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Abstract

The employment of autonomous unmanned aerial vehicles requires the ability of detecting
potential obstacles and avoiding collisions to ensure that neither humans are harmed nor
object are destroyed. Therefore it requires a set of qualified hardware and an appropriate
software solution. Because the recently published visual synchronous language SCCharts
was especially developed for creating such safety-critical real-time applications, it seems to
be well-suited for this purpose.

This thesis explains the differences between multiple sensor types, examines the sensor
value evaluation, and compares the SCCharts model with a pure C/C++ implementation.
To validate the feasibility of a collision avoidance procedure with the help of SCCharts, it
describes how to equip an indoor quadcopter with an ultrasonic obstacle detection.

Key words collision avoidance, ultrasonic, safety-critical, real-time system, embedded
system, SCCharts, quadcopter, quadrotor, autonomous, flying, UAV, drone, KIELER

v





For Jana,
my banister in highest height,

my guiding light in darkest night.





Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sequentially Constructive Charts . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Quadcopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 9

3 Used Technologies 11
3.1 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 3D Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Remote and Sensor Communication . . . . . . . . . . . . . . . . . . . . . . . 12

4 Collision Avoidance Design 15
4.1 Choice of Sensor Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 External Positioning Sensors . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Internal Proximity Sensors . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3 Sensor Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Acoustic Distance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Outlier Detection and Signal Smoothing . . . . . . . . . . . . . . . . . . . . . 23
4.4 Collision Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Error Handling and Crash Avoidance . . . . . . . . . . . . . . . . . . . . . . 30

5 Implementation 33
5.1 Host Code Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Ultrasonic Sensor Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Collision Avoidance in C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Collision Avoidance in SCCharts . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Telemetry Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Evaluation 45
6.1 Sensor Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Collision Avoidance Implementation . . . . . . . . . . . . . . . . . . . . . . . 47

iii



Contents

7 Conclusion 51
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Source Code 55

B Flight Control 57

C Wiring 59

Bibliography 61

iv



List of Figures

1.1 Cyclic, discretized execution of a reactive embedded system . . . . . . . . . 3
1.2 Quadcopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Sketch of the quadcopter with all hardware components . . . . . . . . . . . 6

3.1 Arduino IDE with default sketch . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Determination of a robot’s position with the aid of beacons . . . . . . . . . 16
4.2 Angle of incoming reflection with infrared proximity sensors . . . . . . . . 17
4.3 Sonic speed in dry air at sea level . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 There are multiple types of wrong echoes. . . . . . . . . . . . . . . . . . . . 22
4.5 Sensor communication between the Arduino Mega and an ulteasonic sensor 24
4.6 Window size delays value processing . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Test data from vibrating sensors . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.8 Different obstacle distances lead to different forbidden flight directions,

marked with a crossed arrow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Collapsed SCChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Referenced sensor SCChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Referenced sensor SCChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Shortened movement extension in the SCChart with small preview of the

whole superstate on the right . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Movement verification in the SCChart divided into two regions . . . . . . . 42
5.6 Telemetry Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Rotating the quadcopter only a few degrees can cause the loss of a sensor’s
echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Measured values from one sensor while increasing the distance to a wall
with different speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Side view on one of the quadcopter’s arms next to a tabletop. The sensor
does not recognize the table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

C.1 Wiring of all electric components . . . . . . . . . . . . . . . . . . . . . . . . . 59

v





List of Tables

4.1 Comparison of Sharp infrared sensors . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Comparison of different proximity sensor types . . . . . . . . . . . . . . . . 19
4.3 Arduinos digital pins usable for interrupts . . . . . . . . . . . . . . . . . . . 22
4.4 Single outlier in constant value series . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Single outlier within falling values . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 Quickly falling values without an outlier . . . . . . . . . . . . . . . . . . . . 26

vii





Abbreviations and Symbol Index

KIELER Kiel Integrated Environment for Layout Eclipse RichClient

I/O Input and Output

IDE Integrated Development Environment
A software environment for developing and and compiling software.

LGPL GNU Lesser General Public License

GPL GNU General Public License

ESC Electronic Speed Control

UAV Unmanned Aerial Vehicle

MoC Model of Computation

M2M Model to Model

RES Reactive Embedded System

IR Infrared

ix





Chapter 1

Introduction

According to Moore’s law1 the power of computing chips doubles about every 18 months.
While particularly for embedded systems hardware limitations were a big problem for a
long time [Lee05], even the smallest systems seem to eventually profit from this evolution
today. Storage and calculation power have become affordable in small sizes. The results can
be seen in most manufacturers’ modern cars, for example. Every model’s next generation
comes with new features and usually relies more on computing power than the predecessor.
An article by Klaus Bengler et al. [BDF+14] gives an interesting overview about the
development of driver assistance systems since the 1980s. It retrospects the past years and
makes assumptions about probable systems in the future. We can see an obvious tendency
towards an excessive use of computers, and this example shows a change of priorities
when developing modern technical systems for consumers. Especially with autonomous
real-time systems this leads to new challenges.

Thinking of a driverless automotive in road traffic, although autonomous navigation
isn’t a technical problem anymore nowadays, a self-operating vehicle will always be
confronted with unpredictable obstacles2. While cars do mostly operate in a familiar
environment, there will be an increasing number of autonomous systems in completely
unknown settings. Imaginable are for example various kinds of Unmanned Aerial Vehicles
(UAVs) for surveillance, parcel delivery or rescue operations in dangerous situations. Such
systems could be started anytime at any place and need to find a way avoiding obstacle
collisions. With a growing demand for such autonomous systems in the coming years there
is a need for fast, precise and, first of all, safe embedded systems.

As humans we are capable of detecting our environment and reacting to it in a proper
way nearly instantly. When constructing a standalone machine and giving it the ability
to interact with its surroundings we need to think about two main aspects: timing and
correctness. Most commonly known computing systems such as notebooks or smartphones
are built to accomplish a task with an expected expected outcome, while a jitter in
execution time is mostly irrelevant. The latter does not necessarily apply to a real-time
system. Depending on its application it may stick to a set recurring task frequency or

1Gordon Earle Moore, *1929
2Gomes, Lee. (2015, Mai 15). Urban Jungle a Tough Challenge for Google’s Autonomous Cars [article]. Re-

trieved from http://www.technologyreview.com/news/529466/urban-jungle-a-tough-challenge-for-googles-
autonomous-cars/
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1. Introduction

provide results in a tight time limit. While the real world is existing in a constant time flow
any computing machine has an inner clock, which confines its number of calculations per
time unit. Moreover, an embedded real-time system’s calculation power may be limited by
an especially compact size or a very small energy consumption.

The common approach on how to work with real time in such a system is a repeatedly
called sequential function, which performs the task of the system. In the UAV example such
a timing-sensitive and frequently performed task is the stabilization routine. The more
often the flight controller can correct a deviation from a desired angle the more steady it
can fly. Getting distance values of multiple sensors can be time consuming, depending on
the used sensor type. A too long delay in the flight controller could lead to a destabilization
and cause a loss of control or even a crash. This brings us to the second mentioned aspect,
the correctness of the system, which comprises the guaranty of safety. When operating in
the air a problem could cause a fall and lead to potential damage to the system. Particularly
when operating in public areas, much more important than avoiding destruction of the
UAV is to prevent any person from getting harmed. Controlling a UAV implicates multiple
safety-critical problems:

Ź An unintended movement towards a wall or another obstacle can cause physical contact
and provoke the burst of a rotor and possibly a motor. Also with rotor protectors the
UAV may wedge, overturn and cause even more damage.

