

The evaluation shows that there are several commands of nuXmv that are superior to SPIN in
many cases when performing model checking of SCCharts using the translations to SMV and PROMELA

discussed in Chapter 4. Model checking of invariants using IC3, and check_invar_bmc_itp with avy or
mcmillan2 option performed best.

However, the TLCS with variable waitTime is an example that there are models that SPIN can handle
more efficiently than nuXmv. There is a significant impact on model checking performance when
waitTime is not declared as constant in the TLCS. In this version of the model, all algorithms of nuXmv

timed out. This shows that integers should be declared as constant when possible.
For LTL model checking, K-liveness and BDD algorithms performed best in nuXmv and seem to

complement each other. K-liveness timed out in the TLCS, whereas BDD algorithms timed out in the
Chrono model. At least one of these approaches were faster and required less memory than SPIN in
nearly all cases.

53

6. Evaluation and Experience Report

ab
ro

2i
nt

-p
ar

3i
nt

-p
ar

6i
nt

-p
ar

dv
d-

pl
ay

er

tl
cs

-c
on

st

tl
cs

-v
ar

ch
ro

no

um
s10´2

10´1

100

101

102 Timeout

Se
co

nd
s

check_invar -s forward-backward
check_invar_inc_coi_bdd

check_invar_cegar_predabs
check_invar_bmc_itp -a mcmillan2

check_invar_ic3 -i
check_invar_ic3

spin dfs
spin bfs

Figure 6.9. Run-time of model checking algorithms for invariant properties. Missing points represent a timeout.
Black lines are BDD algorithms, the green line is an abstraction/refinement algorithm, the red line is for an
interpolation-based BMC algorithm, blue lines are IC3 algorithms, and brown lines are algorithms of SPIN.

ab
ro

2i
nt

-p
ar

3i
nt

-p
ar

6i
nt

-p
ar

dv
d-

pl
ay

er

tl
cs

-c
on

st

tl
cs

-v
ar

ch
ro

no

um
s

102

103

M
B

check_ltlspec
check_ltlspec_klive

check_invar_bmc_itp -a mcmillan2
check_invar_ic3

spin dfs (Invariant)
spin bfs (Invariant)

Figure 6.10. Max allocated RAM of model checking algorithms. The memory consumption of processes that timed
out is also shown. SPIN timed out in 3int-par and 6int-par. All nuXmv algorithms timed out in tlcs-var. Further,
K-liveness timed out in tlcs-const and check_ltlspec timed out in chrono.

Model checking performance of SPIN drops when the state-space increases. This has been observed
with the models that are counting three and six 8-bit integers in parallel. nuXmv was able to handle
these. SPIN was only able to model check the version that is counting with two 8-bit integers in parallel.

The memory consumption is also interesting when doing model checking. Figure 6.10 shows the
memory consumption for the algorithms that performed well in the evaluation. For better readability,
only the memory consumption of SPIN for the invariant properties is plotted. The values for LTL

properties are similar. SPIN has been used with depth-first search and breadth-first search options. A

54

6.2. Comparison of Algorithms

DFS is the default in SPIN. However, in the tested models, the BFS option often required less memory
with similar run-time.

The evaluation showed that the symbolic approach of nuXmv often requires less memory than SPIN

in a successful verification when using the presented translation to SMV and PROMELA. The algorithms
that performed best by nuXmv required less than 100 MB of memory in most tests. They timed out
in one version of the TLCS model and still required less than a GB of RAM. In contrast to this, SPIN

required more than one GB in a successful verification run using a DFS. The BFS algorithm still required
at least 100 MB in successful verifications. The low memory consumption of SPIN in 3int-par and
6int-par is because the process timed out.

6.2.4 Comparison with Lesar

The UMS was re-created from a Lustre model, which had been checked with Lesar by Halbwachs
et al. [HLR92]. Thereby, Lesar required approximately one second for the verification using both, the
symbolic (i. e., BDD) and explicit approach. This information is useful to put the results of the presented
evaluation in a context. Some nuXmv commands verified the model in under a second (e. g., IC3).
However, the BDD based model checking commands (e. g., check_invar), timed out in the UMS model.
Furthermore, SPIN required approximately 3.5 seconds for its verification in a DFS. As a result, Lesar
performed better on the Lustre UMS model than nuXmv and SPIN with similar algorithms on the tested
SCCharts version. This is true even though the hardware used to verify the SCCharts version is orders of
magnitude faster than the hardware that has been used in the paper by Halbwachs et al.

