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Abstract

Data flow diagrams are a common tool to model data-
driven systems. When used well, they can yield better read-
ability and a more intuitive understanding of the modeled
system than possible with textual languages. This, how-
ever, requires the diagram elements to be carefully placed
and edges to be routed well—a very time-consuming task
for the developer greatly simplified by the use of automatic
layout algorithms.
While general layout algorithms usually do not work well
for the unique requirements of data flow diagrams, there
have already been attempts to develop specialized algo-
rithms. However, the layouts they produce often suffer from
too many bend points or edge crossings, thereby compro-
mising readability.
This thesis aims at improving this by extending a basic
layered layout algorithm to adapt it to the special require-
ments of data flow diagrams. Support for ports and port
constraints is discussed as it applies to normal ports and
to hierarchical ports, a method to handle self-loops is in-
troduced, and several further enhancements are developed.
Furthermore, a flexible new structure for the implementa-
tion of layout algorithms is proposed.
Experimental results show the resulting algorithm to fair
considerably better with regard to several important layout
aesthetics criteria than existing algorithms.





Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,





As soon as you concern yourself with the “good” and “bad” of your
fellows, you create an opening in your heart for maliciousness to
enter. Testing, competing with, and criticizing others weaken and
defeat you.

— Morihei Ueshiba, founder of Aikido





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Graphical Modeling and Its Problems . . . . . . . . . . . . . . . 1
1.2 Goals of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on Drawing Data Flow Diagrams . . . . . . . . . . . . . 11
2.1 Introductory Remarks on Terminology . . . . . . . . . . . . . . 11
2.2 The Layered Approach to Graph Drawing . . . . . . . . . . . . 14
2.3 The KLoDD and KLay Layered Algorithms . . . . . . . . . . . 18

3 Optimizing Automatic Layout for Data Flow Diagrams . . . . . . . . 23
3.1 In-Layer Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Inverted Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Constrained Crossing Reduction . . . . . . . . . . . . . . . . . . 29
3.4 Northern and Southern Ports . . . . . . . . . . . . . . . . . . . 31
3.5 Self-Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Hierarchical Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Minimizing Edge Bends . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Simplifying Hyperedges . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Spacing and Margins . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 Reducing Layer Distances . . . . . . . . . . . . . . . . . . . . . 49
3.11 Calculating Barycenters . . . . . . . . . . . . . . . . . . . . . . 51



4 Integration into KLay Layered . . . . . . . . . . . . . . . . . . . . . . 53
4.1 A Dynamic Architecture for Layout Algorithms . . . . . . . . . 53
4.2 An In-Depth Look at KLay Layered . . . . . . . . . . . . . . . 56
4.3 A Problem-Oriented View . . . . . . . . . . . . . . . . . . . . . 65

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Judging the Quality of Layouts . . . . . . . . . . . . . . . . . . 69
5.2 Finding Adequate Models . . . . . . . . . . . . . . . . . . . . . 73
5.3 Transforming Ptolemy Models . . . . . . . . . . . . . . . . . . . 74
5.4 The Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Technical Documentation Produced for KLay Layered . . . . . . . . 93
A.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3 Intermediate Processors . . . . . . . . . . . . . . . . . . . . . . 100

Detailed Tables of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



Abbreviations

DTD Document Type Definition
A format to define the structure of XML-based documents.

ECU Electronic Control Unit
An embedded device that controls an electrical system.

EMF Eclipse Modeling Framework
A modeling framework popular among Eclipse projects.

GMF Graphical Modeling Framework
A framework for building graphical editors for EMF models.

KAOM KIELER Actor Oriented Modeling
A framework for actor-oriented models used inside KIELER.

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
A test bed for automatic layout.

KIML KIELER Infrastructure for Meta Layout
A layout framework that connects editors and layout algorithms.

KLay KIELER Layouters
An umbrella project for KIELER layout algorithms.

KLoDD KIELER Layout of Dataflow Diagrams
The predecessor of KLay Layered.

MoML Modeling Markup Language
An XML-based file format used by the Ptolemy tool.

OGDF Open Graph Drawing Framework
A set of layout algorithms developed at the University Dortmund.

SVG Scalable Vector Graphics
An open, XML-based vector graphics format.

XML Extensible Markup Language
A markup language designed to transport and store data.
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Introduction

Hello and again welcome to the Aperture Science Computer-Aided
Enrichment Center. We hope your brief detention in the relaxation
vault has been a pleasant one. Your specimen has been processed
and we are now ready to begin the test proper. Before we start,
however, keep in mind that although fun and learning are the pri-
mary goals of the enrichment center activities, serious injuries may
occur. For your own safety, and the safety of others, please refrain
from–

— GLaDOS, Portal

To begin with, we take a look at graphical modeling, using data flow diagrams as a
popular example. We briefly examine its merits and problems, and how automatic
layout can elegantly solve many of them, paying special attention to the problems
unique to the automatic layout of data flow diagrams. This will have introduced
enough context to state the goals of this thesis. We then look at related work in
this and surrounding areas, and how this thesis relates to it, and close with a short
description of how the thesis is structured.

I 1.1 Graphical Modeling and Its Problems

Looking at the history of information technology, we can see an ever-increasing
complexity of systems developed. A few decades ago, computers were used for
calculations with hand-crafted single-purpose programs. Today, companies such
as Google, Facebook and Amazon have complex software running on huge server
farms. Systems have gone from being developed by small teams to being huge
leviathans, consisting of several hundred thousand lines of code, developed by large
teams distributed all over the world. Along the way, the necessity arose for tools
able to meet the challenge of developing such systems.
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1 Introduction

Assembly languages, formerly the only tools available, were all but replaced by
increasingly higher-level languages. At the sacrifice of giving up low-level control,
such languages allow developers to abstract from the details and concentrate instead
on the actual problem to be solved. Languages such as C and Java have introduced
many features convenient to the programmer, but they can only be used to describe
the way to solve a problem, not the problem itself. Languages such as Prolog take
abstraction one step further, letting the programmer specify a model of the problem
he wants to have solved instead of the actual program solving the problem. Domain-
specific languages take abstraction to the extreme, being developed specifically to
describe problems of a certain domain.
With textual languages, it can be hard to gain an understanding of existing sys-

tems. Graphical modeling languages try to remedy this by not relying on text, but
on graphical symbols that can be much easier to read and quicker to understand
than textual representations. As an example, think of a big software system writ-
ten in Java with hundreds of classes and thousands of lines of code. Imagine how
difficult it would be to understand the structure of the system by merely looking at
the source code; now imagine how much easier it would be if there were some class
diagrams to look at.
Graphical modeling languages can describe the structure of a system, as class

diagrams do, but they can also describe the behavior of the system. For the rest of
this thesis we focus our attention on an example of such behavioral diagrams.

Data Flow Diagrams

Data flow diagrams are a graphical representation of data flow models, modeling the
flow of data through the components of a system. As the data flows through the
different components, computations are performed and new data is passed along.
The level of detail is arbitrary: data flow diagrams can be used both to provide a
very high-level view of a system, or to describe the flow of data in minute detail.
While data flow models can have different semantics [16, 19], we are only interested
in the graphical representation in this thesis.
Figure 1.1 shows an exemplary data flow diagram taken from the repository of

demo models shipped with Ptolemy, a modeling tool developed at UC Berkeley [9].
The general structure of the model—two loops—becomes apparent at first glance.
It does not take much longer to realize that both loops are probably supposed to
compute the same values, their difference being evaluated and displayed for moni-
toring. All of this is readily apparent from the way the components of the diagram
are placed. Other tools that use data flow diagrams include Simulink,1 a tool for the
simulation and model-based design of embedded systems developed by MathWorks,
and ASCET,2 a model-based development and code generation tool developed by
ETAS that specifically targets the automotive domain.

1http://www.mathworks.com/products/simulink/
2http://www.etas.com/en/products/ascet_software_products.php

2

http://www.mathworks.com/products/simulink/
http://www.etas.com/en/products/ascet_software_products.php


1.1 Graphical Modeling and Its Problems

Figure 1.1. Example of a data flow diagram, taken from the repository of demo models shipped with
Ptolemy. (The model was created by Haiyang Zheng.) Data are generated by the two components
on the left, labeled Const and Const2, and are processed by two feedback loops, whose current values
are displayed by the two components on the right, labeled signal1 and signal2. The difference in
value of the two loops is computed by the component labeled AddSubtract and displayed by the
component labeled difference.

In this thesis, the different components of the diagram are called vertices. They
are connected by edges. The placement of vertices and routing of edges constitute the
diagram’s layout. The first two terms are taken from graph theory, simply because
data flow diagrams can be viewed as graphs. Section 2.1, defines all the necessary
terms formally.
In this basic example we can already observe three properties unique to data flow

diagrams. The vertex labeled AddSubtract has three incident edges. Instead of being
connected directly to the vertex, though, there are three dedicated connection points
for the edges. These points are called ports. Ports can be thought of as channels
where the arguments for the computation come in, and where its results are sent out.
The second property is the way in which edges are routed. For data flow diagrams,
edges are usually routed orthogonally, with the segments of an edge being either
horizontal or vertical, but never diagonal. The third property pertains to the flow
of data. As can be seen in the example, data flow diagrams are usually structured
in a way to emphasize the flow direction, with data originating on the left side and
flowing to the right side.

Automatic Layout

Figure 1.2 shows another version of the diagram in Figure 1.1. Comparing the two,
notice how in the first diagram the flow of data is readily apparent, while in the
second diagram it is not, emphasizing how the readability of a diagram is a direct
result of its layout. (I give a proper definition of “readability” in Section 5.1; for
now, think of a diagram’s readability as how well it conveys the flow of data through
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1 Introduction

Figure 1.2. The diagram from Figure 1.1, with vertices placed in a way that makes the diagram
virtually unreadable. The layout doesn’t emphasize any data flow direction; loops are not recog-
nizable; edges overlap vertices, and even other edges; in short, the diagram does away with all
the potential benefits of graphical modeling. Of course, this example is exaggerated. But it does
illustrate how much of its usefulness a diagram draws from its layout.

the depicted system.) Since readability is one of the main advantages of graphical
modeling languages, Developers spend a great deal of their time just moving vertices
around to improve their diagrams. Klauske and Dziobek speak of 30% of develop-
ment time spent on layout-related tasks [17].
The problem gets worse when modifying existing diagrams. Suppose that in the

diagram of Figure 1.1, we wanted to add another vertex just before the last integrator
in each loop. We would have to make space available for the two new vertices, insert
them, and make sure we didn’t mess up the vertex placement along the way. While
that is certainly feasible in this simple example, it is a major undertaking in more
complex diagrams.
We have seen by now that a diagram’s layout directly influences its readability,

but also that getting the layout right is a major time factor. So, why not let the
computer calculate layouts?
The discipline concerned with developing algorithms for that task is called graph

drawing. Graph drawing algorithms take an undirected or directed graph as input.
The output is a drawing of some kind, with vertex coordinates computed and edges
routed accordingly. However, these algorithms usually have no concept of ports,
giving rise to the need for specialized algorithms.

4



1.2 Goals of this Thesis

(a) The easy case. Edges always go from left to
right, originating at an eastern port and going
into a western port.

(b) The hard case. One edge originates from
an eastern port and goes into a western port.
There is even an edge going into a northern
port. Special care has to be taken to handle
such cases.

Figure 1.3. Easy and hard cases for port handling.

I 1.2 Goals of this Thesis

In short, the goals of this thesis were to extend an existing layer-based layout algo-
rithm (named KIELER Layouters (KLay) Layered) to fully support port constraints,
hierarchical ports, and self-loops. Further improvements to the algorithm were also
welcome contributions. Experiments show the developed methods to increase the
quality of generated layouts compared to previous approaches [26].
The rest of this section elaborates a little on these goals and closes with the main

contributions presented in this thesis. Further details are given in Section 2.3 once
KLay Layered is introduced.

Port Constraints

In data flow diagrams, vertices can usually be thought of as rectangles, with ports
placed at one of the rectangle’s four sides: north, south, west, and east. Extending a
layered layout algorithm to support ports is easy if edges always go from an eastern
port to a western port, as depicted in Figure 1.3a.
However, there is no necessity for input ports to always be on the western side,

and output ports to always be on the eastern side. Figure 1.3b is an example of
a model that does not fit the simple case. The rightmost vertex has a northern
port. The Ramp and Maximum vertices form a loop. If the long edge connecting the two
were drawn as a straight line, it would cross the vertices, making the diagram less
readable.
This thesis aims at the development of effective methods for handling such cases.

Hierarchical Ports

To understand hierarchy in data flow diagrams, take another look at Figure 1.1. The
vertex labeled Embedded CT Model actually contains another data flow diagram, said
to be on a lower hierarchy level. Ptolemy always shows only one level, but other
tools allow us to see more. Figure 1.4 shows what that can look like. When multiple
levels of hierarchy can be visible at once, the layout algorithm needs to support that.

5



1 Introduction

Figure 1.4. The diagram from Figure 1.1, displayed in a different way. Here, the hierarchical vertex
Embedded CT Model is expanded—we can “look into it,” seeing two levels of hierarchy at once.

Notice how the vertex inside Embedded CT Model is connected to its ports from the
inside. In this thesis, such ports are referred to as hierarchical ports. Connecting
them to the vertices on the inside needs special consideration.

Self-Loops

Self-loops are edges that connect two ports belonging to the same vertex. Such edges
have to be routed around their vertex, but how this can be done has received little
research interest in the past.
For this thesis, my goal was to integrate the handling of self-loops elegantly into

KLay Layered which did not support them.

Main Contributions

My main contributions are the following:

• A method to handle edges that connect two vertices in the same layer, called
in-layer edges. This is then used to develop an improved way of handling edges
that must be routed around their source or target vertex to avoid having to
cross it.

• A new kind of dummy vertex and a way of using it to handle ports placed on
the northern or southern side of a vertex.

• A comprehensive way of handling self-loops by using dummy vertices and in-
layer edges.

• A method to handle hierarchical ports subject to the port constraints that
apply.

6



1.3 Related Work

• An improved architecture for layout algorithms that dynamically adapts the
algorithm to the layout tasks at hand.

I 1.3 Related Work

Sugiyama et al. propose the layered approach to drawing directed graphs [29]. The
approach emphasizes direction by dividing the graph’s vertices into numbered layers
such that edges only go from lower layers to higher layers. Vertices in a single layer
are drawn placed next to each other, with the different layers being drawn below one
another. The approach works with three phases: layer assignment, which distributes
the vertices into layers, crossing reduction, which changes the order of vertices in
the different layers such that the number of edges crossings is minimized, and vertex
placement, which determines the horizontal coordinates of vertices to minimize edge
lengths. The layered approach assumes that graphs are acyclic and edges are drawn
as straight lines. It is thus often extended by two additional phases: cycle removal,
which makes an input graph acyclic, and edge routing, which routes edges when they
are not supposed to be drawn as simple straight lines. KLay Layered is based on
the layered approach with these two additional phases, but is extended in this thesis
by introducing additional processing steps between the phases.
Eades et al. propose a greedy algorithm for cycle removal [7]. This algorithm is

used by KLay Layered multiple times whenever graphs have to be acyclic. This is
because the different phases of the algorithm often build auxiliary graphs.
Gansner et al. propose a layout algorithm based on the layered approach [12].

They propose a network simplex algorithm for layer assignment, on which the layer
assignment phase of KLay Layered is based. Ports are considered, but only in a
basic fashion: vertices are divided into several areas that edges may be connected
to. In this thesis, ports are defined as dedicated connection points with the degree
of liberty with respect to their placement controlled by port constraints. Contrary
to the situation considered by Gansner et al., this may make it necessary to route
edges around vertices.
For crossing reduction, heuristics such as the barycenter heuristic are often used:

the order of vertices in one layer is computed from the order of connected vertices in
the previous layer. This approach was extended to port based graphs by Spönemann
et al., who considered the order of ports in the previous layer instead of the order of
vertices [27]. This method is used in KLay Layered as well, with slight modifications.
In this thesis, the barycenter heuristic is extended to support edges connecting
vertices in the same layer.
Forster extends crossing reduction algorithms to support certain vertices whose

relative order is fixed [10]. This thesis introduces applications for this algorithm,
and extends it to layout units: sets of vertices whose members may not be mixed.
Barth et al. propose a fast algorithm to count the number of crossings during

crossing reduction [1]. The algorithm only works for crossings between two layers,
though. This thesis introduces two additional algorithms to supplement it that count
certain kinds of crossings caused by edges that connect vertices in the same layer.

7



1 Introduction

Sander proposes a method for vertex placement based on the concept of linear
segments: sets of vertices that are placed along a straight line [24]. The concepts
introduced in this thesis cause Sander’s method to not work anymore by allowing
situations in which it is not possible to place all vertices of a linear segment along
a straight line. Therefore, this thesis modifies Sander’s method to recognize such
situations and split linear segments accordingly.
KLay Layered makes use of an edge routing algorithm proposed by Sander that

routes edges orthogonally [25]. The algorithm is extended in this thesis to support
different routing directions, and to reduce the spacing required between two layers.
Port constraints are considered by Spönemann [26]. In his method, edges are first

routed locally to the respective vertices before global edge routing is applied. This
thesis introduces a method that works without the local routing phase by using
certain kinds of dummy vertices.
Klauske and Dziobek [17, 18] propose methods for handling ports whose positions

depend on the size of their vertex. That kind of port constraint is not investigated
further in this thesis.
Support for hierarchical ports with port constraints is also discussed by Spöne-

mann [26]. In this thesis, a new method is introduced that tries to keep edges
connected to hierarchical ports short.
To evaluate the quality of layouts, Purchase proposes a number of aesthetics

criteria [21]. On ranking aesthetics criteria by importance, Purchase et al. provide
empirical and deductive results that guided some of the design decisions for KLay
Layered [20, 31].
Finally, an overview of graph drawing algorithms and aesthetics criteria is pre-

sented by Di Battista et al. [4]. Chapter 9, “Layered Drawings of Digraphs”, is of
particular interest to us as it gives an overview over the layered approach to graph
drawing. However, only graphs without ports are considered.

I 1.4 Outline

With the introduction coming to a close, it is almost time to dive into the details of
laying out data flow diagrams. But first, let us take a minute to see how the rest of
this thesis is structured.
Chapter 2 provides the foundation for subsequent chapters. It starts by giving

the mathematical definitions necessary for a treatment of graph drawing algorithms.
This is followed by an overview of the algorithm that serves as our basis: the layered
algorithm by Sugiyama et al. [29]. The chapter closes with an introduction of KLay
Layered, as well as of its predecessor, which also allows to further elaborate on the
goals of this thesis.
Chapter 3 starts the main part of the text and goes into great detail explaining

all the extensions to KLay Layered. If you are interested in the theory, this is the
chapter to read.
Once the theory is covered, Chapter 4 explains the implementation details, start-

ing with a new structural unit for layout algorithms, the intermediate processor. All
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1.4 Outline

intermediate processors written for this thesis are then explained in detail, followed
by a higher-level view of how the processors work together to implement the ideas
presented in Chapter 3.
The performance of the algorithm has to be evaluated, which is what Chapter 5

is all about. Before we can take a look at results, we have to define how the quality
of diagram layouts is measured. Since the algorithm is mainly meant for data flow
diagrams, we have to settle on a collection of diagrams to test it with. We will
find that the library of demo models shipping with Ptolemy is well-suited for that
task; therefore, the chapter continues with some details on the work done to import
Ptolemy models into our own data format. This is followed by an explanation of the
evaluation process, after which we can at last turn our attention to the evaluation’s
results.
Chapter 6 closes this thesis. After a summary, I list a number of topics I am

leaving for those succeeding me.

9
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2

Background on Drawing Data
Flow Diagrams

Look at me still talking when there’s science to do. [. . . ] I’ve
experiments to run, there is research to be done!

— GLaDOS, Portal

In this chapter, we lay the groundwork for subsequent chapters. We start with
the mathematical definitions necessary for a proper treatment of data flow diagram
layout. With all definitions in place, we’re all set for a quick tour of Sugiyama’s
layer-based algorithm. In the last section, we learn about the KLoDD algorithm
before finally getting to KLay Layered, the algorithm extended in this thesis. The
chapter closes with some more details on the goals of this work.

I 2.1 Introductory Remarks on Terminology

We start with the definition of a directed, port-based graph.
Definition 2.1. A directed, port-based graph is a tuple G = (V,E, P, ν), where V is
a finite set of vertices (also called nodes), E ⊆ P × P is a set of edges connecting
the vertices, P is a finite set of ports, and ν : P → V is a function mapping ports to
their vertices. The set of vertices V may be further partitioned into a set of dummy
vertices Vd introduced and removed again as part of the layout algorithm, and a set
of regular vertices Vr.
Note that the set of ports belonging to a vertex v ∈ V is given by ν−1(v). We

now define some terms related to edges.
Definition 2.2. An edge e = (a, b) ∈ E is an outgoing edge of a and ν(a), and
an incoming edge of b and ν(b). The ports a and b are said to be adjacent to one
another, as are the vertices ν(a) and ν(b), and e is said to be incident to a, b, ν(a),

11



2 Background on Drawing Data Flow Diagrams

and ν(b). a and ν(a) are called the source of e, while b and ν(b) are called its target.
If ν(a) = ν(b), then e is called a self-loop. We require a 6= b.
We now need a way to refer to all the edges incoming to or outgoing from a port

or vertex, with P(M) referring to the power set of a set M .
Definition 2.3. We define a function eI : P → P(E) that maps ports to their incom-
ing edges, and a function eO : P → P(E) that maps ports to their outgoing edges as
follows:

eI(p) = {(a, b) ∈ E | b = p}
eO(p) = {(a, b) ∈ E | a = p}

We extend the definitions to vertices as follows:

eI(v) =
⋃

p∈ν−1(v)
eI(p)

eO(v) =
⋃

p∈ν−1(v)
eO(p)

Similarly, we define the neighborhood of a vertex.
Definition 2.4. The functions succ : V → P(V ) and pred : V → P(V ) map a vertex
v ∈ V to its successors and predecessors as follows:

succ(v) =
{
u ∈ V | ∃(a, b) ∈ E : a ∈ ν−1(v) ∧ b ∈ ν−1(u)

}
pred(v) =

{
u ∈ V | ∃(a, b) ∈ E : a ∈ ν−1(u) ∧ b ∈ ν−1(v)

}
The function neighb : V → P(V ) map a vertex v ∈ V to its neighbors as follows:

neighb(v) = succ(v) ∪ pred(v)

The following definitions relate to the number of edges connected to a port or
vertex.
Definition 2.5. The indegree of a port or vertex x is |eI(x)|; its outdegree is |eO(x)|.
The degree of a port or vertex is the sum of its indegree and outdegree. The net flow
flow : P → N is defined as

flow(v) = |eI(x)| − |eO(x)| .

A vertex with an outdegree of 0 is called a source of G. A vertex with an indegree
of 0 is called a sink of G.
We can now define directed, port-based layered graphs.

Definition 2.6. A directed, port-based layered graph is a tuple G = (V,E, P, L, ν),
where V , E, P , and ν have the same meaning as for directed, port-based graphs, and
L = (L0, . . . , Lk) is a finite sequence of finite sequences over V , called layers. We
require each vertex v ∈ V to be part of at most one layer. The i-th vertex of layer
Lj is written as Lj(i), and indexLj (v) = i for v = Lj(i).

12



2.1 Introductory Remarks on Terminology

The following definition is necessary for our treatment of hierarchy.
Definition 2.7. A directed, port-based layered graph with hierarchical ports is a
directed, port-based layered graph G = (V,E, P, L, ν) with the definition of ν changed
to ν : P → V ∪ {G}. A port p ∈ P with ν(p) = G is called a hierarchical port.
Note that this definition does not allow for nested graphs; instead, we only allow

one level of hierarchy, attaching the hierarchical ports to the graph itself.
Ports are usually drawn on the border of their respective vertices. We assume

that vertices with ports are always drawn as rectangles and divide their border into
the north, south, west, and east side. We now need a way to tell which side a port
is assigned to.
Definition 2.8. The function side : P → {North,South,West,East} maps a
port to a side of its vertex.
The usual case has ports with incoming edges on the western side, and ports with

outgoing edges on the eastern side. But that need not be the case, as captured by
the following definition.
Definition 2.9. A port p ∈ P is called a regular port if the following holds true:

(side(p) = West ∧ eO(p) = ∅) ∨ (side(p) = East ∧ eI(p) = ∅) .

It is called an inverted port if the following condition is true:

(side(p) = West ∧ eO(p) 6= ∅) ∨ (side(p) = East ∧ eI(p) 6= ∅) .