Ź Using a remote connection involves the danger of a connection loss and potentially
faulty instructions due to misinterpretation.

Ź Hovering is extremely energy consuming. Depending on the battery capacity the flight
time of a UAV can be rather short. In case of low voltage the function of all components
cannot be ensured.

Ź A program bug such as an endless loop or even a system hang up would cause the
flight controller to stop working. This would lead to a fatal crash.

1.1 Problem Statement

Building an autonomous UAV means to reconcile both, being in time with all essential
operations and ensuring the safety of the system and its environment. All points noted
above need to be implemented without interrupting the stabilization routine. They include
watching over the operation of the system, reading out sensor values as often as possible
and designing an algorithm that observes all directions concurrently. This is qualified
for a case study on the feasibility of an obstacle collision avoidance system for a flying
drone in the synchronous language SCCharts [HDM+14]. For this purpose a quadcopter is
assembled, equipped with appropriate hardware for obstacle detection and programmed

2



1.2. Sequentially Constructive Charts

An Instant / Tick (zero duration)

Read Input
Compute
Reaction

Reactive System

Write Output

Environment

Input Event Output Event

Figure 1.1. Cyclic, discretized execution of a reactive embedded system [MHH13]

with all necessary software to run the SCChart. The problems of different sensor types
will be examined as well as data communication and safety when remotely controlling
a vehicle. Other required functions like hovering, landing and simple flight, which are
developed simultaneously in the context of the project this thesis is part of, will be assumed
as existing.

1.2 Sequentially Constructive Charts

SCCharts is a visual synchronous language with statechart notation [HDM+14]. Its key
benefit to similar languages like SyncCharts [And96] is its Model of Computation (MoC),
which allows deterministic concurrency. While SyncCharts forbid different values of a
signal within one macro tick, this is allowed and intended in SCCharts. Figure 1.1 shows
the tick execution of an Reactive Embedded System (RES) where several input signals are
read from the environment and after computation some outputs are written back to it. Its
causality makes SCCharts ideal for moddelling RESs because any signal may have different
input and output values.

There are two types, core and extended SCCharts. Core SCCharts consist of regions
which contain simple and hierarchical states. States can be connected via multiple types of
transitions. Primitive data types may be used. Extended SCCharts are built on top of the
core version and are often described as syntactical sugar. They additionally offer features

3



1. Introduction

like entry, during and exit actions for states, delays, data-flow or conditional termination.
Via Model to Model (M2M) transformation any extended SCCharts can be converted to
core SCCharts [MSH14].

For developing SCCharts it is recommended to use the Kiel Integrated Environment
for Layout Eclipse RichClient (KIELER) SCCharts editor and compiler. A quick start guide
can be found on the official website of the KIELER project3. The included compiler is able
to translate any core or extended SCCharts to C or Java code. To reproduce the macro
tick behavior of the underlying statechart the resulting code is divided into two functions
— the reset function and the tick function. Initially the reset function needs to be called
to initialize all variables whereupon every tick call performs one macro tick in the state
machine.

Because the SCCharts language is still in development there is a need for studies about
the feasibility of different projects’ approaches.

1.3 Quadcopter

The quadcopter does not result from an assembly kit but is completely self constructed.
There are multiple hardware parts bought from different vendors and other parts printed
with a 3D printer. We decided to use the F330 Glass Fiber Mini Quadcopter Frame as a base,
because it is not too large for indoor flights and not too small to provide enough space to
attach a microcontroller and suitable hardware for collision avoidance. To get sufficient
lift during flight four Turnigy Aerodrive SK3 2822-1275 Brushless Outrunner motors are
applied. Each motor gets its electric power from and is driven by an own Electronic Speed
Control (ESC) which on its part is controlled by the flight controller and supplied by a
Turnigy 3S 20C Lipo battery pack with a capacity of 2200mAh. While hovering this brings
a flight time of approximately eight to ten minutes.

For the flight controller we chose an 5V 16 MHz Arduino Mega 2560 though there exist
multiple other microcontroller manufacturers such as BeagleBone or ST. At the project’s
starting point the Arduino was already available and due to their popularity Arduino
boards have a large community. Besides the main microcontroller one Arduino Nano and
one Arduino Pro Mini are employed to process the collision avoidance sensors’ signals (see
also Section 4.2). By using an MPU-9150 9-axis motion tracking chip the flight controller is
able to get acceleration data to hold the quadcopter stable. As explained later in Section 4.1
for the distance measurement several HC-SR04 ultrasonic sensors are being used. They
observe the environment for potential obstacles.

To provide a wireless communication interface we built in an Aukru HC-06 Bluetooth
RF Transceiver module. This enables the flight controller to receive commands and send
important data. With the specially developed telemetry software for desktop computers

3http://rtsys.informatik.uni-kiel.de/kieler
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1.4. Outline

a user is able to control the throttle of the motors and the flight direction to simulate an
autonomous movement. In case of an oncoming collision the flight controller will overwrite
the user’s commands and decide to avoid it. However, in case of a problem an emergency
landing can be instructed. All required information for debugging reasons can be displayed
in a log view. For further information about flight control see Appendix B. The wiring
diagram of all components can be found in Appendix C.

As it can be seen in Figure 1.2 during this project the quadcopter was repeatedly
expanded with 3D printed parts made out of red filament.

Ź To tightly mount the Arduino Mega 2560 a holder was printed, which could be screwed
to the frame.

Ź For safe starting and landing reasons it was decided to print a pair of feet which we
found on MakerBot Thingiverse4.

Ź To guard against potential damage during test flights, rotor protectors extend the arms
of the quadcopter.

Ź Additionally every ultrasonic sensor has a printed holder via which it can be applied to
the copter.

A visual overview about all attached hardware gives Figure 1.3.
For further understanding the front of the quadcopter is between both red arms and

the ultrasonic sensors are numerated from 0 to 9 as Front, Front-Right, Right, Back-Right,
Back, Back-Left, Left, Front-Left, Top, and Bottom.

1.4 Outline

This Section gives an overview about the further course of this work.
In Chapter 2 related work to this thesis is discussed regarding the choice of obstacle

detection hardware and collision avoidance algorithms.
Chapter 3 presents all notable technologies that were required to archive the project’s

goal, such as the Arduino platform and third party libraries for sensor communication.
All conceptual topics of this thesis are covered in Chapter 4. It contains the evaluation

of distance measurement hardware and decision for one type, the required theoretical
background of distance measurement and furthermore the preparation of raw sensor data.
Subsequently, it describes the concept of collision avoidance and the handling of potential
error sources.

4DJI F330 Quadcopter landing gears. By diegolopmon. Published 2015, March 23. Retrieved from
http://www.thingiverse.com/thing:736947
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1. Introduction

(a) Quadcopter from side (b) Quadcopter from top

Figure 1.2. Quadcopter

F330 Glass Fiber Mini Quadcopter Frame
Turnigy Aerodrive SK3 2822-1275 
Brushless Outrunner

Turnigy 3S 20C Lipo battery pack

Arduino Mega 2560MPU-9150

Arduino Pro Mini
Arduino Nano

HC-SR04
Aukru HC-06 Bluetooth
RF Transceiver

Figure 1.3. Sketch of the quadcopter with all hardware componentsa

aThis image was partly created with the help of Fritzing (http://fritzing.org/). The same applies to the
following ones, that show the Arduino Mega 2560, the Arduino Nano or the Arduino Pro Mini.

