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Abstract

Due to their intuitive form, sequence diagrams are simple to write and understand
and serve as a notation for system requirements and design. Statecharts are widely used
for example for modeling of reactive systems and as a base for code generation. Variants
of both diagram types are part of the ROOM and UML-RT frameworks that are widely
used in industrial software modeling.

This work proposes an approach to the automated synthesis of statecharts from se-
quence diagrams called statechart composer—SCC. The SCC starts with a possibly
non-empty hierarchical statechart that can be manually created. Then the SCC adds
behavior for each requirement sequence diagram incrementally. It introduces hierarchy
into a statechart to simplify it and/or to increase traceability of requirements. An alpha
version of the SCC is implemented as a plug-in for a commercial CASE-tool.

keywords sequence diagram, statechart, synthesis, hierarchy, UML, ROOM, modeling, au-
tomation
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1 Introduction

The use of Scenarios, Message Sequence Charts [13] or Sequence Diagrams [14] as no-
tation for system requirements and design has found broad acceptance and is used in
software development processes such as the Rational Unified Process (RUP) [16]. Due
to their intuitive form, sequence diagrams are simple to write and to understand, which
might be a reason for their wide acceptance.

Statecharts [10] are widely used for example for modeling of reactive systems and
as a base for code generation. Both sequence diagrams and statecharts are part of
the Unified Modeling Language (UML) [14] that is the de facto standard in industrial
software modeling. In contrast to their wide spread use, the UML standard says little
about the formal relation between different views of an UML model. Commercial CASE-
tools such as Rational Rose Realtime [27], Rhapsody [28] or Artisan [3] offer no or little
automatic support to generate statecharts from sequence diagrams and vice versa.

Different areas make statechart synthesis from sequence diagrams difficult [36]. There
is a tendency toward using sequence diagrams informally: Sequence diagrams are inter-
preted differently by different users [8, 17], thus the semantic is not always clearly defined
and it is not always clear how sequence diagrams relate to each other [35]. Furthermore,
consistency of sequence diagram requirements has to be defined and ensured [21].

The resulting statechart has to express what the requirement engineer has in her mind.
As soon as the statechart includes hierarchical states, the question arises if the behavior
is correctly generalized. Another problem is that the statechart is an intermediate result
and subject to further refinement. Thus it has to be readable and understandable to the
developer. Besides graphic layout [25, 26] hierarchy has to be introduced to guide the
reader through the statechart.

Recently much research has been done to investigate the transformation of sequence
diagrams into statecharts, for example by Whittle [36], Mäkinen and Systä [22] or Krüger
et al. [17]. The present thesis describes an algorithm that transforms sequence diagrams
to statecharts as an extension of a CASE-tool and its implementation. The method
presented in this work follows an incremental approach and can generate hierarchical
statecharts.

1.1 Objectives

The approach presented in this thesis, called the Statechart Composer (SCC), aims at
optimizing software development in terms of quality and time.

The SCC shall accelerate development in automating a step that otherwise would
have to be done manually. After applying the SCC there may be still work left in the
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1 Introduction

statechart. For example integrating requirements that are not given in form of sequence
diagrams. However, less information has to be entered twice, once in the sequence
diagram and a second time in the statechart. The risk of for introducing faults is
reduced.

The SCC shall be used in early phases of the development cycle. It shall accept
partial specifications and be able to handle non-determinism. That allows another ap-
plication beside generating implementation statecharts: provide early feedback to the
requirement engineer. She can generate a statechart for a part of the system to see
how her requirements fit together and where critical areas are. So the SCC helps to
detect inconsistencies within requirements, thus preventing faults early in the software
life cycle.

Another objective on the SCC is to integrate as smoothly as possible into the ex-
isting work flow of a software development apartment. Besides being a plug-in for a
CASE-tool, which is based on the UML-RT/ROOM Framework [29], the SCC has to
follow an incremental approach in generating statecharts: the sequence diagrams shall
be integrated one after another into an existing statechart. A manually created state-
chart may serve as a starting point as well as an automatically created statechart or
an empty statechart. This statechart may be structured hierarchically. The developer
may also change the resulting statechart arbitrarily and restart the SCC to complete
the statechart and thus see if the complete behavior is still implemented as specified in
the sequence diagrams. To improve the human readability of the resulting statecharts,
hierarchy shall be introduced if needed.

This work presents an approach that reaches these objectives. It also provides an
implementation of the basic ideas of this approach.

1.2 Environment

This work has been done in cooperation with a software development team that develops
real-time embedded software for medical devices for Philips Medical Systems in Ham-
burg, Germany. This software is developed according to a customized Rational Unified
Process (RUP) [16].

In wide parts of this process a CASE Tool that is based on the ROOM/UML-RT
framework is used. The CASE-tool uses the UML 1.4 notation with a real-time ex-
tension, i. e. basic sequence diagrams (actors, interaction instances, a/synchronous,
call, create and destroy messages, local states, local actions, focus of control, coregions)
and statecharts without orthogonality that are associated with a class. Active classes,
so-called capsules, communicate pair-wise via two-directional protocols with priority-
ordered message buffers. The semantics is run to completion [29].

While the CASE-tool ensures consistency within the implementation model, the so-
called logical model, the elements of the design model are coupled rather loosely without
even name checks after creation. The CASE-tool provides an API to access model
elements, modify the model and to expand the tool itself. The implementation of the
SCC is bases on this API.
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1.3 Main Issues

1.3 Main Issues

Being one of the most influencing authors on statechart synthesis, Whittle [36] identifies
three main issues in synthesizing statecharts from sequence diagrams:

1. detect and resolve conflicts in the sequence diagrams;

2. recognize and merge identical or similar behavior from sequence diagrams;

3. construct a highly readable state machine.

The SCC-approach addresses these issues in the following ways:

1. The detection and resolution of conflicts is described in detail by Lischke [21]. The
SCC-approach allows some inconsistencies like unconnected states in the speci-
fications to be able to provide early feedback to the designer or to work with
intermediate results. To produce results that can serve as a base for code genera-
tion, the SCC-approach requires a prior run of a consistency-checking tool [21] to
check the sequence diagram specification.

2. We use two ways to recognize and merge identical or similar behavior from se-
quence diagrams: First, we demand explicitly named local states at the beginning
and at the end of every lifeline in a sequence diagram. These states are then
mapped to statechart states and the sequence diagrams are merged comparable
to the approach of Krüger et. al [17] via these states. Second, we use simulation:
Starting in the corresponding start state in the statechart, the SCC checks whether
the behavior defined by the sequence diagram is already implemented by the state-
chart. If it is not implemented, only the behavior is added that the statechart was
not already capable of.

3. As stated by Whittle [36] hierarchy is a key feature to improve readability. The
SCC-approach constructs hierarchical statecharts. After construction a module
of the SCC named Topological Layouter (TL) further optimizes the statechart. It
uses a combination of methods to introduce hierarchy in the statechart as described
in Chapter 3. For example the TL uses a partial order on the explicitly named
states, similar to the order on the state variables used by Whittle [36]. This order
can be entered manually. As stated above the SCC can refine manually provided
statecharts that can include hierarchical states as described in Chapter 4.

Obviously, good graphic layout is another key feature to readability. The capa-
bilities of current CASE tools for graphic layout are not good enough to be of
practical use. However, providing graphic layout is beyond the scope of this the-
sis. For an overview over current approaches on this consider the work of Prochnow
and Hanxleden [26]. In the context of automated statechart synthesis automated
graphical layout would be desirable. The use of an external layouter like KIEL [32]
can lead to a normal form for the SCC results.
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1 Introduction

Figure 1.1: Use cases modeled by the restaurant example

1.4 Example

This section introduces a small reactive system that serves as an example in the following
chapters. It is a model of a very simple restaurant in which one customer at a time can
be served with cocktails. Figure 1.1 gives an overview of all modeled use cases. For each
use case one requirement sequence diagram is given as shown by Figure 1.2.

In Figure 1.2(a) the stickman stands for the interaction instance of the actor owner and
the rectangle labeled restaurant for the interaction instance of the capsule restaurant.
The dashed lines below these icons are the lifelines of the interaction instances. The
locations on a lifeline are considered to be ordered in time. I. e. the restaurant is in
the local state open before it receives the asynchronous message enter and sends the
asynchronous message show_table in return be in the local state waiting_for_wink.