Layout algorithms can have varying degrees of freedom in the way they place
ports. These are captured in the following definition.
Definition 2.10. The degree of freedom in the placement of ports is controlled by five
different levels of port constraints:

Free Ports may be placed freely on the border of their vertex.

FixedSides The side of the vertex is prescribed for each port, but the order of
ports is free on each side.

FixedOrder The side is fixed for each port, and the order of ports is fixed for each
side.

FixedRatio The side is fixed for each port, and the ratio between the port’s posi-
tion on the side and the side’s length is fixed.

FixedPos The exact position is fixed for each port.

The function

constr : V → {Free,FixedSides,FixedOrder,FixedRatio,FixedPos}

maps a vertex to the port constraints that apply to its ports.
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2 Background on Drawing Data Flow Diagrams

The port constraints are based on those defined by Spönemann [26], with his
FreePorts constraint renamed to Free, FixedPorts renamed to FixedPos, and
the added FixedRatio constraint. There are certainly more possible constraints,
but we have found these five to be enough for our applications.

I 2.2 The Layered Approach to Graph Drawing

Data flow diagrams can be interpreted as directed graphs, suggesting layout algo-
rithms for directed graphs as a good starting point to lay out data flow diagrams. A
classic approach for the layout of directed graphs was proposed in 1981 by Sugiyama,
Tagawa and Toda: the layer-based approach [29]. (This was originally called the hi-
erarchical approach, with hierarchy referring to partitioning the vertices into different
layers; however, our notion of hierarchy is different, which is why we use a different
name.) Therein, the set of vertices of a directed, acyclic graph is partitioned into
layers, with all elements of a layer placed one below the other in the drawing.1 The
assignment of vertices to layers is such that the source of an edge is always placed
in a layer left of the edge’s target. With edges then only pointing to the right, this
kind of layout emphasizes the flow direction in a graph, and is thus very well suited
to data flow diagrams.
Figure 2.1 shows a tree laid out using two different layout algorithms. A force-

based algorithm, which interprets edges as springs exerting forces on vertices and
computes a balanced configuration, does not put special emphasis on the graph’s
tree structure. A layout algorithm based on the layered approach, on the other
hand, makes this structure very apparent and keeps a consistent reading direction
from left to right.
Sugiyama, Tagawa and Toda proposed a three-phase structure for layout algo-

rithms, consisting of a layer assignment phase, a crossing reduction phase, and a
vertex placement phase.
During layer assignment, layers are created and all vertices are assigned to them

such that edges only go from left to right. This is captured in the following definition:
Definition 2.11. A standard layering is a layering for which the following holds:

∀ 0 ≤ i, j < |L| ∀ v ∈ Li, w ∈ Lj : (v, w) ∈ E ⇒ i < j.

A layering is said to be proper if edges only connect vertices placed in adjacent
layers.
Definition 2.12. A proper layering is a layering for which the following holds:

∀ 0 ≤ i, j < |L| ∀ v ∈ Li, w ∈ Lj : (v, w) ∈ E ⇒ i+ 1 = j.

1While data flow diagrams are usually laid out from left to right, graph drawing literature com-
monly assumes top-down or bottom-up layouts, hence the term “upward drawing” is often used.
In this thesis, we go with the former convention.
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2.2 The Layered Approach to Graph Drawing

(a) A force-based layout algorithm does not
emphasize the graph’s hierarchical structure.

(b) A layer-based layout algorithm makes
the graph’s hierarchical structure much more
apparent.

Figure 2.1. Two layout algorithms applied to a tree.

Since this is not always possible, edges spanning more than two layers, called
long edges, are split by inserting edge dummy vertices. Dummy vertices are vertices
inserted by the algorithm, and removed again before the algorithm has finished.
Different algorithms for layer assignment exist, all emphasizing different goals.

For one, an algorithm might try to minimize the number of layers, which can be
done in linear time using topological numbering. Another algorithm might try to
minimize the maximum number of vertices per layer. Trying to minimize both at the
same time was proven to be NP-complete by Eades and Sugiyama [8]. In practice,
we apply a method that minimizes the length of edges [12].
The crossing reduction phase is concerned with minimizing the number of edge

crossings, determined by the order of vertices in the layers. Sadly, Garey and John-
son have proven that solving this problem optimally is NP-complete. Even worse,
this is true even for only two layers [14], so we are left with using heuristics. The ap-
proach usually taken is to sweep through the layers, keeping the order of vertices for
layer Li fixed and reordering Li+1. Once a sweep is complete, another is started in
the reverse direction, this time keeping the layer Li+1 fixed and solving the problem
for Li. This is repeated until the number of crossings does not decrease anymore.
As far as the heuristics are concerned, the barycenter method and the median

method are popular choices. Both methods work by assigning ranks r(w) to the
vertices w of the fixed layer, dependent on their relative position (for the moment,
we set r(p) ← r(ν(p)) for p ∈ P ). Assuming that Li is the fixed layer, and Li+1 is
the free layer, the barycenter method assigns a vertex v ∈ Li+1 the following value:

valb(v) = 1
|eI(v)|

∑
(w,v)∈eI(v)

r(w)

15



2 Background on Drawing Data Flow Diagrams
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(a) The diagram, with long edges split by dummy ver-
tices. The gray boxes in the background identify the
different linear segments the vertices are part of.

1 2 3 4

5

6

(b) The segment ordering graph.
Vertices represent the different lin-
ear segments, with an edge (v, w) in-
serted if, in some layer, a vertex from
linear segment v is placed above a
vertex from linear segment w.

Figure 2.2. A diagram with linear segments marked, and the diagram’s segment ordering graph.
Linear segments are one way of calculating a valid vertex placement.

The median method chooses the middle rank value:

valm(v) = r(ū),

given ei(v) = {(u1, v), . . . , (uh, v)}, r(u1) < . . . < r(uh), and ū = ubh/2c. As Juenger
and Mutzel show, the barycenter heuristic is generally superior to the median heuris-
tic [15].
Another approach to crossing reduction is to solve the problem exactly by con-

verting it into a linear integer program [15] or a semidefinite program [3]. This is
viable for small graphs, but is no option for general-purpose algorithms that do not
impose a maximum on number of vertices of their input graphs.
Having decided on the horizontal coordinates of the vertices in the layer assign-

ment phase, the task of the vertex placement phase is to assign vertical coordinates.
The goal is to place the vertices in a way that minimizes edge lengths, subject to two
constraints: long edges are to be kept straight, meaning that the dummy vertices
inserted to split a long edge e are assigned the same vertical coordinate; and the
order of vertices as calculated during crossing reduction must be respected. To that
end, Sander introduces the concept of linear segments: non-empty sets of vertices
whose elements are laid out along a straight line [24]. According to the first goal,
all dummy vertices that split a long edge e form a linear segment, as does every
regular vertex. To respect the second goal, Sander’s algorithm creates a segment
ordering graph whose vertices represent the linear segments, with an edge between
vertices v and w if, in some layer Li, a vertex in segment v directly precedes a ver-
tex in segment w according to the order calculated during crossing reduction. The
segment ordering graph is guaranteed to be acyclic, and its topological ordering is
then used to place the vertices in the linear segments. Figure 2.2 shows an example
of a diagram with its linear segments, together with its segment ordering graph.
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2.2 The Layered Approach to Graph Drawing

(a) A routing with four
edge crossings.

(b) A routing with only
one edge crossing.

Figure 2.3. Orthogonal routing of edges between two layers. The order of the vertical segments
determines the number of edge crossings. Contrary to the graph in Figure 2.2a, the graphs shown
here are port-based.

The drawing of a graph is produced by executing the three phases and removing
the dummy vertices, adding a bend point at each dummy vertex’s position.

Extensions to the Layered Approach

While Sugiyama, Tagawa and Toda have assumed graphs to be acyclic, this assump-
tion often doesn’t hold with data flow diagrams. Therefore, a cycle removal phase
that reverses edges to remove a graph’s cycles, if any exist, is usually added before
the layer assignment phase. Unfortunately, this problem is NP-complete as well,
since it is equivalent to the feedback arc set problem [13]. However, good heuris-
tics exist [7], with some even applying knowledge about the data flow language to
particularly reverse those edges that the user would classify as feedback edges [17].
Of course, such approaches are not possible for algorithms not tailored to a specific
language.
As already hinted at in Section 1.1, edges in data flow diagrams are usually drawn

orthogonally, with edge segments running either horizontally or vertically. This task
is complex enough to add a fifth phase to the algorithm, the edge routing phase;
its task is to insert vertical segments to edges that cannot be drawn as straight
horizontal lines. As shown in Figure 2.3, the order of the vertical segments influences
the number of edge crossings and thus needs to be chosen well. As proposed by
Sander, this can be done by constructing a segment crossing graph whose vertices
represent the vertical segments, with an edge going from vertex v to vertex w if
placing the vertical segment represented by v left of the segment represented by
w would produce edge crossings; weights are assigned to edges depending on the
resulting number of crossings [25]. The optimal order of vertical segments is given
by the topological order of the segment crossing graph, which requires cycles to be
removed prior to the ordering.
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2 Background on Drawing Data Flow Diagrams

I 2.3 The KLoDD and KLay Layered Algorithms

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)2 is a
research project about enhancing the graphical model-based design of complex sys-
tems [11]. The basic idea is to build upon automatic layout algorithms to provide
pragmatic editing capabilities, ultimately leading to higher productivity by freeing
the user of layout-related tasks and by providing advanced editing features. Dy-
namic views of parts of a complex system, for instance, can be created in a matter
of seconds with automatic layout, but would take a lot of work to lay out if done
manually.
KIELER is implemented in Java as a collection of plug-ins for the Eclipse3 plat-

form, which was originally created by IBM in 2001 and is now maintained by an open
source community; the platform enjoys widespread industrial use. Since Eclipse is
an open platform, a given installation can provide different graphical editors, giv-
ing rise to the potential problem of having to add automatic layout capabilities to
each one separately. To this end, KIELER introduces a generic framework for lay-
out to connect editors and layout algorithms, the KIELER Infrastructure for Meta
Layout (KIML).
Figure 2.4 shows the basic architecture of KIML and its central data structure, the

KGraph. Since graphical editors usually operate on different data structures, KIML
provides the KGraph as a means for abstracting away from the concrete structure
used by an editor. Transforming an editor’s internal data structure into a KGraph

is thus the first step in automatic layout. The second step consists of transforming
the KGraph into the data structure used by a given layout algorithm, since layout
algorithms potentially use different data structures as well. Once the layout algo-
rithm has calculated its result, the layout information need to be properly attached
to the KGraph, which happens in the third step. The fourth and final step consists of
applying these layout information to the graphical editor’s internal data structure.
Connecting a new editor to KIML—and thus giving it access to all connected layout
algorithms at once—is a matter of implementing steps one and four, while connect-
ing a new layout algorithm—and thereby enabling it for all connected editors at
once—is a matter of implementing steps two and three.
In the world of Eclipse, most graphical editors build upon the Graphical Modeling

Framework (GMF), with the new Graphiti framework gaining in popularity due to
better performance and a simpler architecture. Because of this, it is enough to
connect these two frameworks to KIML to add automatic layout capabilities to all
graphical editors building on them. On the layout algorithm side, connections to
several popular open source graph layout libraries exist, among them the Open
Graph Drawing Framework (OGDF)4 and Graphviz.5

2http://www.informatik.uni-kiel.de/rtsys/kieler
3http://www.eclipse.org
4http://www.ogdf.net
5http://www.graphviz.org
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2.3 The KLoDD and KLay Layered Algorithms

Diagram Editor Layout Algorithm

1: Extract graph

KIELER Infrastructure

for Meta Layout

KGraph
2: Transform graph

3: Attach layout results4: Apply layout

Figure 2.4. The architecture of KIML. A layer of abstraction between graphical editors and layout
algorithms facilitates to allow a new editor access to automatic layout, or to add a new layout
algorithm to all graphical editors tied to KIML.

One part of the KIELER project is concerned with the development of custom
layout algorithms. At the time of writing, two such algorithms exist, and in the rest
of this section we take a look at both of them.

The KLoDD Algorithm

KIELER Layout of Dataflow Diagrams (KLoDD) was the first foray into a custom
layered layout algorithm tailored specifically to data flow diagrams. It was developed
by Miro Spönemann as part of his diploma thesis [26] and consisted of the five
phases described in Section 2.2. For each phase, existing approaches were extended
or heavily modified, with a special emphasis on performance.
A major contribution was the introduction of port constraints, which control how

much freedom the algorithm has in placing the ports of a vertex. The two most
important constraints allow the algorithm either full or no flexibility; two further
constraints mediate between these two extremes. We examine this in greater detail
in Chapter 3.
The second major contribution concerns the treatment of hierarchical ports. As

mentioned in Section 1.2, diagrams can be displayed with multiple levels of hierarchy
at once, with edges connecting vertices inside a given level to the level’s hierarchical
ports requiring special consideration. In KLoDD, the common cases of hierarchical
edges coming from the left and going to the right were handled as one would expect,
while the other, less common cases received lesser treatment. A more comprehensive
solution is the topic of Section 3.6.
One of the major shortcomings of KLoDD is that requirements were added during

development that its architecture was not built for from the start. The algorithm
became difficult to maintain, and hard to extend. For the sake of an example, the
layout direction produced by KLoDD is configurable: a diagram can be laid out in
a way that the predominant number of edges points either rightward, leftward, up
or down. This distinction becomes important at many places in the code, resulting
in quite a few places that read like the following:

if (layoutDirection == Direction.DOWN) {
// 60 lines of code

} else {
// 60 almost identical lines of code,
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2 Background on Drawing Data Flow Diagrams

// differing only in details
}

The code is cluttered, and otherwise simple changes have to be applied to many
places at once, increasing the probability of bugs.
A second shortcoming also relates to added requirements. Some of the solutions

developed for KLoDD were added as more of an afterthought instead of being con-
sidered right from the start. They usually work well for the common case, but leave
something to be desired in the areas of cleanliness and robustness.
In Chapter 3, I frequently start a section with a short description of how things

were handled by KLoDD before introducing my new approaches.

The KLay Layered Algorithm

There were a few lessons to be learned from the development of KLoDD. First,
the implementation of a complex algorithm greatly benefits from a simple, clear,
and flexible architecture. Second, different cases that influence only details, but
not the overall approach, should be abstracted from to keep the implementation
from becoming cluttered and hard to maintain and extend. And third, for layout
algorithms targeted at data flow diagrams, performance is not as big an issue as
was initially assumed. This is because data flow diagrams in the real world are way
too small for performance to be a problem. As a consequence, the implementation
places a higher emphasis on a good architecture than on optimization.
KLay Layered was started as the successor to KLoDD, with the goal of addressing

all the problems described above. As its predecessor, it follows the classical five-
phase structure and operates on its own internal data structure since the KGraph

has no concept of layers. Each phase can have different implementations the user
can choose between. As an example, the edge routing phase has an implementation
based on splines and another implementation based on orthogonal edge routing. All
the while, the tasks of different phases are clearly defined.
While in KLoDD existing approaches to different phases were extended or heavily

modified, the first version of KLay was based almost entirely on faithful implemen-
tations of existing approaches, only modified where required for basic port support.
What follows is a brief overview of the more important implementations for the
different phases.
The cycle removal implementation is based on the GreedyCycleRemoval al-

gorithm given by Eades, Lin and Smyth [7], which provides a very simple, but
satisfactory heuristic.
Two implementations exist for the layer assignment phase. One is based on the

the LongestPathLayering algorithm explained by Di Battista et al. [4]; while
its time complexity is linear in the number of edges, the layerings produced often
suffer from high maximum numbers of vertices in a layer. The other implements the
NetworkSimplexLayering algorithm as presented by Gansner et al. [12]; this
algorithm produces good results, at the expense of time complexity.
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1

1

1

(a) Without special support for ports, the
barycenter value computed for the two vertices
to the right is the same. Some kind of tie-
breaking method must ensure that the vertices
don’t overlap, possibly resulting in an unneces-
sary edge crossing.

1

1

2

2

(b) With support for ports, the two ver-
tices to the right get different barycenter
values. No tie-breaking method is neces-
sary, and the crossing can be avoided.

Figure 2.5. This is an example of a port-based graph where the usual barycenter approach fails. The
numbers are the rank values assigned to or calculated for the respective vertex or port.

The implementation of the crossing reduction phase is based on a layer-by-layer
sweep with a barycenter heuristic, with modifications to support ports. While the
original approach given by Di Battista et al. [4] uses rank values of connected vertices
as the basis for the barycenter calculations, the modified approach uses rank values
of connected ports (note that the explanation in Section 2.2 already takes this into
account). As Figure 2.5 illustrates, this modification is especially important in the
common case where different vertices are connected to different ports that belong
to a single vertex. Without the modification, it is unclear how to order the vertices;
with the modification, the order becomes obvious.
The vertex placement phase has one implementation based on the linear segments

approach by Sander [24], as explained in Section 2.2.
There are two main implementations for the edge routing phase. The first im-

plements the simple edge routing, with edges drawn as straight lines. The second
implements orthogonal edge routing as proposed by Sander [25], giving results like
those shown in Figure 2.3.
When work on this thesis began, KLay Layered couldn’t replace KLoDD yet.

There was only very basic support for ports (neither inverted ports nor northern and
southern ports were supported), and hierarchical ports were not supported at all.
In both areas, the goal was to develop and implement new solutions, with emphasis
on not just porting over solutions developed for KLoDD, but to think about new
and better methods. Regarding the implementation, I was to think about whether
a five-phase structure is sufficiently flexible to handle the complex requirements for
data flow diagrams.
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3

Optimizing Automatic Layout for
Data Flow Diagrams

The Enrichment Center regrets to inform you that this next test is
impossible. Make no attempt to solve it.

— GLaDOS, Portal

This chapter introduces the theory behind the modifications to KLay Layered, or-
ganized around four main topics: handling inverted ports, handling northern and
southern ports, handling self-loops, and handling hierarchical ports. Each of these
has its own section, with necessary preliminary considerations prepended as re-
quired. The chapter closes with a few more sections about further enhancements to
the algorithm.

I 3.1 In-Layer Edges

Before we can come to the topic of inverted ports we need to concern ourselves with
in-layer edges: edges that connect two vertices v, w ∈ Li for some layer Li ∈ L.
Why we actually need them is covered in the next section; this section is committed
to describing how they can be supported.
Our definition of a proper layering as given in Definition 2.12 does not allow

in-layer edges, requiring us to change the definition a little:
Definition 3.1. A proper layering with in-layer edges is a layering for which the
following holds:

∀ 0 ≤ i, j < |L| ∀ v ∈ Li, w ∈ Lj : (v, w) ∈ E ⇒ j ∈ {i, i+ 1}

For an in-layer edge (v, w) ∈ E, we require either v or w to be a dummy vertex.
We now have three definitions for layerings: the standard layering as given in

Definition 2.11, the proper layering as given in Definition 2.12 and the proper layering
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3 Optimizing Automatic Layout for Data Flow Diagrams

with in-layer edges defined above. Before going further, it is important to understand
at which point in the algorithm which kind of layering can be assumed. During cycle
removal, the graph is not even layered yet, so none of the definitions applies. During
layer assignment, a standard layering is produced, which is turned into a proper
layering, if necessary. Only then can modifications to the graph lead to a proper
layering with in-layer edges.
This has a potential impact on crossing reduction, vertex placement, and edge

routing. While the algorithms used in KLay Layered for the latter two phases do
not need much modification, the crossing reduction algorithm does.

Crossing Reduction

Since the approach to crossing reduction used in KLay Layered is based on a layer-
by-layer sweep, it is enough to consider only two layers Li, Li+1 ∈ L at a time.
Without loss of generality, let Li be the fixed layer, and let Li+1 be the free layer.
To work out the order of vertices in Li+1, the algorithm assigns a rank value to
all ports of Li according to their relative order, and then calculates the barycenter
for all vertices in Li+1, considering the sources of their incoming edges. A problem
arises when the source of an incoming edge is also in Li+1 and thus has not been
assigned a rank value—in other words, when the incoming edge is an in-layer edge.
Figure 3.1 shows such a case. The barycenter of v would be computed using the

ranks of the connected ports in layer Li, of which there are none, plus the rank of
pw, which has not been assigned.
A first solution would be to simply ignore the in-layer edge, but this could lead

to v and w being placed too far apart, as in Figure 3.1a.
A second solution would be to simply assign a rank to pw according to some

criteria. However, since rank values are supposed to reflect the order of connected
ports, the temporary rank of pw would have no meaning: the rank depends on the
order of ports in Li, but v is in Li+1.
To arrive at a viable solution, we have to think about what kind of vertex v and

w can actually be. If v is a regular vertex, w cannot be a regular vertex as well or
it would have been placed in another layer during layer assignment. If it is not a
regular vertex, w must be a dummy vertex that will be removed at some later time.
If that is the case, why not pretend that it does not exist in the first place? Once
the rank of pw is required for the computation of the barycenter of v, we can go
ahead and compute the barycenter of w, and then use that in the computations for
v, as illustrated in Algorithm 3.1. In effect, we have just made w invisible to v, and
arrived at a barycenter value that makes perfect sense since v will be connected to
the predecessors of w later anyway. The improvement is shown in Figure 3.1b. A
similar argument can be made if w is a regular vertex, which then implies that v
must be a dummy vertex.
While this takes care of the problem of ordering vertices, there is another problem

to be solved: cross counting needs to include in-layer edges as well. The algorithm
implemented in KLay Layered, proposed by Barth, Mutzel and Jünger [1], only
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(a) Since pw has no rank, its impact on the
barycenter calculation for v is unclear with-
out special support for in-layer edges, possibly
leading to an unfortunate placement of v.
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(b) With support for in-layer edges, w is
treated as not being there at all, leading to
a much better placement of v.

Figure 3.1. The crossing reduction phase requires special support for in-layer edges to still produce
satisfactory results. The numbers denote the assigned rank and calculated barycenter values.

counts crossings between two layers. It has to be complemented by another algorithm
that adds the number of in-layer crossings.
This can be done in two sweeps per layer: the first sweep numbers the western

ports and the eastern ports that have incident edges from top to bottom according
to their number of incident edges. The second sweep iterates over those ports again,
looking for in-layer edges. Since we only allowed them to connect two eastern or two
western ports, the difference of the port numbers we just computed minus one gives
the highest number of crossings that can be caused by the in-layer edge. Figure 3.2
shows an example of this algorithm at work.
The approach works well, but only provides an upper bound on the number of edge

crossings. However, this is consistent with the cross counting algorithm by Barth,
Mutzel, and Jünger when used with an orthogonal edge routing algorithm: routing
edges orthogonally may result in less crossings than calculated by that algorithm
because edges may share line segments and thus contribute only one crossing.
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3 Optimizing Automatic Layout for Data Flow Diagrams

function CalcBarycenter(Lk ∈ L, v ∈ Lk, S ⊆ Lk)
edges ∈ N← 0
ranksum ∈ R← 0.0
S ← S ∪ {v}

5 for all w ∈ pred(v) do
if w 6∈ S then

if w ∈ Lk then
(wedges, wranksum)← CalcBarycenter(Lk, w, S)
edges← edges + wedges

10 ranksum← ranksum + wranksum
else

edges← edges + 1
ranksum← ranksum + rank(w)

end if
15 end if

end for

return (ranksum, edges)
end function

Algorithm 3.1. Calculating barycenters with in-layer edges. The set S contains the vertices whose
barycenter is being or has already been calculated to avoid endless loops in the presence of in-
layer circles. The actual barycenter can be calculated from the algorithm’s return value with the
formula ranksum/edges. This rendition of the algorithm assumes a left-to-right sweep. During a
right-to-left sweep, the for loop in line 5 would iterate over the vertex’s successors instead of its
predecessors.

1

3

6

2

5

7

7-1-1=5

Figure 3.2. An example of the in-layer cross counting algorithm at work. The ports with incident
edges are numbered from top to bottom. To find the number of crossings caused by the in-layer
edge, the lower port number is subtracted from the higher port number, and the result is decreased
by 1.
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3.2 Inverted Ports

(a) Without special treatment, incident edges
are routed through the port’s vertex.

(b) With special treatment, incident edges
are routed around the port’s vertex.

Figure 3.3. Inverted ports are ports on the western side with outgoing edges, and ports on the eastern
side with incoming edges. They require special treatment to keep edges from crossing vertices.

Figure 3.4. In KLoDD, a preliminary vertex-local edge routing phase took care of transforming
non-regular cases into the regular case (edges coming in on the western side and going out on the
eastern side) just before vertex placement. The dashed lines indicate the vertex-local edge routing,
with the gray background indicating the vertex and its ports as viewed by the following phases.