6



1.4. Outline

In Chapter 5 the important parts of the written software are outlined. It is shown how
the SCCharts’ generated code is run on the microcontroller and how the distance sensors
are driven and processed. The collision avoidance implementation is written in C/C++ and
in SCCharts for debug and comparison reasons. Pieces of both versions will be presented
to understand the benefits and drawbacks later on. In addition the developed telemetry
software is introduced.

Following concept and implementation, Chapter 6 compares both emerged versions of
software and the feasibility of the intention.

To come to a conclusion Chapter 7 summarizes this thesis and gives a perspective on
future work.

7





Chapter 2

Related Work

In the field of collision avoidance there exists some work, that is relevant for this thesis.
The following describes different approaches and their relation to this paper.

Bouabdallah et al. [BBP+07] describe the development of a collision avoidance system
for the OS4 quadrotor helicopter, created in the Autonomous Systems Lab (ASL) Zürich,
Switzerland from 2003 to 2005. OS4 is equipped with an x86 compatible mini computer
with a 266 MHz Geode 1200 processor and a Debian-based lightweight Linux distribution
and at the beginning of the work the quadcopter is already able to hover stably over ground.
While hardware limitations have become less nowadays, this computer has calculation
power many times that of the capabilities of our Arduino boards. The preconditions of
the mentioned project are completely different and cannot be compared. In the article
the procedure of applying unnamed ultrasonic sensors is outlined and every collision
avoidance procedure approach is simulated with MatLab / Simulink. Therefore, two
assumptions are made for flight maneuvers:

Ź The quadcopter holds its altitude during the whole tests.

Ź It can only fly in the four directions where the ultrasonic sensors are applied.

The paper lists five approaches for obstacle avoidance, which partly build on each other. The
first and basic approach is to define two threshold values which divide three sensor states
"Far", "Close" and "Too close" which determine the further flight movements. Following
approaches try to make the avoiding movements more natural and fluid. The three state
classification is a good approach as it is used in other works, too. It will be the inspiration
for the collision avoidance procedure in this thesis.

Gageik et al. [GMM12] also start with an existing quadcopter from the Aerospace
Information Technology department of the University of Würzburg by attaching 12 re-
dundant SRF02 ultrasonic sensors for a 360° circle. Similar to Bouabdallah et al. they
make a division for each sensor into three zones, green for safe zone, yellow for close
zone, and red for dangerous zone and state that this behavior is best described by a state
machine, which comes close to the SCCharts idea implemented in Chapter 5. Gageik et al.
use self-processing ultrasonic sensors which do not require extra distance calculation on
controller side, but give a fair warning against possible interferences of the individual
sensors.

9



2. Related Work

Benz [Ben13] builds on top of the work by Gageik et al. and describes the need for
a different measurement method and a higher value production rate than the ultrasonic
sensors can provide. He mounts supplementary infrared sensors and uses a combination
of filters to compare both sensor system results. As an evaluation Benz shows an elaborate
setup for testing the collision avoidance procedure on a rollable undercarriage in an
artificial environment with even a dummy for mimicking a human. If enough funding
is available the use of multiple sensor types is a good idea. This cannot be done in this
project but both technologies are evaluated against each other.

Altuğ et al. [AOT03] propose the approach of a two camera vision based quadcopter
control. One camera is attached to the quadcopter itself and one camera stands on the
ground as an observer. Combining both visual inputs they show that this method is
possibly more effective than other position detection systems, especially indoors where no
GPS signal is available and proximity sensors might return blurry results. This method of
position and resulting obstacle detection is evaluated in Section 4.1 against other options.

Rahman et al. [RAE14] use the here applied non-processing HC-SR04 ultrasonic sensors,
not for an aerial vehicle, but for a vehicle on ground. They have a separate microcontroller
next to their main navigating microcontroller for handling the sensors. It presents a similar
solution for ground vehicles.

While other related work mostly relies on an existing UAV, within the project around this
thesis the quadcopter has to be self-assembled and a flight control needs to be developed.
Alhough there exist papers with non-processing sensors like the in this work chosen HC-
SR04, no approaches on implementing both a stabilization routine and a sensor evaluation
for a UAV simultaneously could be found. More calculation power or self-processing
sensors make it easier to concentrate on the actual avoiding algorithm while this thesis is
in large part focussed on solving the real-time problem with non-processing, slow sensors
beside a quick and frequently safety-critical function.

10



Chapter 3

Used Technologies

3.1 Arduino

Arduino, also known as Genuino since May 2015, is an open source hardware and software
development platform under which a bunch of different microcontroller boards and
compatible periphery were produced. While there exist many Arduino clones from different
manufacturers, today all originals and copies share their key features - an easy to program
controller and several digital and analog Input and Output (I/O) pins. To program an
Arduino compatible controller the free to download Arduino Integrated Development
Environment (IDE) can be used. It provides the necessary libraries and headers, which are
automatically added to any project in the background, compiles and uploads an Arduino
program to a selected board with a click.

The Arduino language is based on C/C++ and provides some additional functions like
working with the I/O pins, writing and reading data to and from a serial connection and
other hardware specific actions but also misses some usually known libraries like the C++
std library due to a limited memory capacity.

An Arduino project is called sketch and represented by a folder and a .ino file, both
with the sketch’s name. Any sketch must contain this main file, but may contain multiple
other .ino, .c or .cpp files.

Figure 3.1 displays a screenshot of the Arduino IDE with a default sketch opened. The
main .ino file contains analogous to an SCCharts’ generated code a setup function and a
loop function. setup is called initially when the board is powered on and loop gets triggered
periodically afterwards in an endless loop.

3.2 3D Printing

Tinkercad2 is a popular online 3D modeling tool founded in 2011 and later acquired by
Autodesk in 2013. After a registration any user can create, store and modify 3D models.
Unlike other professional modeling tools by Autodesk the usage of Tinkercad does not
require any special knowledge and can be managed even by amateurs. Besides an online
sharing platform Tinkercad provides the ability to download created models for 3D

2https://www.tinkercad.com/
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3. Used Technologies

Figure 3.1. Arduino IDE1with default sketch

printing as .STL, .OBJ, .X3D or .VRML files. For these reasons Tinkercad was used within
this project to create printable models to extend the quadcopter.

For printing the created models a 3D printer extruder was involved. With this technique
thin layers of melted plastic filament are deposited above each other. This gives the ability
to create compact three-dimensional objects. By using such a printer it was possible to
print legs, a holder for the Arduino and - most important for this work - the holders for
the later on introduced proximity sensors.

3.3 Remote and Sensor Communication

Serial port is a communication method between computers and periphery where each bit
is transferred one after another. While for a serial connection usually a wire is required,
the Bluetooth Serial Port profile can emulate a serial cable by radio.

2https://www.arduino.cc/
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3.3. Remote and Sensor Communication

Using Bluetooth Serial Port allows the remote connection from a computer or mobile
device to the HC-06 Bluetooth module and communicating with the Arduino as if it was
connected via cable.