Figure 1.3 shows the High-Level Message Sequence Chart (hMSC) [13] that illustrates
how the sequence diagrams are connected. The hMSC is given for illustrative purpose
only, the SCC-approach does not rely on it to synthesize the statechart. It uses the
start and end states on each lifeline to connect the sequence diagrams with each other.
Figure 1.4 shows a statechart implementing the behavior as required by the sequence
diagrams.
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1.4 Example

(a) Use case open restaurant (b) Use case close restaurant

(c) Use case welcome customer (d) Use case serve customer

(e) Use case take payment

Figure 1.2: Sequence diagram requirements for the restaurant
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Figure 1.3: Requirement hMSC for the restaurant

Figure 1.4: Statechart of the restaurant
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1.5 Overview

1.5 Overview

This work is divided into six chapters. This introduction is followed by Chapter 2
Flat Statechart Context. It introduces a basic framework that is a subset of the ROOM
framework and serves as a simplified base for the SCC-algorithm. Further sections detail
the incremental approach and the foundation of the SCC-approach, which is based on
the work of Krüger et al. [17].

Chapter 3 Hierarchical Statechart Context describes how the SCC-approach handles
hierarchical statecharts in incremental synthesis. Furthermore it proposes six approaches
to introduce hierarchy into a possibly flat statechart.

Chapter 4 Implementation shows how the plug-in for a CASE-tool is realized. Besides
describing the general approach it details the simulation of a sequence diagram on a
statechart, the integration of a sequence diagram into a statechart and the hierarchy-
handling.

Chapter 5 describes the Related Work. It summarizes the papers that had the strongest
influence on this thesis. For each paper it states how this thesis was influenced and which
parts of the approach were not suited for the objectives of this thesis or the present
environment.

Chapter 6 Conclusion states in how far the objectives are fulfilled and what can be
the next steps in theory and implementation.
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2 Statechart Synthesis

Section 2.1 of this chapter introduces a basic framework that serves as a foundation for
the SCC-algorithm. Section 2.2 describes the SCC-approach in a flat statechart context
and includes an example. Section 2.3 details the relation of the SCC-approach and the
work of Krüger et al. [17]. Section 2.4 describes the extensions of the SCC-approach
that allow it to be applied in an hierarchical context.

2.1 Basic Framework

As described in Chapter 1 the SCC has to work in the ROOM framework. This section
introduces a framework, called basic framework in the following. It defines the subset
of the ROOM framework [29] on which the SCC operates. Here is a short overview over
the basic framework according to Lee [19]:

1. Ontology
Components are capsules. Each capsule has a statechart describing its behavior.
Each capsule has its own thread of control. Sequence diagrams show scenarios of
possible inter-capsule behavior. In sequence diagrams only the following syntactic
elements appear: interaction instance, lifeline, local states, asynchronous messages.
On a location on a lifeline can thus either be a local state or a message. A sequence
diagram has a start and an end state on each lifeline. This states provide a way
to connect the scenarios given by sequence diagrams with each other.

2. Epistemology
The highest structure is a model that knows its capsules, the protocols they speak
and all sequence diagrams. Capsules and the associated ports know each other.
Ports know each other if they are connected with bindings.

3. Protocols
Capsules communicate only by two directional asynchronous message passing via
channels called bindings. Bindings are realizations of protocols. A Port is the
interface of a capsule to a binding. The messages sent over the bindings are buffered
in mailboxes and handled based on the run-to-completion semantics [29]. The basic
framework allows no message overtaking. The environment has to guarantee this.
Solving the problems that would arise otherwise [29], is beyond the scope of this
thesis.

4. Lexicon
The messages passed over the bindings contain no data.
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2 Statechart Synthesis

2.1.1 Basic Framework Properties

The basic framework has the following properties:

1. The only actions that are possible in a statechart are send actions on the transitions
of the statechart.
The basic framework can be realized in a ROOM-compatible framework. In the
ROOM framework target language code, e. g. C++, is used to express message
sending. Beside that arbitrary code may be part of the action of a transition.
That allows flexibility in programming, but complicates statecharts analysis. For
example, nested procedure calls or communication outside of the framework like
accessing shared memory can appear. This is outside the scope of this work.

2. Every send action that occurs on a lifeline in a sequence diagram is triggered by a
receive action.
In the run-to-completion semantics [29] every action a system takes is a reaction on
some input, i. e. it is causal according to the definition of Huizing and Gerth [12].
In this context messages have to be triggered from outside a capsule. Due to the
start state at the beginning of a lifeline the triggering message appears in the same
sequence diagram as the send action. This property includes that no two states
follow on each other without a receive action in-between.

2.2 Incremental Statechart Synthesis

This section details the SCC-approach in the context of flat statecharts. Due to the
first basic framework restriction, each sequence diagram has a start and an end state on
each lifeline. States in sequence diagrams are referred to in the following as sd-states.
Analogously states in statecharts are referred to as sc-states.

Definition (Corresponding States) Let ι be an injective mapping from the sd-states
into the sc-states. If not defined otherwise, ι is the identity in state names. A state s1
is called corresponding to a state s2 iff

• s1 is a sd-state and s2 is a sc-state or vice-versa and

• ι(S1) = S2 or ι−1(S1) = S2. ∗

Definition (Projection) A projection of a capsule c on a sequence diagram sd is the
part of sd consisting of c, its lifeline l, the states on l and the messages connected
to l. The projections of the example sequence diagrams on restaurant are shown in
Figure 2.2. ∗

Definition (Implicit/Explicit States) Local states that are drawn into a sequence
diagram are also referred to as explicit states. Implicit states are those states that are
not drawn as local states on a sequence diagram, but that exist nevertheless. An implicit
state is on a lifeline after each incoming message where no explicit state exists yet. ∗

20



2.2 Incremental Statechart Synthesis

(a) Explicit state wait_for_order (b) Implicit state instead of wait_for_order

Figure 2.1: Sequence diagram serve_customer

In the run-to-completion semantics [29], transitions are only taken, when a triggering
message is present. Instantaneous transitions that contain only send actions are not
possible. That means every change of state is triggered by an incoming message and
every incoming message has to be assumed to change the state. In this thesis a self-
transition is considered to be a special case of state change. Outgoing messages and
local states do not change state in the statechart.

Example (Implicit/Explicit States) Figure 2.1 shows sequence diagrams that are
identically with the exception of a local state: In Figure 2.1(a) it is explicitly named
wait_for_order. In Figure 2.1(b) it is not visible. ∗

Definition (Implements) Let c be a capsule with a statechart sc and sd be a sequence
diagram. c implements sd iff there exists a path in sc that realizes the sequence, i. e.:

• in sc exist states sstart and send corresponding to the start and end states on the
lifeline l of c in sd and

• there exists a path psd
c = (sstart →t1 s1 →t2 . . . sk−1 →tk send) in sc, where

– ti are transitions and si are states, such that
– ti is triggered by the i-th incoming message on l

– all outgoing messages on ti lie on l after the i-th incoming message and before
the next incoming message or state and

– for all local states s appearing on l exists a state with the name of the target
of the transition that is triggered by the last incoming message before s in sc.

In the following the path psd
c is referred to as the path corresponding to the projection

of sd on c. ∗
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2 Statechart Synthesis

Example (Implements) Consider the leftmost projection of restaurant in Figure 2.2
and the statechart in Figure 2.3. In this case l is the lifeline of the restaurant, sstart =
closed, send = open, ι is the identity in state names, k = 1 and p

open_restaurant
restaurant =

(closed →open open). Thus, the statechart implements the sequence diagram of which
Figure 2.2 shows a projection. ∗

Algorithm (SCC) The SCC-approach ensures that all sequence diagrams are imple-
mented by the statechart. The diagrams are integrated incrementally, one after another,
into the statechart. There are two possible cases to start with.

1. an empty statechart

2. an non-empty statechart

In the first case the path that is required for the statechart to implement the first
sequence diagram is drawn: The SCC introduces one state per implicit or explicit state
on the lifeline and one transition per incoming message into the statechart. The tran-
sition sends all subsequent outgoing messages until the next incoming message on this
transition. Note that this path is not reachable. To connect it with the initial state, the
initial states have to be sterotyped as initial by the developer so that the SCC adds an
initial transition. An example for this is given by the leftmost projection of restaurant
in Figure 2.2 and the statechart in Figure 2.3.

The second case is the initial situation for every sequence diagram that is integrated
after the first one. In order to integrate the sequence diagram into the statechart, the
SCC has to

• test, if it is already implemented and

• integrate the path to ensure implementation. ∗

Algorithm (Test) To test whether a statechart of a capsule implements a sequence
diagram with the start state sst and the end state est on the corresponding lifeline, the
SCC checks

• if the corresponding start and end states exist in the statechart and

• if they are connected with a path that implements the sequence diagram.