I 3.2 Inverted Ports

A considerable share of a diagram’s readability stems from vertices not overlapping,
and from edges staying clear of vertices. The latter part is straightforward if edges
only go from eastern to western ports, but that changes once inverted ports are
involved: as Figure 3.3a illustrates, not handling inverted ports results in edges
crossing vertices. The expected solution is to route edges around the vertex of
inverted ports, as shown in Figure 3.3b. This requires special consideration and is
the topic of this section.

Previous Approaches

The vertex placement and edge routing phases of KLoDD expected vertices to have
edges entering on the western side and exiting on the eastern side. As we just saw,
this is not the case with inverted ports, and in fact northern and southern ports
pose a similar problem which we come to in Section 3.4. To fix this, KLoDD adds
a new phase just before vertex placement that does some preliminary, vertex-local
edge routing. As illustrated in Figure 3.4, the result is vertices with edges coming
in on the western side and going out on the eastern side—the regular case. Edges
incident to inverted ports are always routed below the vertex.
The approach has the obvious benefit of keeping later phases simple by letting
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(a) Edges connected to inverted ports are
always routed below their vertex in KLoDD,
which in this case results in an unnecessary edge
crossing.

(b) With the approach implemented in KLay
Layered, the crossing reduction phase has
a higher degree of freedom in routing such
edges, in this case getting rid of the crossing
entirely.

Figure 3.5. An example of the limitations of the vertex-local edge routing phase implemented in
KLoDD.

u v
wl wrfl

fm

fr

Figure 3.6. Klauske’s method works by inserting two dummy vertices, wl and wr, and by replacing
the original edge by three new edges, fl, fm, and fr. Since fm spans several layers, it is later split
by inserting additional edge dummy vertices not shown here.

them assume the regular case of edge routing. However, there are two disadvantages.
First, such vertex-local edge routing introduces unnecessary edge bends. The routing
produced in Figure 3.4 already has five bends, and it is unrealistic to assume that the
edges will be free of further edge bends after edge routing is finished. And second,
the approach can easily result in unnecessary edge crossings because it does not take
surrounding layers into account. Figure 3.5 shows an example in which the approach
implemented in KLoDD leads to an unnecessary crossing while the approach to be
presented here produces none.
Klauske proposes an approach involving two dummy vertices [18]. His method

solves a specific scenario in which an edge runs from a western port to an eastern
port, but can easily be adapted to other cases involving inverted ports. Let e =
(u, v) ∈ E be such an edge. Klauske’s method inserts two dummy vertices wl and
wr, and replaces e by three new edges fl = (wl, u), fm = (wl, wr), and fr = (v, wr),
as shown in Figure 3.6. The edge connecting the new dummy vertices, fm, is a long
edge and is thus split by further edge dummy vertices.
Klauske’s approach solves the problem of inserting too many bend points. The

vertex-local edge routing found in KLoDD is replaced by dummy vertices that are
properly considered during crossing reduction and vertex placement, inserted just
before layer assignment. However, without further consideration wl and wr both take
up space in their respective layers that could well have been used for regular vertices.

28



3.3 Constrained Crossing Reduction

This is unfortunate since the dummy vertices are removed later anyway, and may
lead to slightly odd layouts and even additional edge bends. The problem can be
avoided by changing the vertex placement algorithm accordingly, but depending on
the algorithm used this may not be easy. More importantly, the edges fm and fr are
considered during crossing reduction even though they are later removed again and
do not actually contribute any crossings, possibly leading to undesirable results.
I therefore propose a different approach.

A Different Approach

Let e = (u, v) ∈ V again be an edge going from a western port to an eastern port.
Similar to Klauske, I propose to insert two dummy vertices wl and wr, though not
before, but after layer assignment. Indeed, wl is inserted into the layer of u, and
wr is inserted into the layer of v. The original edge e is then replaced as explained
previously by three new edges fl, fm, and fr, with fl and fr requiring later phases
to support in-layer edges.
The approach has several advantages. First, wl and wr can be treated as edge

dummy vertices, simplifying later stages of the algorithm: upon removal, the incident
edges are merged and bend points are added. Second, the crossing reduction phase
does not have to consider edges between two layers that are removed later anyway.
Third, wl and wr do not take up space that could be used for regular vertices.
Since they are placeholders for a long edge, the space could not be used for vertices
anyway. And fourth, our orthogonal edge routing algorithm can be used without
further modification to correctly route the edges that would otherwise require special
treatment.
Whether these advantages outweigh the disadvantage of having to adapt later

phases to in-layer edges depends on the algorithms used. Note however that support
for in-layer edges does not just benefit the treatment of inverted ports, but can also
be used to solve other problems, such as self-loops (see Section 3.5).

I 3.3 Constrained Crossing Reduction

Usually, the order of vertices in their respective layers can be changed at will during
crossing reduction. That said, there are cases when the order is subject to certain
constraints. In this section, I introduce two kinds of constraints and explain how
crossing reduction algorithms can be augmented to respect them. The method of
handling northern and southern ports, presented in Section 3.4, is an example that
makes use of the constraints presented here.
The first is called a vertex successor constraint: it restricts the relative order pairs

of vertices may appear in. It was proposed by Forster [10] and can be defined as
follows:

29



3 Optimizing Automatic Layout for Data Flow Diagrams

Definition 3.2. Vertex successor constraints are defined by a set C ⊆ V × V of
ordered pairs of vertices (v, w), and are satisfied if the following holds:

∀ 0 ≤ k < |L| ∀ 0 ≤ i, j < |Lk| : (Lk(i), Lk(j)) ∈ C ⇒ i < j.

In a left-to-right drawing, this would cause Lk(i) to be placed above Lk(j) (hence
the name ‘vertex successor constraint’).
The second constraint is called a layout unit constraint: vertices may be assigned

to layout units whose vertices may not be mixed. Formally, this is covered by the
following definition:
Definition 3.3. Layout unit constraints are defined by a function lunit : V → V ∪{⊥
}, and are satisfied if the following holds:

∀ 0 ≤ k < |L| ∀ 0 ≤ i < |Lk| : lunit(Lk(i)) =⊥ ∨ (¬∃ 0 ≤ j, l < |Lk| :
lunit(Lk(j)) 6=⊥
∧ lunit(Lk(j)) 6= lunit(Lk(i))
∧ lunit(Lk(j)) = lunit(Lk(l))
∧ j < i < l).

That is, the constraint is always satisfied for a vertex Lk(i) if Lk(i) is not assigned
to a layout unit; if, on the other hand, Lk(i) is assigned to layout unit v, it must not
be placed between two other vertices Lk(j) and Lk(l) that are assigned to another
layout unit w 6= v with w 6=⊥. There are two things to be aware of: first, layout
units are identified by a vertex which will usually be a regular vertex rather than
a dummy vertex; second, vertices not assigned to layout units may be freely placed
anywhere in their layer.
With Forster’s algorithm, having crossing reduction observe vertex successor con-

straints is easy. Once the order of the vertices in a layer is established, Forster’s
algorithm can be run to look for any violated constraints. The result is an order
that satisfies all vertex successor constraints.
The problem of satisfying layout unit constraints is slightly more difficult, but

can indeed be reduced to the problem of satisfying vertex successor constraints by
inserting an additional step right before the execution of Forster’s algorithm. For
a layer Lk ∈ L, let Vu ⊆ Lk be the sequence of vertices that identify layout units,
ordered by their relative order in Lk from top to bottom:

v ∈ Vu ⇔ ∃ 0 ≤ i < |Lk| : lunit(Lk(i)) = v.

For all (Vu(i), Vu(i + 1)), we insert vertex successor constraints from all vertices
belonging to layout unit Vu(i) to all vertices belonging to layout unit Vu(i + 1).
Formally, we require that the following holds for each layer Lk ∈ L:

∀ 0 ≤ i < |Vu| − 1 ∀ v ∈ lunit−1(Vu(i)), w ∈ lunit−1(Vu(i+ 1)) : (v, w) ∈ C.
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3.4 Northern and Southern Ports

(a) Without special treatment, edges connected
to northern or southern ports may overlap.

(b) With special treatment, edges connected
to different ports are properly separated.

Figure 3.7. Edges connected to northern or southern ports require special treatment. Without that,
the routing looks unpleasant at best or introduces ambiguity in the worst case.

I 3.4 Northern and Southern Ports

Similar to inverted ports, edges connected to northern and southern ports cannot
be routed like regular edges. Consider the example shown in Figure 3.7. With the
edge connected to the southern port of the vertex, the problem is merely one of
aesthetics; the edges connected to the two northern ports, however, overlap and
thereby introduce ambiguity. As Figure 3.4 suggests, KLoDD solved this problem
by a vertex-local edge routing phase, which we wanted to avoid in KLay Layered for
reasons already explained. The approach to be proposed here is thus again based
on dummy vertices.
Let v ∈ Lk be a regular vertex in some layer Lk ∈ L with northern and southern

ports. The general idea of our approach is to add special bend dummy vertices to Lk
and to reconnect all edges incident to northern or southern ports of v to the dummy
vertices. Bend dummy vertices differ from normal edge dummy vertices in how bend
points are inserted when they are removed. The vertices created for northern ports
are placed above v, and the vertices created for southern ports are placed below v.
The rest of this section goes into the details of how this works.

Creating Dummy Vertices

Figure 3.8 shows a regular vertex with northern ports and with incident edges routed
as our approach would do it. There are a few things to note here. First off, the
bend points of the edges connected to the northern ports are chosen in a way that
minimizes the vertex-local number of edge crossings. This is somewhat similar to
KLoDD, with the important difference that KLoDD would not allow the long edge
el to cross the northern edges. Second, the horizontal segments of some of the edges
have the same vertical coordinate. This is by no means necessary, but saves vertical
space and reduces visual clutter. And finally, the distances between horizontal edge
segments is not uniform. In fact, contrary to KLoDD, edges connected to northern
or southern ports can extend far above or below their regular vertex, giving the
vertex placement phase a much better chance to minimize edge bends.
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el

(a) An edge routing as our algorithm could
have produced it.

el

(b) With dummy vertices and edges recon-
nected appropriately. Dashed lines hint at
how the edges were connected before.

Figure 3.8. A vertex with northern ports and edges routed as the approach proposed here would do
it. Note that edges may extend far above (or below) the vertex, giving the vertex placement phase
a good chance of reducing edge bends. The long edge el is allowed to cross the northern edges.

It might not seem to make much sense at first to allow long edges to cross northern
or southern edges. After all, what this does is to introduce additional crossings that
could be avoided. However, there are two benefits. First, by allowing long edges
to be routed anywhere, we give the crossing reduction phase a maximal amount
of freedom to decide where best to place edge dummy vertices. By allowing for a
few crossings with northern our southern edges, the crossing reduction phase may
be able to avoid a whole bunch of additional crossings with other edges somewhere
else. And second, we keep edge lengths short. Figure 3.9 shows a case where a
vertex connected via a northern edge is placed high above another vertex. The long
edge would usually have to be routed even higher, greatly increasing its length and
decreasing readability; our approach accepts a crossing, but keeps the edge length
short and readability up.
Creating the bend dummy vertices for a regular vertex v ∈ Lk for some layer

Lk starts by assembling a sequence of northern ports PN and southern ports PS ,
sorted by their x coordinate. The CreateDummyVertices algorithm—reproduced
in pseudo code as Algorithm 3.2—creates the required sequences of bend dummy
vertices VN and VS . The algorithm is fairly straightforward, the exception being the
condition of the loop starting in line 7. This part of the algorithm is responsible for
creating the bend dummy vertices shared by two ports. As Figure 3.8a suggests,
this is only possible for two ports pi and pj if two conditions hold: first, pi only has
incoming edges and po only has outgoing edges; and second, pi is left of po. Violating
one of the two conditions would result in overlapping edges, introducing ambiguity.
The order of the vertices in the sequences VN and VS deserves some consideration.

For two dummy vertices VN (i) and VN (i + 1), VN (i) has to be positioned closer to
v than VN (i + 1). The same holds for VS . To ensure that this order is preserved,
the vertex successor constraint mechanism introduced in Section 3.3 is used. First
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Figure 3.9. An extreme case of a long edge routed around a northern edge and becoming too long
in the process. In such cases, accepting the crossing but keeping the edge length short improves
readability more than avoiding the crossing at all cost.

off, the necessary constraints for dummy vertices in VN are added to satisfy the
following condition:

∀1 ≤ i < |VN | : (VN (i), VN (i− 1)) ∈ C. (3.1)

Note that this effectively reverses the order of vertices as specified by VN , which is
necessary to keep VN (i) closer to v than VN (i + 1). The necessary constraints for
dummy vertices in VS can simply reproduce the order of vertices as specified by VS
to satisfy the following condition:

∀0 ≤ i < |VS | − 1 : (VS(i), VS(i+ 1)) ∈ C. (3.2)

Finally, the first vertex in VN must precede v, and v must precede the first vertex
in VS . The necessary constraints are added to satisfy the following condition:

VN 6= ∅ ⇒ (VN (0), v) ∈ C ∧ VS 6= ∅ ⇒ (v, VS(0)) ∈ C. (3.3)

Once bend dummy vertices are created for all regular vertices and their order is
ensured to be preserved, there is one more problem to be taken care of. Let vN be
a bend dummy vertex created for a northern port of some vertex vi, and let vS be a
bend dummy vertex created for a southern port of some vertex vj 6= vi, all part of the
same layer Lk. So far, nothing prevents the crossing reduction phase from placing vS
below vN in Lk. With luck, this only introduces unnecessary crossings; Figure 3.10
however shows that it can lead to the vertical segments of edges overlapping each
other, introducing ambiguity. To avoid this, bend dummy vertices created for vi
must not be placed between bend dummy vertices created for vj , which is ensured
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function CreateDummyVertices(P )
VD ← ∅ . Sequence of created dummies to be returned.
PIn ← {p ∈ P | eI(p) 6= ∅ ∧ eO(p) = ∅} . Filtered subsequences of P .
POut ← {p ∈ P | eI(p) = ∅ ∧ eO(p) 6= ∅}

5 PInOut ← {p ∈ P | eI(p) 6= ∅ ∧ eO(p) 6= ∅}

idxIn ← 0, idxOut ← |POut| − 1 . Create dummy vertices shared by two ports.
while idxIn < |PIn| ∧ idxOut ≥ 0 ∧ indexP (PIn(idxIn)) < indexP (POut(idxOut)) do

Add new bend dummy vertex for PIn(idxIn) and POut(idxOut) to VD.
idxIn ← idxIn + 1, idxOut ← idxOut − 1

10 end while

while idxIn < |PIn| do . Create dummy vertices for ports with incoming edges.
Add new bend dummy vertex for PIn(idxIn) to VD.
idxIn ← idxIn + 1

end while

15 while idxOut ≥ 0 do . Create dummy vertices for ports with outgoing edges.
Add new bend dummy vertex for POut(idxOut) to VD.
idxOut ← idxOut − 1

end while

idxInOut ← 0
20 while idxInOut < |PInOut| do . Create dummy vertices for remaining ports.

Add new bend dummy vertex for PInOut(idxInOut) to VD.
idxInOut ← idxInOut + 1

end while

return VD

25 end function

Algorithm 3.2. The CreateDummyVertices algorithm returns a sequence of dummy vertices for
a specified sequence of ports P , which is expected to contain only northern or only southern ports,
sorted by their x position.

by using the layout unit mechanism introduced in Section 3.3. For a regular vertex
v and its set of bend dummy vertices VB, we set the following:

lunit(v)← v ∧ ∀d ∈ VB : lunit(d)← v. (3.4)

Impact on Cross Counting

Taking another look at Figure 3.8 we can see that the edge el causes two crossings in
the final diagram, but does not cause any crossings while the bend dummy vertices
are present. If these implicit crossings are not taken into account during crossing
reduction, the algorithm is prone to compute inferior layouts.
Before introducing an algorithm to count these kinds of crossings, it is a good idea

to think about how exactly they can be caused. Obviously, it is necessary to have
an edge running between the bend dummy vertices of some regular vertex. Since
crossing reduction requires a proper layering, it follows that this can only happen
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3.4 Northern and Southern Ports

(a) Introduction of unnecessary
crossings.

(b) Introduction of ambiguity due to
overlapping edge segments.

Figure 3.10. If a regular vertex and its bend dummy vertices are mixed with a bend dummy vertex
of another regular vertex, additional crossings and even overlapping edges ensue.

if a vertex v is placed between the bend dummy vertices. This vertex cannot be
another bend dummy vertex—we prevented that by using layout units. It cannot
be another regular vertex either, for the same reason. The only thing left for it to
be, then, is an edge dummy vertex, which makes developing a proper cross counting
algorithm a little easier.
I propose an algorithm that requires two sweeps over a layer’s vertices. During

the first sweep, each bend dummy vertex is assigned a crossing hint value depending
on the number of ports it was created from, and for each regular vertex the number
of bend dummy vertices created for southern ports is remembered. This part of the
algorithm is reproduced in pseudo code as Algorithm 3.3. The second sweep again
iterates over the layer’s vertices, remembering the last regular or bend dummy vertex
v. If an edge dummy vertex d is encountered, the number of crossings is increased
by crossHint(v) if v was created from a northern port, or by sdMaxHint(lunit(v))−
crossHint(v) otherwise. Figure 3.11 shows an example of the algorithm at work.

Removing Bend Dummy Vertices

Edge bend dummy vertices are removed by joining their incident edges and the
associated lists of bend points. Removing bend dummy vertices takes a little more
work, since creating them involves reconnecting edges and adding an additional bend
point.
Let d be a bend dummy vertex created for regular vertex v, and let e be an edge

incident to d, originally connected to port p with ν(p) = v. To remove d, e has to
be reconnected to p and a new bend point has to be added to e. Using the position
of d as the new bend point does not make sense: its x position will probably differ
from the x position of p, which will result in a vertical segment of e being routed at
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function CrossCountingSweep1(Lk, crossHint : V → N, sdMaxHint : V → N)
∀v ∈ V : crossHint(v)← 0
∀v ∈ V : sdMaxHint(v)← 0
currHint← 0

5 north← true
unit←⊥

for all v ∈ {v ∈ Lk | v is no edge dummy vertex} do
if lunit(v) 6= unit then . New layout unit.

unit← lunit(v)
10 north← true

end if

if unit = v then . Regular vertex; switch from north to south.
north← false
currHint← 0

15 else if north = true then . Northern dummy vertex.
currHint← currHint + PortCount(v)

else . Southern dummy vertex.
currHint← currHint + PortCount(v)
sdMaxHint(u)← currHint

20 end if
crossHint(v)← currHint

end for
end function

Algorithm 3.3. The first sweep of the bend dummy cross counting algorithm is responsible for
assigning crossing hints to bend dummy vertices, and for counting the number of bend dummy
vertices created for the southern ports of regular vertices. These are used by the second sweep to
actually count the crossings caused by edge dummy vertices placed among bend dummy vertices.

1

3

5

0

2

3

3

3-2=1

Figure 3.11. A case in which two edge dummy vertices created to split long edges are placed between
bend dummy vertices. To count the number of additional crossings produced, we propose an
algorithm that uses two sweeps over each layer’s vertices. The numbers on the left are the cross
hints computed during the algorithm’s first sweep. The number on the right give the crossings
caused by the edge dummy vertices as calculated during the second sweep.
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an angle. Instead, the bend point must be inserted at the y coordinate of d, and at
the x coordinate of p.

Advantages and Disadvantages

The approach introduced here has its clear advantages over the KLoDD approach
when it comes to the number of bend points. Furthermore, it gives the crossing
reduction phase the liberty to have long edges cross edges incident to northern or
southern ports, thereby potentially reducing the vertical size of the diagram and
making it more compact.
The biggest disadvantage is that the approach requires crossing reduction algo-

rithms to support vertex successor constraints and layout units. However, these can
be added quite easily on top of existing algorithms. Another disadvantage concerns
the creation of dummy vertices. The algorithm currently favors vertex-local crossing
reduction. An alternative would be to let the crossing reduction phase figure out
the vertex order. Investigating this is left for future work.

I 3.5 Self-Loops

As mentioned in Definition 2.2, self-loops connect a vertex v to itself, but need to be
connected to different ports. The problems posed by self-loops are a combination of
the problems that occur with northern and southern ports as well as with inverted
ports: they can connect ports on either side of the vertex, giving the five cases
shown in Figure 3.12. (In fact, some of these cases could be combined or divided
further, but these five turn out to be just enough to structure our approach.) For the
remainder of this section, the North and South sides are referred to as horizontal
sides, and the West and East sides are referred to as vertical sides.
As with northern, southern, and inverted ports, KLoDD handled self-loops in

its vertex-local edge routing phase. While this lead to unnecessary edge bends in
the other cases, it does work well with self-loops. In spite of this, KLay Layered
uses a different approach, for the simple reason that only minor modifications were
necessary to adapt the methods developed in the preceding sections to self-loops.
The actual approaches differ for each of the five identified cases and are shown in
Figure 3.13. In the following, let v ∈ V be a vertex with a self-loop e ∈ E.
If e connects two ports on the same vertical side as shown in Figure 3.12c, nothing

needs to be done since KLay Layered’s orthogonal edge routing algorithm already
supports this case.
If e connects two opposing vertical sides as shown in Figure 3.12b, this can be

handled by breaking e up with an edge dummy vertex inserted into the layer of v.
If e connects two opposing horizontal sides as shown in Figure 3.12e, it can be

handled similar to other edges incident to northern and southern ports, with two
exceptions: the bend dummy vertices created for self-loops must not be shared by
multiple ports and they must be placed closer to their regular vertex than the regular
bend dummy vertices.
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(a) Vertical and horizontal sides. (b) Opposing vertical sides.

(c) Same vertical sides. (d) Same horizontal
sides.

(e) Opposing horizon-
tal sides.

Figure 3.12. The five different cases in which self-loops can be grouped.

(a) Vertical
and horizon-
tal sides.

(b) Opposing
vertical sides.

(c) Same verti-
cal sides.

(d) Same
horizontal
sides.

(e) Oppos-
ing horizon-
tal sides.

Figure 3.13. How the five different cases of self-loops are handled.

If e connects two ports on the same horizontal side as shown in Figure 3.12d, it can
be handled similar to the previous case, with one difference: only one bend dummy
vertex is created, which has no incident edges. It must be remembered which edge
the dummy vertex replaces.
The remaining case has e connecting a port on a horizontal side to a port on a

vertical side. The first step in handling this case is to make sure that e points to
the right by reversing it as necessary. It is then enough to handle it like any other
edge connected to a northern or southern port, with the exceptions described for
the third case.
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I 3.6 Hierarchical Ports

Data flow diagrams may be nested, or hierarchical: vertices may contain another
data flow diagram instead of being atomic. As mentioned in Section 1.2, usually
editing tools display only one level of hierarchy at once, not allowing the user to
look inside hierarchical vertices. One design goal for KLay Layered, however, was to
support the layout of hierarchical diagrams with arbitrary levels of hierarchy visible
at once. To support layout algorithms in that respect, KIML supports two modes of
operation with hierarchical graphs: the first hands over the complete graph to the
layout algorithm, with all levels of hierarchy at once, requiring layout algorithms
to support multiple levels of hierarchy; the second executes the layout algorithm
for each level of hierarchy separately, going from the innermost subgraph outwards.
The latter mode is the one supported by KLay Layered.
While a layout algorithm using the second mode does not need to support hierar-

chy as extensively as it does with the first mode, there is still one issue that usually
needs special consideration to be well-supported. Let v be a hierarchical vertex with
a nested data flow diagram, a western input port, and an eastern output port, similar
to the vertex labeled Embedded CT Model in Figure 1.4. For the nested diagram to have
any impact on the computation it has to receive or produce data and be connected
to the outer hierarchy level in some way. With the natural way of data coming in to
v via its western port and going out via its eastern port, its inner vertices can simply
be connected to these to establish communication between them and the neighbors
of v. Supporting these connections between ports of v and vertices of the diagram
contained in v is what needs to be explicitly supported by the layout algorithm.
The easiest way to support this is to simply ignore such edges. KIML then takes

care of drawing them as straight lines. However, with orthogonal edge routing and
port constraints in place, that is not the way KLay Layered is supposed to handle
this. In the rest of this section, we look at ways of how it does.

The Simple Case of Hierarchical Ports

Ports can be placed on any of the four sides of a hierarchical vertex, but to begin with
we constrict the possibilities: ports with outgoing hierarchical edges are constrained
to the western side, and ports with incoming hierarchical edges are constrained to
the eastern side, thereby keeping the overall layout direction from left to right. Once
a solution for this simple case is developed, it is extended for the general case in the
next subsection.
From our algorithm’s point of view, the task is to compute a layout for a hierar-

chical graph as defined in Definition 2.7: some ports are not assigned to vertices,
but to the graph itself. In the spirit of reducing complex problems to simpler ones,
our approach starts by introducing a hierarchy dummy vertex for each port to be
able to treat hierarchical ports as vertices. Which layer the vertex is assigned to,
how its coordinates are computed, and how its incident edges are treated differs with
the port constraints set on the hierarchical vertex. After the algorithm’s execution,
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(a) A hierarchical vertex as KLay Layered might
lay it out.