As stated in the Serial Port Profile Specification3, the RFCOMM protocol is used on
transport layer between two devices, which in turn builds on top of the reliable L2CAP
protocol. Due to this characteristic a verification of sent values is redundant.

jSerialComm, originally serial-comm, is a modern Java library for serial port communi-
cation by Will Hedgecock under GNU Lesser General Public License (LGPL). Its benefits
are its simple way of use and the platform-independency, meaning it will automatically
load the correct native libraries depending on the running environment.

Beside the wireless communication to a ground station the Microcontroller needs to
get data from the proximity sensors. NewPing4 for Arduino is a library by Tim Eckel
under GNU General Public License (GPL) license, which extends the default abilities when
working with most common ultrasonic sensors including the HC-SR04, which is used
within this project. Unlike most ultrasonic measurement implementations this library does
not use the Arduino’s pulseIn function, but a hardware timer interrupt.

3http://bluetooth.org, BLUETOOTH SPECIFICATION, Serial Port Profile, Revision: V12, Date: 2012-07-24
4https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home
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Chapter 4

Collision Avoidance Design

Unlike a vehicle on the ground a UAV does not have the chance of touching an obstacle and
afterwards trying to get away from it, but needs to avoid any physical contact whatsoever.
Avoiding collisions with obstacles requires three logical steps:

1. Detecting a potential obstacle with suitable hardware before a collision can happen.

2. Prohibiting movements towards the obstacle in order not to navigate into a more
dangerous situation.

3. Moving away from the obstacle if no other collision is provoked.

In the following all three points are covered. This includes the evaluation of different
sensor types, the correct handling of the sensor outputs and a mathematical approach of
collision avoidance.

4.1 Choice of Sensor Hardware

To detect possible obstacles around a UAV a set of sensors observing the environment
is required. We can differentiate between two kinds of mechanisms, external position
detection and internal proximity detection.

4.1.1 External Positioning Sensors

External positioning sensors are sensors, that are not attached to the quadcopter directly
but in it’s environment. While external detection can provide a rather precise result in
a known environment, it involves a predefined and accurate hardware setup. Therefore,
autonomous flight is only achievable in a limited way with respects to the accessible area.

Beacon Position Detection

Beacon position detection is a way of determining the relative position of a system to a
number of beacons and calculating the absolute position in a room with possible known.
The system sends a request signal to all listing beacons, which send their signals back.
By time measurement the system is able to calculate the distances between itself and
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4. Collision Avoidance Design

Berechnung der Koordinaten

� Jeder Ultraschallimpuls ruft im Raum Echos hervor, die erst nach einer gewissen Zeit abklingen.
In dieser Zeit sind keine weiteren Messungen möglich. Der Sender muß dies berücksichtigen und
sich dabei eventuell sogar auf die Gegebenheiten des jeweiligen Raumes einstellen.

� Die Streckenmessung kann natürlich nicht präziser sein als die Messung der Laufzeit. Die Schall-
wellen legen einen Millimeter in etwa 3 Mikrosekunden zurück, die Zeitmessungen müssen mit
entsprechender Auflösung erfolgen.

4.5 Berechnung der Koordinaten

Die Koordinaten des Roboters können aus den gemessenen Laufzeiten oder Laufzeitunterschieden
berechnet werden. Die im folgenden gezeigten Verfahren gehen von einem Feld der Größe a × b aus,
an dessen Rand bis zu 5 Leuchtfeuer stehen und in dem der Roboter R an den Koordinaten (x,y)
steht. Der verwendete Lösungsansatz basiert auf dem in [Mahajan] skizzierten Rechenweg.

L1 L2

a

d2d1

R

y

b
x

L4 L3

L5

Abbildung 4.9: Schema zur Berechnung der Koordinaten

Die Berechnung der Koordinaten erfolgt zunächst durch Anwendung des Satzes des Pythagoras.

d21 = c2t21 = x2 + y2 (4.12)

d22 = c2t22 = (a− x)2 + y2 (4.13)

d23 = c2t23 = (a− x)2 + (b− y)2 (4.14)

d24 = c2t24 = x2 + (b− y)2 (4.15)

d25 = c2t25 =
(a
2
− x
)2

+ y2 (4.16)

Diese Formeln bilden die Grundlage für zwei komplett unterschiedliche Rechenwege.

63

Figure 4.1. Determination of a robot’s position with the aid of beacons [Höh06]

all senders. As shown in Höhrmann’s research project [Höh06], Figure 4.1 outlines the
determination of a robot’s (R) position between five beacons (L1 to L5). When knowing the
propagation speed of the signal type, the distance to one of the beacons can be calculated
by measuring the time it takes to send a signal to one of the beacons and getting back the
answer. If the distances to at least two beacons is present, it is possible to calculate x and y
with help of the Pythagorean theorem.

This method of position detection needs a precise buildup of beacons and a good
knowledge of the room between and around those. If all necessary information is present,
the system might calculate its exact position in the room and avoid collisions with potential
obstacles. Of course, this is only possible in a fixed environment with known positions of
all objects and our system could not react to sudden changes without reprogramming.
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4.1. Choice of Sensor Hardware
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Figure 4.2. Angle of incoming reflection with infrared proximity sensors

Position Detection via Image Processing

To deal with a changing environment another approach is the use of multiple cameras, as
it is presented by Altuğ et al. [AOT03] for example. With the help of an image processing
software a 3-dimensional model of our system and the room can be created to navigate
the system safely, even with unpredicted obstacles. The use of such a video positioning
system would be rather sensitive to the lighting conditions and require external calculation
capacity.

4.1.2 Internal Proximity Sensors

Internal proximity sensors are directly applied to the quadcopter. Their returned data does
not describe the copters absolute position in a room, but instead the relative distance to
potential obstacles or walls. The amount and alignment of the sensors have a determining
influence on the quality of the obstacle detection.

Infrared Proximity Measurement

An Infrared (IR) sensor can detect an object in a very short period of time because it relies
on the speed of light. For that purpose an emitter diode emits an IR light pulse, which is
reflected by the regarding object and afterwards caught by a special lens to ascertain the
incoming pulse’s angle. As shown in Figure 4.2, the emitter, the object and the receiver
form a triangle, with which the distance to the object can be calculated via triangulation.
The drawback of this technique is that most sensors are built on a special lens and a CCD
array to detect the incoming light’s angle. This makes IR sensors expensive. As a result
most common sensors have a set range in which they can detect an object. The popular
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4. Collision Avoidance Design

Sharp IR sensors1 for example exist in four versions from all together 4cm to nearly 5.5m,
while each sensor only covers a specific range.

Table 4.1. Comparison of Sharp IR sensors2

Model Min. distance Max. distance

GP2D120/GP2Y0A41 4 cm 30 cm
GP2Y0A21 10 cm 76 cm
GP2Y0A02 20 cm 150 cm
GP2Y0A710 91 cm 549 cm

Table 4.1 lists all available analog IR sensors by Sharp and shows that no sensor
is capable of observing a complete area next to the quadcopter. Using IR for distance
measurement over larges ranges would require multiple sensors of different kinds per
measure point, which would lead to interferences and measuring errors. Furthermore sun
light covers a wide spectrum of wavelengths including IR light and can interfere with the
light pulse of an IR sensor. This makes the sensor hardly usable outside. Black or very dark
objects may absorb the light pulse, which makes the sensor also sensitive to colors.

