Improving Comment
Attachment Algorithms

Christina Ploger

Bachelor Thesis
2015

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
Dipl.-Inf. Christoph Daniel Schulze

Eidesstattliche Erkldarung

Hiermit erkldre ich an Eides statt, dass ich die vorliegende Arbeit selbststandig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Visual languages are regularly used in different industries. Ptolemy is an example of a
visual language and allows the developer to construct complex, heterogeneous models.

During the development of a diagram, its elements often have to be rearranged after
structural changes to improve the diagram’s readability. To avoid this time consuming
process, automatic layout algorithms are used.

Generally, comments can facilitate the understanding of diagrams. Therefore, it is
desirable that automatic layout algorithms can attach comments properly.

There exists one algorithm that is able to attach comments automatically in a set of
demo diagrams from the Ptolemy tool with the help of invisible cues. This algorithm bases
the comment attachment on one criterion, the proximity, and yields good success rates.
However, there is room for improvement.

This thesis aims at improving the success rates of automatic comment attachment in
the set of Ptolemy demo diagrams by extending the already existing algorithm with: the
alignment of comments, the exclusion of title comments, of comments that identify the
author as well as of comments that exceed a certain size and the mentioning of labels of
elements in comments. Additionally, different combinations of heuristics are presented.

In the evaluation, the success rates of automatic comment attachment of two combina-
tions of heuristics are examined. The first combination consists of the alignment heuristic
and the heuristics that exclude comments from the attachment process. The second com-
bination also takes into account the heuristic that deals with the mentioning of labels in
comments. These combinations are compared with the already existing proximity heuristic
and the case where no comment attachment is applied. Both combinations achieve very
similar results and improve the success rates of the proximity heuristic. However, the
combinations of heuristics only yield slightly better results than the heuristic where no
comment attachment is applied.

Contents

1 Introduction 1
1.1 Problem Statement 3

1.2 Related Work 4

1.3 Structure of this Document 6

2 Preliminaries 9
21 Terminology 9
22 Used Technologies 10
221 PtolemyIl 10

222 Modeling Markup Language 11

223 Xtend, 13

224 KIELER o o e e e e e e 13

3 Heuristics 21
3.1 Author Comments o i i i s 21
3.2 TitleComments o i e 21
3.3 SIZe . .o s, 23
34 Alignment 24
3.5 Mentions of Actors e 30
3.6 Putting It All Together 32

4 Evaluation 45
5 Conclusion 49
5.1 Future Work s 50

A Abbreviations 55
Bibliography 57

vii

Chapter 1

Introduction

Visual languages are regularly used in different industries such as the automotive or
aerospace industry. Ptolemy,! as one of those languages, offers developers the possibility
to model and design complex, heterogeneous systems [EJLT03].

The models produced with the help of visual languages are often based on node-link
diagrams. Nodes (or vertices) process data through ports, whereas links (or edges) transfer
these data between the ports. Figure 1.1 shows a diagram from the Ptolemy framework.

In general, diagrams are valued for their good readability. They are often assumed to
be easier to understand than textual representations [SvH14]. However, the readability of a
diagram highly depends on its layout [KD10].

In visual as well as in textual programming languages, comments can facilitate the
understanding of a diagram or source code. First, they help programmers to understand
diagrams or code developed by someone else. Second, they serve as a memory aid for the
programmer when he takes a second look at his work after some time [AG98].

In Figure 1.1, “Author: Xiaoljun and Edward A. Lee” and “Simulate faults.” are
examples for comments. At first sight, comments seem to be very different from the other
elements of the diagram because of their appearance. However, if we regard the diagram
on a more abstract level, comments represent vertices.

Figure 1.1 also depicts that there are different kinds of comments. On the one hand,
comments can concern the entire diagram. “Author: Xiaoljun and Edward A. Lee” is an
example for such a comment. On the other hand, comments can refer to a single element.
For example, “Simulate faults.” belongs to DiscreteClock.

During the development of a diagram, its elements, such as vertices, ports, or edges,
often have to be rearranged to improve the diagram’s readability after a structural change
[KD10]. To avoid this time-consuming process, automatic layout algorithms are used.

Misue et al. [MELS95] differentiate two types of layout algorithms, layout adjustment
and layout creation algorithms. Layout adjustment algorithms only adapt the layout of the
original diagram by changing some elements. Therefore, they are useful for interactive sys-
tems where small changes are regularly made. On the contrary, layout creation algorithms
build the layout from scratch every time the diagram is modified. Most automatic layout
algorithms are layout creation algorithms, including the algorithms that are addressed in

Thttp:/ /ptolemy.eecs.berkeley.edu/

1. Introduction

This model shows a simple adaptive cruise control system,
o faultStartTime: 50.0 illustrating model-integrated control strategies. A leading
o faultStopTime: 70.0 car model produces information that is observed with possible
flaws by a following car. If the following car detects flaws, it
uses a conservative strategy. Otherwise, it tracks the leading
CurrentTime car closely. Simulate a car
Simulate a wireless that attempts

Continuous Director

i
bl network that corrupts to detect faults
th ta when the fault i icati
RecordAssembler t edgaw en the fau in commur_ucatlon
Car Model inputis true. and adaptits
Grandma Simulator PeriodicSampler NetworkModel behavior.

FollowingCar

— kel ketOut
—i e @ < »acceleralion
Ketln, R speed
sition

S}D desiredSpeedy E}D

. Simulate a car >
Slmulate e that matches DiscreteClock
drlve.r ofthe the desired speed trigger]
leading car. using feedback)

riod
Py

Output is the
driver's
desired speed.

Simulate faults.

control with a
specified time
constant.

Author: Xiaoljun Liu and Edward A. Lee

Figure 1.1. Demo diagram that ships with the Ptolemy framework. Grandma Simulator, Car Model,
CurrentTime, RecordAssembler, PeriodicSampler, DiscreteClock, TimedPlotter, NetworkModel, FollowingCar
as well as Continuous Director represent vertices. Ports are illustrated by the small triangles at the
sides of the entities. Links are represented by the arrows that connect the vertices.

this thesis.

To be able to use the information provided by comments, it is important that automatic
layout algorithms attach comments to the elements they refer to. Figure 1.2 shows the
diagram of Figure 1.1 after an automatic layout algorithm that does not consider comments
was applied. As a result, it is not possible to distinguish which comment belongs to which
element without a deep understanding of the diagram. Thus, the information provided by
the comments is lost.

However, to attach comments to the elements they belong to, layout algorithms require
some kind of connection between them. This connection must either be explicit or inferred
in some way. Thus, on the one hand, the connection can be represented by a line or some
other kind of visible connection, on the other hand, it can be inferred by invisible cues
such as the proximity between the element and the comment [SvH14].

If comments are attached explicitly, several layout algorithms can place them near
the elements they belong to. However, even though there are diagram editors that allow
developers to set explicit attachments manually, this feature often is not used.

If there is no explicit attachment, it mostly is more difficult to infer the relations between

1.1. Problem Statement

Continuous Director @ faultStartTime: ~ 50.0 Simulate faults. Author: Xiaoljun Liu and Edward A. Lee
I:I @ faultStopTime: ~ 70.0

Simulate the Simulate a wireless Simulate a car Simulate a car

driver of the network that corrupts that attempts that matches

leading car. the data when the fault to detect faults the desired speed

Output is the input is true. in communication using feedback

driver's and adapt its control with a

desired speed. behavior. specified time

constant.

This model shows a simple adaptive cruise control system,
illustrating model-integrated control strategies. A leading

car model produces information that is observed with possible
flaws by a following car. If the following car detects flaws, it
uses a conservative strategy. Otherwise, it tracks the leading

car closely.
CurrentTime
RecordAssembler PeriodicSampler NetworkModel FollowingCar .
@t > b TimedPlotter
1 e s g X Mg O > gl-m > =
—>
‘ N
Grandma Simulator Car Model
DiscreteClock
Sic »| B0 S
>
A A

Figure 1.2. This diagram is the result of the application of an automatic layout algorithm that does
not consider comments. All comments are placed at the top of the diagram.

comments and elements in diagrams than in source code. In source code, comments are
usually written right before or after the line of code they relate to. In contrast, implicit
attachments in visual languages are often more ambiguous [SvH14]. An example for
ambiguous attachment is provided by Figure 1.3.

Without explicit attachment, many layout algorithms place comments at arbitrary
positions in the diagram resulting in the loss of the information provided by the comments.
Therefore, when using automatic layout algorithms, it is necessary for the proper placement
of comments to find a way to detect the relations between comments and elements in the
original diagram [SvH14].

1.1 Problem Statement

The goal of this thesis is to improve the success rate of automatically attaching comments
to nodes by extending an already existing algorithm for comment attachment.

The existing algorithm bases the attachment on a single criterion, the proximity. That
means that a comment is attached to the vertex it is closest to. During the evaluation of

1. Introduction

GR Director
This model illustrates mapping of a texture
(from a PNG encoded photograph) onto a cube,
Box3D and the tumbling of that cube using the

axis rotator.

ThreeAxisRotator3D

f (? MovableViewScreen3D

. ey Sinewave Expression
A {0.0,0.0,in + 2.4}

phaseD_ '

The viewer position is dynamically moved in and out
along the Z axis in a sinusoidal pattern.

sceneGraphin

trigger |
init)d.
stepK]
trigger |
initNg.
stepJ.
trigger
init
step

Author: Edward A. Lee

Figure 1.3. Another demo diagram from the Ptolemy framework. This diagram shows that implicit
attachment of comments can be ambiguous. For the comment that is located in the bottom right of
the diagram, it is not clear whether this comment refers only to Sinewave or to Expression as well.

the algorithm, success rates of up to 90% were found. However, the results were highly
sensitive to configuration. Hence, there is still room for improvement [SvH14].

In this thesis, we present additional heuristics and their implementations. The heuristics
discussed are alignment of comments, exclusion of title comments and comments that
specify the author, mentioning of labels of elements in comments and a comment’s size.
We evaluate the applicability of those heuristics with a set of demo diagrams from Ptolemy
and use the results to develop a combining function. Finally, the combining function is
evaluated with another set of demo diagrams from Ptolemy.

1.2 Related Work

The work by Schulze and von Hanxleden [SvH14] is the basis for this thesis. They presented
the algorithm mentioned above that uses proximity to attach comments. To evaluate their
algorithm, they used a set of demo diagrams that ship with the Ptolemy tool.

First, they developed a reference function by manually assigning all comments to be
considered to their vertices. Then, they applied their algorithm to the set of diagrams

1.2. Related Work

and compared the manual to the automatic attachment. An attachment is considered
to be correct or successful if the automatic attachment provides the same result as the
manual attachment. As a result, they achieved success rates of up to 90%, but there are
still spurious or lost attachments. Spurious attachments occur when a comment is attached
by the algorithm but not by the reference function. On the other hand, the attachment is
lost when a comment is attached by the reference function but not by the algorithm. The
number of lost and spurious attachments depends on the maximum attachment distance.

The maximum attachment distance is a certain threshold value. A comment will only be
attached to a vertex if the distance between the two does not exceed this value. Additionally,
in order to be attached, the comment has to be the closest comment to the vertex out of all
comments within the maximum attachment distance.