To test the path, the statechart is simulated. Beginning with sst the incoming mes-
sages defined by the sequence diagram are given as input. If the outgoing messages
match the sequences given by the sequence diagram and all explicit states are correctly
active, the test is passed. ∗
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2.2 Incremental Statechart Synthesis

Algorithm (Integrate) Let sd be a sequence diagram, c be a capsule, sc be the state-
chart of c. The simple approach to integrate sd into sc connects the corresponding start
and end states with the path psd

c .
The standard approach simulates the sequence diagram on the statechart as described

above. At each divergence from the path psd
c the needed transition or state is added and

the simulation is continued with the new elements. When the end state is reached, sc
implements sd.

In the SCC, a new transition is named after its triggering message. A new state corre-
sponding to an explicit sd-state is named after this sd-state. A new state corresponding
to an implicit state is named after the last message sent by an incoming transition. If
no message is sent on the transition that leads to the new state it is named after the
trigger message. While the naming convention for transitions and states corresponding
to explicit states are useful, the naming of states corresponding to implicit states is an
open issue. ∗

The SCC-approach extends the behavior of the statechart. All behavior shown by the
statechart before applying this algorithm is still shown afterward. If the resulting state-
chart is viewed as inheriting behavior from the original statechart, protocol inheritance
as introduced by Aalst et al. [4] is preserved.

Example (Integrate) An example is given by Figures 2.2 to 2.7 with the additional
input that closed is an initial state.

Figure 2.2: Projections of the requirement sequence diagrams shown in Figure 1.2 .

Figure 2.2 shows the projections of the requirement sequence diagrams open restau-
rant, close restaurant, welcome customer, serve customer and take payment on the cap-
sule restaurant. The following figures show the intermediate results of integrating them
successively.
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2 Statechart Synthesis

Figure 2.3: Result of integrating open
restaurant into an empty
statechart

Figure 2.4: Result of integrating close
restaurant

As shown in Figure 2.3 new states corresponding to the explicit states open and
closed are added to the empty statechart. They are connected with a transition trig-
gered labeled with open. It is triggered by open and sends opened. Both times it is
communicating with the owner.

Figure 2.4 illustrates that no new states are needed to introduce the sequence diagram
close restaurant. The simulation starts at state open. The state exists in the statechart,
so nothing is to add. Next it tries the trigger close. There is no transition to follow, so a
new transition, named close, is added. close is triggered by the message close and sends
the message closed both in communication with the owner. Figures 2.5 to 2.7 show the
statechart that result accordingly.

Figure 2.5: Result of integrating
welcome customer Figure 2.6: Result of integrating serve customer
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2.3 Foundation of the Approach

Figure 2.7: Result of integrating all sequence diagrams

2.3 Foundation of the Approach

The SCC-approach is based on the work of Krüger et al. [17]. In Chapter 5 a short
overview of their approach is given and it is compared with the SCC-approach. This
section discusses the common ground and the differences of the two approaches in detail.

Krüger et al. [17] use a framework similar to the basic framework. They talk of com-
ponents instead of capsules, channels instead of bindings and ports, conditions instead
of sd-states and instead of model they use the term system for the highest structure
level. In this work a system is considered to be the implementation of a model. As in
the SCC-approach sequence diagrams and statecharts are potentially non-deterministic.
The interpretation of sequence diagrams as specification is the same in both works.

Their algorithm consists of five phases:

1. Projection on one interaction component: This is the same in both approaches.

2. Normalization: split the sequence diagrams until every sequence diagram starts
and ends with pre and post states and has a message sequence in-between. That
ensures that only explicit states are used to connect paths in the statechart. That
is what the SCC does with the simple integration as described in Section 2.2.

3. Transformation into a sequence diagram (MSC)-automaton: identify sequence di-
agram states with statechart states and insert one transition for each sequence
diagram.
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4. Transformation into an automaton: expand the sequence diagram transitions into
normal statechart transitions. This and the third phase are one step in the simple
integration.

5. Optimization: The former phases introduce one transition per message and state
into the statechart. This is done to allow the synthesis algorithm to work with
different semantics. In this phase the statechart is minimized. The SCC-approach
is tailored to the run-to-completion semantics [29]. It produces a statechart with
only the needed transitions in one step. When the standard integration is used, the
number of states in the constructed statechart is already minimized. The reason
to use simple integration is that this minimization is not wanted.

2.4 Hierarchical Statecharts in Incremental Synthesis

A first approach to incremental statechart synthesis is to abstract from hierarchy and to
allow only flat statecharts as described in the previous section. This does not suite prac-
tical use. Flat statecharts are way to big and cluttered in describing complex behavior.
This section extends the approach to suit the needs of hierarchical statecharts.

The SCC-approach uses

• a mapping ι between sequence diagram states and statechart states and

• an explicit partial order π on sequence diagram states

As introduced in Section 2.2 ι defines which sd-state corresponds to which sc-state. For
hierarchical statecharts ι maps sd-states to arbitrarily nested sc-states. Considering the
image of the hierarchy relation given by a statechart under ι−1 the sd-states are ordered
hierarchically, too. This order is made explicit with π. Due to the fact that sequence
diagrams are given and statecharts are to be produced, the SCC-approach allows π as
an additional input to statechart synthesis. π can be entered manually or be inferred
from ι and a given statechart.

Defining π manually as part of the requirements can reduce the amount of sequence
diagrams needed to specify a behavior: When the same basic sequence can start in
different states, such as an exception handling, normally one sequence diagram has to
be drawn for each such start state. When a local state is declared to be superstate of
all start states, only a single sequence diagram is needed.

Transitions and states can be added on each layer of the statechart hierarchy. There
are four reasonable choices for the layer on which to add a new state:
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2.4 Hierarchical Statecharts in Incremental Synthesis

1. The top layer.

The top layer is the most conservative choice, no generalization is introduced. On
the one hand this choice neglects existing hierarchical structures and clutters the
top layer. On the other hand the resulting statechart does exactly what is visible
in the sequence diagram. Mostly that is not what the developer intends.

2. The layer of the source state ssl of the last added transition.
ι(sds) is such a state, where sds is the start state of a sequence diagram.

This choice adds all implicit states between an explicit state sds and the next ex-
plicit state under the parent state of ι(sds). This is the appropriate generalization
when the last incoming message before the next explicit state changes the general
behavior.

3. The layer of the target state tsn of the next transition to add.
ι(sds) is such a state, where sds is the end state of a sequence diagram.

This choice adds all implicit states between an explicit state and the next explicit
state sds′ under the parent state of ι(sds′). This is the appropriate generaliza-
tion when the first incoming message after an explicit state changes the general
behavior.

4. The layer of the least common ancestor state of ssl and tsn.

This choice is a compromise. It is not as conservative as choice 1, but adds the
behavior that ssl and tsn share to all implicit states. This is the appropriate
generalization when none of the messages between the explicit states changes the
general behavior.

Choices 2, 3 and 4 add the behavior of the respective parent states, i. e. in case of ssl
and tsn having the same parent state choices 2, 3 and 4 produce the same statechart.

The four choices differ in the degree of generalization of behavior. In every case the
specification has to be generalized appropriately. What “appropriately” means depends
on the development context. Choices 2, 3 and 4 propose possibilities for generalization.
A different view on this problem can be found in the work of Mäkinen and Systä [22].

The only way to be sure that the intended degree of generalization is reached is con-
sidering additional information. The developer can provide them as part of the require-
ments in form of π, in form of a strict semantic of sequence diagrams or interactively at
runtime of a synthesizer as proposed by Mäkinen and Systä [22].

The following pages give a detailed example of the impact of the choice on the syn-
thesized statechart.
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2 Statechart Synthesis

(a) Top state of restaurant (b) Inside of state open

(c) Inside of state customer_inside (d) Sequence diagram welcome_couple

Figure 2.8: Extended restaurant example

Example (Choices) Consider the extended restaurant example as given by Figure 2.8.
Two additional use cases are implemented: check happiness and emergency exit. As long
as a customer is sitting at the table and is not yet paying, the owner can check, whether
the customer is currently happy or in case of an emergency, the restaurant can be closed.

The sequence diagram given in Figure 2.8(d) defines a behavior that has to be imple-
mented in the restaurant statechart: a couple shall be able to come in and be served
together. π defines the start state big_table_free to be a substate of empty.
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(a) Top state of restaurant (b) Inside of state open

(c) Inside of state customer_inside (d) Inside of state empty

Figure 2.9: restaurant statechart resulting from choice 1

Figure 2.9 illustrates choice 1. The new state wait_for_partner is added on the top
layer and the transitions from big_table_free and to waiting_for_wink are drawn as
inter-level transitions. While wait_for_partner is the active state, the restaurant only
reacts on the incoming message that indicates that the partner enters the restaurant.
That means neither emergency_exit is possible nor can the restaurant be closed. This
is not likely to be the behavior the requirement engineer had in mind.