(b) The vertex as seen by KLay Layered.

Figure 3.14. In the simple case of hierarchical ports being restricted to either the western or the
eastern side, hierarchy dummy vertices are created for the hierarchical ports and placed in separate
layers.

the dummy vertices are removed again, setting the coordinates of the ports they
represent accordingly.
The case of port constraints set to Free is the simplest to handle, and is shown in

Figure 3.14. Two new layers are created, one at the front and one at the back, and a
hierarchy dummy vertex is created for each hierarchical port p. If flow(p) > 0 (that
is, if it has more incoming edges than outgoing edges), the dummy vertex is placed
in the new last layer; otherwise, it is placed in the new first layer. It is possible for
vertices placed in the first layer to have incoming edges, which have to be reversed
in order to keep the graph properly layered (of course, the same holds for vertices
placed in the last layer that have outgoing edges). Since free port constraints do
not constrain the positioning of ports, the crossing reduction and vertex placement
phases are free to place the dummy vertices wherever they see fit.
The case of port constraints set to FixedSides is similar to the free case, with

the exceptions that dummy vertices belonging to western ports are always placed
in the new first layer, and dummy vertices belonging to eastern ports are always
placed in the new last layer, regardless of their net flow. Edges are again reversed,
if necessary.
The case of port constraints set to FixedOrder is similar to the case of fixed

sides. With the order of ports—and thus, the order of dummy vertices—already
fixed, however, the crossing reduction phase is not free to determine the vertex
order any more. Vertex successor constraints are used to keep the order of dummy
vertices unchanged.
The case of port constraints set to FixedRatio is again similar to the previous

case. In addition to having to fix the order of dummy vertices, which affects crossing
reduction, here the y coordinates of the dummy vertices are constrained as well,
affecting vertex placement. The coordinates depend on the vertical size of the graph,
which may change even after vertex placement. They thus have to be checked and
possibly corrected before the edge routing phase, which may lead to additional edge
bends.
The case of port constraints set to FixedPos is actually a little easier than the
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(a) A hierarchical vertex with northern and south-
ern hierarchical ports as KLay Layered might lay it
out.

(b) The vertex as seen by KLay Layered.

Figure 3.15. The extended cases of hierarchical ports does not impose restrictions on port sides
anymore: hierarchical ports can now be placed on the northern or southern side as well. In the case
of FixedSides, a single hierarchy dummy vertex is created for each hierarchical port.

previous case. The y coordinates of the dummy vertices do not depend on the graph’s
vertical size, but can be fixed in the first place. The vertex placement algorithm
either has to be adapted to support fixed positions, or the coordinates have to be
checked and corrected afterwards.

Extending the Simple Case

Having first developed a solution for the simple case, we can now go on and remove
the constraints, adapting the solution to the general case. Removing the constraints
means that ports can now be placed on the northern or southern sides. Again, we
work our way through the different kinds of port constraints.
The case of port constraints set to Free allows us to place hierarchical ports

anywhere we want. Of course, we settle for the easy and straightforward solution
already used in the simple case.
The problem becomes more difficult once port constraints are set to at least

FixedSides. With ports placed on the western or eastern sides the approach devel-
oped for the simple case still works well. However, as shown in Figure 3.15a, they
may now be placed on the northern or southern sides as well, making the problem
more complex to solve. Figure 3.15b shows how KLay Layered handles this case:
for these ports, dummy vertices are created with just one port on the western side
that all edges incident to the hierarchical port are reconnected to. Instead of being
placed in the first or last layer, the vertex takes part in layer assignment. After the
edge routing phase, the dummy vertex is removed, the hierarchical port is assigned
the vertex’s x coordinate, and incident edges are reconnected to the hierarchical
port, with a bend point inserted at the dummy vertex’s former location.
The approach, as described so far, presents two problems. The first concerns the

problem of regular vertices placed between a hierarchical dummy vertex and the
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Figure 3.16. Without further consideration, regular vertices can be placed between a hierarchy
dummy vertex and its hierarchical port, resulting in hierarchical edges crossing regular vertices. Our
algorithm avoids this by reserving special areas at the top and bottom of each layer for hierarchy
dummy vertices.

side its hierarchical port is assigned to. As Figure 3.16 shows, just reconnecting
incident edges and adding a bend point would result in edges crossing the regular
vertex, which is not desirable. We solve this problem by dividing layers into three
regions, with the top and bottom regions reserved for hierarchical dummy vertices
representing northern and southern hierarchical ports.
The second problem arises when a layer contains several dummy vertices repre-

senting hierarchical ports assigned to the same side. So far, the approach would
make the edges and hierarchical ports overlap. We avoid this by adjusting the x
coordinate of the dummy vertices just prior to the edge routing phase such that the
edges are routed next to one another.
Handling the case of port constraints set to FixedOrder differs in two key points

from the previous approach: the creation of dummy vertices, and the routing of
hierarchical edges. Instead of creating just one dummy vertex for each hierarchical
port, one dummy vertex is created for each layer containing vertices connected to the
hierarchical port, and placed in the following layer as shown in Figure 3.17. Now,
every hierarchical port may have several dummy vertices created for it, so its position
cannot be derived directly anymore. Instead, a barycenter heuristic is used to set its
position, with Forster’s algorithm [10] used to ensure the proper port order. Simply
reconnecting the edges and adding a bend point does not work anymore either: the
hierarchical port will usually have an x coordinate that differs from the coordinate
of its dummy vertices. Instead, a full orthogonal edge routing algorithm is executed
to properly route the edges between hierarchical ports and their dummy vertices.
The cases of port constraints set to FixedRatio or FixedPos can be handled

similarly to the previous case, with the exception of how the positions of hierarchical
ports are set. With these constraints active, the port position may not be arbitrarily
set anymore, but is fixed or at least directly derived from the graph’s size. In these
cases, the position is not calculated using a barycenter heuristic, but simply set to
the required or calculated value.
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3.7 Minimizing Edge Bends

(a) A hierarchical vertex with a northern hierarchical port and port constraints at least at Fixed-
Order as KLay Layered might lay it out.

(b) The vertex as seen by KLay Layered.

Figure 3.17. In the case of port constraints set to at least FixedOrder, hierarchical ports do not
have just one dummy vertex created for them anymore. Instead, each layer following one that
has vertices connected to a hierarchical port contains a dummy vertex for that port, with edges
between the dummy vertices and the hierarchical ports later routed using a full-blown orthogonal
edge routing algorithm.

Further Thoughts About Hierarchy

In data flow diagrams, port constraints for hierarchical ports are usually set to Free,
giving the algorithm responsibility for crossing reduction. Our approach of always
looking at just one level of hierarchy is limited to reduce crossings locally, computing
the port order in a way that results in less crossings in the current level of hierarchy,
but without taking the environment into account. Figure 3.18 illustrates that this
can easily lead to non-optimal results. While solving this is out of the scope of this
thesis, there is research based on work by Sugiyama and Misue that explores laying
out compound graphs [28]. Current research at our group explores a solution that
flattens the hierarchy to be able to take the environment into account.

I 3.7 Minimizing Edge Bends

The vertex placement algorithm proposed by Sander [24] and used in KLay Layered
tries to keep the number of edge bends low. One way it achieves this concerns the
treatment of long edges, or rather, the treatment of edge dummy vertices inserted
to turn a standard layering into a proper layering. As mentioned in Section 2.2, the
algorithm is based on the concept of linear segments: sets of vertices that are to be
placed along a straight line. All edge dummy vertices inserted to split the same long
edge e end up in the same linear segment, resulting in straight long edges.
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3 Optimizing Automatic Layout for Data Flow Diagrams

Figure 3.18. An algorithm that always lays out each level of hierarchy separately cannot take the
environment into account during crossing reduction. Here, the hierarchical vertex was laid out first,
with port constraints initially set to Free. Afterwards, the outer level of hierarchy was laid out,
with the hierarchical ports fixed to their previously computed positions. The crossing could have
been avoided if the algorithm had taken the outer level of hierarchy into consideration in the first
place.

Figure 3.19. Our approach to handling northern and southern ports can introduce unnecessary bend
points when the linear segments do not extend to bend dummy vertices. Even in this simple case,
making them part of the same segment would get rid of four bend points.

One of the disadvantages of how KLoDD handled inverted, northern and southern
ports was the introduction of unnecessary bend points. While this is not a problem
anymore with how KLay Layered handles inverted ports, Figure 3.19 illustrates how
it is one with our way of handling northern and southern ports. Without further
consideration, linear segments do not extend to inserted bend dummy vertices, and
thus may cause unnecessary bend points—but changing this is not without problems.
Consider the diagram shown in Figure 3.20a: It is perfectly valid; however, the

northern ports of the two vertices are connected in a way that not all three edges
can be drawn as straight, orthogonal lines.
To calculate the coordinates of vertices, Sander’s algorithm iterates through all

vertices of all layers in graph G, building a segment ordering graph O = (VO, EO)
whose vertices represent the linear segments. If, in some layer in G, it finds a
vertex w directly after a vertex v, the algorithm inserts an edge in the segment
ordering graph from the linear segment of v to the linear segment of w. The edge
can be interpreted as a dependency: since v appears above w in G, the respective
linear segments must retain that order. Sander shows that when linear segments are
created from dummy vertex sequences of long edges, the resulting segment ordering
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1

2

3

(a) A diagram with ports connected so that not all three
edges can be drawn with only two bend points.

1

2 3

(b) The linear segment ordering
graph for the diagram.

Figure 3.20. If linear segments are simply extended to include bend dummy vertices, there are
diagrams for which the segment ordering graph is not acyclic, and thus does not imply a single
correct segment ordering anymore.

graph is free of cycles; this property is necessary to establish the vertical order of
linear segments. With bend dummy vertices made part of linear segments, however,
the ordering graph may well contain cycles, as Figure 3.20b shows.
To ensure that the segment ordering graph is acyclic, segments must be split,

either during or after building the ordering graph. Splitting them afterwards is
difficult, since the question of which segments to split cannot be answered easily.
Even in the simple case of Figure 3.20, we could split either segment 3, or both,
segments 1 and 2—all the time being unsure of where the segments should be split.
My approach is based on avoiding the introduction of cycles in the first place.

The reason for a cycle in the dependency graph is that a pair of linear segments
appear in a certain order in one layer, and in the reverse order in another layer. In
other words, if when building the ordering graph we detect that a linear segment
s1 appears after some other segment s2 when it previously appeared before it, we
can split s1, beginning a new one as soon as we detect this case. (The light edge
in Figure 3.20a hints at where segment 3 would be split using this approach.) The
algorithm to create the edges in the segment ordering graph is given in pseudo code
as Algorithm 3.4.

I 3.8 Simplifying Hyperedges

In graph theory, hyperedges are undirected edges that connect more than two ports,
and are commonly represented by a set of ports rather than an ordered pair. For
our purposes, we change this definition a little to mean sets of edges that share a
common port. Using orthogonal edge routing, hyperedges can be routed such that
they share some horizontal and vertical segments. Figure 3.21a shows a diagram
with hyperedges that are routed just like any other regular edge, while Figure 3.21b
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3 Optimizing Automatic Layout for Data Flow Diagrams

procedure CreateOrderingGraphEdges(G, O = (VO, EO))
for k ← 0, |L| − 1 do . Iterate through the layers

lastSegment←⊥
for i← 0, |Lk| − 1 do . Iterate through the layer’s vertices

5 currSegment← segment(Lk(i))
cycleSegment← FindCycleSegment(k, i, currSegment)
if cycleSegment 6=⊥ then . Check if we would introduce a cycle

oldSegment← currSegment
currSegment← AddNewSegment(VO)

10 vertices(currSegment)← {v ∈ vertices(oldSegment) | ∃ j ≥ i : v ∈ Lj}
vertices(oldSegment)← vertices(oldSegment) \ vertices(currSegment)

end if

if lastSegment 6=⊥ then . Possibly add an edge in the ordering graph
EO ← EO ∪ {(lastSegment, currSegment)}

15 end if

lastLayer(currSegment)← k . Bookkeeping
lastLayerIndex(currSegment)← i
lastSegment← currSegment

end for
20 end for

end procedure

function FindCycleSegment(0 ≤ k < |L|, 0 ≤ i < |Lk|, s ∈ VO)
for j ← i + 1, |Lk| − 1 do . Iterate through the remaining vertices in Lk

cycleSegment← segment(Lk(j))
25 if lastLayer(s) = lastLayer(cycleSegment) then

if lastLayerIndex(s) > lastLayerIndex(cycleSegment) then
return cycleSegment . We would introduce a cycle

end if
end if

30 end for
return ⊥ . No cycle found

end function

Algorithm 3.4. This algorithm adds the edges to the segment ordering graph, avoiding those that
would introduce a cycle. The function segment : V → VO returns the linear segment a given
vertex is part of; vertices : VO → P(V ) returns the vertices that are part of a given linear segment.
The functions lastLayer : VO → N and lastLayerIndex : VO → N are used to keep track of
the last layer a linear segment was encountered in, and its position in the layer. The function
AddNewSegment(. . .) adds a new linear segment to VO and returns it.

shows the same diagram with compacted hyperedges. Note how the second diagram
is superior in terms of both readability and conciseness.
As Figure 3.21 suggests, the vertical segments of hyperedges are already com-

pacted by the orthogonal edge routing algorithm used in KLay Layered, leaving
us with having to compact the horizontal segments. Those only play a role if the
hyperedges are long edges; the problem of compacting them is thus reduced to the
problem of merging their edge dummy vertices. Our approach for this works by
remembering the long edge’s source and target port for each edge dummy vertex
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(a) Hyperedges drawn like regular edges. The three bottom edges are long edges, each
having its own edge dummy vertices.

(b) Hyperedges compacted to share a horizontal segment by merging their edge dummy
vertices.

Figure 3.21. Drawing hyperedges separately adds to the visual clutter of a diagram, and increases
its size. Readability is greatly enhanced by letting hyperedges share horizontal segments.

inserted to break up the edge, and by merging those dummy vertices that share
a common source or target port. The algorithm is run just after crossing reduc-
tion, and is given in pseudo code as Algorithm 3.5. When two dummy vertices are
merged, the corresponding long edge source and target port information needs to
be updated. Since the long edges of the dummy vertices usually do not share both
ports, we set the source port of the merged dummy vertex to ⊥ if the source ports
differ, and the target port to ⊥ if the target ports differ.

I 3.9 Spacing and Margins

When drawing diagrams, the spacing between their different components is impor-
tant. This is shown in Figure 3.22: too much spacing enlarges the diagram and
makes it difficult to gain an overview, while too little spacing makes a diagram very
crowded and hard to read. Our approach to spacing is to keep a certain distance
d between regular vertices, and to keep edges closer together. To that end, we in-
troduce an edge spacing factor de, with the distance between edges computed as
d · de.
The edge spacing factor needs to be taken into consideration during two phases.

The vertex placement phase is affected when dummy vertices are present—dummy
vertices are removed later, and thus must be treated as representatives of an edge.
When setting the spacing between any two vertices v, w ∈ V , the spacing must be
at least d if at least one of the two is a regular vertex; if both v and w are dummy
vertices, the spacing must be at least d · de. The edge routing phase must take care
to add the proper spacings between vertices and vertical segments on the one hand,
and among different vertical segments on the other hand.
In data flow diagrams, vertices are often identified by labels. This in itself would

not pose a problem, if it weren’t for the fact that these labels are usually not con-
stricted to the rectangle the vertex is drawn as. Instead, vertex labels are often
drawn underneath, and, to make matters worse, ports may also have labels. If this
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procedure MergeDummyVertices(G, leSource : V → P , leTarget : V → P )
oldV ertices ⊆ V ← ∅ . Set of vertices to remove later.

for k ← 0, |L| − 1 do . Iterate through the layers.
lastV ←⊥

5 for i← 0, |Lk| − 1 do . Iterate through the layer’s vertices.
if leSource(lastV ) = leSource(Lk(i)) ∨ leTarget(lastV ) = leTarget(Lk(i) then

MergeInto(Lk(i), lastV )
oldV ertices = oldV ertices ∪ {Lk(i)}

if leSource(lastV ) 6= leSource(Lk(i)) then
10 leSource(lastV )←⊥

end if
if leTarget(lastV ) 6= leTarget(Lk(i)) then

leTarget(lastV )←⊥
end if

15 end if
end for

end for

RemoveVertices(oldV ertices)
end procedure

Algorithm 3.5. This algorithm iterates over a graph’s edge dummy vertices and merges those be-
longing to the same hyperedge. The two functions leSource and leTarget assign a long edge’s source
and target port to its edge dummy vertices. This information is updated as the algorithm merges
the dummy vertices.

(a) With equal spacing between vertices and
edges, a diagram can become very large, wast-
ing much space.

(b) With less spacing between edges, dia-
grams become more compact without sacrific-
ing readability.

Figure 3.22. The spacing between the different components of a diagram determine the diagram’s
size. Diagrams can be made much more compact by reducing those spacings whose reduction does
not sacrifice readability.
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(a) Without taking labels into considera-
tion, vertices may appear to be too close
to one another, edges may cross labels,
and which component a label belongs to
may become ambiguous.
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(b) Using a vertex’s bounding box (here shown in
gray) during vertex placement and edge routing
solves these problems.

Figure 3.23. Vertices and ports may have labels that must be kept clear of other vertices and edges.
An ideal solution would place labels intelligently, but as this is hard we settle on an approach
involving a vertex’s bounding box.

is not considered during vertex placement and edge routing, the spacing between
vertices may appear too small in the final drawing, and edges may intersect labels,
as shown in Figure 3.23a.
The optimal solution would be to compute proper positions for the labels, but this

kind of explicit label management is hard and out of the scope of this work. So for
the time being, we propose a simpler approach to at least keep the labels readable.
This approach is based on two assumptions: first, the size of the labels does not
change during layout; and second, the label positions relative to the vertices and
ports stays the same. If these conditions are met, all we have to do is to compute
a bounding box for each vertex that contains the vertex itself, its ports, and all the
associated labels. Instead of using the size and position of the vertex during vertex
placement and edge routing, we use the size and position of its bounding box. The
result is shown in Figure 3.23b.

I 3.10 Reducing Layer Distances

The orthogonal edge routing algorithm implemented in KLay Layered is based on
an algorithm developed by Sander [25]. It iterates over the graph’s layers, routing
the outgoing edges for each layer: first those edges originating from western ports,
then those edges originating from eastern ports.
To do just that, the algorithm iterates over the western or eastern ports of a layer,

assembling a list of vertical segments. Each such segment has a list of western and
eastern ports connected to it, whose y coordinate determine the segment’s vertical
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3 Optimizing Automatic Layout for Data Flow Diagrams

L0 L1

(a) The vertical segments in this example
could well have been assigned to the same
segment slot.

L0 L1

(b) Here, the vertical segments are as-
signed to the same segment slot, saving
some space between the two layers.

Figure 3.24. When each layer’s outgoing edges are considered separately, this can lead to space being
wasted. The solution is to consider all outgoing edges between pairs of layers.

extent. For each port p it finds that it has not visited yet, a new vertical segment
is created and the port added to its list of western or eastern ports. The algorithm
goes on by visiting all the ports reachable from p, adding them to the segment’s list
of ports and going on to their reachable ports. If a port is encountered for which a
vertical segment has already been created, the two segments are merged.
Once all ports have been visited, we know the list of vertical segments and their

vertical extent, but not their horizontal coordinate. The algorithm now creates hor-
izontal segment slots and assigns the segments to these slots such that the segments
do not overlap. The assignment is done in a way to minimize the number of resulting
edge crossings (see Figure 2.3 for why this is important).
Doing this for the western and eastern ports of a layer separately can result in

too many segment slots being created, and can thus lead to too much space being
left between two layers. An example of such a situation is shown in Figure 3.24a.
Here, the vertical segments created for western ports of layer L1 could well have
been placed in the same slot as the vertical segments created for eastern ports of
layer L0.
The algorithm was improved by changing the way it iterates over the layers.

Instead of looking at each layer separately, the algorithm now looks at pairs of
layers (Li, Li+1), with the western ports of the first layer and the eastern ports of
the last layer considered separately. For each pair of layers, all the necessary vertical
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segments for the eastern ports of Li and the western ports of Li+1 are created and
assigned to segment slots, improving the example from Figure 3.24a as shown in
Figure 3.24b.

I 3.11 Calculating Barycenters

The calculation of barycenters is based on looking at assigned rank values of the
neighborhood of a vertex. In Section 3.1, where we talked about in-layer edges,
we have already seen how this fails for in-layer edges; but from Section 3.4, which
was about northern and southern ports, follows another problem with the usual
barycenter approach: if a regular vertex v ∈ V has northern or southern ports, its
neighborhood changes. In particular, after bend dummy vertices have been created
those vertices that were connected to it via northern or southern ports are then
connected to the bend dummy vertices—and thus not part of the neighborhood of
v anymore. This, in turn, leads to their rank values not being taken into account,
resulting in a possibly undesired barycenter value for v.
To remedy this, we experimented with an approach that attaches a list of ver-

tices Nv, called barycenter associates, to each vertex v ∈ V . The vertices in v are
taken into account during the barycenter calculation of v, with a factor wn ∈ R
that determines their impact on the calculation. However, our experiments have
shown—somewhat to our surprise—that this method does not significantly improve
the number of crossings.
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4

Integration into KLay Layered

Please note that we have added a consequence for failure. Any
contact with the chamber floor will result in an unsatisfactory mark
on your official testing record. Followed by death. Good luck!

— GLaDOS, Portal

With the theory in place, this chapter is all about the practical side of things. We
start by explaining the new architecture of KLay Layered, and then spend the rest of
the chapter looking at how the theoretical concepts are implemented, getting rather
technical in some places.

I 4.1 A Dynamic Architecture for Layout Algorithms

The five-phase structure for layer-based layout algorithms as outlined in Section 2.2
lends itself well to laying out diagrams without ports. However, the last section has
shown that handling ports well is a lot more complex, giving rise to the question if
the five-phase architecture fits this application well. As it turns out, it does not.
KLoDD was structured around the five phases, with an additional phase added just

before vertex placement for vertex-local edge routing. Parts of the algorithm were
implemented as part of the data structure used to represent graphs instead of clearly
separating data and logic. The complexity of handling ports and supporting different
layout directions quickly brought this structure to its limits. For KLay Layered, a
new architecture was to ensure that the algorithm would stay maintainable and
would adapt well to changing requirements.

Intermediate Processors

The basic idea of our new architecture is to keep the five main phases around, but to
keep them as simple as possible by factoring out everything that does not contribute
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Figure 4.1. The architecture of KLay Layered distinguishes between the five phases and six processing
slots, capable of housing an arbitrary number of intermediate processors.

directly to their respective goals. Furthermore, our data structure was to be kept free
of the algorithm. To that end, we introduce the concept of intermediate processors:
comparatively small modules that can be inserted before, after or between the main
phases, doing the work that would otherwise make the main phases unnecessarily
complex.
As a first example of an intermediate processor, let us look at the task of turning a

layering into a proper layering. This would usually be done during the layer assign-
ment phase, but there are two disadvantages to this: first, different implementations
of layer assignment algorithms would have to include essentially duplicate code to
turn their layering into a proper layering; and second, even if later phases do not
actually require the layering to be proper, the layer assignment phase would happily
go ahead and produce one anyway. This is solved by having only one intermediate
processor execute right after the layer assignment phase, if at all necessary.
As Figure 4.1 illustrates, intermediate processors are placed in processing slots

distributed around and between the five phases. Each slot can hold an arbitrary
number of processors, but not more than one instance of each; different instances
of the same processor can however be placed in different processing slots. When
previously the graph was passed on from one phase to the next, it now has to pass
through each processing slot, invoking each intermediate processor on it along the
way.
To determine which intermediate processors are to be placed in the processing

slots, implementations of the main phases are required to specify their dependen-
cies: which processors they require in which slots. When KLay Layered is invoked,
the user preferences are queried for the particular implementations to be used for the
different phases, after which these implementations are queried for their dependen-
cies, filling the processing slots accordingly. If, for instance, the crossing reduction
algorithm requires the layering to be proper, it will depend on the appropriate in-
termediate processor to be inserted in the slot between phases two and three.
Having multiple intermediate processors in the same processing slot raises the

question of which order to run them in. With the approach being as dynamic
as it is, it seems probable that the order may influence the results. Indeed, it
often does, potentially rendering the whole approach unusable if this problem is not
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solved well. The order can be deducted easily if we keep a map of dependencies
between intermediate processors around: if processor A only gives correct results in
the presence of processor B if B is run prior to A, A depends on B. Keeping up
with these dependencies, however, quickly increases in complexity with the number
of intermediate processors involved. Fortunately, an intermediate processor can
usually only be sensibly placed in one or at most two processing slots, leaving us
with having to manage the dependencies between only parts of the intermediate
processors. If A and B will never be placed in the same processing slot anyway,
there is no need to think about how they could interfere with one another. With
the map of dependencies in place we can derive a proper order for the processors in
each slot during their development.
Moving tasks from the five phases out to intermediate processors comes with a

performance penalty. Each processor usually has to iterate over the whole graph,
piling up iterations when many processors are used. While this is a concern for
huge graphs, it usually is not for our applications; we have found KLay Layered
to perform reasonably well and think that the benefits of the clear structure far
outweigh the performance hit, on which Section 5.5 has more details.