A low maximum attachment distance yields the best success rates with a few lost at-
tachments and a very low number of spurious attachments. When increasing the maximum
attachment distance, the success rates drop. In detail, the number of spurious attachments
increases significantly, while the number of lost attachments decreases only slightly. In ad-
dition, changed attachments occur. Changed attachment means that a comment is attached
to a different vertex by the heuristic algorithm than by the reference function.

To the best of our knowledge, no further work on integrating the ability to find implicit
attachment of comments into automatic layout algorithms exists. However, Eichelberger
discusses aesthetics of UML diagrams and presents an automatic layout algorithm for
UML diagrams that includes the attachment of comments [Eic05].

His work is different in the sense that the comments in his thesis are always explicitly
attached if they do not concern the entire diagram. During his discussion of aesthetics,
Eichelberger states that there are different kinds of comments: comments that concern
the entire diagram and comments that relate to one or more vertices. In addition, it is
explained where comments that relate to one element or a group of elements should be
placed [Eic05].

To be processed by the automatic layout algorithm, most comments are put into
composite nodes together with the elements they relate to. Comments that concern the
entire diagram are placed in the corners of the diagram. The remaining comments that are
neither put into composite nodes nor concern the entire diagram are removed from the
diagram [Eic05].

An important part of this thesis consists of developing heuristics for comment attach-
ment. Regarding this topic, one of the underlying questions is: what are the cues for
humans to group elements in diagrams? One of the first people to be engaged with this
topic was Max Wertheimer, one of the founders of Gestalt psychology. In his work from 1923
he presents principles, or, as he himself calls them, factors, of grouping. These principles
include proximity, similarity of color or size, common fate, closure, good continuation,
objective set, and past experiences [Wer23].

The principle of proximity states that elements that are close together seem to belong

1. Introduction

together. Similarity of color or size means that elements that look alike tend to be grouped.
Elements are seen as a unit when they move in the same manner in the same direction.
This is the principle of common fate. Closure stands for the rule that self-contained objects
tend to be perceived as a unit even though they are in close contact to other objects. The
principle of good continuation states that humans prolong lines in a way that fits best
the form the line had before. Humans tend to persist on an initial grouping of elements,
even though the elements have been moved and already imply another grouping. This
principle is called objective set. Finally, humans resort to past experiences when trying to
make sense of an object [Wer23].

Over the years, further principles have been proposed. One of those principles is
common region, which was presented by Palmer in 1992. It states that elements that are
located in one framed area are considered to be grouped [Pal92]. Uniform connectedness
presents a further principle, also introduced by Palmer. It means that elements that are
connected tend to be grouped together [PR94].

Of course, there also exists a great amount of work dealing with design and its
principles. For example, Lidwell et al. consider alignment not just as a psychological
principle, but also as a design principle [LHB03]. Elements are usually aligned in rows or
columns. They state that two aligned elements imply that they are related [LHBO03].

When regarding text, they argue that text blocks which are left- or right-aligned create
an invisible line on the left or right. That line presents a very strong alignment cue for
other elements of the design. In their opinion it is much stronger than for example cues
provided by center-aligned text blocks [LHBO3].

To provide another example, Williams states that elements in close proximity are
perceived as a unit. Additionally, he proposes that all elements on a page should be aligned
in order to yield a structured design. Alignment helps to preserve the integrity of the
design even though elements are far away from each other and our mind has separated
them due to other cues [Wil08].

1.3 Structure of this Document

Chapter 2 defines terminology and introduces the technologies used for this thesis.

In Chapter 3, the heuristics with which the algorithm is extended are presented. First,
the role of author and title comments in diagrams is explained and the algorithms for
finding such comments are discussed. Second, we define alignment of elements, present
problems that come up when defining or implementing alignment and discuss the resulting
algorithm. Third, several possibilities to find label names of vertices in comments are
introduced. We start with an intuitive algorithm and develop two improved alternatives.
Fourth, we put all the heuristics together into a function that weighs every heuristic
depending on its importance for comment attachment.

1.3. Structure of this Document

Chapter 4 presents an evaluation and interprets its results. For the evaluation, the
number of correctly attached comments and the performance of the algorithms are taken
into account.

Finally, Chapter 5 summarizes and proposes the results of this thesis. It proposes
further work that could be relevant for this topic.

Chapter 2

Preliminaries

This chapter presents the basics required to understand this thesis. Initially, important
terms are defined. Afterwards, the technologies used for this thesis are explained. These
include Ptolemy, the Modeling Markup Language, Xtend and KIELER. When introducing
KIELER, the process of loading and displaying Ptolemy models is illustrated.

2.1 Terminology

In this section, important terms are defined to establish a basis for the upcoming chapters.
Some of these definitions are based on the work of Schulze and von Hanxleden [SvH14].

Definition 1. A graph is a pair G = (V, E) of a finite set of vertices V and a finite set of
edges E, either directed or undirected.

Definition 2. A graph with comments is a tuple G = (V,E, C) of a finite set of vertices V, a
finite set of edges E, either directed or undirected, and a finite set of comments C.

Definition 3. The x-position in the plane of a vertex v € V or a comment c € C is a function
posy: V U C — R. Pos,(v) represents the x-value of the upper left corner of v and posy(c)
the x-value of the upper left corner of c.

The y-position in the plane of a vertex v € V or a comment ¢ € C is a function pos,: V u
C — R. Pos,(v) represents the y-value of the upper left corner of v and pos,(c) the y-value
of the upper left corner of c.

Definition 4. The width of a vertex v € V or a comment ¢ € C is a function width: Vv C —
R. Width(v) or Width(c) represents the largest horizontal expansion of v or c.

The height of a vertex v € V or a comment ¢ € C is a function height: V.u C — R.
Height(v) or height(c) represents the largest vertical expansion of v or c.

Definition 5. A comment attachment function att : C — V is a possibly partial function that
takes a comment and assigns the vertex it relates to, if any. If a comment ¢ € C is not
attached to a vertex, att(c) is set to att(c) =L.

Definition 6. A comment attachment algorithm takes a graph with comments G = (V,E,C)
together with the width, height, and positions of each vertex and comment and computes
a comment attachment function as defined above.

2. Preliminaries

2.2 Used Technologies

221 Ptolemy II

Ptolemy II is an open source application developed as part of the Ptolemy project! by the
Department of Electrical Engineering and Computer Sciences of the University of California
at Berkeley [LXLO1]. In the Ptolemy project, the modeling, simulation, and design of
concurrent, often complex systems is researched. Particularly, embedded, heterogeneous
systems are of great interest to the project [Lee03].

Consistent with the project, Ptolemy II enables the developer to design hierarchical,
heterogeneous systems. The representation of hierarchical systems is possible because
models can be nested inside of other models. Moreover, Ptolemy offers different models
of computation [LXLO1]. A model of computation determines the rules that apply to the
computation of and interaction between the model’s elements. An example for a model of
computation is Discrete-Events in which elements communicate when special events occur
[Lee03]. A model that contains the Discrete-Events model of computation is displayed
in Figure 2.1. The model of computation is represented by the rectangle with the green
background and the black border in the upper left corner. To achieve heterogeneity in

systems, the sub-models of a hierarchical model can have different models of computation
[LXLO1].

In the framework, models are given as hierarchical graphs that consist of entities and
relations. Entities are either atomic or composite entities. Composite entities contain other
entities. On the contrary, atomic entities present the end of the hierarchy [LXLO01]. In
Figure 2.1, ModalModel is an example for a composite entity, while TimedPlotter represents
a component entity. Entities have ports, displayed in Figure 2.1 by the triangles at the
sides of ModalModel, for example. Relations connect entities through the ports [LXLO1]. In
Figure 2.1 relations are represented by the connecting lines. They usually are undirected,
so information can be transported in both directions. Figure 2.1 shows another type of
element on the bottom right of the diagram. These elements represented by a blue dot, a
name, and a value are called parameters.

In this thesis, demo diagrams that ship with the Ptolemy framework are used to test
the different heuristics and to evaluate the resulting combining function.

Ptolemy uses the Modeling Markup Language as the file format to store its models [Lee03].
Since the Modeling Markup Language causes issues during the synthesis of the diagram
in KIELER, it is introduced in more detail in the next subsection.

Thttp:/ /ptolemy.eecs.berkeley.edu/

10

2.2. Used Technologies

DE Director This modal model has two modes, "clean" and "noisy".
In the "clean" mode, it generates samples of a clean
(noiseless) sinusoid at regular sample intervals.

In the "noisy" mode, it generates a noisy sinusoid.

It switches modes at random times according to a
PoissonClock Poisson process.

uggert><::::::>
ModalModel TimedPlotter

Right click on the ModalModel and
select "Open Actor" to see how this model works.

Sinewave

ﬁequency[>>

hase
P! >

Right click on the Sinewave and
select "Open Instance" to see how we modified

the Sinewave Actor Oriented Class. ® averageEventinterval: 2.0/440.0

e frequency: 440.0
@ noiseStandardDeviation: 0.2
@ sampleRate: 24000.0

Author: Edward A. Lee, Contributor: Christopher Brooks

Figure 2.1. Demo diagram shipped with the Ptolemy framework. The model of computation can
be seen in the upper left corner.

2.2.2 Modeling Markup Language

The Modeling Markup Language, or short MoML, is an XML-based file format [LNOO]. The
language is not dependent on a specific tool, but can be used by several tools if loading
of the MoML files is possible. However, one prominent example of a framework that uses
MoML is Ptolemy.

Every model has a top-level element that serves as the root of the model and needs to
have a name and a class attribute which defines the element’s type.

Typical elements of MoML models are entities which usually contain name and class
attributes. The class attributes contain predefined Java classes that implement the entities.
Entities can be inserted into other entities to achieve a hierarchical structure and can contain
additional information. The additional information range from an element’s location to the
text a comment displays. The information is usually stored in a property. A property has
to have a name, but can also contain all the detail information mentioned above. There are
two ways how the additional information can be stored in the property.

11

2. Preliminaries

1. The information can be saved in the class attribute and value attribute of the property.
This is shown in the following exemplary code piece that is taken from the Ptolemy
demo diagram CarTracking.

<entity name="Subtract" class="ptolemy.actor.lib.AddSubtract">
<property name="_location"
class="ptolemy.kernel.util.Location" value="[95.0, 90.0]">
</property>
</entity>

2. Additional information can be included by using the configure element. This element
offers two ways to add the information. First, it can reference an external file that does
not have to be written in MoML or XML. Second, the configure element can contain the
information directly as text. This may include markup. One example of a markup that
is used in a configure element is svg markup. The exemplary code piece shows a property
that contains a configure element and svg markup. It is taken from the Ptolemy demo
diagram CarTracking. The svg markup is worth mentioning because the information it
contains is not easy to access during the diagram synthesis in KIELER. This is explained
in detail in Section 2.2.4.

<property name="_smallIconDescription"
class="ptolemy.kernel.util.SingletonConfigurableAttribute">
<configure>
<SVg>
<text x="20" style="font-size:14; font-family:SansSerif;
fill:blue" y="20">-A-</text>
</svg>
</configure>
</property>

An entity has the possibility to specify ports which can be marked as an input, an
output, or both. The marking information is stored in a property. Ports can also contain
other properties to provide further information.