Nevertheless, if the algorithm which introduces the state wait_for_partner has no
further information like π, this is a good choice, because no behavior is added to the
statechart that is not explicitly specified in a sequence diagram.
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(a) Top state of restaurant (b) Inside of state open

(c) Inside of state customer_inside (d) Inside of state empty

Figure 2.10: restaurant statechart resulting from choice 2

Figure 2.10 illustrates choice 2. The new state waiting_for_partner is added on the
same layer as the start state of the sequence diagram big_table_free. So it inherits all
behavior shown by empty. While waiting_for_partner is the active state, the restaurant
reacts not only on the second enter, but allows the restaurant be closed, too. Still it is
not possible to react on an emergency_exit. Following this choice behavior is introduced
that is not explicitly specified.
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(a) Top state of restaurant (b) Inside of state open

(c) Inside of state customer_inside (d) Inside of state empty

Figure 2.11: restaurant statechart resulting from choice 3

Figure 2.11 illustrates choice 3. The new state waiting_for_partner is added on the
same layer as the end state of the sequence diagram waiting_for_wink. So it inherits
all behavior shown by customer_inside. While waiting_for_partner is the active state,
the restaurant reacts on the second enter, close, check_happiness and emergency_exit.
Even if this might seem the most likely intention in this example, the problem is the
same as in choice 2: not explicitly specified behavior is introduced.
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(a) Top state of restaurant (b) Inside of state open

(c) Inside of state customer_inside (d) Inside of state empty

Figure 2.12: restaurant statechart resulting from choice 4

Figure 2.12 illustrates choice 4. The new state waiting_for_partner is added on
the layer of the least common ancestor of big_table_free and waiting_for_wink. So it
inherits all behavior shown by open. While waiting_for_partner is the active state, the
restaurant reacts on the second enter and close.

Choosing the fourth possibility means introducing not explicitly specified behavior,
too. However, it could be an acceptable choice under some circumstances. ∗
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This chapter discusses six approaches to introduce hierarchy into a statechart. Each of
them can be automated and aims at making a statechart more readable.

Two features that make a statechart human-readable are:

• simplicity and

• traceability.

On a high hierarchical layer of a statechart only that behavior common to groups of
states is shown. On nested layers only the refinement of that behavior is visible. So both
views are free of the information shown by the respective other view. Thus a strategy
to make a statechart simpler, is to identify common behavior and express it on a higher
level.

To make specifications traceable in a statechart, the statechart has to reflect the
structure of the specifications. In the given context the specifications are sequence
diagrams organized in use cases.

For both categories means of introducing hierarchy in a flat state machine are discussed
in the Section 3.1 and 3.2, respectively.

3.1 Simplicity

Hierarchy is useful in statecharts because it reduces the number of transitions and the
number of states that are visible at a time. It helps to reduce redundant information
in the chart and improves the readability. This section explains two ways to reduce the
number of transitions without changing the behavior defined by the statechart. Both
can be applied after having constructed the statechart with the SCC-approach.

3.1.1 Common Outgoing Transitions

When several states have a transition with the same trigger, action and target, a super
state for these states can be introduced: one transition with the same trigger, action and
target originating from the new state is added and the other transitions are removed.
Depending on the visualization of the statechart, one down side of this simplification is
that the labels of the transitions are displayed more than once.

33



3 Introduction of Hierarchy

Figure 3.1: Statechart for restaurant with extra transition wink from serve_cocktail to
ask_for_order

(a) Superstate indroduced—only one wink transition needed (b) Inside of state wait-
ing_for_order

Figure 3.2: restaurant statechart with new superstate waiting_for_order
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Example (Common Outgoing Transitions) Figure 3.1 shows an extended state-
chart for the restaurant. waiting_for_wink and serve_cocktail here both have a transi-
tion triggered by the event wink that causes the no action and ends at ask_for_order.
That makes it possible to introduce a new superstate waiting_for_orders for wait-
ing_for_wink and serve_cocktail and let the wink transition originate from it as shown
in Figure 3.2(a). Figure 3.2(b) shows the inside of the new state: the transition wink is
moved to start from the new parent.

The transition labels enter and order_cocktail each appear twice as transition labels
and once as label for a junction point. ∗

3.1.2 Common Self-Transitions

Several states that have a self-transition with the same trigger/action pair can be grouped
under one super state. A self-transition with the trigger/action pair targeting to history
has to be added to the super state and the other self-transitions have to be removed.

Note that in a statechart dialect that uses entry and exit actions the behavior of the
statechart with the superstate is generally not the same as in the original statechart.

Figure 3.3: Statechart for restaurant with extra check_happiness transitions

Example (Common Self-Transitions) Figure 3.3 shows an extended statechart for
the restaurant. waiting_for_wink, serve_cocktail and ask_for_order here all have an
extra self-transition check_happiness. That allows to introduce a new superstate cus-
tomer_inside for waiting_for_wink, serve_cocktail and ask_for_order as shown in
Figure 3.4(a). Figure 3.4(b) shows the inside of the new state: The check_happiness
self-transitions on waiting_for_wink, serve_cocktail and ask_for_order are removed.
A new check_happiness self-transition is added that sources from the new parent and
targets the parent’s deep history connector. ∗
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(a) Superstate customer_inside added (b) Inside of state customer_inside

Figure 3.4: restaurant statechart with new superstate customer_inside

3.1.3 Generalize Behavior

The generalization of behavior is the most important use of hierarchy. A result of
introducing hierarchy in that way is a smaller number of transition and a thus simpler
and more readable statechart.

This section describes approaches to group states of a flat statechart in a way that
generalizes behavior. This can lead to the addition of behavior that is not explicitly
defined in the sequence diagrams, but by π.

If a state s1 is bigger than state s2 according to π, ι(s2) is placed within ι(s1). ι(s2)
inherits the behavior of ι(s1).

In the basic framework, as in the ROOM framework [29], transition trigger priority
goes from deep nesting to shallow nesting: When two transitions t1 and t2 have the
same trigger, t1 sources from sc-state s1 and t2 sources from sc-state s2, t2 is followed.
In terms of inheritance t2 overwrites t1. That behavior conforms to a sequence diagram
that causes t2 to source from s2.

If π is given before applying the SCC-approach, this kind of hierarchy is added at
construction time as described above. However, it can also be introduced in a flat
statechart afterward.

Example (Generalize Behavior) Consider Figures 3.5, 3.6 and

π = {(open,waiting_for_wink),
(open, ask_for_order),
(open, serve_cocktail),
(open, handout_bill)}.

Figure 3.5 shows the flat statechart of the restaurant. As π defines open to be a
parent state for waiting_for_wink, ask_for_order, serve_cocktail and handout_bill,
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these states are aggregated under a super state open in Figure 3.6. Still, a substate open
has to be kept within the new superstate. This is the state in which the restaurant waits
until a customer enters it.

Note that the restaurant now may be closed with customers locked inside. This is
behavior that is not defined in form of sequence diagrams, but with the information
entered through π. ∗

Figure 3.5: Flat restaurant statechart

(a) Top state (b) Inside of state open

Figure 3.6: restaurant statechart after applying π to introduce hierarchy
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3.1.4 Group States

Another possibility to introduce hierarchy is the simple grouping of states. When the
methods mentioned in the last two sections have been applied and the statechart is still
hard to understand because too many states are on one layer the following approach can
be used.

Due to their loop-like structure strongly connected components provide a natural
grouping approach: The active state can be part of the strongly connected component
for an arbitrary time. One possibility to group states like this is to apply Tarjans
Algorithm [31] on a level of a statechart. When a super state is introduced for each
maximal strongly connected component, the resulting level is acyclic. That does not
change levels on which completely cyclic behavior is defined - just one new super state
could be added. If different maximal strongly connected components are on one layer
such a grouping simplifies to recognize the overall flow of behavior and makes acyclic
behavior obvious.

Example (Maximum Strongly Connected Components) Figure 3.7 shows the restau-
rant statechart that results when the use case take_payment is not specified. Fig-
ures 3.8(a) to 3.8(c) show the result of applying this method to the statechart shown
in Figure 3.7. The resulting acyclic statechart shows that the state empty cannot be
reached again after leaving it. Note that the names for the new superstates are not gen-
erated automatically. To generate meaningful names for new superstates is even harder
than generating names for new states inferred from the sequence diagrams as detailed
in Section 2.2. ∗

Figure 3.7: Top level of restaurant with no possibility to leave
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(a) Superstates on the top
layer

(b) Inside of empty (c) Inside of customer_inside

Figure 3.8: restaurant with states grouped to maximum strongly connected components

3.2 Traceability

This section describes how the structure of the requirements can be reflected in a state-
chart. This provides a view that makes it easy to find the place in a statechart that
corresponds to a specific part of requirements. The importance of traceability is de-
scribed by Bordeleau [7]. He proposes patterns to enhance traceability of requirements
in the statecharts.