Alternatives

The introduction of intermediate processors is by no means the only way to restruc-
ture the algorithm. In this subsection, we discuss some alternatives that come to
mind.
Having divided the algorithm into smaller parts inserted dynamically into pro-

cessing slots, it seems tempting to get rid of the distinction between processors and
phases altogether, making the algorithm completely dynamic. For a given layout
task, one would choose the necessary modules, letting KLay Layered taking care of
satisfying dependencies and establishing the proper order. There are several reasons
why we did not take the concept this far.
First, getting rid of the five phases actually weakens the algorithm’s structure

when the goal was to strengthen it. The five phases are well established, making
the algorithm much easier accessible and easier to grasp than a set of loosely tied
modules.
Second, with the structure of KLay Layered, users choose between different im-

plementations of the five phases. Getting rid of them (the five phases, not the users)
raises the problem of how the algorithm can be configured. One might present a
selection of predefined configurations, but that is unlikely to cover all use cases.
Allowing the user to build his own configurations from scratch would require him
to know a lot about the algorithm when in fact he just wants his diagrams laid out.
Whatever the solution, using the algorithm only gets harder for the user.
Finally, we have already seen that keeping track of the dependencies between

intermediate processors gets increasingly harder with more processors. We have
simplified the problem by reducing the number of processors that can appear in the
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same slot, but without this restriction, dependency management quickly becomes a
nightmare.
An alternative going into the opposite direction is to concentrate on the five

phases, supplying different implementations tailored to specific layout applications.
For instance, laying out data flow diagrams with northern and southern ports would
require a specific set of phase implementations supporting that kind of layout. The
immediate disadvantage of this approach is its inflexibility: for each supported layout
application, a complete set of phase implementations would have to be written, with
only minor changes to accommodate the application’s specific challenges.

I 4.2 An In-Depth Look at KLay Layered

Over the course of this thesis, 19 intermediate processors were developed for KLay
Layered, listed in Table 4.1 together with the processing slots they can be placed
in. Some of these simply extract functionality from one of the phases, while others
implement the new concepts introduced in Chapter 3. This section describes each
one of them in detail, complete with dependencies to other processors in the same
slot, preconditions, and postconditions. The focus lies on what each processor con-
tributes with respect to the concepts introduced in Chapter 3; the next section takes
that view a little higher, concentrating on how the processors fit together to form a
layout algorithm.

Edge and Layer Constraint Edge Reverser

Sometimes, vertices are required to be placed in the first or last layer, which re-
stricts their edges to either be all outgoing or all incoming for a valid layering to be
produced. Examples are hierarchical dummy vertices inserted as part of handling
hierarchical ports, or vertices that represent data producers, which are sometimes
required to be placed on the left side of a diagram. To this end, a layer constraint
can be attached to vertices to make the algorithm aware of the required placement.
This processor takes care of reversing the edges such that a valid layering can be
produced when the layer constraint is satisfied. As a simple rule, all layer assignment
implementations should include a dependency on this processor.
As its precondition, this processor expects an unlayered graph.
As its postcondition, vertices with layer constraints have their incident edges re-

versed accordingly.
This processor has no dependencies on other processors.

Hierarchical Port Constraint Processor

Handling hierarchical ports involves creating hierarchical dummy vertices. This
processor takes care of some required preprocessing before crossing reduction, and
sets necessary constraints.
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Processing Slot Intermediate Processors

Before phase 1 EdgeAndLayerConstraintEdgeReverser

Before phase 3 HierarchicalPortConstraintProcessor
InvertedPortProcessor
LayerConstraintProcessor
LongEdgeSplitter
NorthSouthPortPreprocessor
PortListSorter
PortSideProcessor
SelfLoopProcessor

Before phase 4 HyperedgeDummyMerger
InLayerConstraintProcessor
PortListSorter
PortPositionProcessor
VertexMarginCalculator

Before phase 5 HierarchicalPortDummySizeProcessor
HierarchicalPortPositionProcessor

After phase 5 HierarchicalPortOrthogonalEdgeRouter
LongEdgeJoiner
NorthSouthPortPostprocessor
ReversedEdgeRestorer

Table 4.1. The 19 intermediate processors developed for KLay Layered, along with the processing
slots they may be placed in. While most processors can only be sensibly placed in one slot, the
PortOrderProcessor may appear both before phase 3 and before phase 4.

For eastern and western hierarchical ports, the order of their dummy vertices is
fixed if port constraints are set to FixedOrder or higher. This processor sets the
necessary vertex successor constraints to ensure that the order is kept.
For northern and southern hierarchical ports, the graph importer only creates one

dummy vertex. As we have seen in Section 3.6, however, this may not be enough:
with port constraints set to anything other than Free, there needs to be one dummy
vertex per port and layer that contains vertices connected to the port. Since the layer
assignment is not known yet when importing the graph, this processor replaces the
single dummy vertex by the required number of additional dummy vertices. To avoid
having to distinguish between the different port constraints, the dummy vertices are
also replaced in the Free case.
This processor is tightly related to the HierarchicalPortDummySizePro-

cessor, the HierarchicalPortOrthogonalEdgeRouter, and the Hierar-
chicalPortPositionProcessor. Phases either rely on all or none of them.
As its preconditions, this processor expects the graph to be layered, edge dummy

vertices to not have been inserted yet, (because inserting additional hierarchy dum-
my vertices usually already removes some long edges) and layer constraints to be
satisfied.
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As its postconditions, constraints on hierarchy dummy vertices are set such that
port constraints are respected.
Since layer constraints are expected to be satisfied, this processor depends on the

LayerConstraintProcessor.

Inverted Port Processor

This processor iterates over the graph’s vertices, looking for inverted ports. For
each such port it finds, the offending edges are iterated over, creating edge dummy
vertices as explained in Section 3.2. The processor simply appends the created
dummy vertices to the layers, leaving the task of figuring out their order to the
crossing reduction phase.
As its preconditions, this processor expects the graph to be layered, and port sides

to be fixed.
As its postconditions, new edge dummy vertices may have been created, and the

graph may now contain in-layer edges.
Since this processor relies on port side information, the PortSideProcessor is

run prior to it.

Layer Constraint Processor

To restrict the layers a vertex can be placed in, a layer constraint can be attached to
it that specifies the layer the vertex is to be placed in: either the first or last existing
layer, or a newly created first or last layer. If layer assignment implementations
do not support layer constraints, they depend on this processor to adhere to them
anyway.
This processor iterates over the graph’s vertices, looking for those whose layer

constraint is not satisfied yet. If necessary, a new first and last layer is created. For
the graph’s layering to still be valid after running the processor, vertices placed in
the first layers may only have outgoing edges, and vertices placed in the last layers
may only have incoming edges. The EdgeAndLayerConstraintEdgeReverser
can help ensure this.
As its preconditions, this processor expects the graph to be layered, and vertices

to be placed in the first or last layers to have only outgoing or incoming edges.
As its postcondition, vertices may have been moved to different layers such that

all layer constraints are satisfied.
The HierarchicalPortConstraintProcessor may set layer constraints and

is thus run prior to this processor.

Long Edge Splitter

The layer assignment phase is not required to produce a layering that is proper.
If later phases require it to be, they depend on this processor, which iterates over
the graph’s layers looking for long edges. If one is found, it is split by inserting an
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edge dummy vertex. To be able to merge hyperedges later, the dummy vertex is
annotated with the original source and target ports of the long edge.
As its precondition, the processor expects the graph to be layered.
As its postcondition, the graph is properly layered.
Since the LayerConstraintProcessor modifies the layer assignment, it is run

before this processor.

North South Port Preprocessor

Part of handling northern and southern ports is the creation of appropriate bend
dummy vertices, which is what this processor does. It iterates over the graph’s
vertices, looking for those with port constraints set to at least FixedSides and
with northern or southern ports. For any it finds, it creates bend dummy vertices
as explained in Section 3.4, with proper vertex successor constraint and layout unit
information attached. The vertices are simply added to the end of the layers, leaving
the task of ordering them to the crossing reduction phase.
Self-loops involving northern or southern ports are handled as well, but it is ex-

pected that edges involving ports on two different sides either originate at a western
port, a northern port, or, if the edge goes into an eastern port, at a northern or
southern port. Ensuring this is part of the responsibility of the SelfLoopProces-
sor.
This processor only makes sense if the created bend dummy vertices are later re-

moved again and edges are reconnected to their original ports. Thus, any phase that
depends on this processor also depends on the NorthSouthPortPostprocessor.
As its preconditions, this processor expects the graph to be layered.
As its postconditions, no edges are connected to northern or southern ports any-

more, and bend dummy vertices may have been added to the graph.
Since the port order is important and self-loops involving northern or southern

ports require some preprocessing, this processor depends on the PortListSorter
and on the SelfLoopProcessor.

Port List Sorter

Oftentimes, algorithms iterate over the ports of a vertex in a certain order that
depends on the port’s side and position. Instead of having each such algorithm sort
the port lists itself, the lists are sorted by this processor. Sorting the ports only
makes sense for vertices whose port constraints are set to at least FixedOrder.
Since this may not be the case for all vertices before phase 3, this processor may
also be placed before phase 4, by which time all vertices have fixed port orders.
As its precondition, this processor expects the graph to be layered.
As its postcondition, vertices with fixed port orders have their port lists sorted by

port side and position.
This processor does not depend on other processors.
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Figure 4.2. The SelfLoopProcessor ensures that self-loops involving ports on two different sides
always go from left to right or top to bottom. This reduces the complexity of handling self-loops
by constraining them to the cases shown here.

Port Side Processor

This processor iterates over the graph’s vertices, looking for those with port con-
straints set to Free. If such a vertex is found, its ports are assigned to the western
or eastern side depending on the number of incoming and outgoing edges: if there
are more outgoing than incoming edges, a port is assigned to the eastern side; if
there are at least as many incoming edges as outgoing edges, it is assigned to the
western side.
As its precondition, this processor expects the graph to be layered.
As its post condition, all vertices have their port constraints set to at least Fixed-

Sides.
This processor does not depend on other processors.

Self-Loop Processor

The task of handling self-loops is split between this processor and the NorthSouth-
PortPreprocessor, which phases that depend on this processor also depend on.
First, this processor ensures that self-loops involving two port sides always go from
left to right or from top to bottom by reversing self-loop edges until they conform
to the cases shown in Figure 4.2. It then looks for self-loop edges going from a
western to an eastern port and splits them up by inserting an edge dummy vertex.
Self-loops involving northern or southern ports are then left to the NorthSouth-
PortPreprocessor, while self-loops involving only eastern or only western ports
are expected to be handled by the edge router.
As its precondition, this processor expects the graph to be layered.
As its postcondition, some edges may have been reversed, and edge dummy ver-

tices may have been inserted.
Since the InvertedPortProcessor would try to process edges originating at

a western port, it is run prior to this processor and expected to leave self-loops
untouched.
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Hyperedge Dummy Merger

This processor iterates over the graph’s vertices, looking for pairs of edge dummy
vertices placed right next to each other. If they belong to two long edges coming from
the same source port or going into the same target port, the vertices are merged,
and the edge is reconnected accordingly.
As its preconditions, this processor expects the graph to be layered, vertex orders

in each layer to be fixed, and edge dummies belonging to a long edge to be annotated
with that edge’s original source and target ports.
As its postcondition, some edge dummy vertices may have been merged.
Since the vertex orders are expected to be fixed, the InLayerConstraintPro-

cessor must be run prior to this processor.

In-Layer Constraint Processor

As described in Section 3.6, northern and southern hierarchical ports are handled by
placing dummy vertices in the top and bottom regions of layers. In-layer constraints
are attached to these vertices, specifying the region in a layer the vertices are to be
placed in. Satisfying in-layer constraints is the responsibility of crossing reduction
algorithms. However, our algorithm does not yet support them and thus depends
on this processor to rearrange vertices until in-layer constraints are satisfied.
The processor iterates over the vertices in each layer, moving them to their respec-

tive regions, if necessary. The relative order of the vertices in each region remains
unchanged.
As its preconditions, this processor expects the graph to be layered, and crossing

reduction to have been applied.
As its postcondition, vertices are ordered such that in-layer constraints are satis-

fied.
This processor has no dependencies on other processors.

Port Position Processor

At some point, the exact coordinates of each port must be calculated, relative to
its vertex. While this task was previously done during vertex placement, it is now
performed by this processor. For each side of a vertex, the ports on that side are
distributed evenly.
As its preconditions, this processor expects the graph to be layered, and vertices

to have their port constraints set to at least FixedOrder.
As its postcondition, all ports have their positions calculated, and vertices have

their port constraints set to FixedPos.
This processor does not depend on other processors.
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Vertex Margin Calculator

To leave enough space around a vertex for its label, its ports, and its port labels
not to be obstructed, a bounding box is calculated for each vertex, which can be
done once its port positions are known. This processor iterates over the graph’s
vertices, calculating the bounding boxes and attaching the margin information to
each vertex. The margin is later taken into account during vertex placement and
edge routing.
As its preconditions, this processor expects the graph to be layered and port

positions to be fixed.
As its postcondition, margin information are attached to each vertex to form a

bounding box around the vertex, its label, its ports, and its port labels.
Since port positions must be fixed when this processor is run, it depends on the

PortPositionProcessor.

Hierarchical Port Dummy Size Processor

If multiple hierarchical dummy vertices representing northern or southern hierarchi-
cal ports are placed in the same layer, their x coordinate needs to be adjusted to
keep edges from overlapping later. This processor iterates over the graph’s vertices
looking for such vertices and adjusts their size accordingly. By doing that, we get
differing x coordinates since the edge routing phase centers each vertex in its layer.
This processor is tightly related to the HierarchicalPortConstraintPro-

cessor, the HierarchicalPortOrthogonalEdgeRouter, and the Hierar-
chicalPortPositionProcessor. Phases either rely on all or none of them.
As its preconditions, this processor expects the graph to be layered, vertices to

have their y coordinates set, and vertices to be ordered such that in-layer constraints
are satisfied.
As its postcondition, hierarchical dummy vertices have their widths modified so

that edges do not overlap when routing hierarchical edges using the Hierarchical-
PortOrthogonalEdgeRouter.
This processor has no dependencies on other processors.

Hierarchical Port Position Processor

The vertical position of western and eastern hierarchical dummy vertices cannot be
arbitrarily set if port constraints are set to at least FixedRatio, thus restricting the
vertex placement phase’s freedom in assigning y coordinates. However, if the vertex
placement phase does not support fixed coordinates, it depends on this processor to
fix its results. The processor iterates over all vertices, looking for hierarchical dummy
vertices that represent eastern or western hierarchical ports and whose coordinates
are fixed, correcting them if necessary.
As its precondition, this processor expects the graph to be layered.
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Figure 4.3. To route edges incident to northern hierarchical ports, two layers of vertices are created
on which the orthogonal edge routing algorithm is run. In this example, the two upper vertices are
dummy vertices originally created for hierarchical ports, while the three lower vertices are dummy
vertices created in their stead.

As its postcondition, all hierarchical dummy vertices that represent eastern or
western hierarchical ports have valid coordinates.
This processor has no dependencies on other processors.

Hierarchical Port Orthogonal Edge Router

To keep the edge routing phase as simple as possible, routing edges between hier-
archical ports and their dummy vertices is done in a separate processor. Producing
the routing takes five steps.
The first step restores the original hierarchical dummy vertices created for north-

ern and southern ports while importing the graph. These vertices are viewed as
representing the hierarchical ports, and the vertices created in their stead are con-
nected to them. As Figure 4.3 shows, the vertices form two layers to route the edges
between.
The second step calculates the coordinates for the original dummy vertices, thus

determining where the hierarchical ports will later be placed. The y coordinates may
not be final since the routing of edges to northern or southern hierarchical ports may
change the graph’s height.
The third step routes the edges between the original dummy vertices and the

dummy vertices created in their stead, using the algorithm proposed by Sander that
is also used by the orthogonal edge routing implementation [25].
The fourth step removes the dummy vertices that replaced the original dummy

vertices, joining incident edges and adding appropriate bend points.
The fifth and final step does some final coordinate calculations. The routing of

edges connected to northern and southern ports adds some height to the graph,
thereby invalidating the previously calculated coordinates for hierarchical dummy
vertices that represent eastern and western ports if port constraints are set to Fixed-
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Ratio. This step performs necessary corrections, but usually introduces additional
bend points in the process.
This processor is tightly related to the HierarchicalPortConstraintProces-

sor, the HierarchicalPortDummySizeProcessor, and the Hierarchical-
PortPositionProcessor. Phases either rely on all or none of them.
As its preconditions, this processor expects the graph to be layered, vertices to

have x and y coordinates assigned, and bend points of all non-hierarchical edges to
be set.
As its postconditions, all hierarchical dummy vertices now map onto actual hier-

archical ports again, their coordinates specifying the final coordinates of the ports.
Also, hierarchical edges have their bend points set.
This processor has no dependencies on other processors.

Long Edge Joiner

This processor removes edge dummy vertices inserted during the execution of the
algorithm, joining their incident edges. Edge dummy vertices primarily stem from
long edge splitting, but need not be. In fact, inverted port handling uses edge
dummy vertices as part of the process because the way they are removed and their
incident edges are joined is exactly what is required.
Any phase with a dependency on the LongEdgeSplitter also depends on the

LongEdgeJoiner, as does any phase inserting edge dummy vertices or depending
on another processor that inserts them.
As its preconditions, this processor expects the graph to be layered, the vertices

to have proper x and y coordinates, and the edges to have all their bend points set.
As its postconditions, the graph does not contain any edge dummy vertices any-

more, and the graph may not be properly layered anymore.
The HierarchicalPortOrthogonalEdgeRouter is run prior to this proces-

sor since it adds bend points to edges.

North South Port Postprocessor

This processor iterates over the graph’s vertices, looking for bend dummy vertices
created for northern or southern ports. If it finds one, its incident edges are recon-
nected to their original port, and a bend point is added at the port’s x coordinate
and the dummy vertex’s y coordinate. This works best with orthogonal edge routing
algorithms.
If a phase depends on the NorthSouthPortPreprocessor, it also depends on

this processor.
As its preconditions, this processor expects the graph to be layered, vertices to

have x and y coordinates, port positions to be fixed, and bend points of edges to be
set.
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Phase Dependencies

Cycle removal ReversedEdgeRestorer

Layer assignment EdgeAndLayerConstraintEdgeReverser
LayerConstraintProcessor

Crossing reduction InLayerConstraintProcessor
LongEdgeJoiner
LongEdgeSplitter
PortListSorter (before crossing reduction)
PortSideProcessor

Vertex placement PortPositionProcessor
VertexMarginCalculator

Orthogonal edge routing VertexMarginCalculator

Table 4.2. Basic list of dependencies of each phase on intermediate processors. The only edge
routing implementation with dependencies is the orthogonal edge router. Depending on the graph’s
features, it may have additional dependencies shown in Table 4.3.

As its postconditions, the graph does not contain any bend dummy vertices any-
more, and edges incident to northern and southern ports have their bend points
properly set.
This processor does not depend on other processors.

Reversed Edge Restorer

The cycle removal phase removes cycles by reversing edges until the graph is acyclic,
marking the edges as having been reversed. This processor iterates over all edges,
restoring reversed edges to their original direction.
As its precondition, the processor expects the graph to be layered.
As its postcondition, the graph does not contain any reversed edges anymore. As

a corollary, it may also not be acyclic anymore and may contain cycles again.
This processor has no dependencies on other processors.

I 4.3 A Problem-Oriented View

It is now time to take a step back from the details to look at how they work together
to implement the concepts described in Chapter 3. We start by getting an overview
of the algorithm at its most basic form. Table 4.2 lists all dependencies the different
phases have on intermediate processors independent of the graph’s features.

The Algorithm in Its Most Basic Form

The first step usually consists of the EdgeAndLayerConstraintEdgeReverser
reversing edges such that a valid layering can be produced in the presence of layer
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constraints. Only then can the cycle removal phase make the graph acyclic: reversing
edges may already have removed some of them.
Next up is the layer assignment phase, which produces a layering that may or may

not adhere to layer constraints set on vertices. To take care of that, the Layer-
ConstraintProcessor looks for violated constraints and moves affected vertices
accordingly. Once the layer assignment is final, the LongEdgeSplitter inserts
edge dummy vertices to turn the layering into a proper layering. The PortSide-
Processor then makes sure that every vertex has its port constraints set to at
least FixedSides, and the PortListSorter takes care of sorting port lists, which
is important for the barycenter method of crossing reduction.
With port lists sorted, the crossing reduction phase can be run. Since our imple-

mentation does not respect in-layer constraints yet, the InLayerConstraintPro-
cessor makes sure they are satisfied, followed by the PortPositionProcessor,
which calculates final port positions, and the VertexMarginCalculator, which
calculates the margin to be left around vertices.
The vertex placement phase then assigns y coordinates to all vertices, and the or-

thogonal edge routing phase calculates a routing for all edges as well as x coordinates
for all vertices.
To wrap things up, the LongEdgeJoiner removes all edge dummy vertices and

the ReversedEdgeRestorer restores reversed edges to their original direction.

Advanced Algorithm Configurations

Support for hyperedges, inverted ports, northern and southern ports, and hierarchy
is largely a matter of edge routing. The orthogonal edge router implemented in KLay
Layered supports all of these, but needs additional intermediate processors to do so,
as does the vertex placement implementation to support hierarchy. For performance
reasons, adding dependencies on these processors is subject to the graph actually
requiring them. Table 4.3 lists the additional dependencies by graph features, and
through the rest of this chapter we look at each one of them.
The existence of hyperedges depends on whether or not there are ports in the

graph with multiple incident edges. If there are, the HyperedgeDummyMerger
processor is inserted before phase four to merge edge dummy vertices.
Once vertices with port constraints set to something other than Free are present

in the graph, it may contain inverted ports. However, there is one other condition
that, if met, can lead to inverted ports even though all port constraints are set to
Free. Let p ∈ P be a port with one incident edge e ∈ E, attached to a vertex
with port constraints set to Free. If e is incoming, p is placed on the western
side; if e is outgoing, p is placed on the eastern side. If the cycle removal phase
decides to reverse e, the placement of p changes accordingly, but does not become
an inverted port. Now suppose that p has n > 3 incident edges e1, . . . , en, all of
them incoming and thereby placing p on the western side. If the cycle removal
phase decides to reverse one of the incoming edges, p is still placed on the western
side, but has an outgoing edge now, making it an inverted port even though port
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Graph Feature Additional Dependencies

Ports with multiple incident
edges

HyperedgeDummyMerger

Non-free port constraints or
ports with multiple incident
edges

InvertedPortProcessor

Northern / southern ports NorthSouthPortPostprocessor
NorthSouthPortPreprocessor

Hierarchy HierarchicalPortConstraintProcessor
HierarchicalPortDummySizeProcessor
HierarchicalPortOrthogonalEdgeRouter
HierarchicalPortPositionProcessor

Table 4.3. The algorithm supports port constraints and hierarchy, but needs the help of several
intermediate processors to do so. Depending on whether a graph exhibits a certain feature or not,
it specifies dependencies to additional intermediate processors.

constraints are set to Free. Thus, if there is a port with multiple incident edges,
this may also lead to inverted ports. If at least one of these two conditions is met,
the InvertedPortProcessor is inserted before the crossing reduction phase to
add the required edge dummy vertices. The LongEdgeJoiner later removes the
created edge dummy vertices.
Contrary to inverted ports, the presence of northern and southern ports requires

vertices with port constraints set to at least FixedSides, and with ports already
placed at the northern or southern side (the algorithm will never decide to place a
port on something other than the eastern or western side if it is not already there). If
a vertex with such ports is found, the NorthSouthPortPreprocessor is inserted
before the crossing reduction phase and the NorthSouthPortPostprocessor is
inserted after the edge routing phase. The preprocessor creates the necessary bend
dummy vertices, allowing the crossing reduction phase to determine their order.
After edges are properly routed, the postprocessor removes the dummy vertices and
adds the required bend points to their incident edges.
With hierarchical ports present, a dummy vertex is created for each port when im-

porting the graph. However, as we saw in Section 3.6, this may not be enough. The
HierarchicalPortConstraintProcessor, inserted before the crossing reduc-
tion phase, takes care of setting appropriate vertex successor and in-layer constraints,
and replaces the dummy vertices created for northern and southern hierarchical
ports, if necessary. Once the vertex orders and y positions are set, the Hierar-
chicalPortDummySizeProcessor, inserted before the edge routing phase, takes
care of resizing hierarchical dummy vertices created for northern and southern ports
to keep edges from overlapping later. With port constraints set to at least Fixed-
Ratio, the y coordinates of hierarchical dummy vertices that represent eastern or
western hierarchical ports are fixed; the HierarchicalPortPositionProcessor
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adjusts the y coordinate of hierarchical dummy vertices if the vertex placement
phase did not respect these fixed coordinates. After all of the non-hierarchical edge
routing is finished, the HierarchicalPortOrthogonalEdgeRouter, inserted
after the edge routing phase, takes care of routing the edges incident to hierarchical
ports, and of calculating the final positions of hierarchical ports.
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5

Evaluation

The Enrichment Center promises to always provide a safe testing
environment. In dangerous testing environments, the Enrichment
Center promises to always provide useful advice. For instance, the
floor here will kill you. Try to avoid it.