Additionally, entities are connected through their ports by relations. In this context, the
term connection has to be distinguished from the term link. A connection associates ports,
whereas a link associates ports and relations. Therefore, a connection is composed of a
relation as well as at least two links [LNOO]. Figure 2.2 illustrates the differences between
relation, link and connection.

12

2.2. Used Technologies

Port Relation Port
Entity P ¢ 4 Entity

Connection “«

Figure 2.2. Illustration of the terminology, see [LN0O].

2.2.3 Xtend

Xtend? is a programming language which is developed as part of the Eclipse project. It
derives from the Java programming language and compiles to readable Java source code.
Every Java library can thus also be used in Xtend.

Xtend eases the development of model-to-model-transformations [KPP08]. Thus, re-
garding the framework this thesis is concerned with, the transformation of Ptolemy models
to displayable graphics is implemented in Xtend. Additionally, the process of attaching
comments uses Xtend as its programming language.

2.2.4 KIELER

KIELER® is an open source software framework that is developed by the Real-Time and
Embedded Systems Group at Kiel University. The acronym stands for Kiel Integrated
Environment for Layout Eclipse Rich Client. The research project aims at improving how
developers work with complex models. A major aspect of the project is the development,
improvement, and application of automatic layout algorithms.

KIELER can be divided into three main parts: Layout, Pragmatics and Semantics. The
Layout part is concerned with building layout algorithms. A central task of the Semantics
part is the compilation and simulation of models. The Pragmatics part deals with the
enhancement of the practical handling of graphical models. This task comprises, amongst
other things, the editing or browsing of models [SFvH09].

A project from KIELER worth mentioning is KIELER Infrastructure for Meta Layout, or
short KIML. Meta layout works under the assumption that different kinds of diagrams

Zhttp:/ /www.eclipse.org/xtend /
Shttp:/ /rtsys.informatik.uni-kiel.de/rtsys/kieler/

13

2. Preliminaries

Transformation from
MoML to KGraph

2 MoML

KIELER Ptolemy Browser |, .. CRenderi
4 5 endering

MoML KGraph
\
KRendering K L I g h D

KGraph

MoML

KGraph

\

T KIM L

Figure 2.3. Overview of the data flow from model file to diagram, see [FvH10]. In this diagram, a
model that has MoML file format is chosen as an exemplary model file. In addition, the browser for
displaying Ptolemy models, called KIELER Ptolemy browser, is used as the editor. Stages of the data
flow: 1) opening the editor in which the diagram should be displayed, 2) loading of an instance of
the meta model that corresponds to the type of the model to be displayed, 3) sending the data to
KLighD, 4) handing over the data to the correct translation by KLighD, 5) translating the data into
KGraph elements and adding rendering information for every element, 6) passing the instance
of the KGraph to KIML, 7) choosing a proper layout, 8) sending all the information necessary for
proper display to the editor.

need different kinds of layout algorithms to be displayed optimally. Therefore, a diagram
should be matched automatically with the best fitting layout algorithm [FvH10].

One important project of the Pragmatics group is KIELER Lightweight Diagrams (KLighD).
KLighD aims at automatically generating and displaying diagrams from different kinds of
models. To achieve this, KLighD coordinates the different parts of KIELER that are needed to
display a diagram from an arbitrary model file [SSvH13]. Figure 2.3 provides an overview
of the way the data travel from a model file to a displayed diagram. To be able to understand
Figure 2.3, it has to be mentioned that KLighD can only display models that use a special
data structure, called KGraph. Thus, every model has to be transformed into a KGraph
before being displayed.

One element of Figure 2.3 is the KIELER Ptolemy Browser. This browser is now
introduced properly.

14

2.2. Used Technologies

DE Director @ frequency. 4400 Author: Edward A. Lee, Contributor: Christopher Brooks
@ sampleRate: 24000.0
° al: 2.0/440.0

@ noiseStandardDeviation: 0.2

This modal model has two modes, "clean" and "noisy".
In the "clean" mode, it generates samples of a clean
(noiseless) sinusoid at regular sample intervals.

In the "noisy" mode, it generates a noisy sinusoid.

It switches modes at random times according to a
Poisson process.

ModalModel
event)
SDF Director @ ishnitialState: true
>
—_—
> input output TimedPlotter
H Guard: event fsPresem ‘: @
Right click on the Sinewave and Guard: event_isPresent
select "Open Instance" to see how we modified @)
the Sinewave Actor Oriented Class. In this mode, the model simply passes the
data from the input to the output without
: any modification.
PoissonClock

) ’

Right click on the ModalModel and
select "Open Actor" to see how this model works.

Figure 2.4. Demo diagram displayed with the KIELER Ptolemy Browser. The refinement of the
ModalModel can be examined in-place.

KIELER Ptolemy Browser

The KIELER Ptolemy Browser* is an example project for the use of KLighD to visualize
models in a way that they are easy to peruse. It presents Ptolemy diagrams similarly to
their usual representation in Ptolemy II. However, the KIELER Ptolemy Browser differs in
several points from other representations. First, it allows the developer to look inside a
composite entity in-place, whereas usually a new window has to be opened. This can
facilitate the understanding of the composite entity’s use and how the composite entity
works. Figure 2.4 shows the diagram displayed in Figure 2.1 with the ModalModel entity
opened.

Second, there is an option to show the diagram without comments in order to focus on
the elements. Third, when using the KIELER Ptolemy Browser, the algorithm for comment
attachment as presented in Section 1.2 usually is applied, but can also be switched
off. Fourth, another option allows different representations of edges. Finally, opened
composite entities have darker backgrounds than the diagrams of their parents to stress
the hierarchical structure.

As a next step, the transformation from a Ptolemy model to a KGraph is explained. To
be able to understand the transformation, KGraph is introduced first.

*http:/ /rtsys.informatik.uni-kiel.de /confluence/ display / KIELER / Ptolemy+Browser

15

2. Preliminaries

KGraphElement
o |k GraphData
+4getData(EClass): KGraphData 0.%
+getData(E) avaClass): KGraphData
KLabeledGraphElement | 1 0.x | Kiabel
> -
+parent Habels Hext: EString
Q EMapPropertyHolder
+children +makePersistent()
0.* 1 +outgoingEdges
o“*
« . .
+parent KNode mource KEdge o 0.* | +properties 0.* | 4persistentEntries
Harget N
0.1) . Jedges \Pro ToObjectMap PetslsuamA:Enh'y
#node Y 1 +incomingE dges +key: IProperty<?> ﬁ:ﬁj;i?gjgng
+value: E) avaObject .
+sourcePort v
0.1 IPropertyHolder
HargetPort KPort +setProperty<T>(IProperty<T>, T): IPropertyHolder
rget-ol +getProperty<T>(IProperty<T>): T
0.1 +copyProperties(IPropertyHolder): IPropertyHolder

+getAllProperties(): EMap<IProperty<?>, EJavaObject>

0.*
“+ports

Figure 2.5. Meta model of the KGraph as defined in KIELER.

KGraph

In KIELER, the KGraph® is the central data structure when it comes to the representation of
graphs. Its meta model is presented in Figure 2.5.

A KGraph has nodes that can be equipped with ports. Each graph contains a single
node that does not belong to a parent node. This top-level node is necessary for the
representation of the entire graph. In addition, nodes can contain other nodes to allow a
hierarchical structure and can be connected by directed edges. Nodes as well as ports and
edges can have an unlimited number of labels. Each KGraph element can store additional
information such as data concerning the layout. Layout information comprises amongst
other things the location, width, and height for nodes, ports, and labels or bend points
for edges [SFVHO09]. For several kinds of elements it also contains more unique data, for
example a comment’s text for a comment node. Such layout options are designed as pairs
that contain a key and a value [SSM"13].

Shttp:/ /rtsys.informatik.uni-kiel.de /confluence/display / KIELER /KGraph+Meta+Model

16

2.2. Used Technologies

Transforming a Ptolemy Model to a KGraph

As mentioned in Section 2.2.4, KLighD sends the data from a Ptolemy model to its corre-
sponding transformation to get a KGraph representation of the model. The synthesis of a
KGraph from a Ptolemy model is very important for this thesis because the attachment of
comments is implemented as its final stage.

The synthesis can be divided into three different parts: the transformation, the opti-
mization, and the visualization.

Transformation The transformation performs the actual conversion from Ptolemy to
KGraph elements for the majority of a diagram’s elements. In this step, entities, relations,
links, and ports are transformed.

First, every KNode receives attributes of its corresponding entity. This includes the
marking of the KNode as a former Ptolemy element. Additionally, the type of the Ptolemy
entity is saved in the KNode’s annotations and the entity’s properties are added to the
KNode.

Once the entity itself has a KNode created for it, the entity’s ports are identified. The
identification of ports can be a difficult process because ports do not have to be explicitly
defined in the MoML file. They often are included in the Java implementation of the entity
they belong to. Thus, when trying to extract ports, the Ptolemy browser makes an attempt
to instantiate the entity through the Ptolemy library to query it for its ports. Then, all the
ports that are explicitly defined in the MoML file are identified as well. Subsequently, all
ports found in the MoML file are added to their entity if they are not already registered in
the library.

Each port should be marked as input, output, or both with the help of the definition
from the Java library. However, if an entity does not have a library definition, it is not
possible to distinguish the type for the ports.

Finally, for every entity, its child entities, relations, and links are added to the corre-
sponding KNode. To achieve this, child entities and relations are transformed into KNodes
and links into KEdges. At the end of this stage, KEdges have a source and target node
and a source and target port. The problem is that KEdges in KIELER are directed, but links
in Ptolemy do not provide any information concerning direction. Thus, at this stage of
the transformation, the direction of KEdges is arbitrary. The task of finding the correct
direction is accomplished in the optimization.

Optimization The optimization enhances the just created KGraph model. First, it is tried
to deduce the direction of edges and the type of ports if their types have not already been
determined. The direction of edges is inferred with the help of the ports whose types
are already known. For example, if a port is an input port, the connected edge has to be
incoming.

17

2. Preliminaries

KNode KNode
KNode KNode KNode KNode
KNode KNode)
KNode KNode KNode KNode KNode KNode

Figure 2.6. This diagram shows that KNodes that derive from relations can be deleted if they
connect only two ports. KNodes that represent entities in Ptolemy are displayed as rectangles.
KNodes that represent relations are displayed as rhombi.

Inferring unknown port types is handled in a very similar way: for every port that does
not have a type the associated edge is regarded. If, for example, the edge is an incoming
edge, the port is assumed to be an input port.

Second, the first stage of the transformation process has transformed every relation
into a KNode. However, these nodes are not needed if the relation is part of a connection
with exactly two ports. In this case, a simple edge is sufficient which simplifies the overall
layout of the diagram. Thus, all unnecessary relations are removed. This step is shown in
Figure 2.6.

Third, ports are removed from states of modal models because they are not needed
due to the lack of data flow.

Fourth, certain properties are subsequently transformed into KNodes. In Ptolemy, some
elements are represented as properties even though, in the diagram, they appear as entities.
Examples for these properties are the director and a special title element. To be able to
handle these elements properly in the layout algorithms, they are transformed into KNodes
as well.