3.2.1 Use Case and Sequence Diagram Structure

Software development processes like the RUP [16] involve among others the following
steps:

1. Textual requirements are expressed in form of use cases illustrated by use case
diagrams. Together with the use cases their possible orders of execution can be
given.

2. The use cases are detailed by sequence diagrams. One basic flow and possibly
several alternative flows are each described by one corresponding sequence diagram.

When these structures are transferred to a statechart, it is similar to a higher order
sequence chart (hMSC) [13]. It illustrates how the sequence diagrams fit together.
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The following can be performed to group the states of a flat statechart in a hMSC like
style:

• All states that mark a start or end state of a sequence diagram are left untouched
on the uppermost layer.

• All states between them are grouped together under one super state per sequence
diagram. This state carries the name of the sequence diagram.

Example (hMSC style) Figure 3.9 shows the restaurant statechart as it is gener-
ated with the simple integration approach as described in Section 2.2. The state
ask_for_order appears twice, once with the slightly changed name ask_for_order_1.

Figure 3.10 shows the result of transferring the sequence diagram structure to the
statechart, i. e. one superstate per sequence diagram is introduced. The states intro-
duced for the sequence diagrams open_restaurant, close_restaurant and welcome_cus-
tomer serve illustrative purpose only. The transitions leaving them have to be instanta-
neous, because no state change takes place in the respective sequence diagrams.

All other new superstates are refined by the behavior specified by the respective
sequence diagrams. In Figure 3.9 the states ask_for_order and ask_for_order_1
appear due to the simple integration approach. This is needed, because the state
ask_for_order is part of both states representing the sequence diagrams serve_customer
and take_payment. In Figure 3.10 ask_for_order and serve_cocktail are substates of
serve_customer and ask_for_order_1 and handout_bill are substates of take_payment.

The statechart is non-deterministic: when waiting_for_order is the active state, it
is not clear which transition to follow, the one leading into SD_serve_customer or the
one leading into SD_take_payment : both are triggered by wink. ∗

A similar topology results, when one state per use case is introduced and each use
case has exactly one start and one end state. It is the same in the restaurant exam-
ple. Differences appear when more than one sequence diagram per use case is part of
the specification, then the hMSC-style could be applied after the use case structure is
introduced in the statechart.

There can be more structure in the sequence diagram specification than start, end
states and sequence diagram names. In a way similar to the hMSC like style notations
like sequence diagram reference and operators as used in UML 2.0 [23] can be transferred
into the statechart.
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Figure 3.9: Flat restaurant statechart without simulation gained optimization

Figure 3.10: States grouped in a hMSC like style
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3.2.2 Component Refinement Structure

In early development phases of the RT-TROOP modeling process [7], sequence diagrams
for components are defined. During the specification MSC modeling phase sequence dia-
grams are refined, i. e. the sequence diagrams are extended to decomposed components.
One possibility to transfer this structure into a statechart is explained by the following
example.

Figure 3.11: Refined sequence diagram for open_restaurant as shown in Figure 3.12

Example (Refinement) For the restaurant example this could be a decomposition of
the restaurant capsule into the capsules bar, kitchen and service. Figures 3.11 shows
the refined sequence diagram for the use case open_restaurant. Figure 3.13 shows the
statechart for the bar that implements only this use case. Figure 3.14 illustrates a
method to introduce hierarchy. The communication that has before been defined is
considered to be more abstract. Hiding the newly specified internal communication in a
superstate provides a more abstract view on the statechart. The possibility for internal
communication can be visualized with an local action in the more abstract specification
of restaurant as shown in Figure 3.12. ∗

Another way to make use of this relationship between sequences diagrams is to group
all states under a superstate that contribute to a local action or a local state on the
more abstract layer.
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Figure 3.12: Local action visualizing in-
ternal communication Figure 3.13: Flat Bar statechart

(a) Superstate for refined communication (b) Inside of make_ready

Figure 3.14: bar with superstate make_ready
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This thesis provides a tool that implements the theory presented in Chapters 2 and 3.
This chapter describes the functionality and structure of this tool: the statechart com-
poser (SCC).

Section 4.1 shows the general approach of the implementation. Section 4.2 describes
the simulation of a sequence diagram on a statechart. Section 4.3 shows how the results of
the simulation are used to integrate the sequence diagram into the statechart. Section 4.4
describes the introduction of hierarchy into a statechart with two examples.

4.1 General Approach

The algorithm shown in figure 4.1 takes a model theModel and one capsule theCapsule
with an possibly empty statechart theSC as input.

0 main:
1 sds = collectSDs(theModel, theCapsule)
2 for each sd in sds
3 if not implements(theSC, sd) then
4 integrateIn(sd, theSC)
5 end if
6 end for
7 layoutTopological(theSC)

Figure 4.1: Pseudocode illustrating the general approach in the procedure main

In line 1 all sequence diagrams in theModel are collected in sds that include theCap-
sule. Then, in lines 2-6, for every sequence diagram sd in sds the algorithm checks
(line 3) whether it is implemented in theSC. For this test theSD is simulated on theSC
as described in the next section. If sd is implemented, nothing is done. Otherwise (line
4) the algorithm integrates sd in theSC.

So at line 7 theCS shows all behavior that is defined in sds, possibly more, if theSC
was not empty at the start of main. In line 7 the call of layoutTopological optimizes
theSC in introducing hierarchy.
CollectSDs (line 1) is an uncritical function that visits all sequence diagrams of

theModel, checks, if the current sd includes an interaction instance of the capsule and
adds it to the collection if needed. It returns the collected sequence diagrams. The inter-
esting functions are implements, integrateIn and layoutTopological. The following
sections 4.2, 4.3 and 4.4 describe their functionality.
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4.2 Simulation

This section describes how the simulation works. Lets start with a closer look on the
implements test that is called in main.

0 implements anSC anSD:
1 startStateSD = getStartState(getCorrespondingLifeline(anSD, anSC) )
2 startStateSC = getStartStateSC(startStateSD, anSC)
3 if startStateSD is nothing or startStateSC is nothing then
4 return false
5 else
6 return simulate(startStateSD, startStateSC)
7 end if

Figure 4.2: Pseudocode illustrating the implements test

Implements checks if anSD is implemented by anSC. At the first lines (1 and 2) three
functions are called to set the start states for simulation. getCorrespondingLifeline
returns the lifeline of the interaction instance that is associated with theCapsule, which
is represented by its statechart anSC. getStartState returns the local state that is the
first element on the lifeline as ensured by the basic framework, see Section 2.1.
getStartStateSC searches the statechart anSC for a state with a name corresponding

to the name of the startStateSD. If such a state exists, it is returned. Otherwise
nothing is returned and the if-statement in line 3 leads to line 4 where false is returned,
because one of the arguments for simulate is not set. Note that in the second case
the new state is not connected with the initial state and thus not reachable. That is a
desired behavior to allow early feedback in the requirement or in the design phase. A
closed result is only produced if the specifications are closed. As introduced in Chapter 2
corresponding means having an identical name.

Figure 4.3 describes the simulation. The function simulate returns a boolean success
indicating whether the simulation successfully reached the end of the sequence diagram
or not. simulate is called recursively in line 15. With each recursion one (SDLocation,
SCState) pair is checked. Generally, a location on a lifeline can be a sd-state, a receive
message or a send message. The function simulate is not called with SDLocation being
a send message.

If such a simulation step is successful, the next pair is checked. In case of a non-
deterministic choice, a backtracking is implemented via depth first search with the loop
enclosing lines 6 to 18. This search terminates, because it is limited by the number of
locations on the lifeline. For the result it is only important whether a way exists and not
whether the simulation takes the shortest way, so a breadth first search is not needed
here.

A simulation step corresponds to the interpretation of one transition in the statechart:
If SDLocation is a local state, it has to correspond to the SCState. This is checked in
line 2. If the states do not correspond to each other, simulate returns false (line 23).