— GLaDOS, Portal

In this chapter, we take a look at the quality of layouts produced by KLay Layered
as well as at its performance. We start by getting a feel for how we can judge the
quality of layouts and go on to describe the kinds of diagrams used for the evaluation.
Since we make use of diagrams shipped with Ptolemy, we then see how these are
imported into our own data format. The chapter closes with a description of the
evaluation process and finally the evaluation results.

I 5.1 Judging the Quality of Layouts

Talking about the quality of a diagram’s layout is inherently hard: opinions about
what constitutes a good layout differ from one person to the next. When we talk
about the quality of a layout then, the discussion is prone to drift into unscientific
subjectivity, which is not how we can arrive at meaningful statements about layout
algorithms. Rather, we have to try and strive for some objective aesthetics criteria
which we can agree have some significance with regard to layout quality.
As it turns out, finding such criteria is not very hard, and indeed we have already

been introduced to two of them very early on: the requirement of data flow diagrams
to have the vast majority of edges pointing in the same direction, and the requirement
of vertices to not overlap each other. We can easily think of further criteria that
influence the readability of a diagram, such as the number of edge crossings or the
number of edge bends. Di Battista et al. list the following aesthetics criteria [4]:
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• The number of crossings should be minimized, since it gets progressively harder
to follow an edge with more other edges crossing it. Ware et al. suspected the
crossing angle to be of some significance, but could not find much evidence
in support of this [31]; since our algorithm routes edges orthogonally, there is
only one possible crossing angle anyway.

• The number of bends should be minimized as it is easier to follow a straight
line than a bent line.

• The sum of edge lengths and the maximum edge length should be minimized
as it is easier to see where edges go if they are short.

• The area of the drawing should be minimized to keep the diagram compact
for the user to be able to see as much of it as possible at a glance. Some
applications require diagrams to fit onto a single printed page, but that is
outside the scope of this work.

• The smallest angle between two edges incident on the same vertex should be
maximized to keep the user from confusing edges. This criterion does not
apply to orthogonal layout algorithms such as KLay Layered.

• The aspect ratio of the drawing should approach popular screen aspect ratios.
That, too, is outside the scope of this work.

• Symmetry in the graph should be reflected in the drawing. Defining symmetry
and finding symmetrical areas in a graph is a very hard problem and has not
yet been considered in KLay Layered.

A number of additional aesthetics criteria have been suggested that vary in their
applicability to our domain, among them the following:

• Related vertices should be clustered to emphasize their relationship, as pro-
posed for instance by Taylor and Rodgers [30]. This hardly applies to data
flow diagrams because it is in direct conflict with the layered approach.

• As Purchase suggests, vertices should be placed along the intersections of a
two-dimensional grid to align and separate them [21]. The layered approach
already places vertices below one another, but does not necessarily place them
along horizontal lines.

Bennett et al. give a comprehensive overview of further aesthetics criteria not rele-
vant to our application [2].
Layout algorithms cannot place equal emphasis on all aesthetics criteria since they

often contradict one another. For instance, keeping the number of edge bends low is
easy if edges are allowed to cross vertices (just place all vertices next to each other
along a horizontal line), and keeping the diagram’s size small is easy if the number
of edge crossings and edge bends is not important. Research looking into how much

70



5.1 Judging the Quality of Layouts

the different criteria contribute to the understanding of diagrams can help guide the
choice of which criteria to emphasize. Such research is usually done in the form of
studies in which test subjects are given different graphs drawn according to different
aesthetics criteria. The test subjects are then asked to either rate how pleasing
the layout is, or to do certain tasks as fast as possible. It can be argued that the
results of these studies are not very significant because it is difficult to produce two
drawings of the same graph that only differ in one or two aesthetics criteria, but for
now it is the best data there is.
Purchase et al. have found edge crossings, edge bends, and symmetry to be the

most important criteria [22]. However, they have also found the relative importance
of different criteria to depend on the diagram’s domain: the criteria important
to the understanding of class diagrams differ from the criteria important to the
understanding of data flow diagrams. There have been no studies specific to data
flow diagrams yet.

Layout Metrics

To use an aesthetics criterion for the evaluation of a layout algorithm, we cannot just
look at diagrams and subjectively rate them with regard to the criterion; instead,
we have to be able to measure it objectively. Furthermore, it has to be clear what
exactly we are measuring. If, for instance, we talk about the number of edge bends,
we have to decide beforehand if we mean the total number of bends, the average
number of bends per edge, the minimum number of bends per edge, or the maximum
number of bends per edge. A clearly defined measurement for an aesthetics criterion
is called a layout metric.
Helen Purchase has proposed a number of definitions for different layout metrics,

all normalized to values between 0 and 1 [21]. However, this kind of scaling is not
necessary for our evaluation. Taking the number of edge crossings as an example,
a metric value of 1 would mean that the algorithm produced no crossings at all
while a value of 0 would mean that the algorithm reached a calculated upper bound
for crossings of the given graph. Such upper bounds though are only given for
straight-line drawings, not for orthogonal drawings. Since we only want to compare
the performance of KLay Layered and KLoDD, we avoid searching for new upper
bounds and simply compare the absolute numbers.
For our evaluation, we finally settled on the following layout metrics, with a few

hypotheses as to the results we expected:

• The number of edge crossings. While this metric is straightforward for dia-
grams whose edge segments do not overlap, there is one problem to be aware
of with diagrams whose edges are routed orthogonally. Figure 5.1a has an ex-
ample of a case where an edge crosses two other edges, causing two crossings.
However, the two edges overlap, causing the viewer to only see one crossing.
In our metric, we count the number of crossings as a viewer would see them.
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e0

e1

e2

(a) When counting crossings, a naive approach
will usually count more crossings than a human
viewer would see. In this case, e0 crosses both
e1 and e2, while when viewing the diagram we
only see one crossing. Our metric would return
one crossing for this diagram.

(b) When counting bend points, simply sum-
ming up all the bend points of all edges usually
gives results that are too high. In this case,
bend points that would be counted more than
once are circled. The naive approach would
count 12 bend points while our metric would
count 10, as a viewer would.

Figure 5.1. Counting the number of crossings and bends poses problems when diagrams are drawn
orthogonally.

Since we have put some emphasis on reducing the number of edge bends, we
expected that this might come with a higher number of crossings. We thus
expected KLay Layered to fair slightly worse in this metric than KLoDD.

• The number of edge bends. This metric poses a similar problem as the crossings
metric, as Figure 5.1b shows. Here, too, we settle on the number of bends as
perceived by a viewer as opposed to the sum of bends of all edges.
Due to our work on linear segments, we expected KLay Layered to produce
less edge bends than KLoDD.

• The area occupied by the diagram, defined as the product of its height and
width.
The edge spacing factor we introduced works towards making diagrams more
compact. We thus expected KLay Layered to produce smaller diagrams than
KLoDD.

• The diagram’s aspect ratio, defined as its width divided by its height.
We did not have any hypothesis for the results of this metric.
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• The coverage of the diagram, defined as the ratio of the diagram’s area that is
covered by vertices and by areas where vertices cannot be placed. This metric
gives an indication as to how well an algorithm makes use of available space.
Since we expected KLay Layered to produce smaller diagrams than KLoDD,
we also expected the coverage to be higher.

• The average and maximum edge length. Measuring this is straightforward.
Since we expected KLay Layered to produce smaller diagrams than KLoDD,
we also expected the average edge length to be smaller. We did not have any
hypothesis concerning the maximum edge length.

• The number of feedback edges. Since our algorithms lay out data flow diagrams
from left to right, the number of edges whose end point lies left of the start
point is the number of feedback edges.
We expected both algorithms to be similar concerning this metric.

• The number of layers. Defining this for different levels of hierarchy can be
hard. We use a simple metric that returns the sum of the number of layers of
each level of hierarchy.
We expected both algorithms to be similar concerning this metric.

I 5.2 Finding Adequate Models

To evaluate the quality of the layouts generated by our algorithms, we of course
need diagrams to evaluate them with. We make use of three sets of diagrams.
The first set consists of 540 randomly created diagrams with 10 to 50 vertices each

and a maximum of between one and three outgoing edges per vertex. Port sides are
chosen randomly: input ports are usually placed on the western side and output
ports on the eastern side. This is switched around with a probability of 5%, and
each port has a 25% chance of being assigned to the northern or southern side. The
diagrams contain only one level of hierarchy.
For the remaining sets of diagrams, we focus on real-world diagrams. The second

set therefore consists of a selection of 43 data flow diagrams which we obtained from
an industry partner and were originally created with a function development tool
for Electronic Control Units (ECUs). Each diagram contains one level of hierarchy
and between 4 and 44 vertices. There are only a small amount of cycles, but almost
every diagram has at least one vertex with northern or southern ports, usually more.
The third set consists of a selection of diagrams taken from the repository of ex-

amples that is shipped with the Ptolemy tool. We imported a selection of 141 models
into our own data format, stripped of any annotation vertices because KLoDD does
not support them. While the demo repository contains a lot more diagrams, we
selected only those that imported correctly and that did not contain any but the
simplest modal models. Contrary to the two other sets of diagrams, the Ptolemy
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Random ECU Ptolemy

Diagrams 540 43 141
Vertices 10–50 (30) 4–44 (15.67) 4–81 (16.28)
Compound vertices 1–10 (2.1)
Compound vertex children 1–43 (8.98)
Vertex degree 1–11 (3) 0–9 (1.77) 0–14 (1.66)
Edges 10–104 (45.01) 2–36 (14.42) 1–106 (15.39)
Self-loops 0–4 (0.09)
Connected components 1–5 (1.17) 1–11 (2.28) 2–19 (5.14)

Table 5.1. Properties of the three sets of diagrams used for the evaluation. Number ranges give the
minimum and maximum, with the average value enclosed in parentheses.

diagrams usually contain multiple levels of hierarchy, with one hierarchical vertex
averaging 8.98 child vertices, up to a maximum of 43. Importing the Ptolemy models
was done using a transformation script the development of which is the topic of the
next section.
Table 5.1 has some more details on the three sets of diagrams.
Both, KLoDD and KLay Layered, are primarily designed for the layout of data

flow diagrams. Even though we have taken certain measures to generate the random
diagrams to bear some similarity to data flow diagrams, they differ a lot from real-
world diagrams. The analysis results obtained from random diagrams are thus less
significant than the results obtained from the other two sets of diagrams.
The same reason also prevents us from using one of the popular graph libraries

often used to evaluate layout algorithms, such as the Rome graph library [6] and the
North or AT&T graph library [5].
For the performance evaluation, we use random diagrams generated at runtime.

Section 5.4 contains details about this process.

I 5.3 Transforming Ptolemy Models

Ptolemy models are saved in the Modeling Markup Language (MoML) format, an
XML-based format specifically designed for actor-based models. To use these dia-
grams for the quality evaluation, the KIELER tool has to be able to open them. Since
there is no direct support for the MoML format yet, the Ptolemy models need to be
imported into the actor-oriented model format supported by the KIELER tool, the
KIELER Actor Oriented Modeling (KAOM) file format. This format is also based
on XML, which makes the problem of importing MoML files one of transforming
them from one XML-based format into another.
The KAOM file format is specified by a meta model that defines the kinds of

objects a KAOM model can contain and how they can be put together. Figure 5.2
shows the different kinds of objects and their relationships: entities have ports, links
connect linkable objects, and relations model hyperedges, as they do in Ptolemy. The
meta model is specified using the Eclipse Modeling Framework (EMF), a popular
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Figure 5.2. The KAOM meta model specifies the types of objects KAOM models may be composed
of. Entities describe the actors in a model and may have ports while relations model hyperedges,
as they do in Ptolemy. Links connect entities, ports, and relations.

Eclipse framework for specifying such meta models. EMF meta models can be used
to automatically build graphical editors or to save models to and load them from
XML-based files. Or, more important to the task at hand, to write transformations
that turn a model based on another EMF meta model into one based on the KAOM
meta model.
One framework for writing such transformations is called Xtend. It provides a

functional language to traverse the object tree of a model, and to generate another
model along the way.
Ptolemy is not based on the Eclipse platform, so the development team does not

provide an EMF meta model for the MoML format. Luckily, the KIELER tool
contains a basic MoML meta model imported from a Document Type Definition
(DTD) document describing the MoML format. While the meta model is incomplete,
it is sufficient for our requirements. A basic Xtend transformation was already
available, but had to be improved and made easily available to the user.

Improving the Transformation

The most profound difference between MoML models and KAOM models is the way
they represent edges. In KAOM models, edges are directed and always connect two
ports. In MoML models, edges are undirected and connect a port with a relation,
which is nothing more but a special object used to model hyperedges (all ports
connected to a relation are interpreted as being connected directly to one another
by the same hyperedge). Ports cannot be connected directly to each other: even if
only two ports are to be connected, this still requires two edges and a relation, even
though Ptolemy’s graph editor will usually hide this from the user.
If edges are undirected in MoML models, but directed in KAOM models, we need

some way to infer their direction during the transformation. We do this in two steps:
the first step tries to annotate imported ports with information about whether they
are input or output ports; the second step then iterates over all edges, trying to infer
their direction.
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To get our hands on port type information, we use the following method. When
we encounter an actor, we ask a Ptolemy library included in the KIELER tool to
instantiate it for us. However, the library only contains a subset of all available
Ptolemy actors; even worse, models may define their own actors as compositions of
existing actors, which the library may not be able to instantiate. If we are lucky,
the library is successful and we can ask the instantiated actor for information about
its ports. If not, we must do without explicit information.
To infer edge directions, we repeatedly iterate over the model. If we find an edge

whose direction has not been inferred yet connected to a port with known port type,
we set its direction accordingly. If we find an edge whose direction has already been
inferred connected to a port of unknown type, we set its direction accordingly. If
we do not find any of these but still have ports of unknown type left, we choose a
port’s type randomly and repeat the process. We are finished once all port types
and edge directions have been set.
It is important to understand that this method is only a heuristic which may, and

does, fail. However, the results are good enough for the imported models to be used
to test our layout algorithms.
After all actors, ports, edges, and relations are transformed and edge directions

inferred, we traverse the model again looking for relations that connect only two
ports. These relations are replaced by single edges, since the KAOM meta model
allows edges to directly connect two ports. Furthermore, each Ptolemy model con-
tains a director that specifies the model of computation to be used. The director is
not an actor, but rather specified as an annotation to the model. Since the KIELER
tool does not display annotations in a diagram, we convert such director annotations
to actors.
Finally, Ptolemy models can also contain comments that are usually used to ex-

plain what a model does and who developed it. These comments can contain format-
ting such as font sizes and colors, and are saved in the MoML model as embedded
Scalable Vector Graphics (SVG) code. Since this is not part of the MoML meta
model, the Xtend parser panics when it encounters SVG code and saves it in a list
of unknown elements. We iterate over this list after the transformation itself is fin-
ished, looking for such SVG elements. If we find one that could define a comment,
we add it to the KAOM model, stripped of all formatting which the KIELER tool
does not support. Since the representation of comments may differ from model to
model, this method does not always work. But again, it works well enough for our
purposes.

Making the Transformation Available to the User

The Eclipse platform already specifies a mechanism for presenting import function-
ality to the user: import wizards, available under an “Import. . . ” menu item. The
import wizard created to import Ptolemy models consists of two steps, shown in
Figure 5.3.
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(a) During the first step, the user is asked for
general information about the import process.

(b) During the second step, the user selects the
models to import, and the location to import
them to.

Figure 5.3. The Ptolemy import functionality is made available to the user as an import wizard, a
standard mechanism specified by the Eclipse platform. The wizard has two steps.

The first step asks the user whether to import the model from the local workspace
or from the file system, whether to overwrite existing models without further notice,
and whether diagrams should automatically be created for the imported models.
The second step allows the user to specify the models to be imported, and the

location in the workspace where the imported models are to be saved.
Any warnings or errors thrown during the import process are added to the error

log, a standard facility provided by the Eclipse platform.

I 5.4 The Evaluation Process

We evaluate both, the quality of layouts generated by our algorithms, and their
performance. In this section, we take a look at some of the details of the evaluation
process before finally getting to the evaluation results in the next section.

Evaluating the Quality of Layouts

The quality evaluations are performed in the KIELER tool for which Martin Rieß
has developed a graph analysis framework as part of his bachelor thesis [23]. All
the metrics used for the evaluation are implemented as analyses for this framework.
Since evaluating hundreds of models manually is not feasible, Rieß also developed
a batch analysis tool to automate the process. The results are written into text
files that can be easily parsed, processed, and turned into pretty diagrams with a
spreadsheet program.
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Setting KLay Layered KLoDD

Border spacing 20.0 20.0
Edge spacing factor 0.5
Separate connected components yes
Spacing 20.0 20.0
Thoroughness 100

Table 5.2. The settings used during the quality evaluation. Only the spacing and border spacing
settings are provided by KLoDD.

Most of the metrics are straightforward to implement. However, the crossings
and bends analyses have to be given some thought. To count crossings as described
previously, we developed an algorithm that iterates over all edges, building a set of
edge segments. All segments overlapping each other are then joined. Finally, the
remaining segments are checked for crossings, which are only counted if the cross
point does not happen to be and end point of one or more of the involved segments.
To count the number of bend points, we developed an algorithm that iterates over

all edges, adding the discovered bend points to a hash set. The hash is computed
from the coordinates of the bend points, thereby ensuring that multiple bend points
at the same position are only added to the set once. The number of elements in the
set is the number of bend points returned by the algorithm.
The analysis process has one disadvantage that comes into play with hierarchical

diagrams. While both KLay Layered and KLoDD lay out each level of hierarchy
separately, the analysis framework analyses all levels of hierarchy together. This
means that when a hierarchical diagram is reported to have 80 vertices, the lay-
out algorithms will usually only have been invoked on smaller subsets. This has
to be taken account when interpreting the analysis results obtained from Ptolemy
diagrams.
Both KLay Layered and KLoDD provide a number of settings to the user, all of

which are left to their default values. The more important of these are given in
Table 5.2. For KLay Layered, the network simplex algorithm is used in the layer
assignment phase, and the orthogonal edge routing algorithm is used in the edge
routing phase.

Evaluating the Performance of Algorithms

To evaluate the performance of our algorithms, we cannot simply press a layout
button in the KIELER tool and measure the time it takes until the result is shown
in the editor: a large part of that time is not due to the algorithm’s performance,
but rather has to be attributed to the task of showing the diagram to the user. We
thus use a simple command-line program that measures only the time it takes for
the algorithm to produce a result.
The tool generates random graphs for the algorithms to lay out. The graphs

are generated in much the same way as the random graphs used for the quality
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evaluation: the number of outgoing edges is configurable, with the same probabilities
of ports being inverted or placed on the northern or southern side. The diagrams
could contain self-loops.
We use the tool for two different evaluations. For the first evaluation, we have the

number of vertices fixed at 100 and make sure that each vertex has the same number
of outgoing edges. We then run a number of tests with between 0 and 15 outgoing
edges per vertex. For the second evaluation, we allow the number of outgoing edges
per vertex to vary between 0 and 2. We then run a number of tests with between
10 and 10, 000 vertices.
For each of these tests, 10 different graphs are created for each graph size. The

algorithms are run five times on each graph, with only the fastest run being recorded.
The results are then averaged to arrive at a performance measurement for each graph
size.
One thing to note is that the two algorithms are not run on the same graphs. In-

stead, new random graphs are created. This does not invalidate the results, however,
due to the amount of graphs created per graph size and the averaged results.
The implementations of the different phases in KLay Layered are usually more

expensive in terms of expected runtime performance than those in KLoDD. In
particular, the network simplex algorithm for layer assignment used in KLay Layered
is much more complex than the algorithm used in KLoDD. To make the two a little
more comparable, we make KLay Layered use its longest path layer assignment
algorithm. Other than that, all of the algorithm options are left to their default
values.
For the performance evaluation, we expected KLay Layered to be slower than

KLoDD. The architecture results in a much higher number of iterations over the
graph, and the algorithms implemented are more complex. In addition, KLay Lay-
ered uses much more dummy vertices, making iterations over the graph more time-
consuming.

I 5.5 Evaluation Results

Before diving into the numbers, we take a look at two example diagrams. Figure 5.4
shows the layouts KLoDD and KLay Layered produce for one of the random dia-
grams. Both algorithms get away without any crossings, but while KLoDD produces
25 bends, KLay Layered only produces 17. For the cost of an additional layer, KLay
Layered manages to keep the maximum number of vertices per layer at 3, one less
than KLoDD. This makes the layout more compact, but a little wider. The diagram
also shows some of the shortcomings still present with KLay Layered. First, looking
at Figure 5.4b, N1 and N4 could well be placed in the same layer since the edge con-
necting the two connects two ports on the same side. Second, the edge between N2

and N9 has two obviously unnecessary bend points that could have been avoided by
placing N7 and N2 a little lower. This is a problem of the vertex placement phase, the
improvement of which was not part of this thesis. And third, while KLoDD reverses
the edge between N4 and N1, KLay Layered reverses the edge between N1 and N5,
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(a) The layout produced by KLoDD. (b) The layout produced by KLay Layered.

Figure 5.4. An example of the random diagrams, laid out with both KLoDD and KLay Layered.

requiring the edge to be routed around N5. Preferring to reverse feedback edges that
go into eastern ports would make routing the edge around its target vertex—and
thereby introducing further bend points—unnecessary.
Figure 5.5 shows the layouts KLoDD and KLay Layered produce for one of

the Ptolemy diagrams. Again, KLay Layered produces only 15 bend points while
KLoDD produces 29. Due to the port configuration of the BooleanSelect operator,
crossings cannot be avoided. KLay Layered fairs slightly better in this regard, pro-
ducing only 1 compared to KLoDD’s 3. Also, the layout produced by KLay Layered
is slightly less wide than the one produced by KLoDD, at the cost of being a little
higher. As noted before, readability is a term that is very hard to define; neverthe-
less, comparing the two diagrams we can certainly say that KLay Layered managed
to produce a layout that is a lot easier to read. Probably, this is mainly due to the
clear layout of the feedback loop, and to the low number of bend points, especially
when it comes to the edges going into southern ports. Still, the layout produced
by KLay Layered could have been even better. By placing BooleanSwitch2 a little
higher, the edge that connects it with Ramp could have been drawn as a straight line.
Even worse, the edge that connects StackCounter with BooleanSelect would only have
to have one bend point.
Now that we have seen two examples, it is time to move on to the evaluation’s

results.
During the development of KLay Layered, some emphasis was put on keeping

the number of edge bends low. This is especially evident in the inclusion of bend
dummy vertices into linear segments during vertex placement. We thus expected
that the number of crossings produced by KLay Layered would be slightly higher
than the number of crossings produced by KLoDD. As Figure 5.6 shows, this is
only true for the random diagrams and the ECU diagrams—and even here KLay
Layered fairs slightly better then KLoDD for very small diagrams. However, KLay
Layered produces almost consistently better results for the Ptolemy set of diagrams.
As noted previously, this may be because larger Ptolemy diagrams are hierarchically
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(a) The layout produced by KLoDD.

(b) The layout produced by KLay Layered.