Another kind of property that is dealt with are parameters. All parameters belonging
to a diagram are put into a list and this list is added to a single KNode.

Finally, two further properties are regarded to extract a diagram’s comments. One
of these properties is easy to access so that the comment can be retrieved without any
problems. This can be seen in the code piece below. The property “text” can be found as
well as its value “This is a comment.”.

<property name="Annotation"
class="ptolemy.vergil.kernel.attributes.TextAttribute">
<property name="textSize" class="ptolemy.data.expr.Parameter" value="10">
</property>
<property name="text" class="ptolemy.kernel.util.StringAttribute"

18

2.2. Used Technologies

value="This is a comment.">
</property>
</property>

For the other property, the extraction of comments proves to be more difficult. This
property contains the configure element with sug-markup mentioned in Section 2.2.2. The
problem is that the parser that goes through the MoML file cannot handle svg-markup and
discards it. Thus, the MoML file has to be searched specifically step by step for the property
_iconDescription, the configure element, the svg-markup and the text element to get access to
the comment.

<property name="annotation" class="ptolemy.kernel.util.Attribute">
<property name="_iconDescription"
class="ptolemy.kernel.util.SingletonConfigurableAttribute">
<configure><svg><text x="20" y="20" style="font-size:10;
font-family:Verdana; fill:black">
This is a comment.</text></svg></configure>
</property>
</property>
</property>

Visualization The last part of the transformation process deals with the rendering of
the model’s elements. Depending on the type of the entity, different layout information
are attached. Finally, the actual design of the entity is created. To that end, the KIELER
Ptolemy library is searched for a rendering of the entity for the majority of entities. If it is
not possible to find the entity in the library, it is displayed by a simple rectangle that has a
black contour and a white background. Regarding the parameter node, all parameters of
the list added to the node are displayed one below the other. For every parameter, a blue
dot, the parameter’s name and its value are shown.

19

Chapter 3

Heuristics

In this chapter, the heuristics implemented in this thesis are described. We start by explain-
ing how title or author comments can be identified. Then, the computation of a comment’s
size is presented, followed by the computation of the alignment between a vertex and a
comment. Finally, different approaches to finding the name of a non-comment vertex in a
comment are explained.

3.1 Author Comments

In most of the demo diagrams from Ptolemy, there is a comment which identifies the
diagram’s author. An example of a diagram that contains an author comment is presented
in Figure 3.1.

It is clear that an author comment should never be attached to a vertex because it
provides general information about the diagram. Thus, by identifying a comment as
an author comment, it can be removed from the list of attachable comments before the
attachment process even starts to prevent wrong attachments.

The author comment displayed in Figure 3.1 is a perfect example of how these comments
are composed in Ptolemy demo diagrams. Usually, the string “Author:” or “Authors:”
is followed by the name(s) of the author(s). Of course, there are comments that do not
conform to this rule. However, their number is very small.

The implementation is very simple. Every comment’s text is converted to lowercase
letters. Then, it is checked whether the comment contains the string “author”.

3.2 Title Comments

Titles are important elements of texts because, when applied correctly, they communicate
the key statement and raise interest [ES15]. In diagrams, titles seem to have the same
function. Regarding the set of Ptolemy demo diagrams, several of them contain titles.
Figure 3.1 provides an example of a title with the comment “Compared Clocks”. Since
title comments concern the entire diagram, just as author comments, they should not be
attached to any vertices. Title comments are treated in the same way as author comments.
It is tried to identify them to be able to delete titles from the list of attachable comments .

21

3. Heuristics

Compared Clocks

Continuous Director

o timelnterval: 0.5
This demo illustrates discrete and continuous

@ outputValue1: 1.0 . . .
P clocks in the Continuous domain.

o outputValue2:-1.0

® outputvalue3: 2.0 The top three clocks have the same period of 0.5.
The top clock is discrete, which is absent most
DiscreteClock TimedPlotter of the time. The second clock is continuous.
trigger Lo It is present all the time. The third clock is a
period 2 hybrid. It is absent until time 0.1, the value of
its first offset.
Continuous Clock TimedPlotter2 The third clock is created with a modal model

oEg| and mixes being present and absent at various

m C— times.

ContinuousClock2 TimedPlotter3
|
[—
DiscreteClock2 ModalModel TimedPlotter4

trigger,
S

28
sy
°

Jejs!

Look inside the ModalModel to

A single event see how this is implemented.
occurs at 0.5.

Authors: Haiyang Zheng and Edward A. Lee

Figure 3.1. This diagram is taken from the set of demo diagrams from the Ptolemy tool. However,
it was edited by adding a title for it to exhibit all characteristics of a diagram that lead to the
heuristics implemented in this thesis.

In this thesis, two ways of detecting a title are presented. The first approach concerns
the title property! provided by Ptolemy and already mentioned in Section 2.2.4. This
property applies a large font size to the comment by default to automatically make it look
like a caption.

Since this element is a property, it is transformed in the optimization phase of the
transformation from Ptolemy model to KGraph. During this step, it is marked as a comment
node, but also as a title node to be able to distinguish it from other comments. In the
extraction phase, the node is added to the list of comment nodes. In order to prevent title
comments from being attached, every comment node is checked whether it is marked as a
title node at the beginning of the attachment process. If it is a title comment, no attachment
is tried.

Thttp:/ /ptolemy.eecs.berkeley.edu/ptolemyll/ptI[10.0/ptI[10.0.1/doc/codeDoc/index.html

22

3.3. Size

The second approach uses the observation that titles often have larger font sizes than
normal comments. The title comment in Figure 3.1 is an example for such a case. Note
that the title comment is the only comment element that has the largest font size. This
observation is important for the construction of the algorithm.

At first, the largest font size is determined. This algorithm consists of three steps:

1. For every comment, its font size is detected.

2. Every font size is inserted into a list. Font sizes that are larger than the first element of
the list are added at the head of the list. Font sizes that have the same font size or are
smaller than the first element of the list, are added at the list’s tail.

3. After every font size is added to the list, the first element of the list is returned, if it is
truly greater than the second element; otherwise, 0 is returned.

Because of the third step, it is ensured that the font size returned is truly greater than
all the other font sizes. Finally, at the beginning of the attachment process, it is checked for
every comment whether its font size is the font size determined by the algorithm above. If
so, an attachment is not tried for this comment.

The question remains how the font size of a comment is detected. If its default settings
have not been changed during the creation of the diagram, the font size is not mentioned
in the MoML file. If it has been changed, there are two ways for the font size to be included
in the MoML file. First, it can be a property that is inside the comment property. In this case,
the font size can be extracted without problems by retrieving the value of the property.
However, the font size can also be included in svg-markup in a configure element. In this
case, the same procedure is applied as with comment texts in Section 2.2.4. If no font size
can be found, the font size is set to its default value which is 14.

3.3 Size

Figure 3.1 shows that the size of comments varies. There are comments that concern the
entire diagram and comments that relate to vertices. It is often found that comments that
provide information regarding the entire diagram are larger than comments belonging
to vertices. In Figure 3.1, a good example for a comment that gives general information
is presented by the comment on the right that consists of three paragraphs of text. This
comment is significantly larger than the comments relating to vertices.

This heuristic aims at differentiating between comments that concern the entire diagram
and comments relating to vertices by calculating their sizes. To avoid attaching comments
providing information about the whole diagram, a threshold, the Maximum Comment Size,
is introduced. This threshold indicates the maximum allowed size to still be considered for
attachments during the attachment process.

23

3. Heuristics

Continuous Director

Test Model for the Contactor Class

DriveModel TimedPlotter

1

Drive starts at 710 volts, riv
and switches to 220 volts
at 10 seconds, and back to
110 volts at 20 seconds.

Generator

outputVoltage

Contactor

Load
trigger , input
Previous model: GeneratorTester,

LoadModel ‘E which should have the same behavior.

i}

NextTmode Generatorkeguiator

Load starts absent, and g
switches to 10 ohms at 15
seconds.

be also the Overview.

Figure 3.2. A demo diagram from Ptolemy in which the estimated sizes of the comments are
shown as rectangles with gray background color.

For every comment, the size is calculated by multiplying its width with its height. The
width and height of comments are estimated quantities because they are not deposited in
the MoML file. For comments, KLighD approximates these quantities from the results of
the comment’s rendering during the transformation. Thus, the width and the height do
not represent the width and height of the comments in Ptolemy, but the width and height
of the comment’s text after being rendered during the transformation. Figure 3.2 shows
an example of a diagram where the actual sizes of comments differ significantly from the
estimated sizes. The estimated sizes usually are larger than the original sizes. Especially
the widths of the comments are bigger than in the original diagram.

Finally, it is checked whether the calculated size exceeds the maximum comment size.
If the maximum comment size is exceeded, the comment is excluded from the attachment
process.

3.4 Alignment

As mentioned in Section 1.2, Lidwell et al. explain that two aligned elements tend to be
perceived as related [LHBO3]. Figure 3.1 illustrates this statement: the comment “A single

24

3.4. Alignment

Continuous Director

NOTE: The SimulationX FMU used here will only work on a 32-bit architecture.
Under a 64-bit JVM, Vergil may crash.
To invoke vergil in a 32-bit JVM, try:

java -d32 -classpath $PTIl/lib/jna-4.0.0-variadic.jar:${PTIl} ptolemy.vergil.VergilApplication FMUSimulation.xml

Const AddSubtrpct
o 10 p————sf +

Scale

Gen_Ctrl_Load2 TimedPlotter

Continuouw, FMU e
m | SimulationX fails to correctly specify

that the voltage output does not depend
directly on the drive input, so we declare
that here, in a parameter of the voltage
output port.

Figure 3.3. In this part of a Ptolemy demo diagram, it is clear that the comment at the very bottom
belongs to the FMU element due to their alignment, even though regarding proximity, it could also
be attached to TimedPlotter.

event occurs at 0.5.” is perceived as belonging to DiscreteClock2 due to the fact, amongst
other things, that they are arranged along a straight vertical line. Additionally, when
regarding the Ptolemy demo diagrams, it can be noticed that the proximity sometimes does
not serve as a suitable heuristic. Figure 3.3 shows that it is possible that the arrangement
along a straight line can be more successful.

For our purposes, elements can be arranged along either horizontal or vertical straight
lines. An optimal horizontal alignment (that is, left-aligned or right-aligned) is obtained if
either the left or the right side of both elements can be connected with a straight vertical
line.

In Figure 3.4, two pairs of comments and vertices are displayed that show a perfect
horizontal left and right alignment. However, developers usually do not arrange elements
of a diagram in such a neat way: comments often protrude on the left or right side. This
leads to the definition of horizontal alignment.

Definition 7. Let G = (V,E, C) be a graph with comments. Let c € C be a comment and
v € V be a vertex. We define the horizontal alignment of v and c as a function a;,: V x C - R
that computes the minimum of /,7 € R with [= |posy(v) — posy(c)| and r = |posy(v) +
width(v) — (posy(c) + width(c))|.