In line 3 the SDLocation corresponds to SCState or is a receive message. A receive
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0 simulate SDLocation, SCState:
1 success = false
2 if not (isState(SDLocation) and not correspondsTo(SDLocation, SCState)) then
3 if exits (getNextTriggerMessage(SDLocation) then
4 triggerMessage = getNextTriggerMessage(SDLocation)
5 sendMessages = getNextSendMessages(triggerMessage)
6 transitions = getTransitions(SCState, triggerMessage, sendMessages)
7 ready = false
8 while not ready do ’Backtrack point
9 if isEmpty(transitions) then

10 ready = true
11 else
12 transition = takeFirst(transitions)
13 nextSCState = getTarget(transition)
14 nextSDLocation = getNextNonSendSDLocation(SDLocation)
15 success = simulate(nextSDLocation, nextSCState)
16 ready = success
17 end if
18 end while
19 else
20 success = true
21 end if
22 end if
23 return success

Figure 4.3: Pseudocode illustrating the simulation

message means a change of state for the statechart as detailed in Chapter 2. Directly
before each location that is a receive message simulate infers an implicit state, if no
explicit state is given instead. In the case of an implicit state no check for correspondence
is needed, because the state is not required explicitly.

If no further incoming message is required by the sequence diagram (line 3), the
simulation is successful: All receive messages and respective send messages are handled
and all explicit states have a correspondence in the statechart. Otherwise, the next
receive message is set as triggerMessage in line 4.

In line 5 all messages that are sent after the triggerMessage and before the next
non-send location are collected. In line 6 getTransitions collects all transitions orig-
inating from SCState that are triggered by the triggerMessage and send out exactly
the messages given by sendMessages.

If the statechart is deterministic, at most one triggered transition is found. If none
is found the simulation finds transitions empty in line 9 and the default value for
success, false remains set. The loop is left (line 10 and 8) and the boolean false is
returned in line 23. However, non-determinism is allowed so the number of transition
matching the requirement may be arbitrary large. So the simulation takes the first
transition (line 12) and keeps the transitions left to be followed in transition.

Now the next simulation step is prepared: In line 13 the nextSCState is set to be
the source of the transition in the next simulation step. The function getNextNonSend-
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SDLocation called in line 14 returns either a receive message or a sd-state, whatever of
them follows the handled send messages.

If the recursive call is successful line 15 sets success to true and the backtracking
while loop terminates to allow simulate to return success. Otherwise, the next tran-
sition in transitions is checked. If the set is empty, the transitions of the calling
recursive instance of simulate are checked. If all such backtrack-points are handled in
this way, the simulation ends.

During a run of simulate the following information is stored additionally:

• The last state to which a valid transition leads in simulation. This state is called
last valid state and is not set, if no state was valid.

• The first input message that triggers no transition or a transition that does not
lead to the expected state or a transition that does not cause the expected messages
to be sent. If the simulation has not found the start state of the corresponding
lifeline in theSC, this is the first message after the start state. Note that the basic
framework ensures that this is an incoming message. This message is called first
invalid input message. If the simulation is successful, it is not set.

Consider the main procedure shown in Figure 4.1 again. Line 4 is reached, when
the simulation for the statechart theSC and the sequence diagram sd is not successful.
theSC has to be extended to implement sd. This is done by the procedure integrateIn.
The next section describes the integration of the behavior given by a sequence diagram
into a statechart.

4.3 Integration

This section describes the integration of the behavior specified by a sequence diagram
theSD into a statechart theSC. A first approach is to integrate the scenario over the start
and end states. The standard SCC integration produces smaller statecharts by utilizing
the result of a simulation as shown in Figure 4.4.

The procedure integrateIn adds behavior to theSC until it implements theSD. This
is tested by the while-loop enclosing lines 2 to 14. The implements test in line 2 sets
the lastValidState and firstInvalidInputMessage that are used in lines 3 and 4
to set the SDLocation representing an input message and sourceState representing an
sc-state. If no such state exists (line 5), this is the first iteration of the while-loop and
in line 6 a new state is added to theSC that bears the name of the start state in theSD.

Line 8 calls getNextSCState to set the targetState for the transition-to-add. get-
NextSCState checks if an explicit state is required by theSD. If not, it infers the next
implicit state. If no corresponding state exists in theSC it creates a new state.

Line 9 adds a transition with the name of theSDLocation as label to theSC. The next
two lines set the trigger to be the message given by the SDLocation and the send actions
defined by theSD.

Then line 2 tests again if theSC implements theSD. The procedure terminates when
this test is successful.
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0 integrateIn theSD, theSC:
1 while not implements(theSC, theSD)
2 SDLocation = getfirstInvalidInputMessage(theSD, theSC)
3 sourceState = getLastValidState(theSD, theSC)
4 if not exists sourceState
5 sourceState = addState(theSC, getStartStateName(theSD))
6 end if
7 targetState = getNextSCState(sourceState, SDLocation)
8 transition = addTransition(getName(SDLocation), sourceState, targetState)
9 setTrigger(transition, SDLocation)

10 setSendActions(transition, getNextSendMessages(SDLocation))
11 end while

Figure 4.4: Pseudocode illustrating the procedure integrateIn

4.4 Hierarchy

The SCC relies on the assumption that no state name appears more than once in a state-
chart. Otherwise the identity in state names may produce wrong results, for example
in attaching a branch to a wrong state. Currently the simplest implementation is used
to choose the level on which to add a new state: choice 2 as introduced in Section 2.4.
Every state is added under the same parent as the state from which the transition to
add originates.

The Toplogical Layouter TL is implemented as part of the SCC. It is run after state-
chart generation to optimize the statechart. Two exemplary approaches to introduce
hierarchy are implemented as described in Chapter 3. First the TL introduces gen-
eralization as described by π and afterward it applies Tarjans algorithm [31]. The
generalization is handled first, because it may change the behavior defined by the state-
chart. The new superstates introduced for strongly connected components give only
visual structure.

0 layoutTopological parentState
1 groupWithPartialOrder parentState
2 groupCommonSCCs parentState
3 childStates = getChildStates(parentState)
4 while exists(childStates) do
5 childState = takeFirst(childStates)
6 layoutTopological(childState)
7 end while

Figure 4.5: Pseudocode illustrating the procedure layoutTopological

The procedure layoutTopological is called for the top state of a statechart. In line
1 and 2 the procedures to introduce hierarchy into the child states are called. Other
such procedures would be added here. In the following backtracking is used to call
layoutTopological for each childState.
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4.4.1 Partial Order

The partial order is represented by a text-file of the form shown in Figure 4.6. This ex-
ample defines open as a parent state of waiting_for_wink, ask_for_order, handout_bill
and serve_cocktail.

0 open > waiting_for_wink
1 open > ask_for_order
2 open > handout_bill
3 open > serve_cocktail

Figure 4.6: Example content of the text file representing π

This file has to be entered manually in the current version. Later versions may also
add changes automatically. For example, if only open > waiting_for_wink is entered
manually before starting the SCC, the other three relation-pairs can be added as soon
as the respective states are added to the statechart. For this example states have to be
added according to choice 2, 3 or 4 as detailed in Section 2.4.

The CASE-tool provides a functionality introduceSuperstate to introduce a super-
state. It takes a set of states that lie on a common layer as input and generates a new
state on that layer. It places the states in the set within the new state. Each transition
that is connected with one of the new substates is simply transformed into an inter-level
transition.

0 groupWithPartialOrder oldParent
1 readPartialOrder
2 childStates = oldParent.getChildStates
3 for stateID = 1 to numberOf(childStates)
4 theState = childStates[stateID]
5 if not isMinimal theState then
6 for innerID = stateID to numberOf(childStates)
7 innerState = childStates[innerID]
8 if theState > innerState then
9 visitedStates.Add innerState

10 newSubStates = findNewSubstates(theState, innerState, visitedStates)
11 newSuperState = createSuperState newSubStates
12 end if
13 end for
14 end if
15 end for

Figure 4.7: Pseudocode illustrating the procedure groupWithPartialOrder

The procedure groupWithPartialOrder introduces hierarchy into the statechart as
defined by the text file representing π. In line 1 this file is parsed and an object repre-
senting the partial order is created. In the following lines a state is searched that shall
be a superstate. This is done by checking all childStates of the oldParent (line 3) if
they are not minimal with respect to π (line 5).
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If theState is bigger with respect to π than theInnerState (line 8), the innerState
has to be a substate of theState. Otherwise, if it is bigger, it will be handled in a later
iteration of the for-loop enclosing lines 3 to 16 and then theState will be found as a
substate-to-be for it.

In Line 9 innerState is added to the visitedStates. The states are marked and
passed by reference to findNewSubstates to be visited only once by findNewSubstates.
findNewSubstates gathers the other new substates around innerState. Therefore it
follows recursively the transitions originating from and leading to innerState as shown
in Figure 4.8. In line 12 the newSuperState is created. Its children are the newSubStates
as gathered by findNewSubstates.