Laser Proximity Measurement

Another optical distance measurement method is the laser distance measurement. For the
proximity determination the time between sending a laser pulse and receiving its reflection
is measured. With the constant speed of light the distance between the sensor and the
object can be calculated. This requires a very fast chip, especially for short distances of
a few meters. There exist only a small amount of sensors which are small enough to be
practical with a quadcopter of ours size, but for a much higher price than all other sensors
mentioned in this section. As an example the LIDAR-Lite v23 can be named.

Furthermore, we should not ignore the danger of potential eye damage when using an
autonomous system equipped with laser emitters in all directions.

Ultrasonic Proximity Measurement

Ultrasonic proximity measurement does also rely on time measurement between sending a
pulse and receiving its echo. Ultrasonic sensors come in two performances, self-processing
sensors and non-processing sensors. Self-processing sensors have a chip built in which
starts measurements repeatedly, calculates the distance between sensor and object on its

1Acroname (2015, September 19). Sharp Infrared Ranger Comparison. Retrieved from
https://acroname.com/articles/sharp-infrared-ranger-comparison

2See footnote 1.
3https://cdn.sparkfun.com/datasheets/Sensors/Proximity/lidarlite2DS.pdf (2015, Sep 24.)
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4.1. Choice of Sensor Hardware

own, and returns the determined proximity. Non-processing sensors only provide the
required digital pins to create an acoustic pulse and to detect the pulse’s echo. Because
they are not able to calculate any data the calculation needs to be done eternally. Because
sonic speed is about 340m s´1, travel times can be measured by a simple microcontroller.
While ultrasonic sensor measurement is relatively slow compared to distance measurement
with light, the big advantage of non-processing ultrasonic sensors is their simplicity which
make them very cheap in price.

Analogous to optical proximity detection acoustic distance measurement does not work
well with sonic absorbing objects such as clothes or a curtain.

4.1.3 Sensor Comparison

Table 4.2 compares the considered proximity sensor types on the basis of range, speed,
field of vision and price.

Table 4.2. Comparison of different proximity sensor types

Sensor type Range Speed Field of vision Price

Infrared small fast wide moderate
Laser large fast narrow expensive
Ultrasonic (processing) medium slow medium cheap
Ultrasonic (non-processing) medium slow medium moderate

Because a UAV is not able to stop the most important criterion for the sensor hardware
is the range in which it can detect objects. Farther sight means a higher level of maneuver-
ability and a faster flight. Although IR sensors are fast in getting results and have a wide
visual field their small range makes them unusable for monitoring the surroundings of a
UAV alone. Whereas laser measurement can provide a very large range their narrow field
of vision and especially their high price make them also not constructive for the intention.
The narrower the visual field of a sensor is the higher is the amount of required sensors to
cover enough space around.

With only ultrasonic sensors remaining it’s a question of expenses which sensor type
to choose. While one self-processing PING))) Ultrasonic Distance Sensor4 is at about 30$ at
the time of writing, for this price 15-20 non-processing HC-SR04 sensors can be ordered.
As this work is a case study and should provide the possibility for further extensions at
this point the decision is made for the non-processing sensors.

4https://www.parallax.com/product/28015
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Figure 4.3. Sonic speed in dry air at sea level

4.2 Acoustic Distance Measurement

The HC-SR04 ultrasonic sensor has four pins of which two are for power supply and
two for the measuring. It waits for a short HIGH signal on the Trig-pin, then generates
an ultrasonic pulse and starts listening for its echo to return. While listening the sensor
sets the Echo-pin on HIGH, so a negative edge to LOW on this pin means that the echo
has returned. Detecting an obstacle’s distance means measuring the time from the pulse’s
generation to its echo’s return:

d =
t ¨ c
2

(4.2.1)

where c is the sonic speed, t is the measured time and d is the distance to the obstacle.

Assuming an indoor flight with dry air at about sea level and 20°C, the sonic speed is
about 343.2m s´1, as sketched in Figure 4.3. We can translate this to µs cm´1:

343.2m s´1 =
1

343.2
s m´1 = 2913µs m´1 « 29.1µs cm´1 (4.2.2)

This gives us the usually used form:

d [cm] =
t [µs]

2
¨

1 [cm]

29.1 [µs]
(4.2.3)

To implement such behavior the usual approach by the Arduino community is to just
trigger one sensor after another and wait for the negative edge each. This can be realized
like in Listing 4.1.
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4.2. Acoustic Distance Measurement

1 / / f o r e a c h s e n s o r {
2 long duration , d i s t a n c e ;
3 d i g i t a l W r i t e ( t r i g P i n , HIGH) ;
4 delayMicroseconds ( 1 0 ) ;
5 d i g i t a l W r i t e ( t r i g P i n , LOW) ;
6 durat ion = pulseIn ( echoPin , HIGH) ;
7 d i s t a n c e = ( durat ion /2) / 2 9 . 1 ;
8 / / }

Listing 4.1. Often recommended approach for working with the HC-SR04 sensor on Arduino

The pulseIn function is a blocking function which measures the time a signal has a
specified value. This leads to timing problems when using this snippet in the flight control.
Lets assume, the quadcopter is somewhere in the middle of a large room and neglect
the distances to the ground and ceiling. The Arduino has to measure the proximities of
eight sensors. In the equation (4.2.2) we can see that the sonic needs 2.9ms per meter. A
distance of two meters in all directions can add up to 8 ¨ 2 ¨ 2m ¨ 2.9ms m´1 = 92.8ms. With
a distance of three meters for all sensors the processing time would be approximately
8 ¨ 2 ¨ 3m ¨ 2.9ms m´1 = 139.2ms. Having the stabilization routine operating with tick times
under 10ms, this measurement method cannot be done during one tick.

Another problem with the pulseIn function are lost echoes. pulseIn performs busy
waiting and is predefined to delay further processing up to three minutes5. In case a
sensor points towards an unfavorable direction the echo could not return to the sensor
which would lead to an even longer waiting time. Figure 4.4 sketches multiple echo types
including lost echoes.

As the same time it also shows ghost echoes. Ghost echoes are echoes that are reflected
over multiple objects or walls either to the emitting sensor, which then measures a larger
distance than it is actually present, or even another sensor, that recognizes and object
where no object is existing. While lost echoes only bring problems with sonic swallowing
objects, there is no possibility of handling ghost echoes, which pretend to come from a
close object that is not there. The only way of averting this problem is to keep the delays
between triggering the particular sensors large enough to preempt the subsist of the sonic
pulse from another sensor when starting a measurement.

The first approach to circumvent this problem is to trigger one sensor and afterwards
check in every tick if the Echo-pin is still HIGH, and if not take the time. In the equation
(4.2.2) we can see that sonic needs about 29.1µs per cm, which gives us per millisecond
tick time an inaccuracy of 1000µs/29.1µs cm´1 = 34.4cm. Thus a distance measurement
following this approach is unrewarding.

5https://www.arduino.cc/en/Reference/PulseIn
6https://www.arduino.cc/en/Reference/AttachInterrupt
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Lost echo on soft object

Lost echo due to reflection
Ghost echo on different sensor

Ghost echo on same sensor

Figure 4.4. There are multiple types of wrong echoes.