There are multiple possible explanations for this. First, the translation from the Lustre model to
SCCharts has been done by hand and might not be optimal. Second, the presented translations to SMV
and PROMELA might not be optimal.

The bad performance of SPIN compared to Lesar for the UMS model seems to have further reasons
than the number of global variables. In contrast to nuXmv and Lesar, PROMELA has not been designed
for a synchronous domain. Instead, it allows for modeling of concurrent processes with interleaving
semantics that communicate via message passing and shared memory. As a result, SPIN seems to
consider and store more states than necessary when verifying PROMELA models that have been created
from SCCharts using the presented translation. For instance, SPIN names 52503 stored states in the UMS

example, whereas the Lesar paper names only 54. A deviation from the original model in this order of
magnitude is unlikely. Further, the run-time of the explicit model checking approach should not be
affected as much by superfluous pre-variables because most of their configurations are unreachable. In
conclusion, SPIN seems to consider unneeded states using the presented translation, which makes it
not optimal for verification of SCCharts.

Anyway, the IC3 algorithms and BMC with interpolants managed to verify the UMS and most other
models in under one second and with less than 100 MB of RAM. Although the examples are simple, it
demonstrates the effectiveness of these algorithms for model checking SCCharts and its potential for
practical use.

55

Chapter 7

Conclusion

The following summarizes the contributions of this thesis. This includes the design and implementation
of model checking features for SCCharts and their evaluation. Afterwards, Section 7.2 names possible
applications for the implementation in its current state. Finally, Section 7.3 discusses possible future
work to extend the presented implementation and to evaluate model checking features for SCCharts in a
practical setting.

7.1 Summary

The goal of this thesis is to enable automated model checking of SCCharts that integrates in the KIELER

tool. Therefore, the model checkers SPIN and nuXmv have been used as verification back-end. These
model checkers performed well in case studies, meet the requirements for reactive systems modeling
and enable to evaluate a variety of different approaches for verification of SCCharts.

Translations to the model checker input languages SMV and PROMELA have been presented. Thereby,
the sequentialized SCG has been re-used, which is a low-level representation of SCCharts within the
KIELER compiler. This data-structure was translated to PROMELA by mapping its language constructs to
equivalent code patterns in PROMELA.

SMV is a data-flow language in contrast to the SCG, which is control-flow based. Two approaches
have been discussed to translate the sequentialized SCG to SMV. The first is using a program counter
to encode which statement of the SCG is executed. This approach results in multiple reactions of the
SMV model to simulate one reaction of the SCG. The second translation approach is using the semantic
proximity of the sequentialized SCG to a netlist that expresses the reaction in a single synchronous
reaction using data-flow. Therefore, the SCG is first translated to an SSA from. This thesis focused and
implemented the SSA approach for the translation to SMV because it conserves temporal properties of
the original model and requires fewer global variables.

The work-flow for model checking SCCharts that has been implemented in this thesis is the following:
The model is augmented with properties to be checked. Further, invariants that are assumed to hold
in the model can be specified. Adding this information has been implemented using annotations,
such that all model-checking relevant information is held within the model. Next, the model checking
task is started, which will translate the model to SMV or PROMELA and start the corresponding model
checker.

Interfacing with the model checking process has been implemented using stdin and stdout. The
concrete commands that are sent to nuXmv and SPIN can be configured by the user from within
KIELER. The output of the model checker is parsed to present the results. In case a counterexample is
found, it is translated to the KTrace format from the perspective of the original model. Thereby, only
values of inputs and outputs are kept as these describe the behavior of the high-level model. A KTrace
counterexample can be re-played on the original SCChart in KIELER.

The resulting SMV and PROMELA code from the translation has been evaluated using small SCCharts

and different configurations of the model checkers. For invariants, the IC3 algorithm and interpolation-

57

7. Conclusion

based BMC implemented in nuXmv have been found to perform best in most cases. However, there
are models that SPIN did handle more efficiently. For LTL properties, K-liveness and BDD-based model
checking performed well. These algorithms timed out in different models, such that for a practical
usage, a combination of both can be beneficial. Model checking finished within fractions of a second
in the best cases using nuXmv and within a few seconds in case SPIN performed best. This shows the
potential of the new model checking features for practical use.