0 findNewSubstates newParent firstChild visitedStates
1 newChildStates = new StateSet
2 newChildStates.Add firstChild
3 for each transition in getIncomingTransitions(firstChild)
4 theNeighborState = getSource(transition)
5 if newParent > theNeighborState and _
6 not existsIn(visitedStates, theNeighborState) then
7 visitedStates.Add theNeighborState
8 newStates = findNewSubstates(newParent, theNeighborState, visitedStates)
9 newChildStates = join(newChildStates, newStates)

10 end if
11 end for
12 for each transition in getOutgoingTransitions(firstChild)
13 if newParent > theNeighborState and _
14 not existsIn(visitedStates, theNeighborState) then
15 theNeighborState = getTarget(transition)
16 visitedStates.Add theNeighborState
17 newStates = findNewSubstates(newParent, theNeighborState, visitedStates)
18 newChildStates = join(newChildStates, newStates)
19 end if
20 end for
21

22 return newChildStates

Figure 4.8: Pseudocode illustrating the function findNewSubstates

findNewSubstates returns all states that are connected with the firstChild that
are also less than the newParent with respect to π. It recursively checks all transitions
originating from and leading to the firstChild. newChildStates is the set to store the
return value (line 1). It is passed by reference to the recursive calls of findNewSubstates.
In line 2 the firstChild is added to this set of newChildStates.

The for-loop enclosing lines 3 to 11 visits all states that are connected via transitions
leading to the firstChild: If theNeighborState is smaller than the newParent (line
5) and it has not been visited before (line 6) it is added to the visitedStates (line
7) and handled with an recursive call of findNewSubstates. The newStates that have
been found in this way are added to the newChildStates in line 18. In lines 12 to 20
the transitions originating from the newChild are visited in an according way.
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4.4.2 Strongly Connected Components

The procedure groupCommonSCCs introduces a superstate for each maximum strongly
connected component of a statechart with the parent state oldParent as shown in
Figure 4.9.

0 groupCommonSCCs oldParent
1 theSCCs = getStronglyConnectedComponents(oldParent)
2 while not isEmpty(theSCCs) do
3 scc = takeFirst(theSCCs)
4 introduceSuperstate(scc)
5 end while

Figure 4.9: Pseudocode illustrating the procedure groupCommonSCCs

The procedure getStronglyConnectedComponents (line 1) takes a parent state as
input and returns a set theSCCs of sets of states. Each of the sets of states in theSCCs
defines a maximum strongly connected component. In each iteration the loop enclosing
lines 2 to 5 takes one strongly connected component scc out of theSCCs (line 3). Line 4
introduces a superstate with the procedure introduceSuperstate as described above.
The loop and the procedure getStronglyConnectedComponents terminate (line 2) as
soon as all strongly connected components are consumed in that way.
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The generation and generalization of behavior from examples is a rather old discipline
rooted in reverse engineering [5]. It has found application in forward engineering as well
and can be used to reduce the amount of redundant information entered by humans
as an early step in automated code generation. This chapter describes a selection of
approaches to synthesis of statecharts from sequence diagrams and their impact on this
work.

5.1 Model-Structure Based Synthesis

The approaches to statechart synthesis described in this section perform the synthesis
directly on the model-structure or use a very similar intermediate structure. They
interpret a projection of a sequence diagram on one capsule as a statechart fragment.

Krüger et al. [17] use the basic notation of sequence diagrams and a synchronous
message-passing environment. Their algorithm projects each sequence diagram on the
needed interaction instance. The resulting statechart fragments consist of one transition
per incoming or outgoing message or local state. The sequence diagrams are connected
via start and end states that are required to be given for each component. Afterward the
resulting flat statechart is minimized. This approach is the base for the SCC-approach
as detailed in Chapter 2.

Bordeleau [7] uses patterns to perform the transformation manually. His approach
starts with Use Case Maps (UCM) and uses scenarios as an intermediate stage before
defining one statechart for each component. This thesis transforms some of the patterns
he presents into algorithmic approaches as detailed in Section 3. He claims automatic
translation leads to artifacts that are too hard to understand to be of practical use. This
thesis understands this as a challenge and goes another step toward human readable auto
generated code.

Leue et al. [20] use high level message sequence charts (hMSCs) to express the relation
between the sequence diagrams. They assume concurrent processes that are each “in ex-
actly one bMSC1 at any given point of time” as the SCC does. They assume a static, flat
process structure, absence of timer events and consider local/global decisions, naming
conflicts, deadlock situations and message overtaking. They present two algorithms, one
for “maximum traceability” and one for “maximum progress”. The maximum progress
algorithm produces flat statecharts with a minimized set of states. The maximum trace-
ability algorithm maps the structure of the hMSC/ bMSC relation to the statechart,

1basic message sequence chart
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thus introducing one hierarchical level. Their maximum traceability approach is similar
to the SCC-approach. This method to introduce hierarchy is discussed in Section 3.2.

Uchitel et al. [35] provide a framework with formal semantics in which existing ap-
proaches can be integrated. It is based on Labeled Transition Systems (LTSs), which are
used to represent both sequence diagram projections and statecharts. Further work [34]
discusses merging of partial behavior and the impact of architecture on statechart syn-
thesis [33].

Even though the possibility to use the Labeled Transition System Analyzer (LTSA)
is a benefit of their framework, the SCC-approach does not use it: It does not directly
allow incremental approaches and would have complicated implementation.

According to the classification of Uchitel et al. [35] the SCC-approach uses a design-
oriented semantics.

5.2 State-Variable Based Synthesis

The two approaches described in this section use an additional constraint language to
enhance sequence diagrams by conditions on state variables. These conditions are used
to infer states for the statechart. An ordering on the variables provides a means to
introduce hierarchy.

Somé et al. [30] allow scenarios to make use of timers and to be combined overlapping,
sequential, alternative and parallel. They use component variables to express conditions
in sequence diagrams and to introduce hierarchy in the generated sequence diagrams.
This concept is also used by Whittle and Schumann [36]. The result is a timed automaton
in which non-determinism is allowed. The algorithm introduces hierarchy and proposes
so called synthetic states and transitions to generalize the behavior of the automaton.
The SCC-approach does not use timers yet and makes no use of state variables. The
partial order on the explicitly named states the SCC uses to introduce hierarchy follows
the approach proposed here.

Whittle and Schumann [36] identify three main issues for statechart synthesis as al-
ready stated in the introduction. They propose to use message pre and post conditions
as a basis for statechart synthesis. In doing this they use the object constraint language
OCL [23]. These conditions are expressed in terms of state variables. Between each pair
of messages a state is added that is identified by its state vector, i.e. the vector contain-
ing the current values of the state variables. The states in the resulting statechart are
merged when they have “similar” state vectors. A partial order on the state variables
allows the introduction of hierarchy.

The SCC-approach does not use OCL constraints in sequence diagrams. This would
put an additional burden on the designer. The start and end states the SCC uses are
closer to normal system design: the designer has only to define in which state a system
is before a sequence diagram applies.
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5.3 Formal-Language Based Synthesis

The following approaches use the close relation of formal languages and automata for
synthesis. Sequence diagrams are interpreted as words of a language that the statechart
to compose has to accept.

Mäkinen and Systä [22] model the synthesis process as a language inference system
and use Angluins [2] framework of the Minimal Adequate Teacher MAS. MAS overcomes
the weakness of over-generalization that was part of their previous work SCED [15].
MAS is a tool that interacts with the developer in asking whether a path through a
state machine shall be allowed and whether a conjectured statechart is acceptable. The
additional information that is entered in this way allows MAS to generate a statechart
that generalizes behavior according to the demands of the designer. The heart of MAS
is an intermediate data structure between sequence diagrams and statechart, called
observation table. Given an observation table, a statechart can be generated. This table
is constructed from an arbitrary number of sequence diagrams or one statechart and an
arbitrary number of sequence diagrams. The observation table is a compact notation of
all words that are accepted by the statechart and can be enhanced incrementally. So
it is possible to enhance an existing statechart with additional behavior based on new
requirements in form of sequence diagrams.

The SCC-approach does not use direct questions to the developer during statechart
generation. It makes generalization explicit via a partial order as detailed in Chapter 3.
The approach of Mäkinen and Systä [22] is one of the few incremental approaches.
Instead of the intermediate structure observation table the SCC uses simulation and
integrates new information directly into the statechart. The SCC is able to handle
hierarchical structures in manually altered statecharts.

Alur et al. [1] use a formal language definition of MSCs and automata. They use
closure conditions to express realizability and the absence of deadlocks in MSCs and
generate a flat automaton of the given MSCs. Their work also detects and shows im-
plied scenarios that lead to a more complete specification and show the designer possible
failures in their specification. The consistency check of the sequence diagram specifica-
tions is done in [21]. The present work assumes a correct specification. For the synthesis
algorithm no formal language is needed.