Table 4.3. Arduinos digital pins usable for interrupts6

Board int.0 int.1 int.2 int.3 int.4 int.5

Uno, Ethernet 2 3
Mega2560 2 3 21 20 19 18
32u4 based (e.g Leonardo, Micro) 3 2 0 1 7
Due, Zero More pins

Like most microcontrollers an Arduino is able to receive hardware interrupts on
specified pins. Table 4.3 compares different Arduinos for this purpose. The number of
interrupts for the Arduino Mega 2560 is limited to six, while two of these are reserved for
the I2C protocol, which is used for the gyroscope communication.

To handle these issues Tim Eckel wrote the NewPing library for Arduino7 as introduced
in Section 3.3. This library makes use of a hardware interrupt timer to check every 24µs if
the sensor’s echo has returned. It is possible to define a maximum distance, after which
the measurement is canceled and 0 for "out of range" is returned.

7https://bitbucket.org/teckel12/arduino-new-ping/wiki/Home
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Although the NewPing library is a solution for the timing problems mentioned above,
a permanent interrupt of the tick function would still stretch its time significantly. To
have the tick times steady and short to guarantee balancing a good solution is to process
the sensors externally on a different microcontroller and send new values to the flight
controller. That way even for future changes the proximity measurement is independent
from the balancing and the safety-critical operations.

To handle all ten sensors one Arduino Nano and one Arduino Pro Mini are used
while each of them is responsible for five sensors. This results from the pin limitations of
the Arduinos. Whereas the Arduino Pro Mini is smaller, the Arduino Nano provides a
5V output to supply the Bluetooth module. The whole wiring diagram can be found in
Appendix C. Figure 4.5 illustrates the communication between the main Arduino and one
of the ultrasonic sensors via the second Arduino. The smaller Arduino Nano for the most
part does exactly the same. With the help of the NewPing library it triggers one sensor,
waits for the echo to return, and calculates the distance to the object. If a predefined time
is exceeded without an echo, the Arduino proceeds with the next sensor. After all sensors
have been processed it starts again with the first sensor. In case the larger Arduino Mega
is ready to receive new sensor data it sends the Arduino Nano an interrupt. Before the
latter continues its measurement it sends the latest sensor values to the Arduino Mega
and confirms afterwards with an interrupt on its side. The interrupts help to communicate
between both systems without waiting for each other. All data sent over the serial port, is
buffered on hardware side until it is read.

The HC-SR04 sensors have a vision angle of 15˝. To get a proper coverage of the quad-
copter’s surroundings eight sensors are applied horizontally as can be seen in Figure 1.3.
For determining the altitude a ninth sensor located under the frame and a tenth is attached
on top for monitoring the distance to the ceiling.

With 8 ¨ 15˝ = 120˝ = 1
3 ¨ 360˝, a third of the environment can be detected reliably,

which is sufficient for the case study.

4.3 Outlier Detection and Signal Smoothing

A typical problem with real-time applications are measurement anomalies such as unstable
values and outliers. If the sensor value production and processing is fast enough, single
wrong values might not affect the system noticeably. With a slow value production like it
comes with ultrasonic measurement a wrong value is used for many ticks and influences
the behavior of the system determinatively. To prevent this we need to make sure that only
correct and smoothened values are processed.

We can divide value errors into two categories, single errors and permanent errors.
Single errors such as outliers are particular wrong errors which can occur randomly for
several reasons and cannot be prevented with a correct sensor setup. They can be filtered
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Figure 4.5. Sensor communication between the Arduino Mega and an ulteasonic sensor

out with knowledge about the predecessors and successors. Permanent wrong values
from vibrations of the sensors cannot be filtered and need to be prevented by a correct
mechanical sensor attachment.

An outlier filter needs to find and smoothen an individual wrong value in a series of
correct values. It is important that the filter does not smoothen a strong variance in the
measured results caused by an actual movement. Hereinafter four filtering methods are
compared.

1. Maximum deviation filter:
A Maximum deviation filter ignores all measured distances that deviate more than a set
value d from its predecessor.

2. Average filter:
An average filter has a window of defined and preferably odd size w and calculates the
average of w values in a row, with w P N ą 0:
vi =

1
w ∑i+b(w´1)/2c

i´d(w´1)/2e vi
If the series’ borders are reached, the first respectively last values are used multiple
times.

3. Weighted filter:
A weighted filter works similar to the average filter but weights values more the newer
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4.3. Outlier Detection and Signal Smoothing

they are. It has a window of defined size w and uses a certain value vi and its w´ 1
predecessors, with i, w P N, w ą 0:
vi = 0.5w´1 ¨ vi´(w´1) + ∑w´2

k=0 0.5k+1 ¨ vi´k

4. Median filter:
A median filter has defined and preferably odd window of size w and overwrites a
value vi with the median value of all values between vi´d(w´1)/2e and vi+b(w´1)/2c.

When specifying the window size for filters using successors of a value we need
to consider that our filter has to be a sliding filter and that with a larger window size
the delay between receiving and processing a value gets longer. As it can be seen in
Figure 4.6 although the newest value 46 has already been detected due to filtering issues
value 44 is currently processed and put out. It will take two more incoming values to have
value 46 processed. Because acoustic measurement is relatively slow compared to optical
measurement we will use a window size of three to have a filter impact but the delay short.

4140 42 43 44 45 46 47

current value newest value incoming value

window size

Figure 4.6. Window size delays value processing

To evaluate different filtering techniques we create three generic distance value series
to simulate various situations:

Table 4.4 handles a series of nearly constant values with a single outlier due to a
measurement error with the different filters mentioned above. Red numbers in the filtered
series mark erroneously filtered values. Both the maximum deviation filter and the median
filter return the same result and detect the 255 as error. The average filter does not provide
an acceptable result. It weakens the deflection but also broadens it. Also the weighted filter
can soften the outlier but only slowly get back to the constant values.

With a single outlier within falling values the result is similar as Table 4.5 shows. At
this point a difference between the results of the maximum deviation and the median filter
ist visible. The maximum deviation filter provides a pure copy of the original unfiltered
values by just cutting out the outlier while the median filter causes changes to the values.
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Table 4.4. Single outlier in constant value series

Filtering method Resulting values series

No filtering 040 042 042 040 041 255 041 040

Maximum deviation 040 042 042 040 041 041 041 040
Average filter 041 041 041 041 112 112 112 040
Weighted filter 040 041 042 041 041 148 095 094
Median filter 040 042 042 041 041 041 041 040

Table 4.5. Single outlier within falling values

Filtering method Resulting values series

No filtering 080 070 052 040 198 020 021 020

Maximum deviation 080 070 052 040 040 020 021 020
Average filter 080 075 064 051 122 070 065 020
Weighted filter 077 067 054 097 086 080 020 020
Median filter 080 080 052 052 040 020 020 020

Table 4.6. Quickly falling values without an outlier

Filtering method Resulting values series

No filtering 180 182 090 040 080 160 180 181

Maximum deviation 180 182 182 182 ...
Average filter 180 181 136 088 073 110 150 176
Weighted filter 181 151 104 070 093 140 174 181
Median filter 180 180 090 080 080 160 180 181

The last example is the simulation of a quick movement of the quadcopter or the
obstacle and a resulting quick change of the measured distances, as it could appear when
getting a close object out of sight. Table 4.6 again outlines again problems with the average
and the weighted filter, especially showing a great problem with the maximum deviation
filter. Depending on the threshold value d in case of a rapid decrease of distance the filter
will stay at the last value before the drop. Only the median filter can provide a good result.
Because the value 40 was existent for only one sensor cycle, it was smoothened out.