As illustrated in Figure 3.5, the distance between the x-position of the comment and the

25

3. Heuristics

EThis IS a comment. This is a comment.
i ModalModel ModalMod

Figure 3.4. This figure shows two perfectly horizontally aligned pairs of vertices and comments.

e e - L T

h

S is a comment. Thisis a con‘gments
ModalModel ModalModgl

< =3

Figure 3.5. This figure illustrates the definition of the horizontal alignment. The distance is
calculated between the right sides or between the left sides of the comment and vertex.

x-position of the vertex is computed for the left alignment. The right alignment calculates
the distance between the x-position plus the width of the comment and the x-position
plus the width of the vertex, thus, the distance between the comment’s right side and the
verticis right side. Finally, the minimum of the left and right alignment is taken as the
value for the horizontal alignment. In general, the following rule applies: the smaller the
value of the calculated alighment, the better the alignment of the comment and the vertex.

An optimal vertical alignment is obtained if a straight horizontal line can be drawn
along either the upper or the lower side of both elements. This is illustrated in Figure 3.6.
Analogously to the horizontal alighment, an optimal arrangement often is is seldom found,
leading to the definition of vertical alignment.

Definition 8. Let G = (V,E,C) be a graph with comments. Let ¢ € C be a comment and
v € V be a vertex. We define the vertical alignment of v and c as a function a,: V x C - R
that computes the minimum of t,b € R with t = |pos,(v) — pos,(c)| and b = |pos,(v) +
height(v) — (posy(c) + height(c))|.

Figure 3.7 shows that for the upper sides, the distance between the y-position of the
comment and the y-position of the vertex is calculated. Regarding the lower sides, the

26

3.4. Alignment

ModalModel ModalModel

""" Thisisa] o
comment. @ This is a
comment.

Figure 3.6. This figure shows two perfectly arranged pairs of vertex and comment along a vertical
line.

[Thisis @ ModalModel ModalModel

comment. @ @
_...Thisisa.

_-[___cpmment

Figure 3.7. This figure illustrates the definition of the vertical alignment. The distance between the
top sides or between the bottom sides of the vertex and comment are calculated.

distance between the y-position plus the height of the comment and the y-position plus the
height of the vertex is calculated. Analogously to the horizontal alignment, the minimum
of both distances is taken as the vertical alignment and the value for an optimal vertical
alignment is zero.

Generally, there are several ways comments can be positioned in relation to vertices.
As shown in Figure 3.8, a comment can be positioned above, below, or on one side of the
vertex. Additionally, it can intersect the vertex and can be cater-cornered to the vertex. For
different positioning possibilities, different alignment strategies are pursued.

First, we consider the case that a comment is positioned cater-cornered to a vertex, such
as in Figure 3.1 the comment “A single event occurs at 0.5.”, to ModalModel. In our opinion,
the comment and vertex are not related regarding alignment in this scenario. Therefore,
cater-cornered comments should not be included in the calculation of the alignment.

Second, it is defined that the horizontal alignment is computed if the comment is
positioned below or above a vertex. It would also be possible to find out the vertical
alignment for comments above or below vertices. However, vertical alighment cannot
achieve better results than horizontal alignment in these cases without the comment
overlapping the node in large parts.

Third, the vertical alignment is calculated if the comment is positioned on the left or
right side of a vertex. Since for comments positioned on one side of a vertex, horizontal
alignment is not able to yield better results than vertical alignment, it is not considered.

During the development of the algorithm, it was initially assumed that comments and
vertices do not intersect because a comment normally should be placed next to a vertex.

27

3. Heuristics

5 {1 | 5

0
N
ol

Figure 3.8. This figure illustrates the ways a comment can be positioned in relation to a vertex: 1
and 2) above or below the vertex, 3 and 4) on one side of the vertex, 5) cater-cornered to the vertex,
6) intersecting with the vertex. The modal model is taken from the Ptolemy tool.

However, since the estimation of a comment’s size is inaccurate and developers often do
not position comments precisely, intersections do occur. When coming across intersections,
the horizontal as well as the vertical alignment is calculated and the minimum of these
two values is chosen as the resulting alignment.

Now, we can finally define alignment.

Definition 9. Let G = (V, E, C) be a graph with comments. Let ¢ € C be a comment and
v € V be a vertex. We define the alignment of v and c as a function a: V x C — R, with
ay(v,¢), (posy(c) + height(c) < posy(v)v

posy(c) > pos,(v) 4 height(v)) A

posx(c) + width(c) > posy(v) A

posx(c) < posy(v) + width(v)
ap(v,c), (posx(c) + width(c) < posyx(v)v

)

))A
posy(c) + height(c) > pos,(v) A
posy(c) < pos,(v) + height(v)

min(ay(v,c),an(v,c)), v intersects c

posx(c) > posy(v) + width(v

\ 1, otherwise

Regarding the definition, the calculation of the vertical alignment is chosen if any part
of a comment touches section 3 or 4 from Figure 3.8, but does not intersect with the vertex.
The horizontal alignment is computed if a comment touches section 1 or 2 from Figure 3.8

28

3.4. Alignment

and if there also is no intersection with the vertex. If comment and vertex intersect, the
minimum of the vertical and horizontal alignment is taken as the alignment. Finally, if
none of the cases above apply, meaning that the comment is cater-cornered to the vertex,
no attachment is computed.

Algorithm 1 provides a detailed description of the algorithm. First, an alighment worse
than acceptable is returned when the comment is cater-cornered to the vertex. Second,
the alignment is calculated for a comment intersecting a vertex. Third, for a comment
positioned above or below a vertex, the horiontal alignment is computed. Fourth, the
vertical alignment is determined for a comment on the left or right side of a vertex.

Algorithm 1: Calculating the alignment between a vertex and a comment.

Data: Comment c € C, Vertex v e V
Result: Alignment between ¢ and v
maximumAlignment = worst possible alignment
leftAlignment = |posy(v) — posy(c)]
rightAlignment = |posy(v) + width(v) — (posx(c) + width(c))|
topAlignment = |pos, (v) — posy(c)|
bottomAlignment = |pos, (v) 4 height(v) — (posy(c) + height(c))|
if c is cater-cornered to v then
L return maximumAlignment + 1

N S Ul s W N e

else if c intersects v then
horizontal Alignment = min(left Alignment, right Alignment)
10 | verticalAlignment = min(top Alignment, bottomAlignment)

© o

11 | return min(horizontal Alignment, vertical Alignment)
12 else
13 if c is above or below v then

14 | return min(leftAlignment, right Alignment)
15 else if c is left or right of v then

16 | return min(top Alignment, bottom Alignment)
17 else
18 L return maximumAlignment + 1

When applying the algorithm to models, diagrams such as the one in Figure 3.9 are
produced. On the one hand, it shows the correct attachment of the comment relating to
Thermostat in the original diagram. On the other hand, comments that concern the entire
diagram are attached although they should not be, such as the author comment. The
attachment occurs because even though the author comment and Thermostat are not close,
their alignment is the best compared to the alignment with the other vertices. However, it
is not probable that these elements should be connected because amongst other things the

29

3. Heuristics

Continuous Director

Thermostat model showing heating a cooling cycles.

In this model, the refinements of the modes in the

state machine are the same model, and the parameters
of the model are changed when state transitions are
taken.

Author: Jie Liu Continuous Director Thermostat model showing heating a cooling cycles.
' In this model, the refinements of the modes in the

state machine are the same model, and the parameters

3 TimedPlotter !
Thermostat - of the model are changed when state transitions are
taken.
=1
P> TimedPlotter
! Thermostat BE0|

3

Right click to look inside b
the "Thermostat" actor to

see the modal behavior. Right click to look inside
the "Thermostat" actor to

see the modal behavior.

Author: Jie Liu

Figure 3.9. This figure contains two diagrams. The framed diagram is the original demo diagram
from the Ptolemy tool. The second diagram is obtained after the automatic layout algorithm and
the comment attachment algorithm with alignment as the attachment heuristic are applied.

distance between them is large. Therefore, the maximum attachment distance is included
into the search for the normal vertex with the best alignment. No vertex can be attached to
a comment if the distance between vertex and comment exceeds the maximum attachment
distance even if they are well aligned.

3.5 Mentions of Actors

In several Ptolemy demo diagrams, it can be observed that comments relating to vertices
contain the text of the vertices” labels. An exemplary diagram is shown in Figure 3.1,
where the label of ModalModel appears in the comment that relates to it. However, many
demo diagrams contain comments that provide general information about the diagram.
In the text of these comments, labels of vertices are often mentioned to describe how the
diagram’s elements are associated. As mentioned several times above, it is desirable to
attach a comment to a vertex if the comment relates to the vertex, but not if the comment
concerns the entire diagram. Therefore, a comment should be attached to a vertex if the
label of the vertex is the only label that appears in the comment.

In this thesis, two possibilities for detecting labels in comments are presented. For the

30

3.5. Mentions of Actors

This model shows a hybrid system, which mixes continuous-time modeling

DE Director e
with finite state machines. In this example, two point masses on springs
oscillate. However, they may collide, in which case, they stick together,
and oscillate together. The stickiness decays, and they eventually come
apart again. This is an example of a modal model, where there are two modes,
"together" and "separate". Each mode is modeled by a state in an FSM, and
each state refines to a continuous-time model of the dynamics in that mode.
TimedPlotter
StickyMassesModel Viewer

This version of the CT Sticky Masses model This example requires Java3D. If you do not have

uses the GR domain to render the results as itinstalled, you can get it from:

a three-dimensional animation. http://java.sun.com/products/java-media/3D/

Figure 3.10. This Ptolemy demo diagram presents a comment that contains the words separated by
space characters that form the label StickyMassesModel.

first approach, every comment is searched for unaltered label names.

The implementation of the first approach is simple. For a given comment it is checked
if the label of any non-comment vertex appears in its text. If more than one label or no
label is found, null is returned. Otherwise, the vertex whose label is found is returned.

However, many labels consist of more than one word. An example can be found in
Figure 3.10: the label StickyMassesModel contains the words sticky, masses, and model. As can
also be seen in Figure 3.10, in comments, these labels sometimes are written as separate
words. Therefore, as a second approach, comments are searched for several versions of a
label’s text, the unaltered label name being among them. Additionally, if the label consists
of more than one word, the comment is searched for these words separated by an arbitrary
number of space characters. Moreover, the use of upper and lower case is not taken into
account.

To be able to search for these words separated by space characters, a regular expression
is constructed. A regular expression is a sequence of characters that represents a set of
strings in which all elements have certain characteristics. Regular expressions have a
particular syntax. The rules that affect the construction of the regular expression used in
this thesis are explained below.

In this thesis, a regular expression is constructed for every label and this expression
is matched with the comment. If the comment and the regular expression match because

31

3. Heuristics

the comment contains the label, and if no other label is found in the comment, the vertex
whose label is found is returned.

When trying to construct a regular expression to find a label or a slightly altered
version of the label in a comment, certain aspects have to be considered. First, a comment
can contain an arbitrary number of arbitrary characters until the label is mentioned, and
an arbitrary number of arbitrary characters can follow. This is illustrated in Figure 3.10,
where the label StickyMassesModel is mentioned in the middle of the comment. Therefore,
the regular expression has to start and end with (.x). In this context, the dot stands for an
arbitrary character and the star for an arbitrary number of repetitions, including zero. In
between the (.x), the label has to be represented.