In the execution of this thesis, the integration of nuXmv into KIELER has been perceived as easier
and more stable than SPIN because nuXmv can detect division-by-zero errors and clearly tells whether
a property passed, failed or could not be verified. Further, the ranges of integers are checked by nuXmv

in certain cases, e. g., during the BDD construction. Some characteristics of models have been found
that affect the performance of model checking SCCharts when using the proposed translation to SMV.

Ź Comparing integer variables with constants performed better than comparing them with other
variables. Certain algorithms of nuXmv seem to be able to deduce the bounds of variables from
comparisons with constants.

Ź The state-space introduced by integer variables is not trivial to explore for most tested model
checking algorithms. This is true even when they are assigned only a single value in SCCharts. As a
result, variables should be declared constant when possible in SCCharts. This will replace them with
their associated value such that unnecessary variables are avoided in the SMV and PROMELA code.

7.2 Possible Applications

The new model checking features allow SCCharts developers to verify properties of created models
using nuXmv and SPIN. A motivation and application area for this is the verification of safety-critical
applications in an industrial context. However, there are further possible scenarios to utilize the
implemented features in their current form, which are named in the following.

7.2.1 Teaching Temporal Logics

In KIELER, SCCharts are written in a textual syntax and the graphical model is synthesized automatically
to combine the benefits of both approaches. Certain characteristics of the model, for example loops,
are visually laid out, which can increase the understanding.

Thus, the new model checking features enables to teach students temporal logics using a combina-
tion of graphical and textual models. Using KIELER, students can learn the basics of different temporal
logics and model checking in a hands-on approach. The work-flow for model checking requires little
interaction. Performing model checking and getting the result can be achieved with two buttons.
Similarly, re-playing a counterexample requires few button clicks. This allows for a fast code-test
work-flow and requires little effort to experiment with properties and models. The translation of
CTL properties to SMV has not been the focus of this thesis but has been implemented nonetheless.
Thus, LTL and CTL can be used for properties of a model to explore the semantics of a linear time and
branching time logic.

There are plans to use the new model checking features for KIELER SCCharts to teach temporal logics
as part of an embedded systems lecture at Kiel University.

58

7.3. Future Work

7.2.2 Testing of SCCharts Compiler

Model checking can be useful not only for end-users who want to verify their models. Developers can
use the new model checking features to test the KIELER compiler implementation.

In fact, the new model checking features have already been useful in finding a bug in the KIELER

compiler. A strong-abort was not behaving correctly in compile chains that added information about
the taken transitions of a reaction. Model checking the low-level SCG representation resulted in a
counterexample that was used to find and fix the bug. This example reconfirms the choice to do model
checking on a low-level representation, which has been discussed in Section 4.2.

The KIELER testing infrastructure can be used to write test-cases that perform model checking on
SCCharts and compare the expected result with the actual result from new compiler implementations.
This can complement simulation tests, in which expected input-output traces for a model are compared
against its actual behavior. Using model checking can increase test-coverage because it is not limited
to existing traces. However, such tests are not comparable to a formally verified compiler. It does not
prove that the translation is correct for all models, only for the test-cases and specified properties.

7.3 Future Work

The following names possible future work to improve the current implementation of model checking
SCCharts and other sequentially constructive languages. Further, a case study is suggested to evaluate
the tools in a practical setting.

7.3.1 Extending the Translation to SMV and PROMELA

This thesis was executed within a fixed time frame, which is why a subset of SCCharts has been selected
for the implementation of the translation to SMV and PROMELA. Moreover, the focus in this thesis
was on LTL properties and invariants, although nuXmv supports further temporal logics. Thus the
implementation can be extended as described in the following.

Ź More data types can be translated to SMV and PROMELA, e. g., floats, arrays, and strings.

Ź There are some non-standard assignment operators in SCCharts, e. g., min=, and max=. These
syntactical elements are used to aid the compiler in the analysis of sequential constructiveness and
scheduling of statements. Semantically, however, these operators can be translated to PROMELA and
SMV using conditionals.

Ź nuXmv supports the standardized Property Specification Language (PSL) [IEEE1850][EF07]. Thus,
the model checking implementation for SCCharts can be extended to support such specifications as
well.