As mentioned above a reason for measurement errors can be the mechanical attachment
of the sensors. While operating the quadcopter’s motors vibrate in high frequencies, which
are transmitted to the sensors as well. The high frequency vibrations disturb the sensors
and lead them to recognize their own vibration as vibration of the air, which is interpreted
as an acoustic wave.
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Figure 4.7. Test data from vibrating sensors

Figure 4.7 shows the proximity data of three different sensors over time. Before the first
dashed line, the motors are not running and the sensor values are stable. After starting
the motors it is visible that the sensor values begin to randomly fluctuate. This shows
the influence of the motors’ vibrations on the ultrasonic measurements. At the second
dashed line sensor 1 is held tightly with two fingers to stop the vibrations of the sensor.
Immediately the signal is constant again. The same applies to sensor 3 at the third dashed
line. When releasing sensor 3 again at the fourth dashed line the measured values start to
fluctuate again.

To solve this problem the sensors were unscrewed and attached with a rubber band
and a piece of sponge between them and the quadcopter. With this setup no changes in
the sensor data are visible when running the motors.

4.4 Collision Avoidance

After ensuring the ability to get proper proximity values of all sensors as described in
the previous sections, rules for forbidden flight directions can be set. For that purpose we
define some symbols:
Let
n be the number of horizontally aligned sensors with n := 8.

N be the set of natural numbers from 0 to n-1 with N := {0, . . . , n´ 1}.

si be the sensor with index i P N. The indices are assigned clockwise beginning with the
front sensor.

27



4. Collision Avoidance Design

S be the the set of all horizontally aligned sensors with S := {si|i P N}.

dsi be the pointing direction of si.

D be the set of the pointing directions of all horizontally aligned sensors with D :=
{dsi |i P N}.

Asi be the set of allowed flight directions ascertained by si with Asi := {dsi |dsi P D is
allowed flight direction}. Aa

si
additionally names the set of allowed flight directions

with an obstacle under attention threshold and Ad
si

with an obstacle under danger
threshold.

Fsi be the equivalent set of forbidden flight directions with Fsi := {dsi |dsi P D is forbidden
flight direction}. Fa

si
and Fd

si
are defined analogously.

Bouabdallah et al. [BBP+07] suggest a three state avoidance procedure for any of the
sensors, which is the base for the further considerations. Whenever a sensor does not
detect any object closer than the attention threshold it is in the first, uncritical state, called
Okay in the following. Okay means that the quadcopter may move in the direction the
corresponding sensor is pointing.

When detecting an obstacle within the attention threshold the regarding sensor im-
mediately switches to the so called Attention state. Having one sensor in this state the
quadcopter should start moving away from the obstacle but is still controllable in all
directions not pointing towards it. The forbidden flight directions for the mentioned sensor
si are: Fa

si
= {ds(i+7)%8 , dsi , ds(i+9)%8} (4.4.1)

In case any sensor measures a proximity even smaller than the danger threshold, it
switches to state Danger. Danger means getting away from the detected object as quickly
as possible. If any sensor is in the state Danger the quadcopter is so close to an obstacle
that the remote controls are overwritten for any direction not pointing away from it. The
forbidden flight directions result as following:

Fd
si
= {ds(i+6)%8 , ds(i+7)%8 , dsi , ds(i+9)%8 , ds(i+10)%8} (4.4.2)

Figure 4.8 demonstrates the resulting forbidden flight directions marked with a crossed
arrow, in case the yellow colored sensor detects an obstacle. Depending on the distance d
either the first neighbor directions are blocked as shown in Figure 4.8a or also the second
ones as visible in Figure 4.8b.

After having the forbidden flight directions that result from a single sensor, the next
step is to give thoughts to situations where multiple sensors recognize objects.
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d < attentionThreshold

(a) Object within the attention threshold

d < dangerThreshold

(b) Object within the danger threshold

Figure 4.8. Different obstacle distances lead to different forbidden flight directions, marked with a
crossed arrow.

The forbidden flight directions for the whole quadcopter result from the union of the
particular sensors’ forbidden flight directions:

F =
⋃

iPN

Fsi (4.4.3)

The set of allowed flight directions is the relative complement of F in D:

A = DzF (4.4.4)

A helps to verify movement instructions both by humans or an autonomous flight
control. Let Ic be a set of instructed flight directions coming from the controller. The
interSection of A and Ic produces the set of verified, allowed instructed flight directions:

Ic A := AX Ic (4.4.5)

The next step is to make the quadcopter move away from potential obstacles and
combine these movements with the ones instructed by the controller Ic. Let therefore
Ip be the set of instructed flight directions by the collision avoidance procedure and
op : S Ñ S, si ÞÑ s(i+4)%8 be a function giving the opposite sensor of the sensor si.
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Assuming that the quadcopter needs to avoid collisions with any obstacle and hence move
away from every alerting sensor’s direction, we can get Ip out of F:

Ip := {dop(si)|dsi P F} (4.4.6)

Again, with help of A we can verify the resulting avoidance procedure instructed move-
ments: Ip A := AX Ip (4.4.7)

As a last step the verified movement instructions Ic A and Ip A need to be combined to
the final set of movements of the quadcopter M:

M := Ic A
Y Ip A = (Ic Y Ip)X A (4.4.8)

M is the set of movements that were intended by the controlling instance and that are
required to get away from obstacles, verified with the allowed flight directions.

4.5 Error Handling and Crash Avoidance

While avoiding collisions generally means moving away from potential obstacles, it includes
some error handling and crash avoidance. In case of a remote connection loss, a system
hang-up, or an endless loop resulting from a programming error the quadcopter would not
be controllable. This would possibly end in a fatal crash and a partly damaged quadcopter.
To understand the risk of a connection loss some knowledge about the functionality of the
copter’s remote control is needed.

The quadcopter’s flight commands consist of accelerating and slowing down the motors
for height control, turning the quadcopter around the z-axis in both directions and tilting it
on the x- and y-axes. Each command increases or decreases a set value, which is for turning
and tilting an angle. Whenever a command is sent to quadcopter the flight controller adjusts
the desired angles of all axes and tries to reach them. In case of a connection loss with
a set tilt angle unequal zero the quadcopter stays at it orientation and starts drifting to
a direction and cannot be caught again. For this reason it is mandatory that the flight
controller recognizes a connection error. Due to many error sources the most reliable way
is to send a keep-alive signal from the ground station. As long as the flight controller
frequently receives the keep-alive signal the connection is okay. If after a specified time
no keep-alive signal has arrived the quadcopter initiates an emergency landing. Test have
shown that a transmission interval of 300ms is adequate for not overloading the Bluetooth
connection, which sends and receives alternately, and being quick enough to land in case
of an error before a crash.