When regarding the label, new words start before an upper case character. In addition,
some labels contain numbers. In normal texts, new words and numbers usually are
separated by space characters. Therefore, the regular expression contains (\\s*) before an
upper case character and a number, where \s stands for a space character. However, if the
label already contains a space character, no space characters are included.

Finally, the text of the comment and the text of the regular expression is converted to
lower case letters. Thus, labels can be found without having to take into account the use of
upper and lower case letters.

As an example, the regular expression for StickyMassesModel would look like this:

(.*x)sticky(\\s*x)masses(\\sx*x)model(.x).

Table 3.1 shows an excerpt of possible versions of the label StickyMassesModel as
identified by the first and second approach. The first approach only finds the unaltered
label, whereas the second approach identifies an arbitrary number of versions.

3.6 Putting It All Together

In this section, we try to combine the different heuristics in a useful way. To achieve this,
we analyze every heuristic with a subset of Ptolemy demo diagrams and try to get clues
from the analyses on how to combine the heuristics. In the next chapter, the evaluation,
we will finally evaluate the most relevant combinations with another subset of Ptolemy
demo diagrams. For this purpose, the set of Ptolemy demo diagrams was split into two
complementary subsets. As mentioned above, the first subset was used to learn from the
diagrams to be able to combine the heuristics optimally. The second subset is not used in
this chapter, but in the next chapter to evaluate the most relevant combinations.

In this thesis, three combinations of heuristics are presented. Additionally, two combi-
nations are extended by one of the approaches described in Section 3.5.

The subset used in this section consisted of 156 diagrams which contain 497 comments
and meet our demands. Our requirements comprise that all diagrams have to contain

32

3.6. Putting It All Together

Table 3.1. This table shows which versions of the label StickyMassesModel are identified by the first
and second approach. Since the second approach allows an arbitrary number of space characters
between words, this approach identifies an arbitrary number of versions.

Version of the label First approach Second approach
StickyMassesModel yes yes
stickymassesmodel no yes
Stickymassesmodel no yes
stickyMassesmodel no yes
StickymassesModel no yes
Sticky Masses Model no yes
StickyMasses Model no yes
Sticky Masses model no yes
sticky masses model no yes
sticky ~ masses model no yes

comments. Second, comments should not relate to any other elements than vertices. Third,
comments should not belong to more than one vertex. Finally, it has to be possible to
display the diagrams properly in Ptolemy, in the KIELER Ptolemy Browser and in a tool
used to analyze the comment attachment.

The analysis of the heuristics and combinations was conducted analogously to the
process described by Schulze and von Hanxleden [SvH14]. First, for all diagrams, comments
were attached manually, which led to the definition of a reference attachment function.
Then, one of the combinations of heuristics was applied to the diagrams, resulting in a
heuristic attachment function. Finally, the heuristic attachment function was compared to
the reference attachment function.

The comparison results in the number of correct, changed, lost and spurious attachments.
An attachment is called correct if the heuristic attachment function yields the same result
as the reference attachment function. An attachment is considered to be changed if the
reference attachment function attaches the comment to a different vertex than the heuristic
attachment function. Lost attachment means that a comment is attached by the reference
attachment function, but not by the heuristic attachment function. Spurious attachments
occur when a comment is not attached by the reference attachment function, but by the
heuristic attachment function [SvH14].

As a first preparatory step, we reevaluated the proximity heuristic using the subset
of demo diagrams to see whether we deal with a starting position comparable to the

33

3. Heuristics

results presented by Schulze and von Hanxleden. We achieved the results presented in
Figure 3.11. In their evaluation, Schulze and von Hanxleden achieved success rates of up
to 90%. However, success rates drop when the maximum attachment distance is increased.
Additionally, changed attachments happen and the number of lost attachments is reduced.
Most importantly, spurious attachments occur more often [SvH14]. When comparing the
two evaluations, these progressions are very similar. However, Schulze and von Hanxleden
generally obtained slightly better success rates. A reason for the different number of correct
attachments could be that our evaluation included only a part of the diagrams Schulze and
von Hanxleden used for their evaluation. Additionally, we were able to take into account
new Ptolemy diagrams that were not available when their evaluation was conducted.
Moreover, further elements of the diagram are considered in the attachment process which
could increase the number of spurious attachments. Finally, texts of comments now are
displayed with the font sizes defined in Ptolemy. Therefore, it is possible that a different
comment size is estimated which leads to different values concerning the proximity.

To be able to compare the proximity heuristic with the alignment heuristic in Chapter 4,
the comment attachment when using the alignment heuristic is analyzed. Figure 3.12
shows the results of this evaluation. It can be observed that the evaluation of the proximity
heuristic and alignment heuristic provide almost identical results. Therefore, the alignment
heuristic seems to be as valuable as the proximity heuristic regarding this subset of Ptolemy
demo diagrams.

As another preparatory step, we analyze the heuristics that search for the unaltered
label or the label in which space characters are included. Figure 3.13 visualizes the results
of the evaluation. Differently than expected, the search for the unaltered label yields better
results than the second more liberal approach. Due to the same number of lost attachments
for both approaches, it is a wrong assumption regarding this subset of Ptolemy demo
diagrams that comments that belong to a vertex preferably contain the words of the
verticis label separated by space characters if the label consists of more than one word.
Searching for different versions of the label rather allows attachments to vertices that are
not related to the comment, shown in the evaluation by the elevated number of spurious
attachments. Therefore, for further purposes, we will only use the heuristic that searches
for the unaltered labels.

As the final step of the preparation, the maximum comment size has to be determined:
the comment size above which the comment is excluded from the attachment process.
First, we calculated the average comment size, resulting in 41602.35, to get a first clue as to
which size would be appropriate. Then, we applied the proximity heuristic with different
maximum comment sizes to the diagrams. The results are presented in Figure 3.14. Since a
maximum comment size of 20000 yields the best results, this maximum comment size is
used in all further combinations of heuristics.

The first approach presented in this thesis combines the heuristics that exclude com-
ments from being attached with the proximity heuristic. The idea for this approach

34

3.6. Putting It All Together

70,00%

60,00%
50,00% I Spurious

Lost
40,00% W Changed
30,00%
20,00% I I I I
10,00% - l I

0,00%—_----------

25 100 200 400 1000 2000 3000
0 50 150 300 500 1500 2500

Error

Maximum Attachment Distance (non-linear scale)

Figure 3.11. Error rate of the comment attachment when applying the proximity heuristic and
different maximum attachment distances. Best success rates were achieved when applying low
maximum attachment distances. When the maximum attachment distance increases, the number
of correct attachment decreases. In addition, the number of lost attachments decreases, whereas
the number of spurious attachments increases significantly. The number of changed attachments
increases only slightly.

developed after regarding the evaluation of the proximity heuristic from Schulze and von
Hanxleden [SvH14]. In their evaluation, even at small maximum attachment distances,
spurious attachments occur. The number of these attachments increases with the maximum
attachment distance. Therefore, it is proposed that spurious attachments can be avoided by
adding the heuristics that exclude comments from being attached. Thus, we suggest to
use the proximity as the main heuristic and add the heuristics that exclude title, author
comments and comments that exceed a certain size.

Figure 3.15 presents the results of the evaluation of our first approach. Success rates of
up to 89% are achieved.

The second approach is very similar to the first one because it combines the heuristics
that exclude comments from the attachment process with the alignment heuristic. The
motivation for this approach is the same as the motivation for the first approach. Figure 3.16
demonstrates the results of the evaluation. Both heuristics achieve very similar results.

35

3. Heuristics

70,00%
60,00%
50 00% I Spurious
Lost
_ 40,00% M Changed
e
W 30,00%
20,00%
=il
10,00% l
0.00% _—em = s s = == = B EH EH B

0 25 50 100 150 200 300 400 500 10001500200025003000

Maximum Attachment Distance (non-linear scale)

Figure 3.12. This diagram shows the error rate of the comment attachment when applying the
alignment heuristic and different maximum attachment distances. The results are very similar to
the proximity-based results in Figure 3.11.

The best success rate is obtained when applying the alignment heuristic with a maximum
attachment distance of 50 together with the heuristics that exclude comments from being
attached.

Another way to achieve a better comment attachment would be to lower the number
of lost attachments. We propose that the heuristic that searches the comment for the
unaltered label achieves this because it also identifies comments that are not in the vicinity
of the vertex. Therefore, we add the label heuristic to the first and second approach. Both
approaches now handle the comment attachment in the following way. First, the title,
author and size heuristics deplete the pool of attachable comments. Then, the label heuristic
is applied. If exactly one label can be found in a comment, the label’s vertex is attached.
Otherwise, the proximity or alignment heuristic capped by the maximum attachment
distance is used.

Figure 3.17 and Figure 3.18 show the results of the evaluations of both extended
approaches. They again yield very similar results. It can be observed for both evaluations
that the success rates do not improve, but stay the same.

Finally, the third approach is presented. It assumes that the proximity and the alignment
are complementary concepts. For some pairs of comment and vertex, the proximity yields

36

3.6. Putting It All Together

25,00%
I Spurious
Lost
0,
20,00% B Changed
15,00%
S
“ 10,00%
500% —
0,00% - | |
First approach Second approach

Figure 3.13. Error rate of the comment attachment when applying the heuristics that search for
the unaltered label (first approach) or the label in which space characters are included (second
approach). The evaluation of both heuristics provides the same number of changed and lost
attachments. However, the number of spurious attachments is higher if the label with included
space characters is used.

better results than the alignment and vice versa. As already mentioned in Section 3.4,
Figure 3.3 provides an example of a comment for which only the alignment heuristic
achieves a correct attachment. Thus, we propose a weight function w: V x C — R that
takes into account the proximity and the alignment. It is w = e x p(v,¢) + f x a(v, c) with
(e, f) e {(1,0.8),(1,0.6),(1,0.4),(1,0.2),(0.8,1),(0.6,1),(04,1),(0.2,1) and p: VxC - R
as the proximity. Remember that 2: V x C — R is the alignment heuristic. Since for the
tirst and second approach 50 proved to be a very good maximum attachment distance,
this value is used. Additionally, the heuristics that exclude comments from the attachment
process are applied. However, since the proximity heuristic and the alignment heuristic
achieve very similar results, we only expect the outcome to differ slightly from the first
and second approach.

Figure 3.19 presents the results of the evaluation of the weight function. As expected,
the success rates do not differ from the best success rates achieved by the first and second
approach. Additionally, the weights do not have any effect on the outcome.

Thus, the combination of heuristics we propose to use for the evaluation is the alignment

37

3. Heuristics

25,00%

20,00%

15,00%
10,00%
5,00%
0,00%

10000 15000 20000 25000 30000 40000 50000 60000 70000

Error

Size

Figure 3.14. Error rate of the comment attachment when applying the proximity heuristic with
maximum attachment distance = 150 and different maximum comment sizes. The best success rates
are obtained when using a maximum comment size of 20000.

heuristic capped by a maximum attachment distance of 50 combined with the heuristics
that exclude comments from being attached. Since we are also interested in the question
whether the label heuristic can lower the number of lost attachments, we will also evaluate
the alignment heuristic with maximum attachment distance of 25 together with the
heuristics that remove comments from the attachment process and the label heuristic.