Ź Adding information relevant for model checking has been implemented using the general annotation
mechanism of SCCharts. Another possibility is to extend the textual SCCharts grammar with model
checking constructs such as assert and assume. This would allow the parser to detect syntax errors
in properties. Moreover, integrating grammars for specification languages (e. g., LTL) would enable
to translate and manipulate properties on the level of an AST instead of doing string manipulations.

Ź The model-to-model transformations used to compile SCCharts in KIELER can be extended to add
information relevant for model checking. For instance, range assumptions could be provided by
many transformations that introducing new integers.

59

7. Conclusion

Ź This thesis focused on the netlist-based compilation of SCCharts due to the equivalence to hardware
circuits and the structural simplicity of the sequentialized SCG. However, the priority-based compi-
lation approach can handle a greater set of programs. Implementing priority-based scheduling of
an SCG in general requires multiple iterations over the tick logic and jumps between concurrently
executed statements. In PROMELA this could be implemented using the goto-statement and loops.
In SMV it could be implemented using the program counter approach explained in Section 4.3.2.
Afterwards, the results could be compared to the netlist-based approach for model checking SCCharts.

7.3.2 Further Model Checkers

The model checkers nuXmv and SPIN have been used as verification back-end in this thesis. However,
there are plenty of model checkers available for various domains. SPIN seems to consider more states
than necessary when verifying PROMELA models created from SCCharts as discussed in Section 6.2.4.
Thus, another model checker that implements an explicit model checking approach could be beneficial
for model checking SCCharts.

Besides the option of re-using existing model checkers, it is also possible to implement model
checking algorithms dedicated to SCCharts.

7.3.3 Further Synchronous Languages

This thesis focused on the SCCharts language. However, the implemented solution uses the sequential-
ized SCG for the translation to PROMELA and SMV. As a result, the model checking features can be
re-used for other synchronous languages that can be compiled to this representation. For instance,
KIELER implements a sequentially constructive version of Esterel (SCEst) [SMR+17] that could be model
checked with the presented translation. Therefore, properties and assumptions of the model have to
be specified, which could be implemented similar to the annotation mechanism in SCCharts.

7.3.4 Visualization of State-Space

nuXmv can output the explicit finite state machine of an SMV model in XMI format. This could be
visualized in KIELER to enable graphical exploration of the state-space with automatic layout and
filtering options. In comparison to this, the Xeve model checker for Esterel can generate minimized
finite state machines in the textual FC2 format, which can be loaded in the tool ATG for graphical
exploration [Bou97a].

7.3.5 Evaluation in Case Study

An evaluation of the implementation has been executed on small SCCharts models and efficient model
checking algorithms have been identified. Further, certain model characteristics that affect performance
have been found. This enables the evaluation of the new model checking features on real-world tasks
in future work. One possibility is an evaluation as part of lecture exercises, which has been done
before for SCCharts.

Another option is to implement and verify the solution for an industrial size problem in SCCharts. As
discussed in Chapter 3, the Steam-boiler Control Specification Problem has been used to demonstrate
capabilities of various modeling languages and verification tools [ABL96]. This problem in particular is
suited to evaluate the new model checking features in a case-study because there is data for comparison
with other tools from the synchronous domain. Models of the Steam-boiler Specification have been
written in various languages including Lustre [CD96] and Esterel [Bou97b].

60

Bibliography

[IEEE1850] “IEEE Standard for Property Specification Language (PSL)”. In: IEEE Std 1850-2010
(Revision of IEEE Std 1850-2005) (Apr. 2010), pp. 1–182. doi: 10.1109/IEEESTD.2010.5446004.

[ABL96] Jean-Raymond Abrial, Egon Börger, and Hans Langmaack. “The steam boiler case study:
competition of formal program specification and development methods”. In: Formal
Methods for Industrial Applications. Springer, 1996, pp. 1–12.

[And95] Charles André. Synccharts: a visual representation of reactive behaviors. Tech. rep. 1995.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robert de Simone. “The Synchronous Languages Twelve Years Later”. In: Proc. IEEE,
Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ, USA: IEEE, 2003, pp. 64–83.

[Ber89] Gérard Berry. “Real time programming: special purpose or general purpose languages”.
PhD thesis. INRIA, 1989.

[BK08] C Baier and Joost P. Katoen. Principles of model checking. MIT Press, May 2008. isbn:
978-0-262-02649-9.