Latronico and Koopman [18], as well as Alur et al. [1], make use of a formal grammar.
They use compiler theory to generate deterministic statecharts. They identify three
attributes of embedded systems: multiple initial condition, same user action invoking
different system responses and timing sensitivity. They state that the combination of the
three attributes leads to a need for further information to generate correct and determin-
istic statecharts. They make use of hMSCs and address sequential, conditional, iterative
and concurrent execution of sequence diagrams. The use of hMSCs is an interesting as-
pect addressed by this work and may be included in later versions of the SCC. However,
the SCC must be able to handle incomplete specifications and non-determinism, so that
the benefits of the approach of [18] are rather small for it.

Okazaki et al. [24] use a subset of concurrent regular expressions to formulate their
approach. The MSCs are translated into concurrent regular expressions and checked
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for consistency in-between. They assume a synchronous communication and interleaved
execution in case of orthogonality inside of a statechart. As detailed in Section 1.2, the
framework the SCC-approach operates in uses asynchronous communication and the
consistency check is handled separately [21].

5.4 Synthesis of Statecharts from LSCs

Live Sequence Charts (LSCs) as introduced by [8] are a dialect of MSCs that also inspired
the UML 2 notation of sequence diagrams.

The translation algorithm proposed by Harel and Kugler [11] does not scale well
enough to be of practical use. Furthermore it relies on the perfect information hypothesis :
every component knows all events from all other components. This hypothesis is not
compatible with information encapsulating approaches such as the ROOM notation used
in UML-RT.

The algorithm presented by Bontemps and Heymans [6] does not allow every set of
sequence diagrams to be synthesized that can possibly be synthesized, but runs faster
and does not rely on the perfect information hypothesis.

Kugler et al. [9] lately proposed a similar approach to handle his LSCs. As earlier [11]
the resulting statecharts are flat, but concurrency is introduced. Due to the added
notation in LSCs of “hot”—globally quantified—sections, the synthesis is considerably
harder than with only normal—existentially quantified—sequence diagrams.

We decided against using the hot semantics because it clutters the sequence diagrams
and makes them harder to understand. Ease of use is the key feature of sequence
diagrams. However, the LSC semantic has more expressive power than the normal
sequence diagram [8]. It may therefore be integrated in later versions of the SCC.
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The previous chapters have discussed the environment and objective of this thesis (Chap-
ter 1), an incremental approach to statechart synthesis from sequence diagrams (Chap-
ter 2), means to simplify a statechart and to improve traceability in introducing hierarchy
(Chapter 3), the implementation of the SCC-approach (Chapter 4) and its relations to
other currently followed approaches (Chapter 5). This section puts these pieces together,
discusses in how far the objectives are reached and what must be done in the future to
improve implementation and theory.

6.1 Classification of the SCC-Approach

The SCC-approach performs statechart synthesis based on the model structure and
interprets a projection of a sequence diagram as a statechart fragment. This statechart
fragments are connected via start and end states as as done e. g. in the work of Krüger
et al. [17].

In contrast to the other model structure based synthesis approaches the SCC is incre-
mental. This allows direct reuse of existing structures. Besides conserving the former
behavior the SCC preserves the hierarchical layout of the existing parts and changes the
graphical layout only slightly. The preserved gestalt of the statechart has two effects: it
reduces the time a developer needs to understand the changed statechart and it preserves
the secondary notation [25].

The approaches based on state variables can introduce hierarchy in the synthesized
statecharts. The partial order π on the states provides an alternative. On the one hand,
the SCC-approach avoids the additional burden on the requirement engineer that state
variables bring with them. On the other hand, the SCC approach cannot yet handle
generalization as exactly as desired when new states are added to an hierarchical state-
chart. While the approach of Mäkinen and Systä [22] uses massive developer interaction
at synthesis time to specify generalization the SCC avoids that. This allows fast feedback
at a time, at which it is not yet clear how the behavior shall be generalized.

Besides statechart synthesis, the SCC can introduce hierarchy into an existing state-
chart. This simplifies the statechart and/or structures of the statechart in a way that
makes it easier to trace the requirements. While simplifications like state-reduction in
flat statecharts are done by most other approaches at synthesis time, hierarchy and
traceability are supported by few [7, 20] of them.
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6.2 Assessment of Results

The objectives for the SCC as listed in Section 1.1 are

• optimize development in terms of quality and time,

• automate manual work and reduce the input of redundant information,

• allow partial specifications and non-determinism,

• integrate smoothly in the existing work flow of an industrial software development
team and

• introduce hierarchy into a statechart.

First experiences with the SCC-implementation indicate that it optimizes development
in terms of quality and time. The instantaneous feedback in the requirement phase turns
out to be useful: A run of the SCC after a change in a requirement sequence diagram
makes critical areas visible. For example it shows whether the requirements are closed
and whether the sequence diagrams express the idea of a statechart the requirement
engineer has in mind.

The use of the SCC in the requirement phase can make this phase longer. Most of the
additional time is needed to improve the requirements, not to use the SCC. However,
further evaluation of the SCC is needed to gain reliable results. For such an evaluation
the SCC has to be extended to handle more than the basic framework, see Section 6.3,
to be adopted in a case study.

Further evaluation is also needed to find out in how far the SCC is suited to the
generation of implementation statecharts. At the moment it is not clear how much work
is left for the developer in the statechart and how much of the work flow is automated by
the SCC. When the SCC is used less information has to be entered twice and the risk of
introducing faults is reduced. However, this depends on a more complete implementation
of the SCC.

As discussed in Section 2.4 this thesis can provide no optimal solution for the question
of choosing the right parent for a state-to-add.

The SCC-approach handles non-determinism with a backtracking strategy and accepts
partial requirements. However, both aspects are only partly implemented.

The SCC integrates into the work flow used of the software development team at
Philips Medical Systems. The introduction of local start and end states on each lifeline
is little extra work, because local states are already used in such a manner. The amount
of work is less than it would have been when another method like state variables as
proposed by Whittle [36] would have been used to connect the sequence diagrams.

After being graphically laid out the resulting statecharts are quite readable and hier-
archy can be introduced. Again, further evaluation is needed.
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6.3 Next Steps for Implementation

The current implementation of the SCC-approach includes only the basic ideas. Gener-
ally two paths can be followed for further implementation:

• complete the SCC for industrial use;

• prototype more ideas.

To complete the SCC for industrial use, simulation and integration have to be extended
to work with all syntax elements in sequence diagrams and statecharts. For example
target language code and history connectors have to be treated. Another important
issue for practical use is graphical layout. The CASE-tools layout capabilities strongly
suggest the use of external or manual layout. A layout tool such as KIEL [32] is not yet
connected with the CASE-tool. As discussed in the next section, naming conventions
are an unsolved issue.

All ideas presented in this work that are not yet implemented could be prototyped:
Perhaps most interesting is the possibility to insert new states according to all four
choices detailed in Section 2.4. Aside from that the different approaches to introduce
hierarchy into a statechart can be added.

Beside that other applications of the modules used in the SCC are possible: The simu-
lation of sequence diagrams on statecharts could be extended to a stand-alone operation
or to perform coverage analysis. In simulating each specification diagram on a given
statechart and marking the visited states and transitions the parts of a statechart that
are not specified with sequence diagrams become visible.

6.4 Next Targets for Theory

The most important open question in automated statechart generation is the naming
of new states. This problem arises with both new superstates as well as new normal
states. The state names are important to understand a statechart. Similar to other
secondary notation such as graphical layout, inappropriate state names can complicate
the understanding of a statechart [25].

As proposed in other approaches [22, 1] incomplete specifications may lead to implied
scenarios not obviously visible to the developer. Integrating techniques to detect such
scenarios and to propose appropriate generalizations for the generated statecharts would
complete the SCC-approach.

The ability to create statecharts from specifications that demand concurrent behavior
would widen the field of use of the SCC. In the ROOM framework orthogonality is no
syntax element for statecharts, so sub-capsules have to be introduced.

An approach that can automatically generate sub-capsules first has to identify whether
a sub-capsule is needed in the given situation. For some simple concurrency problems,
self-transitions to history on the parent state can be used. If a sub-capsule has to be
used, the generator has to take care of communication with the parent capsule.
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The application of design patterns could optimize this and other cases. If design
patterns are part of the development policy, the approach to statechart synthesis has to
be capable of generating statecharts that are compliant to these patterns.

The order in which sequence diagrams are integrated into a statechart is another field
for improvement. For example, when basic flows are integrated first, and then hierarchy
according to the use case structure is introduced and afterward alternative flows are
added, the traceability might be enhanced.

The SCC-approach provides a good foundation for these extensions.
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