38

3.6. Putting It All Together

20,00%
18,00%
16,00%
14,00%

12,00%
10,00%
8,00%
6,00%
4,00%
2,00%
0,00%

100 150 200 300 400 500 1000 2000 3000

Error

Maximum Attachment Distance (non-linear scale)

Figure 3.15. Error rate of the comment attachment when applying the proximity heuristic and the
heuristics that exclude the title, author comments, and comments exceeding a size of 20000. The
best success rates are obtained when using a maximum attachment distance of 25 or 50.

39

3. Heuristics

20,00%
18,00%
16,00%
14,00%
12,00%
10,00%
8,00%
6,00%
4,00%
2,00%
0,00%

Error

Maximum Attachment Distance (non-linear scale)

Figure 3.16. Error rate of the comment attachment when applying the alignment heuristics and
the heuristics that exclude the title, author comments, and comments exceeding a size of 20000.
The best success rates are obtained when using a maximum attachment distance of 50.

40

3.6. Putting It All Together

25,00%
20,00%

15,00%

10,00%
5,00%
0,00%

100 150 200 300 400 500 1000 2000 3000

Error

Maximum Attachment Distance (non-linear scale)

Figure 3.17. Error rate of the comment attachment when applying the proximity heuristics, the
heuristics that exclude the title, author comments, and comments exceeding a size of 20000 and the
label heuristic. The best success rates are obtained when using a maximum attachment distance of
25.

41

3. Heuristics

20,00%
18,00%
16,00%
14,00%
12,00%
10,00% |
8,00%
6,00%
4,00%
2,00%
0,00%

Error

0 25 50 100 150 200 300 400 500 1000 2000 3000

Maximum Attachment Distance (non-linear scale)

Figure 3.18. Error rate of the comment attachment when applying the alignment heuristics, the
heuristics that exclude the title, author comments, and comments exceeding a size of 20000 and the
label heuristic. The best success rates are obtained when using a maximum attachment distance of
25.

42

3.6. Putting It All Together

12,00%
10,00%
8,00%
= Spurious
2 6,00% P
w Lost
H Ch d
4,00% ange
2,00%

0,00%----—----
(0.2,1.0)(0.4,1.0) (0.6,1.0) (0.8,1.0) (1.0,1.0) (1.0,0.8) (1.0,0.6) (1.0,0.4) (1.0,0.2)

Weight

Figure 3.19. Error rate of the comment attachment when applying a weight function as well as the
heuristics that exclude the title, author comments and comments that exceed a certain size. The
maximum attachment distance is set to 50. Success rates are constant regardless of the weights
used. (e, f) withee, f € {(1,0.8),(1,0.6),(1,0.4),(1,0.2),(0.8,1), (0.6,1),(0.4,1), (0.2, 1) represents the
prefactors. e is the prefactor of the proximity heuristic, f the prefactor of the alignment heuristic. At
(1,1), both heuristics have the same weight. By decreasing one prefactor, the weight of the respective
heuristic is reduced.

43

Chapter 4

Evaluation

In this chapter, the results of the evaluation of the two combinations of heuristics proposed
in Section 3.6 are discussed. The first combination of heuristics consists of the alignment
heuristic capped by a maximum attachment distance of 50 and the heuristics that exclude
comments from the attachment process. The second combination comprises the alignment
heuristic with a maximum attachment distance of 25, the heuristics that exclude comments
and the heuristic that searches for the unaltered label in a comment’s text.

For the evaluation, a subset of the Ptolemy demo diagrams different from the subset
used in Section 3.6 was taken. This subset consisted of 157 diagrams which contain 483
comments and meet the requirements. Every diagram was required to contain comments.
Additionally, comments were only allowed to relate to vertices and should not relate to
more than one vertex. Moreover, diagrams were excluded if comments were explicitly
attached to vertices. Finally, it was necessary to be able to display the diagrams properly
in Ptolemy, in the KIELER Ptolemy Browser, and in a tool used to analyze the comment
attachment.

The goal of this evaluation was to find out whether our combinations of heuristics
improve the success rates of automatic comment attachment compared to the proximity
heuristic introduced by Schulze and von Hanxleden [SvH14]. Additionally, we wanted
to estimate the practical use of our combinations of heuristics so that we compared the
error rates of our combinations of heuristics with the error rates of the heuristic where no
comment attachment is applied.

The evaluation was conducted in the same way as described by Schulze and von
Hanxleden [SvH14]. As a preparatory step, a reference attachment function was defined
by attaching the comments manually for all diagrams in the subset. Second, for every
approach, that is to say for the first combination of heuristics, for the second combination
of heuristics, for the proximity heuristic and for the no attachment heuristic, a heuristic
attachment function was introduced by applying the respective heuristic to the diagrams.
Finally, for every approach, the heuristic attachment function was compared to the reference
attachment function.

The comparison produces four criteria that describe the quality of the comment attach-
ment. These criteria are the number of correct, changed, lost and spurious attachments.
An attachment is considered to be correct if the heuristic attachment function yields the
same results as the reference attachment function. Changed attachments occur when a

45

4. Evaluation

30,00%
25,00%
20,00% Spurious
Lost
s 15,00% B Changed
w
10,00%
5,00%
0,00% - I I
No Attachment Proximity Combination | Combination II

Type of Attachment Heuristic

Figure 4.1. This diagram shows the error rate of the comment attachment when applying the
proximity heuristic with a maximum attachment distance of 25 or one of the two combinations or
no attachment. Combination I stands for the alignment heuristic capped by a maximum attachment
distance of 50 plus the heuristics that exclude comments. Combination II means that the alignment
heuristic with a maximum attachment distance of 25 is joined with the excluding heuristics and the
label heuristic.

comment is attached to a different vertex in the heuristic attachment function than in the
reference attachment function. Lost attachment means that a comment is attached in the
reference attachment function, but not in the heuristic attachment function. An attachment
is spurious if a comment is attached by the heuristic attachment function, but not by the
reference attachment function [SvH14].

Figure 4.1 shows the results of the evaluation of the combinations, the proximity
heuristic, and the case where no attachment is applied. First, it can be observed that the
success rates of the combinations are slightly higher than the success rate of the case where
no attachment is applied regarding this subset of Ptolemy demo diagrams. Additionally,
the rate of correct attachments of the proximity heuristic is less successful than the rates of
the combinations.

In Section 3.6, it was assumed that the heuristics that exclude comments from the
attachment process help to decrease the number of spurious attachments. In Figure 4.1,
it can be observed that the percentage of spurious attachments falls from 7.65% when
applying the proximity heuristic to 0.6% when using the first combination. This supports
the statement that excluding heuristics lowers the number of spurious attachments. Another

46

reason for the drop of spurious attachments could be that different main heuristics were
used. However, as described in Section 3.6, the proximity and alignment heuristic yield
very similar results.

A further assumption in Section 3.6 was that the heuristic that searches for the unaltered
label can decrease the number of lost attachments. However, when we look at the results
for both combinations in Figure 4.1, the number of lost attachments is not reduced when
applying combination II, which contains the heuristic that searches for an unaltered label
in contrast to combination I, to the demo diagrams. The application of this combination of
heuristics rather leads to a slight increase in the number of spurious attachments.

Second, we compared the different attachment heuristics by using only the diagrams
in which comments are attached to vertices. This set consists of 35 diagrams that contain a
total of 166 comments. The results of the evaluation are presented in Figure 4.2. It can be
observed that the success rates of the combinations are higher than the success rate of the
proximity heuristic due to different numbers of spurious attachments. It is confirmed that
the number of lost attachments is not affected by the application of the label heuristic.

To sum up, it appears that a combination of heuristics provides better success rates than
the proximity heuristic alone. We are able to decrease the number of spurious attachments,
but cannot alter the number of lost attachments for the respective maximum attachment
distance. When comparing our approach to the case where no automatic comment attach-
ment is applied, it yields slightly better results. However, since the success rates of the
combinations of heuristics are close to the success rates of the no attachment heuristic,
further approaches regarding automatic comment attachment could be considered.

An explanation for the very similar success rates to when no automatic comment
attachment is applied could be that this subset of Ptolemy diagrams only has few diagrams
in which comments should be attached. Out of 483 comments, only 166 are related to a
vertex. Therefore, the no attachment heuristic is strong regarding this pool of diagrams.
However, in a set of comments where a lot of comments are attached to vertices, the no
attachment heuristic would become less important.

One further reason for the fact that we were not able to achieve better results could be
the estimation of the shapes of the comments. This leads to a distorted representation of
the diagrams which can cause incorrect attachments.

The lack of better success rates could also be caused by the large number of possible
combinations of the heuristics. It is possible to change the maximum comment size and
the maximum attachment distance. Additionally, one can activate or deactivate the label
heuristic. Therefore, we may not have found the optimal combination of heuristics yet.

Another reason could be that developers sometimes create diagrams that do not follow
general layout rules. This makes it harder for the heuristics to recognize relations.

Moreover, we found that the proximity and alignment heuristic do not consider the
case where only the borders of a comment and a vertex touch. In this case, the comment
and the vertex do not intersect, but the comment is also not positioned on one side of the

47

4. Evaluation

35,00% .
Spurious

30,00% Lost
B Changed
25,00%

20,00%

Error

15,00%
10,00%

5,00%

0,00%] I
Proximity Combination | Combination I

Type of Attachment Heuristic

Figure 4.2. For this figure, only diagrams in which comments are attached to vertices are taken into
account. It shows the error rate of the comment attachment when applying the proximity heuristic
or one of the two combinations or no attachment. Combination I stands for the alignment heuristic
capped by a maximum attachment distance of 50 plus the heuristics that exclude comments.
Combination II means that the alignment heuristic with a maximum attachment distance of 25 is
joined with the excluding heuristics and the label heuristic.

vertex. Therefore, this comment is excluded from the attachment process. If this scenario
happens, a lost or changed attachment occurs. However, we believe that this situation
arises only rarely so that the results of the evaluation are not altered considerably.

A limiting factor of this evaluation consists in the fact that all diagrams examined in
this thesis are part of a set of demo diagrams developed by one research group. When
regarding the diagrams, it seems that certain layout guidelines are established by the group.
The uniform construction of the author comment and its positioning at the bottom left
corner is one example for such a guideline. Additionally, the number of authors is limited
to the members of the research group. Therefore, it could be easier to find layout patterns
in this set of diagrams than in a set of arbitrary diagrams. Moreover, some heuristics like
the author heuristic could be unique to this set of diagrams because other developers
follow different layout guidelines.

48

Chapter 5

Conclusion

The goal of this thesis was to improve the success rate of automatic comment attachment
for a set of demo diagrams from the Ptolemy tool. To achieve this, an already existing
comment attachment algorithm was to be extended by implementing additional heuristics.
These heuristics include the alignment of comments, the exclusion of the title, of the author
comment, as well as of comments that exceed a certain comment size, and the mentioning
of labels in comments. For the mentioning of labels, two approaches were presented. The
first approach searches for the unaltered label, whereas the second approach tries to find
several versions of the label’s text.