[Bou97a] Amar Bouali. XEVE : an ESTEREL Verification Environment : (Version v1_3). Technical
Report RT-0214. INRIA, 1997, p. 23. url: https://hal.inria.fr/inria-00069957.

[Bou97b] Michel Bourdellès. The Steam Boiler Controller Problem in ESTEREL and its Verification by
Means of Symbolic Analysis. Tech. rep. RR-3285. INRIA, 1997. url: https://hal.inria.fr/inria-
00073403.

[BW96] Robert Büssow and Matthias Weber. “A steam-boiler control specification with statecharts
and z”. In: Formal Methods for Industrial Applications. Springer, 1996, pp. 109–128.

[BWL06] Frederic Boniol, Virginie Wiels, and Emmanuel Ledinot. “Experiences in using model
checking to verify real time properties of a landing gear control system”. In: ERTS 2006:
3rd European Congress Embedded Real Time Software. 2006, pp. 25–27.

[CCD+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mar-
iotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. “The nuxmv sym-
bolic model checker”. In: International Conference on Computer Aided Verification. Springer.
2014, pp. 334–342.

[CD96] Thierry Cattel and Gregory Duval. “The steam boiler problem in lustre”. In: Formal
Methods for Industrial Applications. Springer, 1996, pp. 149–164.

[Cho07] Yunja Choi. “From nusmv to spin: experiences with model checking flight guidance
systems”. In: Formal Methods in System Design 30.3 (2007), pp. 199–216.

[CKS+05] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. “Satabs: sat-
based predicate abstraction for ansi-c”. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer. 2005, pp. 570–574.

[EF07] Cindy Eisner and Dana Fisman. A practical introduction to psl. Springer Science & Business
Media, 2007.

61

https://doi.org/10.1109/IEEESTD.2010.5446004
https://hal.inria.fr/inria-00069957
https://hal.inria.fr/inria-00073403
https://hal.inria.fr/inria-00073403

Bibliography

[FFC+10] Marc Frappier, Benoît Fraikin, Romain Chossart, Raphaël Chane-Yack-Fa, and Mo-
hammed Ouenzar. “Comparison of model checking tools for information systems”.
In: International Conference on Formal Engineering Methods. Springer. 2010, pp. 581–596.

[FH10] Hauke Fuhrmann and Reinhard von Hanxleden. Taming graphical modeling. Technical
Report 1003. Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
May 2010.

[Fuh11] Hauke Fuhrmann. “On the pragmatics of graphical modeling”. Dissertation. Kiel: Christian-
Albrechts-Universität zu Kiel, Faculty of Engineering, 2011.

[Hal93] Nicolas Halbwachs. Synchronous programming of reactive systems. Kluwer Academic Pub-
lishers, 1993.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequentially
Constructive Statecharts for safety-critical applications”. In: Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI ’14). Edinburgh, UK:
ACM, June 2014, pp. 372–383.

[HLM+12] Reinhard von Hanxleden, Edward A. Lee, Christian Motika, and Hauke Fuhrmann.
“Multi-view modeling and pragmatics in 2020 — position paper on designing complex
cyber-physical systems”. In: Pre-Proceedings of the 17th International Monterey Workshop
on Development, Operation and Management of Large-Scale Complex IT Systems. Oxford, UK,
19–21 3 2012, pp. 209–223.

[HLR92] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. “Programming and verifying
real-time systems by means of the synchronous data-flow language lustre”. In: IEEE
Trans. Softw. Eng. 18.9 (1992), pp. 785–793. issn: 0098-5589.

[HMA+14] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa
Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. “Sequen-
tially Constructive Concurrency—A conservative extension of the synchronous model
of computation”. In: ACM Transactions on Embedded Computing Systems, Special Issue on
Applications of Concurrency to System Design 13.4s (July 2014), 144:1–144:26.

[Hol97] Gerard J. Holzmann. “The model checker spin”. In: IEEE Transactions on software engineer-
ing 23.5 (1997), pp. 279–295.

[MF18] Franco Mazzanti and Alessio Ferrari. “Ten diverse formal models for a cbtc automatic
train supervision system”. In: arXiv preprint arXiv:1803.10324 (2018).

[MVR14] Zaur Molotnikov, Markus Völter, and Daniel Ratiu. “Automated domain-specific c
verification with mbeddr”. In: Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM. 2014, pp. 539–550.