Figure 5.5. An example of the Ptolemy diagrams, laid out with both KLoDD and KLay Layered.

composed of smaller diagrams, which would support the results obtained from the
random diagrams and ECU diagrams.
The analysis results concerning the number of bends was less mixed, with KLay

Layered almost always producing better results than KLoDD. This is not surpris-
ing: the impact of including bend dummy vertices into linear segments has already
been mentioned, and dropping the KLoDD method of vertex-local edge routing also
removes a lot of unnecessary bend points.
As far as the average edge lengths are concerned, we expected the work done to

reduce the spacing between edges and to optimize the edge routing between layers
to reduce them somewhat. However, we did not expect the difference to be as
large as the results show them to be. As Figure 5.8 shows, KLay Layered produces
considerably shorter edges than KLoDD. As we will see, this also has an impact on
both, diagram size and aspect ratio.
Further analysis results are summarized in Table 5.3. For most of these, no signif-

icant differences can be made out between the two algorithms, which is as expected
for the most part. The maximum edge length produced is usually lower in diagrams
laid out using KLay Layered, with the notable exception of the ECU diagrams. It
is not clear why that is the case, but could be due to the fact that the average
number of layers is higher for these diagrams as well. As already mentioned, KLay
Layered produces significantly smaller diagrams, except for the Ptolemy set of dia-
grams. This might be due to the fact that KLay Layered uses more spacing than
KLoDD when it comes to hierarchical vertices. Finally, the aspect ratio analysis
shows that KLay Layered produces narrower diagrams than KLoDD. We attribute
that to the already mentioned work done to reduce the edge spacing and the edge
routing between layers.
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(a) Random diagrams.

(b) ECU diagrams. (c) Ptolemy diagrams.

Figure 5.6. The number of edge crossings produced. Solid lines show the results for KLay Layered,
dashed lines show the results for KLoDD. Thick lines are trend lines while thin lines show the
original data.

Random ECU Ptolemy

Max. edge length 1405.57 / 1760.49 289.6 / 136.6 639.12 / 651.51
Feedback edges 5.1 / 5.18 0.35 / 0.35 0.56 / 0.55
Layers 11.38 / 11.3 7.02 / 5.98 10.13 / 9.58
Area 1,013,411 / 1,506,124 209,620 / 222,508 782,124 / 682,582
Aspect ratio 1.9 / 2.31 2.66 / 2.99 2.4 / 3
Coverage 0.11 / 0.08 0.21 / 0.2 0.28 / 0.33

Table 5.3. Further results of the evaluation. The numbers are averaged, with the first number giving
the result for KLay Layered and the second number giving the result for KLoDD.

As already hinted at in Section 3.11, including barycenter associates during cross-
ing reduction did not have much of an impact. Besides not including them, we
ran experiments with a barycenter associate factor of 0.5 and 1.0. For ECU and
Ptolemy diagrams, the difference in edge crossings produced lay between 0 and 3.
Differences were only significant for the set of random diagrams, with between 0 and
170 crossings. However, with all sets of diagrams the factor that produced the best
results differed: what would produce good results for one diagram did not necessarily
produce good results for another diagram.
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(a) Random diagrams.

(b) ECU diagrams. (c) Ptolemy diagrams.

Figure 5.7. The number of edge bends produced. Solid lines show the results for KLay Layered,
dashed lines show the results for KLoDD. Thick lines are trend lines while thin lines show the
original data.

The results of the performance analysis were somewhat surprising. While we
expected KLay Layered to perform worse in this experiment than KLoDD, the
experimental results prove this hypothesis at least partly wrong. Figure 5.9a shows
the results for a fixed number of vertices and a variable number of outgoing edges
per vertex. Up to about three outgoing vertices, KLay Layered is about as fast as
KLoDD. For more than three, the performance of KLay Layered skyrockets out
of the realms of usability. However, the results for a fixed range of outgoing edges
per vertex and a variable number of vertices, as shown in Figure 5.9b, tells another
story. Here, KLay Layered still performs slightly worse than KLoDD for diagrams
up to about 2, 000 vertices, but is a lot faster for larger diagrams.
As Table 5.1 indicates, reasonable diagrams usually stay below 100 vertices, and

average less than 2 incident edges per vertex. For these, KLay Layered is indeed
slower than KLoDD, but not as much as we feared. Also, KLay Layered seems to
be much more sensitive to higher numbers of edges than KLoDD, while the reverse
is true for higher numbers of vertices. This may be due to the fact that a higher
number of edges in our test sets also means a higher number of inverted, northern,
and southern ports. While KLoDD handles these cases without introducing dummy
vertices, KLay Layered makes heavy use of them, which may explain its sensitivity
to the number of edges.
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(a) Random diagrams.

(b) ECU diagrams. (c) Ptolemy diagrams.

Figure 5.8. The average edge lengths produced. Solid lines show the results for KLay Layered,
dashed lines show the results for KLoDD. Thick lines are trend lines while thin lines show the
original data.

(a) Fixed number of vertices, variable number
of outgoing edges per vertex.

(b) Fixed range of outgoing edges per vertex,
variable number of vertices.

Figure 5.9. Results of the performance evaluation. The solid line shows the results for KLay Layered,
the dashed line shows the results for KLoDD.
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Conclusion

This was a triumph. I’m making a note here, “Huge Success!”
— GLaDOS, Portal

In the final chapter we take a last summarizing look at the concepts introduced in
this thesis. It closes with the mandatory look at what joyous tasks the future has
in store for us.

I 6.1 Summary

In this thesis, the layer-based KLay Layered layout algorithm was extended to sup-
port port constraints, hierarchy, and self-loops, and improved in several further areas.
A new architecture was developed for layout algorithms to adapt themselves flexibly
to the layout tasks they are faced with. Compared to its predecessor, KLoDD, KLay
Layered now produces more compact layouts with lower numbers of bends and, for
small real-world diagrams, less crossings. Using KLay Layered on real-world dia-
grams has shown the layouts to be understandable and visually pleasing for the most
part.
To achieve this, we extended existing concepts and introduced new ones. To

handle inverted ports, the concept of a proper layering with in-layer edges was
introduced and phases extended to support it. Handling northern and southern
ports was achieved by introducing bend dummy vertices and making sure that bend
dummy vertices created for different regular vertices could not be mixed. To keep
the number of edge bends low, we made bend dummy vertices part of linear seg-
ments, introducing a safe way to split linear segments if necessary. We introduced
a comprehensive method to route self-loops, and developed ways of handling hier-
archical ports and their incident edges. Several smaller improvements also add to
the quality of layouts generated by KLay Layered: the simplification of hyperedges,
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making sure that there is enough space to keep labels readable, and reducing dis-
tances to compact diagrams. Finally, we kept KLay Layered flexible by introducing
the concept of intermediate processors, inserted as required.
There are two large applications for automatic layout algorithms: saving users the

time and trouble of moving vertices around without actually doing any productive
work at the semantic level, and serving as an enabling technology to higher-level
technologies.
The first application hinges on users actually using automatic layout instead of

doing the layout themselves. Users will only use it when it produces layouts that are
good enough for users to be pleased. If the layout produced by a click on a button
is almost as good or even better than what a user can produce by moving vertices
around for half an hour, automatic layout will be used. While there are a lot of
examples of diagrams where KLay Layered produces very pleasing results, there are
on the other hand still a lot of examples of diagrams KLay Layered does not work
as well with.
Laying out data flow diagrams, as laying out diagrams in general, is a very hard

problem. The usual divide-and-conquer approach so popular in computer science
does help, but leaves us with several more very hard problems. Being as hard as it
is, solutions to this problem still leave a lot of room for improvement.
The second application can be less demanding. Generating diagrams of textually

specified models on the fly, for instance, can benefit greatly from automatic layout.
Being a supporting feature, the requirements are lower than in the first application,
and automatic layout is already being successfully used in this area—much to the
benefit of users.
All in all, automatic layout algorithms are an important enough technology to

justify further research, and existing algorithms, good as they may be, still offer
much room for improvement.

I 6.2 Future Work

The problem of laying out diagrams in a way that humans can understand them
and like the layout enough to actually make use of layout algorithms remains hard.
In this section, we take a short look at work that is still to be done.
Crossing reduction is a very hard problem to solve well. Even though we have

heuristics that give reasonably good results, there is a lot of room for improvement.
In particular, it would be interesting to investigate if orthogonal edge routing calls
for specialized heuristics. Also, our way of respecting constraints is built on top of
finished crossing reduction algorithms. It would be interesting to see if better results
could be achieved if the crossing reduction algorithm itself already took constraints
into account.
Another hard problem is that of vertex placement. Diagrams laid out by KLay

Layered sometimes suffer from bend points that can easily be removed by moving
vertices around slightly. Often, algorithms try to minimize the length of vertical
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edge segments, as seen in Figure 5.4b. To the user, however, such small displace-
ments look worse than larger ones. Small displacements more often than not suggest
easy ways of getting rid of the displacement in the first place. Doing that usually
involves moving whole parts of the diagram around, though, as the edge between
BooleanSwitch2 and Ramp in Figure 5.5b shows. Such cases are very obvious to users,
but hard to find algorithmically. Further research should be invested to find ways
of improving this. Furthermore, a lot of the perceived beauty of a diagram’s layout
stems from the placement of vertices relative to each other. It should be investigated
whether such considerations could be reasonably made during vertex placement.
As we have seen in Section 5.1, one important aesthetics criterion is symmetry.

The diagram in Figure 1.1 is readily understandable largely to its symmetric layout.
However, finding symmetry in a model is a very hard problem, and so far has not
been considered by KLay Layered. Future research could investigate how symmetry
detection can be incorporated into layer-based layout algorithms.
In Section 3.9 we have seen how we can prevent edges from crossing labels by

calculating margins for vertices. What we have not done was to calculate explicit
coordinates for labels—we simply assumed them to be fixed. Further research should
explore the topic of label management: placing labels where they make the most
sense, and even intelligently shortening labels that are too long.
The Ptolemy tool uses special vertices called relation vertices to model hyperedges.

Currently, KLay Layered treats them as regular vertices, assigning them to a layer
as usual. Layouts could be made more readable, however, if relation vertices were
placed between layers, at points where their incident edges branch off. How this can
be integrated well with the layered approach is currently unclear and needs further
investigation.
Finally, different kinds of data flow diagrams may introduce further kinds of con-

straints. For instance, the LabVIEW tool developed by National Instruments intro-
duces pairs of hierarchical ports with one port placed on the western side and the
other placed on the eastern side. The vertical coordinate of both ports is required
to be synchronized. Some research could be devoted to finding more examples of
constraints not yet considered, and to developing ways to satisfy these constraints.
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A

Technical Documentation Produced for
KLay Layered

The guy who knows about computers is the last person you want
to have creating documentation for people who don’t understand
computers.

— Adam Osborne

The documentation reproduced here was written for the group’s wiki as part of this
thesis. It provides a short introduction to the structure of KLay Layered and then
goes on to describe each phase and each intermediate processor. The documentation
was meant to be concise and precise. Concepts are not explained in great detail.

I A.1 Architecture

To get an idea of how KLay Layered is structured, take a look at the diagram shown
in Figure A.1. The algorithm basically consists of just three components: layout
phases, intermediate processors and an interface to the outside world. Let’s briefly
look at what each component does before delving into the gritty details.
The backbone of KLay Layered are its five layout phases, of which each is per-

forming a specific part of the work necessary to layout a graph. The five phases go
back to a paper by someone whose name I’m currently too lazy to look up. They are
widely used as the basis for layout algorithms, and can be found in loads of papers
on the topic. A detailled description of what each layout phase does can be found
below.
Intermediate processors are less prevalent. In fact, it’s one of our contributions to

the world of layout algorithms. The idea here is that we want KLay Layered to be as
generic as possible, supporting different kinds of diagrams, laid out in different kinds
of ways. (as long as the layout is based on layers) Thus, we are well motivated to keep
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Figure A.1. The five phases of KLay Layered.

the layout phases as simple as possible. To adapt the algorithm to different needs,
we then introduced small processors between the main layout phases. (the space
between two layout phases is called a slot) One processor can appear in different
slots, and one slot can be occupied by more than one processor. Processors usually
modify the graph to be laid out in ways that allow the main phases to solve problems
they wouldn’t solve otherwise. That’s an abstract enough explanation for it to mean
anything and nothing at once, so let’s take a look at a short example.
As will be seen below, the task of phase 2 is to produce a layering of the graph.

The result is that each node is assigned to a layer in a way that edges always point
to a node in a higher layer. However, later phases may require the layering to be
proper. (a layering is said to be proper if two nodes being connected by an edge are
assigned to neighbouring layers) Instead of modifying the layerer to check if a proper
layering is needed, we introduced an intermediate processors that turns a layering
into a proper layering. Phases that need a proper layering can then just indicate
that they want that processor to be placed in one of the slots.
The interface to the outside world finally allows us to plug our algorithm into

the programs wanting to use it. While not strictly part of the actual algorithm,
that interface allows us to lay out graphs people throw at us regardless of the data
structures used to represent those graphs. Internally, KLay Layered uses a data
structure called LGraph to represent graphs. (an LGraph can be thought of as a
lightweight version of KGraph, with the concept of layers added) All a potential user
has to do is write an import and export module to make his graph structure work
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Figure A.2. A properly layered graph, with dummy nodes inserted.

with KLay Layered. Currently, the only module available is the KGraphImporter,
which makes KLay Layered work with KIML.

Dummy Nodes

Before getting down to it, one other thing is worthy of our attention: dummy nodes.
Dummy nodes are nodes inserted into the graph during the layout process. They
were not in the original graph that is to be laid out, and are removed prior to the
layout being applied to the original graph structure. So why then do we need them?
The different layout phases often have very specific requirements concerning the

graph’s structure. Real-world graphs usually don’t meet these requirements. We
could of course respond to that by enabling the phases to cope with these kinds of
adverse conditions. But it’s much simpler to just insert a few dummy nodes to make
the graph fit the requirements.
See the graph in Figure A.2 for an example. The orange nodes were layered, but

the layering was by no means a proper layering. Thus, gray dummy nodes were
added.
In KLay Layered, we make extensive use of dummy nodes to reduce complex and

very specific problems such that we can solve them using our general phases. One
example is how we have implemented support for ports on the northern or southern
side of a node.

I A.2 Phases

This section describes the algorithm’s five main phases and the available implemen-
tations. You can find a list and descriptions of the intermediate processors below.
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Phase 1: Cycle Removal

The first phase makes sure that the graph doesn’t contain any cycles. In some
papers, this phase is an implicated part of the layering. This is due to the supporting
function cycle removal has for layering: without cycles, we can find a topological
ordering of the graph’s nodes, which greatly simplifies layering.
An important part to note is that cycles may not be broken by removing one of

their edges. If we did that, the edge would not be routed later, not to speak of other
complications that would ensue. Instead, cycles must be broken by reversing one
of their edges. Since the problem of finding the minimal set of edges to reverse to
make a graph cycle-free is NP-hard, (or NP-complete? I don’t remember from the
top of my head) cycle removers will implement some heuristic to do their work.
The reversed edges have to be restored at some point. There’s a processor for

that, called ReversedEdgeRestorer. All implementations of phase one must
include a dependency on that processor, to be included after phase 5.

Precondition

• No node is assigned to a layer yet.

Postcondition

• The graph is now cycle-free. Still, no node is assigned to a layer yet.

Remarks

• All implementations of phase one must include a dependency on the Re-
versedEdgeRestorer, to be included after phase 5.

Current Implementations

• GreedyCycleBreaker. Uses a greedy approach to cycle-breaking.

Phase 2: Layering

The second phase assigns nodes to layers. (also called ranks in some papers) Nodes
in the same layer are assigned the same x coordinate. (give or take) The problem
to solve here is to assign each node x a layer i such that each successor of x is in a
layer j > i. The only exception are self-loops, that may or may not be supported
by later phases.
It must be differentiated between a layering and a proper layering. In a layering,

the above condition holds. (well, and self-loops are allowed) In a proper layering,
each successor of x is required to be assigned to layer i+ 1. This is possible only for
the simplest cases, but may be required by later phases. In that case, later phases
use the LongEdgeSplitter processor to turn a layering into a proper layering by
inserting dummy nodes as necessary.
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Note that nodes can have a property associated with them that constraints the
layers they can be placed in.

Precondition

• The graph is cycle-free.

• The nodes have not been layered yet.

Postcondition

• The graph has a layering.

Remarks

• Implementations should usually include a dependency on the LayerCon-
straintHandler, unless they already adhere to layer constraints themselves.

Current Implementations

• LongestPathLayerer. Layers nodes according to the longest paths between
them. Very simple, but doesn’t usually give the best results.

• NetworkSimplexLayerer. A way more sophisticated algorithm whose re-
sults are usually very good.

Phase 3: Crossing Reduction

The objective of phase 3 is to determine how the nodes in each layer should be
ordered. The order determines the number of edge crossings, and thus is a critical
step towards readable diagrams. Unfortunately, the problem is NP-hard even for
only two layers. Did I just hear you saying “heuristic”? The usual approach is
to sweep through the pairs of layers from left to right and back, along the way
applying some heuristic to minimize crossings between each pair of layers. The two
most prominent and well-studied kinds of heuristics used here are the barycenter
method and the median method. We have currently implemented the former.
Our crossing reduction implementations may or may not support the concepts of

node successor constraints and layout groups. The former allows a node x to specify
a node y 6= x that may only appear after x. Layout groups are groups of nodes.
Nodes belonging to different layout groups are not to be interleaved.

Precondition

• The graph has a proper layering. (except for self-loops)

• An implementation may allow in-layer connections.

• Usually, all Nodes are required to have at least fixed port sides.
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Postcondition

• The order of nodes in each layer is fixed.

• All nodes have a fixed port order.

Remarks

• If fixed port sides are required, the PortPositionProcessor may be of use.

• Support for in-layer connections may be required to be able to handle certain
problems. (odd port sides, for instance)

Current Implementations

• LayerSweepCrossingMinimizer. Does several sweeps across the layers,
minimizing the crossings between each pair of layers using a barycenter heuris-
tic. Supports node successor constraints and layout groups. Node successor
constraints require one node to appear before another node. Layout groups
specify sets of nodes whose nodes must not be interleaved.

Phase 4: Node Placement

So far, the coordinates of the nodes have not been touched. That’s about to change
in phase 4, which determines the y coordinate. While phase 3 has an impact on the
number of edge crossings, phase 4 has an influence on the number of edge bends.
Usually, some kind of heuristic is employed to yield a good y coordinate.
Our node placers may or may not support node margins. Node margins define

the space occupied by ports, labels and such. The idea is to keep that space free
from edges and other nodes.

Precondition

• The graph has a proper layering. (except for self-loops)

• Node orders are fixed.

• Port positions are fixed.

• An implementation may allow in-layer connections.

• An implementation may require node margins to be set.

Postcondition

• Each node is assigned a y coordinate such that no two nodes overlap.

• The height of each layer is set.

• The height of the graph is set to the maximal layer height.
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Remarks

• Support for in-layer connections may be required to be able to handle certain
problems. (odd port sides, for instance)

• If node margins are supported, the NodeMarginCalculator can compute
them.

• Port positions can be fixed by using the PortPositionProcessor.

Current Implementations

• LinearSegmentsNodePlacer. Builds linear segments of nodes that should
have the same y coordinate and tries to respect those linear segments. Linear
segments are placed according to a barycenter heuristic.

Phase 5: Edge Routing

In the last phase, it’s time to determine x coordinates for all nodes and route the
edges. The routing may support very different kinds of features, such as support
for odd port sides, (input ports that are on the node’s right side) orthogonal edges,
spline edges etc. Often times, the set of features supported by an edge router largely
determines the intermediate processors used during the layout process.

Precondition

• The graph has a proper layering. (except for self-loops)

• Nodes are assigned y coordinates.

• Layer heights are correctly set.

• An implementation may allow in-layer connections.

Postcondition

• Nodes are assigned x coordinates.

• Layer widths are set.

• The graph’s width is set.

• The bend points of all edges are set.

Remarks

• None.
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Current Implementations

• ComplexSplineRouter.

• OrthogonalEdgeRouter. Routes edges orthogonally. Supports routing
edges going into an eastern port around a node. Tries to minimize the width
of the space between each pair of layers used for edge routing.

• PolylineEdgeRouter.

• SimpleSplineEdgeRouter.

I A.3 Intermediate Processors

This section describes the intermediate processors that are available. For a descrip-
tion of what intermediate processors actually are, see Section A.1.
Each intermediate processor is described by its required preconditions, its postcon-

ditions, the slot where it should be placed in and dependencies to intermediate pro-
cessors in the same slot. The descriptions are kept very brief, since layout processors
are usually well documented. Programmers using layout processors need not worry
about dependencies. However, when adding a new processor, dependencies matter.
For more information, see the documentation of IntermediateLayoutProcessor.
Table A.1 provides an overview of all available layout processors and the slots

they can be placed in. Note that a processor may appear in more than one slot.

Edge And Layer Constraint Edge Reverser

Edge constraints affect if a node may have only incoming or only outgoing edges.
This processor reverses edges if necessary to respect the edge constraints.
Layer constraints can be seen as implicit edge constraints. If a node should be

placed in the first layer, it may have only outgoing edges. Similar for the last layer.

Preconditions

• The graph is not layered yet.

Postconditions

• Nodes with edge or layer constraints have only incoming or only outgoing
edges, as appropriate.

Slot

• Before phase 1.
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Slot Processor

Before phase 1 Edge And Layer Constraint Edge Reverser

Before phase 2 None.

Before phase 3 Hierarchical Port Constraint Processor
Inverted Port Processor
Layer Constraint Processor
Long Edge Splitter
North South Port Preprocessor
Port List Sorter
Port Side Processor
SelfLoopProcessor

Before phase 4 Hyperedge Dummy Merger
In-Layer Constraint Processor
Node Margin Calculator
Port Position Processor
Port Side And Order Processor

Before phase 5 Hierarchical Port Dummy Size Processor
Hierarchical Port Position Processor

After phase 5 Hierarchical Port Orthogonal Edge Router
Long Edge Joiner
North South Port Postprocessor
Reversed Edge Restorer

Table A.1. Intermediate processors and where they can be placed.

Dependencies

• None.

Remarks

• Layerers should usually include a dependency on this processor.

Hierarchical Port Constraint Processor

This processor is concerned with hierarchical ports.
For eastern and western ports, the order of the nodes is fixed if the port constraints

are at least at FixedOrder. This processor inserts the necessary in-layer successor
constraints to ensure that this order is respected during crossing reduction.
For northern and southern hierarchical ports, we just need one hierarchical port

dummy per hierarchical port in the simple cases. With port constraints at least at
FixedOrder, however, we need to modify that approach a little. For each node
connected to a hierarchical port on the northern or southern side, we insert a hierar-
chical port dummy in the following layer. We then remove the original hierarchical
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port dummy representing the port, setting the new dummy’s ORIGIN property to that
original dummy node. The old dummy nodes are inserted again by the Hierarchi-
calPortOrthogonalEdgeRouter. For all other port constraints, the original
port dummy nodes are replaced by a single new dummy node, in a similar way as
described above. This greatly simplifies hierarchical port dummy handling later on
during edge routing.

Preconditions

• A layered graph.

• Long edge dummies have not yet been inserted.

• Layer constraints are satisfied.

Postconditions

• For graphs with port constraints at least at FixedOrder, northern and south-
ern hierarchical port dummies are handled.

Slot

• Before phase 3.

Dependencies

• LayerConstraintProcessor

Remarks

• This processor is necessary to ensure proper functioning of the Hierarchi-
calPortOrthogonalEdgeRouter.

Hierarchical Port Dummy Size Processor

Sets the width of hierarchical port dummy nodes.
To see why this is necessary, let’s step back for a minute and imagine three hierar-

chical northern port dummy nodes in the same layer. With the default hierarchical
port edge router, what will happen is the following. Each each going into one of
the nodes is routed upwards, the bend point being placed at the dummy node’s
input port. If all dummy nodes have the same width, these ports will have the same
x coordinate - the edges incident to all three nodes will be routed on top of each
other. To make the task of avoiding this easier, this processor sets the width in a
way ensuring that the x coordinates of the three ports are as far apart as the edge
spacing dictates.

102



A.3 Intermediate Processors

Preconditions

• A layered graph.

• Nodes are assigned y coordinates.

• Nodes are not assigned x coordinates yet.

• Bend points for edges have not yet been set.

• Nodes are ordered such that in-layer constraints are respected.

Postconditions

• Hierarchical port dummies are assigned appropriate widths.

Slot

• Before phase 5.

Dependencies

• None.

Remarks

• This processor is required for HierarchicalPortOrthogonalEdgeRou-
ter to function properly.