We then evaluated the applicability of every heuristic with a subset of the demo
diagrams from the Ptolemy tool. This led us to the development of different kinds of
combinations of heuristics. Two combinations of heuristics were selected for the evaluation.
The first combination uses the alignment heuristic capped by a maximum attachment
distance of 50 and the heuristics that exclude comments from the attachment process.
The second combination consists of the alignment heuristic with a maximum attachment
distance of 25, the heuristics that exclude comments, and the label heuristic.

In the evaluation, the combinations were compared to the proximity heuristic in
isolation and to the case where no comment attachment is applied. To be able to compare
the different approaches, a second subset of the demo diagrams from Ptolemy which
differed from the first one was used. Both combinations yield better success rates than
the proximity heuristic. The reason for this is that the heuristics that exclude comments
from the comment attachment lower the number of spurious attachments considerably.
It was assumed that the second combination could lower the number of lost attachments
because the label heuristic also finds related vertices that are not in the vicinity of the
comment. However, the number of lost attachments is not affected by the label heuristic.
Most importantly, the combinations of heuristics only yield slightly better results than if
the comment attachment heuristic is not applied. Therefore, further work has to be done
to be able to attach comments automatically.

49

5. Conclusion

Discrete Event (DE) Director

This model illustrates a famous paradox .
in probability called the inspection DE MOde“ng

The discrete-event director uses a paradox. Passengers arrive randomlyata In discrete-event modeling
,

sophisticated priority queue to sort bus stop, according to a Poisson process. R .
events bytime, and executes a model Busses also arrive, and waiting time of Cf)mponents.cqmmumcate via
by processing events in chronological the passengers is recorded. Two signals consisting of events
order. situations are compared: Busses arrive at placed on a time line. The
Timed Plotter regularintervals, and busses arrive DE director ensures that

according to a Poisson process. The events are processed in
expected waiting time is double for the chronological order. This

second case as the first, even though the del of tation i I
average arrival rate of busses is the same. m‘? elo compu.a |on. '_s well-
suited for modeling digital

circuits, communication
Histogram networks, business processes,
etc.

Regular Bus Arri
lrlggerD .l/
>
Poisson Bus Arripalp

|riggerD @ ﬁ‘ » |

Regular Waiting

Passenger Arrivdls

| » Report Poisson Average) " .
iriggerb@. | Display Average Waiting Times

Report Regular Average

SingleEvent0
O

L |

Author: Edward A. Lee

Figure 5.1. In this Ptolemy demo diagram, the comment “DE Modeling” and the comment directly
below are related. “DE Modeling” serves as the title for the comment below.

5.1 Future Work

This thesis presents intuitive combinations of heuristics. Since these combinations only
achieve slightly better results than if no attachment is applied, also further approaches
regarding automatic comment attachment should be considered. For example, an algorithm
based on artificial learning could be of use.

Additionally, in this thesis, only diagrams that do not attach comments to other
elements than vertices are considered. However, comments can be attached to all kinds of
elements. Therefore, comment attachment to edges, ports, or parameters could be realized.
Moreover, comments can relate to other comments, as can be seen in Figure 5.1. Thus, one
could also try to realize a comment attachment to comments.

One very important aspect of this thesis is that all diagrams examined are part of a set
of diagrams created by one research group. Therefore, the diagrams are often designed
in a similar way which could facilitate the application of heuristics. Figure 5.2 shows a
diagram created during our own studies. At first sight, the diagram looks quite similar
to the Ptolemy demo diagrams, which could be explained by the fact that the model is
based on a model from a book written by members of the research group that developed

50

5.1. Future Work

Christina Ploger

Yella Lasch
SR Director
Gebe aus,
Zahle in 2er Schritten hoch, Gebe present aus, ob die Eingabe pro Zeit
um "Temperaturen" zu erzeugen. wenn temperature>=38 absent oder present war.
Ramp ModalModel IsPresent Display

Av4

i E=3;

H, =

Figure 5.2. An event counter based on a model by Lee and Seshia [LS11, sec. 3.1].

Ptolemy. However, it would not be possible to identify the author comment with the
heuristics presented in this thesis. Therefore, it would be very interesting to see the success
rates of the heuristics when being applied to diagrams from different authors or even
from different tools. It could be tried to refine the heuristics so that they are applicable to
different kinds of diagrams.

51

1.1
1.2

1.3

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15

3.16

3.17

3.18

List of Figures

Demo diagram from the Ptolemy framework 2
Diagram after application of a layout algorithm that does not consider

COMMENtS 3
Ambiguous case of implicit attachment 4
Ptolemy diagram that shows the model of computation. 11
MoML terminology 13
Overview of of the data flow from model file to diagram 14
Demo diagram displayed with the KIELER Ptolemy Browser 15
Meta model of the KGraph 16
Deletion of relations L L 18
Characteristics that lead to the heuristics 22
Estimated shape of comments, 24
Alignment 25
Perfect horizontal alignment., 26
Definition of horizontal alignment 26
Perfect vertical alignment 27
Definition of vertical alignment, 27
Positioning of a comment in relationtoa vertex 28
Alignment with maximum attachment distance 30
Mentioning of a version of the label ina comment 31
Error rate of the comment attachment for the proximity heuristic 35
Error rate of the comment attachment for the alignment heuristic 36
Error rate of the comment attachment for the label heuristics 37
Error rate of the comment attachment for the proximity heuristic and differ-

ent commentsizes oL 38
Error rate of the comment attachment for the proximity heuristic plus the

excluding heuristicso oo 39
Error rate of the comment attachment for the alignment heuristic plus the

excluding heuristics Lo 40
Error rate of the comment attachment for the proximity heuristic, the ex-

cluding heuristics and the label heuristic 41
Error rate of the comment attachment for the alignment heuristic, the ex-

cluding heuristics and the label heuristics 42

53

List of Figures

54

3.19 Error rate of the comment attachment for a weight function plus the exclud-
ing heuristics L

4.1 Error rate of the heuristics to be evaluated
4.2 Error rate of the heuristics to be evaluated, limited on the diagrams in which
comments are attached

5.1 Relation of comment tocomment.
5.2 Ptolemy diagram not belonging to the Ptolemy demo diagrams

Appendix A

Abbreviations

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
A framework for automatic layout.

MoML Modeling Markup Language
An XML-based file format.

KLighD KIELER Lightweight Diagrams
A framework that coordinates the generation and display of diagrams.

KIML KIELER Infrastructure for Meta Layout
A framework that deals with the choice of suitable layout algorithms for a model.

55

Bibliography

[AGI8] Ken Arnold and James Gosling. The Java Programming Language (2Nd Ed.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1998.

[Eic05] Holger Eichelberger. Aesthetics and Automatic Layout of UML Class Diagrams.
PhD thesis, Bayerische Julius-Maximilians-Universitdt Wiirzburg, 2005.

[EJLT03] Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogeneity—
the Ptolemy approach. Proceedings of the IEEE, 91(1):127-144, Jan 2003. doi:

10.1109/JPR0OC.2002.805829.

[ES15] Detlef Esslinger and Wolf Schneider. Die Uberschrift : Sachzwiinge - Fallstricke -
Versuchungen - Rezepte. Springer VS, fifth edition, 2015.

[FvH10] Hauke Fuhrmann and Reinhard von Hanxleden. Taming graphical modeling.
Technical Report 1003, Christian-Albrechts-Universitit zu Kiel, Department of
Computer Science, May 2010.

[KD10] Lars Kristian Klauske and Christian Dziobek. Improving modeling usability:
Automated layout generation for Simulink. In Proceedings of the MathWorks
Automotive Conference (MAC'10), 2010.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The epsilon trans-
formation language. In Theory and Practice of Model Transformations, volume 5063
of Lecture Notes in Computer Science, pages 46—60. Springer Berlin Heidelberg,
2008.

[Lee03] Edward A. Lee. Overview of the Ptolemy project. Technical Memorandum
UCB/ERL MO03/25, University of California, Berkeley, CA, 94720, USA, July
2003.

[LHBO3] William Lidwell, Kristina Holden, and Jill Butler. Universal principles of design :
100 ways to enhance usability, influence perception, increase appeal, make better design
decisions, and teach through design. Rockport publ. cop., Beverly (Mass.), 2003.
URL: http://opac.inria.fr/record=b1128784.

[LNOO] Edward A. Lee and Steve Neuendorffer. MoML - a modeling markup language
in XML Version 0.4. Technical Memorandum UCB/ERL M00/12, University of
California, Berkeley, CA 94720, 2000.

57

http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/JPROC.2002.805829
http://opac.inria.fr/record=b1128784

Bibliography

[LS11] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems, A Cyber-
Physical Systems Approach. Lulu, 2011. URL: nhttp://LeeSeshia.org.

[LXLO1] Xiaojun Liu, Yuhong Xiong, and Edward A. Lee. The ptolemy ii framework for
visual languages. In HCC, pages 50-. IEEE Computer Society, 2001.

[MELS95] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment
and the mental map. Journal of Visual Languages & Computing, 6(2):183-210, June
1995.

[Pal92] Stephen E. Palmer. Common region: A new principle of perceptual grouping.
Cognitive Psychology, 24(3):436—47, 1992.

[PR94] Stephen E. Palmer and Irvin Rock. Rethinking perceptual organization: the role
of uniform connectedness. Psychonomic Bulletin and Review, 1(1):29-55, 1994.

[SFVHO09] Miro Sponemann, Hauke Fuhrmann, and Reinhard von Hanxleden. Automatic
layout of data flow diagrams in KIELER and Ptolemy II. Technical Report 0914,
Christian-Albrechts-Universitdt zu Kiel, Department of Computer Science, July
2009.

[SSM*13] Miro Sponemann, Christoph Daniel Schulze, Christian Motika, Christian Schnei-
der, and Reinhard von Hanxleden. KIELER: building on automatic layout for
pragmatics-aware modeling (showpiece). In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC’13), San Jose, CA,
USA, September 2013.

[SSvH13] Christian Schneider, Miro Sponemann, and Reinhard von Hanxleden. Just
model! — Putting automatic synthesis of node-link-diagrams into practice. In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC'13), pages 75-82, San Jose, CA, USA, 15-19 September 2013.

doi:10.1109/VLHCC.2013.6645246.

[SvH14] Christoph Daniel Schulze and Reinhard von Hanxleden. Automatic layout in
the face of unattached comments. In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’'14), Melbourne, Australia,
July 2014.

[Wer23] Max Wertheimer. Untersuchungen zur lehre von der gestalt. ii. Psychologische
Forschung: Zeitschrift fiir Psychologie und ihre Grenzwissenschaften, 4:301-350, 1923.

[Wil08] Robin Williams. The Non-designer’s Design Book, Third Edition. Peachpit Press,
Berkeley, CA, USA, third edition, 2008.

58

http://LeeSeshia.org
http://dx.doi.org/10.1109/VLHCC.2013.6645246

	Introduction
	Problem Statement
	Related Work
	Structure of this Document

	Preliminaries
	Terminology
	Used Technologies
	Ptolemy II
	Modeling Markup Language
	Xtend
	KIELER

	Heuristics
	Author Comments
	Title Comments
	Size
	Alignment
	Mentions of Actors
	Putting It All Together

	Evaluation
	Conclusion
	Future Work

	Abbreviations
	Bibliography