[Pei17] Lars Peiler. “Priority-based compilation of SCCharts”. http://rtsys.informatik.uni-kiel.de/

~biblio/downloads/theses/lpe-mt.pdf. Master thesis. Kiel University, Department of Computer
Science, 2017.

[PG09] Julio C Peralta and Thierry Gautier. “Towards smv model checking of signal (multi-
clocked) specifications”. In: Electronic Communications of the EASST 23 (2009).

[Ray08] Pascal Raymond. “Synchronous program verification with lustre/lesar”. In: Modeling and
Verification of Real-Time Systems. ISTE/Wiley, 2008. Chap. 6.

62

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lpe-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lpe-mt.pdf

Bibliography

[Rus14] John Rushby. “The versatile synchronous observer”. In: Specification, Algebra, and Software:
Essays Dedicated to Kokichi Futatsugi. Ed. by Shusaku Iida, José Meseguer, and Kazuhiro
Ogata. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 110–128. isbn: 978-3-642-
54624-2. doi: 10.1007/978-3-642-54624-2_6. url: https://doi.org/10.1007/978-3-642-54624-2_6.

[Sch16] Alexander Schulz-Rosengarten. “Strict sequential constructiveness”. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/als-mt.pdf. Master thesis. Kiel University, Department of
Computer Science, 2016.

[SMH18] Steven Smyth, Christian Motika, and Reinhard von Hanxleden. “Synthesizing manually
verifiable code for statecharts”. In: Proc. Reactive and Event-based Languages & Systems
(REBLS ’18), Workshop at the ACM SIGPLAN conference on Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH). Boston, MA, USA, Nov. 2018.

[SMR+17] Steven Smyth, Christian Motika, Karsten Rathlev, Reinhard von Hanxleden, and Michael
Mendler. “SCEst: Sequentially Constructive Esterel”. In: ACM Transactions on Embedded
Computing Systems (TECS)—Special Issue on MEMOCODE 2015 17.2 (Dec. 2017), 33:1–33:26.
issn: 1539-9087.

[SSH18] Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. “Towards
interactive compilation models”. In: Proceedings of the 8th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2018). Vol. 11244.
LNCS. Limassol, Cyprus: Springer, Nov. 2018, pp. 246–260.

[VRK+13] Markus Voelter, Daniel Ratiu, Bernd Kolb, and Bernhard Schaetz. “Mbeddr: instantiat-
ing a language workbench in the embedded software domain”. In: Automated Software
Engineering 20.3 (2013), pp. 339–390.

[YDT14] Bin Yu, Zhenhua Duan, and Cong Tian. “Bounded model checking of traffic light control
system”. In: Electronic Notes in Theoretical Computer Science 309 (2014), pp. 63–74.

63

https://doi.org/10.1007/978-3-642-54624-2_6
https://doi.org/10.1007/978-3-642-54624-2_6
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf

List of Acronyms

AST Abstract Syntax Tree

BDD Binary Decision Diagram

BFS Breadth-first search

BLIF Berkeley Logic Interchange Format

BMC Bounded Model Checking

CBMC C Bounded Model Checker

CTL Computation Tree Logic

DFS Depth-first search

DSL Domain Specific Language

EMF Eclipse Modeling Framework

IDE Integrated Development Environment

IUR Initialize-Update-Read

KiCo KIELER Compiler

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

LTL Linear Temporal Logic

MoC Model of Computation

MPS Meta Programming System

PROMELA Process Meta Language

PSL Property Specification Language

SAT Satisfiability

SC MoC Sequentially Constructive Model of Computation

SCADE Safety-Critical Application Development Environment

SCChart Sequentially Constructive StateChart

SCG Sequentially Constructive Graph

SCL Sequentially Constructive Language

SMT Satisfiability Modulo Theories

65

7. List of Acronyms

SPIN Simple PROMELA Interpreter

SSA Static Single Assignment

TLCS Traffic Light Control System

UI User Interface

UMS U-turn Management System

GUI Graphical UI

66

List of Listings

2.1 A small KTrace example . 9
4.1 Textual SCChart with a failing property . 23
4.2 Textual SCChart with a failing property and the resulting logic in SCL 23
4.3 SMV counterexample when using VAR for inputs . 23
4.4 SMV counterexample when using IVAR for inputs . 23
4.5 A program with control-flow. 24
4.6 The control-flow program in data-flow using a program counter (pc). 24
4.7 SMV code for the SSA SCG . 25
4.8 PROMELA code for the sequentialized SCG . 28
5.1 Textual SCChart with model checking annotations . 35
5.2 Main method for the translation of the SCG tick logic to PROMELA. 36
5.3 Adapting LTL formulas to SPIN syntax with an initial setup reaction. 36
5.4 Method that adapts expressions to SMV syntax . 38
5.5 KTrace counterexample for Listing 4.3 . 40
6.1 Textual SCChart that performs a division-by-zero. 43
6.2 PROMELA model exploring the full range of an int. 43
6.3 The UMS model implemented in SCCharts using a data-flow region. 51

67

List of Figures

1.1 Syntax overview of SCCharts . 2
1.2 Schematic of model checking . 3

2.1 ABRO example in SCChart . 6
2.2 Timeline of micro-ticks and macro-ticks. 7
2.3 Transformation matrix of SCCharts, SCG, and data-flow . 8
2.4 Illustration of the intuitive semantics of LTL . 11
2.5 Overview of nuXmv commands . 13

4.1 SCG in SSA form for the ao-int model . 25
4.2 The ao-int model and its sequentialized SCG. 28
4.3 A simple traffic light modeled in SCCharts . 32
4.4 Synchronous observer pattern applied to the traffic light model 32

5.1 Overview of relevant plug-ins . 33
5.2 Common data structures that hold information for model checking tasks. 34
5.3 Compile chain to PROMELA. 35
5.4 Compile chain to SMV. 36
5.5 Schematic of a counterexample from nuXmv . 40
5.6 Screenshot of the model checking view in KIELER . 42

6.1 SCChart that sequentially counts with three integers (version 1) 45
6.2 SCChart that sequentially counts with three integers (version 2) 45
6.3 An SCChart that counts concurrently from 0 to 255 with 6 integers. 47
6.4 DVD-Player example in SCCharts . 47
6.5 Example for a chronometer that counts seconds and minutes 48
6.6 SCChart for a Traffic Light Control System . 50
6.7 Schematic of a U-turn area for trains . 51
6.8 Run-time of model checking algorithms for LTL properties 53
6.9 Run-time of model checking algorithms for invariant properties 54
6.10 Max allocated RAM of model checking algorithms . 54

69

List of Tables

4.1 Comparison of nuXmv and SPIN . 19
4.2 Translation patterns from SCL to PROMELA. 27
4.3 Translation patterns for reactive systems in PROMELA. 30
4.4 Translation pattern for assumptions in PROMELA. 31

6.1 Statistics about the tested models . 46

71

	Introduction
	SCCharts
	Model Checking
	Problem Statement
	Outline

	Used Technology
	KIELER
	SCCharts
	SCG
	KTrace

	Model Checking
	Temporal Logics
	Synchronous Observer
	SPIN
	nuXmv

	Related Work
	SCADE
	mbeddr
	Lesar
	Xeve

	Concept
	Model Checker Selection
	Translation Considerations
	Persisting Temporal Properties

	Translation to SMV
	SMV Constructs
	Modeling the Tick Logic via Program Counter
	Modeling the Tick Logic via SSA

	Translation to PROMELA
	Modeling the Tick Logic
	Modeling Reactive Systems
	Specifying Properties

	Synchronous Observers in SCCharts

	Implementation
	Plug-in Overview
	Common Data Structures
	Translation to PROMELA
	Translation to SMV
	Interfacing with the Model Checkers
	Parsing Counterexamples
	Generated Files

	Automated Tests
	Graphical User Interface

	Evaluation and Experience Report
	General Observations
	Model Checker Integration
	Model Characteristics that Affect Performance

	Comparison of Algorithms
	Tested Models
	Test Setup
	Results
	Comparison with Lesar

	Conclusion
	Summary
	Possible Applications
	Teaching Temporal Logics
	Testing of SCCharts Compiler

	Future Work
	Extending the Translation to SMV and PROMELA
	Further Model Checkers
	Further Synchronous Languages
	Visualization of State-Space
	Evaluation in Case Study

	Bibliography
	List of Acronyms
	List of Listings
	List of Figures
	List of Tables