Hierarchical Port Orthogonal Edge Router

After edge routing, edges have only been routed inside the graph. What remains to
be done is to route the edges to the hierarchical ports. This processor does just that,
using an orthogonal edge routing approach. During that process, hierarchical port
dummy nodes that map onto hierarchical port are assigned the coordinates of the
hierarchical port, relative to the graph’s content area and already corrected for the
offset. The necessary bend points are added to the edges connected to hierarchical
ports. Hierarchical port dummy nodes that don’t map onto a hierarchical port are
removed, their incident edges connected to the appropriate hierarchical port dummy
node representing a hierarchical port.
This is the default edge router for edges incident to hierarchical ports. Other edge

routers are free to come with an own implementation for routing hierarchical edges.
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Preconditions

• A layered graph.

• Nodes are assigned y coordinates.

• The bend points of all internal edges are set.

Postconditions

• All hierarchical port dummy nodes left map onto an actual hierarchical port.

• The coordinates of hierarchical port dummy nodes specify the coordinates of
their respective hierarchical port.

• All hierarchical port dummy nodes have a size of (0, 0).

• Edges connected to hierarchical ports have their bend points set.

Slot

• After phase 5.

Dependencies

• None.

Remarks

• For anything other than free port constraints, this processor requires that
ConstrainedHierarchicalPortProcessor has executed.

• This processor requires that HierarchicalPortDummySizeProcessor has
executed.

Hierarchical Port Position Processor

If port constraints are set to at least FixedRatio, the node placement phase is
not free to position external port dummies at will. If the node placement algorithm
doesn’t support fixed positions, including a dependency on this processor fixes the
y positions of external port dummies representing western or eastern ports.

Preconditions

• A layered graph.

• Nodes are assigned y coordinates.

• External port dummies for western and eastern ports are placed in the first
and last layer, respectively.

104



A.3 Intermediate Processors

Postconditions

• The y coordinates of external port dummies are set as needed in the Fixed-
Ratio and FixedPos port constraint cases.

Slot

• Before phase 5.

Dependencies

• None.

Remarks

• If northern or southern external edge routing modifies the height of the di-
agram, the dummy node positions become invalid in the FixedRatio case.
They are then recomputed by the HierarchicalPortOrthogonalEdgeR-
outer.

Hyperedge Dummy Merger

Merges long edge dummy nodes with edges originally coming from the same port or
going into the same port. The idea is to reduce the amount of edges in the diagram
as much as possible.

Preconditions

• The graph is layered.

• Node orders are fixed.

• For long edge dummies to be joined, their LONG_EDGE_SOURCE and LONG_EDGE_TARGET

properties must be set.

Postconditions

• Some long edge dummy nodes may have been merged.

Slot

• Before phase 4.

Dependencies

• InLayerConstraintProcessor
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Remarks

• This processor only makes sense if the LongEdgeSplitter was used before.

In-Layer Constraint Processor

Makes sure that in-layer constraints are respected. This processor is only necessary
for crossing minimizers that don’t respect in-layer constraints.

Preconditions

• The graph is layered.

• Crossing minimization is finished.

Postconditions

• Nodes may have been reordered to match in-layer constraints.

Slot

• Before phase 4.

Dependencies

• None.

Remarks

• Crossing minimizers that don’t support in-layer constraints must include a
dependency on this processor. Other crossing minimizers should not depend
on it.

Inverted Port Processor

Inserts odd port side dummy nodes to cope with odd port sides. Odd port sides
are the eastern side for input ports and the western side for output ports. In both
cases, the incoming or outgoing edges have to be routed around the node.

Preconditions

• The graph is layered.

Postconditions

• Odd port side dummy nodes are inserted for odd ports.

• The graph may contain new in-layer connections.
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Slot

• Before phase 3.

Dependencies

• PortSideProcessor

Remarks

• The following phases must support in-layer connections for this to work.

Layer Constraint Processor

Nodes can have a property associated with them that restricts the layers they can
be placed in. They can be forced in the first or the last existing layer. They can also
be forced into a newly created first or last layer, along with all other nodes with the
appropriate property set. While they may not be treated differently by the layerer,
this processor moves them into the layer they should be placed in. A node placed in
the first layer must have only outgoing edges; similarly, nodes placed in the last layer
must have only incoming edges. This processor assumes that as a precondition.

Preconditions

• The graph is layered.

• Nodes to be placed in the first layer only have outgoing edges.

• Nodes to be placed in the last layer only have incoming edges.

Postconditions

• Nodes with layer constraints have been placed in the appropriate layers.

Slot

• Before phase 3.

Dependencies

• ConstrainedHierarchicalPortProcessor

Remarks

• Layerers should usually include a dependency on this processor, unless they
already adhere to layer constraints themselves.
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• The LayerConstraintEdgeReverser ensures that this processor’s pre-
conditions are met. Thus, layerers should also include a dependency on that
processor.

Long Edge Joiner

Removes all long edge dummy nodes, joining their edges together.

Preconditions

• The graph is layered.

• Nodes are assigned x and y coordinates.

• The bend points of all edges are set.

Postconditions

• There are no long edge dummy nodes anymore.

• The graph may not be properly layered anymore.

Slot

• After phase 5.

Dependencies

• HierarchicalPortOrthogonalEdgeRouter

Remarks

• Since there are multiple processors that generate long edge dummies, this
processor doesn’t only make sense if the LongEdgeSplitter was used before.

Long Edge Splitter

Turns a layered graph into a properly layered graph by inserting long edge dummies
where appropriate..

Preconditions

• The graph is layered.

Postconditions

• The graph is properly layered.
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Slot

• Before phase 3.

Dependencies

• LayerConstraintProcessor

Remarks

• None.

Node Margin Calculator

Calculates node margins based on port positions and sizes and label positions and
sizes.

Preconditions

• The graph is layered.

• Port positions are fixed.

Postconditions

• Node margins are properly set to form a bounding box around the node and
its ports and labels.

Slot

• Before phase 4.

Dependencies

• PortPositionProcessor

Remarks

• None.

North South Port Postprocessor

Removes north / south port dummy nodes and routes the edges properly.
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Preconditions

• The graph is layered.

• Nodes are assigned y coordinates.

• The bend points of all edges are set.

• Port positions are fixed.

Postconditions

• North / south port dummy nodes are removed, their edges being properly
routed and connected.

Slot

• After phase 5.

Dependencies

• None.

Remarks

• This processor only makes sense if the NorthSouthPortPreprocessor
was used before.

North South Port Preprocessor

Inserts dummy nodes to cope with northern and southern ports. Dummy nodes are
assigned to layout groups identified by the node whose ports they were created from.
Also, node successor constraints are set to keep north / south port dummy nodes
in a certain order. This processor is capable of processing self-loops connecting two
northern or two southern ports. For other kinds of self-loops, the SelfLoopPro-
cessor may be required.

Preconditions

• The graph is layered.

• Port sides are fixed.

Postconditions

• North / south port dummy nodes have been inserted.

• No edge is connected to a northern or southern port any more.
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Slot

• Before phase 3.

Dependencies

• PortListSorter

• SelfLoopProcessor

Remarks

• The dummy nodes must later be postprocessed by NorthSouthPortPost-
processor.

• A crossing minimizer must support layout groups and node successor con-
straints.

Port List Sorter

If a node already has a fixed port order, its port lists are sorted accordingly.

Preconditions

• The graph is layered.

Postconditions

• Nodes with fixed port orders have their port lists sorted accordingly.

Slot

• Before phase 3.

• Before phase 4.

Dependencies

• None.

Remarks

• It may make sense to use this processor in multiple slots. Once to ensure fixed
port sides, once more to sort the port lists again for nodes that have just had
their port orders fixed.

Port Position Processor

Calculates the exact coordinates a ports.
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Preconditions

• The graph is layered.

• All nodes have a fixed port order.

Postconditions

• All nodes have fixed port positions.

Slot

• Before phase 4.

Dependencies

• None.

Remarks

• None.

Port Side Processor

Ensures that nodes have at least fixed port sides.

Preconditions

• The graph is layered.

Postconditions

• All nodes have at least fixed port sides.

Slot

• Before phase 3.

Dependencies

• None.

Remarks

• None.

Reversed Edge Restorer

Restores the direction of reversed edges.
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Preconditions

• The graph is layered.

Postconditions

• Reversed edges are restored to their original direction.

Slot

• After phase 5.

Dependencies

• None.

Remarks

• Note that this processor doesn’t have any dependencies. Let’s take a long edge
that was reversed during phase 1 and then split into multiple segments by
the LongEdgeSplitter. All the edges generated by that processor inherit
the REVERSED property of the original long edge. Thus, it doesn’t make any
difference if we reverse all those edges before joining them to the original long
edge, or if we join them first and reverse the original long edge afterwards.

Self Loop Processor

Does some work that enables the other processors and phases to handle self-loops.
To handle them well, the NorthSouthPortPreprocessor may be required.

Preconditions

• The graph is layered.

Postconditions

• Self-loop edges going into a western port have been reversed.

• For west-east self-loops, a dummy node has been inserted.

Slot

• After phase 3.

Dependencies

• InvertedPortProcessor
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Remarks

• None.

114



Detailed Content

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Graphical Modeling and Its Problems . . . . . . . . . . . . . . . 1

Data Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 2
Automatic Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Goals of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5
Port Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Hierarchical Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Self-Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background on Drawing Data Flow Diagrams . . . . . . . . . . . . . 11
2.1 Introductory Remarks on Terminology . . . . . . . . . . . . . . 11
2.2 The Layered Approach to Graph Drawing . . . . . . . . . . . . 14

Extensions to the Layered Approach . . . . . . . . . . . . . . . 17
2.3 The KLoDD and KLay Layered Algorithms . . . . . . . . . . . 18

The KLoDD Algorithm . . . . . . . . . . . . . . . . . . . . . . . 19
The KLay Layered Algorithm . . . . . . . . . . . . . . . . . . . 20

3 Optimizing Automatic Layout for Data Flow Diagrams . . . . . . . . 23
3.1 In-Layer Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Crossing Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Inverted Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Previous Approaches . . . . . . . . . . . . . . . . . . . . . . . . 27
A Different Approach . . . . . . . . . . . . . . . . . . . . . . . . 29



3.3 Constrained Crossing Reduction . . . . . . . . . . . . . . . . . . 29
3.4 Northern and Southern Ports . . . . . . . . . . . . . . . . . . . 31

Creating Dummy Vertices . . . . . . . . . . . . . . . . . . . . . 31
Impact on Cross Counting . . . . . . . . . . . . . . . . . . . . . 34
Removing Bend Dummy Vertices . . . . . . . . . . . . . . . . . 35
Advantages and Disadvantages . . . . . . . . . . . . . . . . . . 37

3.5 Self-Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Hierarchical Ports . . . . . . . . . . . . . . . . . . . . . . . . . . 39

The Simple Case of Hierarchical Ports . . . . . . . . . . . . . . 39
Extending the Simple Case . . . . . . . . . . . . . . . . . . . . . 41
Further Thoughts About Hierarchy . . . . . . . . . . . . . . . . 43

3.7 Minimizing Edge Bends . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Simplifying Hyperedges . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Spacing and Margins . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10 Reducing Layer Distances . . . . . . . . . . . . . . . . . . . . . 49
3.11 Calculating Barycenters . . . . . . . . . . . . . . . . . . . . . . 51

4 Integration into KLay Layered . . . . . . . . . . . . . . . . . . . . . . 53
4.1 A Dynamic Architecture for Layout Algorithms . . . . . . . . . 53

Intermediate Processors . . . . . . . . . . . . . . . . . . . . . . 53
Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 An In-Depth Look at KLay Layered . . . . . . . . . . . . . . . 56
Edge and Layer Constraint Edge Reverser . . . . . . . . . . . . 56
Hierarchical Port Constraint Processor . . . . . . . . . . . . . . 56
Inverted Port Processor . . . . . . . . . . . . . . . . . . . . . . 58
Layer Constraint Processor . . . . . . . . . . . . . . . . . . . . . 58
Long Edge Splitter . . . . . . . . . . . . . . . . . . . . . . . . . 58
North South Port Preprocessor . . . . . . . . . . . . . . . . . . 59
Port List Sorter . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Port Side Processor . . . . . . . . . . . . . . . . . . . . . . . . . 60
Self-Loop Processor . . . . . . . . . . . . . . . . . . . . . . . . . 60
Hyperedge Dummy Merger . . . . . . . . . . . . . . . . . . . . . 61
In-Layer Constraint Processor . . . . . . . . . . . . . . . . . . . 61
Port Position Processor . . . . . . . . . . . . . . . . . . . . . . . 61
Vertex Margin Calculator . . . . . . . . . . . . . . . . . . . . . 62
Hierarchical Port Dummy Size Processor . . . . . . . . . . . . . 62
Hierarchical Port Position Processor . . . . . . . . . . . . . . . 62
Hierarchical Port Orthogonal Edge Router . . . . . . . . . . . . 63
Long Edge Joiner . . . . . . . . . . . . . . . . . . . . . . . . . . 64



North South Port Postprocessor . . . . . . . . . . . . . . . . . . 64
Reversed Edge Restorer . . . . . . . . . . . . . . . . . . . . . . 65

4.3 A Problem-Oriented View . . . . . . . . . . . . . . . . . . . . . 65
The Algorithm in Its Most Basic Form . . . . . . . . . . . . . . 65
Advanced Algorithm Configurations . . . . . . . . . . . . . . . . 66

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Judging the Quality of Layouts . . . . . . . . . . . . . . . . . . 69

Layout Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Finding Adequate Models . . . . . . . . . . . . . . . . . . . . . 73
5.3 Transforming Ptolemy Models . . . . . . . . . . . . . . . . . . . 74

Improving the Transformation . . . . . . . . . . . . . . . . . . . 75
Making the Transformation Available to the User . . . . . . . . 76

5.4 The Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 77
Evaluating the Quality of Layouts . . . . . . . . . . . . . . . . . 77
Evaluating the Performance of Algorithms . . . . . . . . . . . . 78

5.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Technical Documentation Produced for KLay Layered . . . . . . . . 93
A.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Dummy Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Phase 1: Cycle Removal . . . . . . . . . . . . . . . . . . . . . . 96
Phase 2: Layering . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Phase 3: Crossing Reduction . . . . . . . . . . . . . . . . . . . . 97
Phase 4: Node Placement . . . . . . . . . . . . . . . . . . . . . 98
Phase 5: Edge Routing . . . . . . . . . . . . . . . . . . . . . . . 99

A.3 Intermediate Processors . . . . . . . . . . . . . . . . . . . . . . 100
Edge And Layer Constraint Edge Reverser . . . . . . . . . . . . 100
Hierarchical Port Constraint Processor . . . . . . . . . . . . . . 101



Hierarchical Port Dummy Size Processor . . . . . . . . . . . . . 102
Hierarchical Port Orthogonal Edge Router . . . . . . . . . . . . 103
Hierarchical Port Position Processor . . . . . . . . . . . . . . . 104
Hyperedge Dummy Merger . . . . . . . . . . . . . . . . . . . . . 105
In-Layer Constraint Processor . . . . . . . . . . . . . . . . . . . 106
Inverted Port Processor . . . . . . . . . . . . . . . . . . . . . . 106
Layer Constraint Processor . . . . . . . . . . . . . . . . . . . . . 107
Long Edge Joiner . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Long Edge Splitter . . . . . . . . . . . . . . . . . . . . . . . . . 108
Node Margin Calculator . . . . . . . . . . . . . . . . . . . . . . 109
North South Port Postprocessor . . . . . . . . . . . . . . . . . . 109
North South Port Preprocessor . . . . . . . . . . . . . . . . . . 110
Port List Sorter . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Port Position Processor . . . . . . . . . . . . . . . . . . . . . . . 111
Port Side Processor . . . . . . . . . . . . . . . . . . . . . . . . . 112
Reversed Edge Restorer . . . . . . . . . . . . . . . . . . . . . . 112
Self Loop Processor . . . . . . . . . . . . . . . . . . . . . . . . . 113

Detailed Tables of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Example data flow diagram . . . . . . . . . . . . . . . . . . . . 3
1.2 Unreadable data flow diagram . . . . . . . . . . . . . . . . . . 4
1.3 Easy and hard cases for port handling . . . . . . . . . . . . . . 5
1.4 Hierarchical data flow diagram . . . . . . . . . . . . . . . . . . 6

2 Background on Drawing Data Flow Diagrams . . . . . . . . . . . . . 11
2.1 Two layout algorithms applied to a tree . . . . . . . . . . . . . 15
2.2 Vertex placement with linear segments . . . . . . . . . . . . . . 16
2.3 Orthogonal edge routing . . . . . . . . . . . . . . . . . . . . . . 17
2.4 KIML architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Barycenter heuristic with ports . . . . . . . . . . . . . . . . . . 21

3 Optimizing Automatic Layout for Data Flow Diagrams . . . . . . . . 23
3.1 Crossing reduction with in-layer edges . . . . . . . . . . . . . . 25
3.2 Cross counting with in-layer edges . . . . . . . . . . . . . . . . 26
3.3 Inverted ports . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Vertex-local edge routing in KLoDD . . . . . . . . . . . . . . . 27
3.5 Limitations of vertex-local edge routing . . . . . . . . . . . . . 28
3.6 Klauske’s method of handling inverted ports . . . . . . . . . . 28
3.7 Northern and southern ports . . . . . . . . . . . . . . . . . . . 31
3.8 Edge routing for northern and southern ports . . . . . . . . . . 32
3.9 Routing long edges around northern and southern edges . . . . 33



3.10 Mixed bend dummy vertices . . . . . . . . . . . . . . . . . . . 35
3.11 Counting crossings caused by bend dummy vertices . . . . . . 36
3.12 Different cases of self-loops . . . . . . . . . . . . . . . . . . . . 38
3.13 Handled cases of self-loops . . . . . . . . . . . . . . . . . . . . 38
3.14 Simple hierarchies with free ports . . . . . . . . . . . . . . . . 40
3.15 Extended hierarchies with fixed port sides . . . . . . . . . . . . 41
3.16 In-layer constraints with hierarchy port dummy vertices . . . . 42
3.17 Extended hierarchies with fixed port orders . . . . . . . . . . . 43
3.18 Hierarchy-local crossing reduction . . . . . . . . . . . . . . . . 44
3.19 Unnecessary bend points with northern and southern ports . . 44
3.20 Cycle in segment ordering graph . . . . . . . . . . . . . . . . . 45
3.21 Merging hyperedges . . . . . . . . . . . . . . . . . . . . . . . . 47
3.22 Spacing between edges . . . . . . . . . . . . . . . . . . . . . . . 48
3.23 Respecting labels . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.24 Vertical segment slot assignment . . . . . . . . . . . . . . . . . 50

4 Integration into KLay Layered . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Architecture of KLay Layered . . . . . . . . . . . . . . . . . . . 54
4.2 Reduced set of cases for self-loops . . . . . . . . . . . . . . . . 60
4.3 Edge routing to northern hierarchical ports . . . . . . . . . . . 63

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Problems with layout metrics in orthogonal diagrams . . . . . 72
5.2 The KAOM meta model . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Ptolemy model import wizard . . . . . . . . . . . . . . . . . . . 77
5.4 Random diagram layout comparison . . . . . . . . . . . . . . . 80
5.5 Ptolemy layout comparison . . . . . . . . . . . . . . . . . . . . 81
5.6 Quality evaluation results: number of edge crossings . . . . . . 82
5.7 Quality evaluation results: number of bend points . . . . . . . 83
5.8 Quality evaluation results: average edge length . . . . . . . . . 84
5.9 Performance evaluation results . . . . . . . . . . . . . . . . . . 84



6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Technical Documentation Produced for KLay Layered . . . . . . . . 93
A.1 The five phases of KLay Layered . . . . . . . . . . . . . . . . . 94
A.2 A properly layered graph . . . . . . . . . . . . . . . . . . . . . 95





List of Tables

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background on Drawing Data Flow Diagrams . . . . . . . . . . . . . 11

3 Optimizing Automatic Layout for Data Flow Diagrams . . . . . . . . 23

4 Integration into KLay Layered . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Intermediate processors . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Dependencies on intermediate processors . . . . . . . . . . . . 65
4.3 Additional dependencies by graph features . . . . . . . . . . . 67

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Properties of diagrams used for evaluation . . . . . . . . . . . . 74
5.2 Algorithm settings used for the evaluation . . . . . . . . . . . . 78
5.3 Further averaged evaluation results . . . . . . . . . . . . . . . . 82

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Technical Documentation Produced for KLay Layered . . . . . . . . 93
A.1 Intermediate processors . . . . . . . . . . . . . . . . . . . . . . 101





List of Algorithms

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background on Drawing Data Flow Diagrams . . . . . . . . . . . . . 11

3 Optimizing Automatic Layout for Data Flow Diagrams . . . . . . . . 23
3.1 Barycenter calculation with in-layer edges . . . . . . . . . . . . 26
3.2 Creating bend dummy vertices . . . . . . . . . . . . . . . . . . 34
3.3 Counting crossings caused by bend dummy vertices . . . . . . 36
3.4 Edge creation for segment ordering graph . . . . . . . . . . . . 46
3.5 Compact hyperedges . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Integration into KLay Layered . . . . . . . . . . . . . . . . . . . . . . 53

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Technical Documentation Produced for KLay Layered . . . . . . . . 93


	Introduction
	Graphical Modeling and Its Problems
	Data Flow Diagrams
	Automatic Layout

	Goals of this Thesis
	Port Constraints
	Hierarchical Ports
	Self-Loops
	Main Contributions

	Related Work
	Outline

	Background on Drawing Data Flow Diagrams
	Introductory Remarks on Terminology
	The Layered Approach to Graph Drawing
	Extensions to the Layered Approach

	The KLoDD and KLay Layered Algorithms
	The KLoDD Algorithm
	The KLay Layered Algorithm


	Optimizing Automatic Layout for Data Flow Diagrams
	In-Layer Edges
	Crossing Reduction

	Inverted Ports
	Previous Approaches
	A Different Approach

	Constrained Crossing Reduction
	Northern and Southern Ports
	Creating Dummy Vertices
	Impact on Cross Counting
	Removing Bend Dummy Vertices
	Advantages and Disadvantages

	Self-Loops
	Hierarchical Ports
	The Simple Case of Hierarchical Ports
	Extending the Simple Case
	Further Thoughts About Hierarchy

	Minimizing Edge Bends
	Simplifying Hyperedges
	Spacing and Margins
	Reducing Layer Distances
	Calculating Barycenters

	Integration into KLay Layered
	A Dynamic Architecture for Layout Algorithms
	Intermediate Processors
	Alternatives

	An In-Depth Look at KLay Layered
	Edge and Layer Constraint Edge Reverser
	Hierarchical Port Constraint Processor
	Inverted Port Processor
	Layer Constraint Processor
	Long Edge Splitter
	North South Port Preprocessor
	Port List Sorter
	Port Side Processor
	Self-Loop Processor
	Hyperedge Dummy Merger
	In-Layer Constraint Processor
	Port Position Processor
	Vertex Margin Calculator
	Hierarchical Port Dummy Size Processor
	Hierarchical Port Position Processor
	Hierarchical Port Orthogonal Edge Router
	Long Edge Joiner
	North South Port Postprocessor
	Reversed Edge Restorer

	A Problem-Oriented View
	The Algorithm in Its Most Basic Form
	Advanced Algorithm Configurations


	Evaluation
	Judging the Quality of Layouts
	Layout Metrics

	Finding Adequate Models
	Transforming Ptolemy Models
	Improving the Transformation
	Making the Transformation Available to the User

	The Evaluation Process
	Evaluating the Quality of Layouts
	Evaluating the Performance of Algorithms

	Evaluation Results

	Conclusion
	Summary
	Future Work

	Bibliography
	Technical Documentation Produced for KLay Layered
	Architecture
	Dummy Nodes

	Phases
	Phase 1: Cycle Removal
	Phase 2: Layering
	Phase 3: Crossing Reduction
	Phase 4: Node Placement
	Phase 5: Edge Routing

	Intermediate Processors
	Edge And Layer Constraint Edge Reverser
	Hierarchical Port Constraint Processor
	Hierarchical Port Dummy Size Processor
	Hierarchical Port Orthogonal Edge Router
	Hierarchical Port Position Processor
	Hyperedge Dummy Merger
	In-Layer Constraint Processor
	Inverted Port Processor
	Layer Constraint Processor
	Long Edge Joiner
	Long Edge Splitter
	Node Margin Calculator
	North South Port Postprocessor
	North South Port Preprocessor
	Port List Sorter
	Port Position Processor
	Port Side Processor
	Reversed Edge Restorer
	Self Loop Processor


	Detailed Tables of Content