Preventing a crash caused by a hang-up or endless loop in the flight controller, in which
case no command could be processed with the same result as outlined above, is not doable
on software side by the microcontroller alone. The only way is to reset the Arduino and
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accept a fall to the ground to prevent harm to people and other objects. While a similar
keep-alive signal between one of the additional Arduinos and the main Arduino could be
established to initiate a direct reset if the flight controller does not respond, an easier and
safer way is the included Watchdog on the Arduino Mega 2560. Watchdog can be described
as a hardware side counter which, if it reaches a specific value, resets the microcontroller
automatically. To prevent it from being restarted the software on the Arduino must reset
the timer frequently before it runs full.
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Chapter 5

Implementation

Below, the implementation of the developed software components is described in detail.
This includes the SCCharts and C/C++ realizations of the collision avoidance as well as the
framework on the Arduino. Also the software running on the sensor-processing Arduinos
and the telemetry software are presented.

5.1 Host Code Framework

Running an SCChart in an Arduino sketch requires some host code around. Like every
Arduino project, our code has a main and executed file named the same as the project. This
main file has an initially called setup function and a repeatedly triggered loop. Although
this is very similar to the SCCharts’ generated C code, host code operation need to be
performed before the actual collision avoidance can work. For this reason a framework
of host code was written in C/C++ on the Arduino, which can invoke either the C/C++
implementation of the collision avoidance or the SCCharts version. Listing 5.1 provides
an shortened overview about the important parts of this framework. Some functions are
combined and some are renamed for better understandability. All bold printed functions
are important for this thesis.

As described in Section 4.5, the Watchdog timer can be enabled in the setup function as
visible in line 7 and reset in every loop in line 12. proximityRead in line 14 and proximityCheck
in line 20 are covered later in Section 5.3. Section 4.5 also mentions the use of a keep-alive
signal to initiate an emergency landing if the remote connection fails. Lines 22 to 24 handle
the monitoring of the keep-alive signal in every tick.

1 void setup ( ) {
2 in i t ia teSer ia lCommunica t ion ( ) ; / / v i a t h e B l u e t o o t h c o n n e c t i o n
3 ini t ia l izeInterruptsAndCommunicat ionForAdit ionalArduinos ( ) ;
4 i n i t i a l i z e G y r o s c o p e ( ) ;
5 i n i t i a l i z e P I D V a l u e s ( ) ; / / f o r t h e s t a b i l i z a t i o n r o u t i n e
6 wdt_enable (WDTO_60MS) ; / / Enab l e watchdog t i m e r
7 }
8
9 void loop ( ) {

10 wdt_reset ( ) ; / / R e s e t watchdog t i m e r
11 readGyroscope ( ) ;
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12 proximityRead ( ) ; / / Read new p r o x i m i t y v a l u e s i f a v a i l a b l e
13 i f ( motionTrackingChipReady && ! setupDone )
14 setupDone = ! setupDone ;
15 i f setupDone {
16 processIncomingCommands ( ) ;
17 proximityCheck ( ) ; / / P r o c e s s l a t e s t p r o x i m i t y v a l u e s
18 r e c a l c u l a t e A n g l e s ( ) ;
19 i f ( currentTime ´ lastKeepAlive >= keepAliveInterval )
20 emergencyLanding ( ) ;
21 reca lculateMotorValues ( ) ;
22 writeDebug ( ) ;
23 }
24 }

Listing 5.1. loop function of the ultrasonic sensor controller

5.2 Ultrasonic Sensor Controller

In Chapter 4.2 the fact, that the handling of all ten sensors requires two separate Arduinos,
was discussed. On each of these one instance of the ultrasonic sensor controller is executed.
This controller makes use of the afore-mentioned NewPing Library for Arduino.

1 void loop ( ) {
2 for ( u i n t 8 _ t i = 0 ; i < SONAR_NUM; i ++) {
3 i f ( m i l l i s ( ) >= pingTimer [ i ] ) {
4 pingTimer [ i ] += PING_INTERVAL * SONAR_NUM;
5 i f ( i == 0 && currentSensor == SONAR_NUM ´ 1) sensorCycle ( ) ;
6 sonar [ currentSensor ] . t imer_stop ( ) ;
7 currentSensor = i ;
8 for ( u i n t 8 _ t j = 0 ; j < ARRAY_LENGTH ´ 1 ; j ++)
9 cm[ currentSensor ] [ j ] = cm[ currentSensor ] [ j + 1 ] ;

10 knownDistances [ currentSensor ] = f a l s e ;
11 sonar [ currentSensor ] . ping_timer ( echoCheck ) ;
12 } } }

Listing 5.2. loop function of the ultrasonic sensor controller

Listing 5.2 displays the controllers loop function, as it is recommended by the library’s
developer with a little modification. Every call checks for every sensor if its pingTimer is
reached. If this is the case, the respective timer is increased by PING_INTERVAL times the
number of sensors in line 4. If the most recently checked sensor was the sensor with index
9, the sensorCycle function is called. Afterwards, the respective sensor timer is stopped in
line 6 and again started in line 11. ping_timer(echoCheck) triggers the sensor in the sonar
array and starts calling echoCheck every 24µs.
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New in this implementation are lines 8 to 10. Line 10 is a boolean array for all sensors,
which specifies whethter any sensor’s echo has returned or is missing. Lines 8 and 9 shift
the array of the most recently detected distances left before the new distance arrives.

1 void sensorCycle ( ) {
2 i f ( a c t i v e ) {
3 a c t i v e = f a l s e ;
4 for ( u i n t 8 _ t i = 0 ; i < SONAR_NUM; i ++) {
5 i f ( knownDistances [ i ] )
6 S e r i a l . wri te (max( min (cm[ i ] [ 0 ] , cm[ i ] [ 1 ] ) , min (max(cm[ i ] [ 0 ] , cm[ i ] [ 1 ] ) ,

cm[ i ] [ 2 ] ) ) ) ;
7 e lse
8 S e r i a l . wri te ( ( u i n t 8 _ t ) 255) ;
9 }

10 delayMicroseconds ( 5 0 0 ) ;
11 d i g i t a l W r i t e (INTERRUPT_SEND, HIGH) ;
12 delayMicroseconds ( 1 0 ) ;
13 d i g i t a l W r i t e (INTERRUPT_SEND, LOW) ;
14 } }

Listing 5.3. sensorCycle function of the ultrasonic sensor controller

The oneSensorCyle function checks whether the flight controller is ready to receive
new sensor data and has sent an interrupt which set active to true in the interrupt service
routine not shown in the listings. Lines 4 to 9 in Listing 5.3 shows that if this happens, the
controller sends the median of the latest three received values, in case kownDistances is true
for the sensor, or the default value for "out of range" 255 to the flight controller for each
sensor. After all sensors are processed, lines 10 to 13 send an interrupt back to the main
Arduino.

When echoCheck is called, check_timer in line 2 of Listing 5.4 checks if the sensor’s
echo has returned within the preset distance’s time. If it has, the respective field in the
knownDistances array is set to true and the latest value for the sensor is updated.

1 void echoCheck ( ) {
2 i f ( sonar [ currentSensor ] . check_timer ( ) ) {
3 knownDistances [ currentSensor ] = t rue ;
4 cm[ currentSensor ] [ARRAY_LENGTH ´ 1] = ( sonar [ currentSensor ] . p i n g _ r e s u l t

/ US_ROUNDTRIP_CM) ;
5 } }

Listing 5.4. echoCheck function of the ultrasonic sensor controller
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5.3 Collision Avoidance in C/C++

The first implementation is done in C/C++ directly on the Arduino. Although the SCCharts
language has been in development for a few years, testing and debugging with an Arduino
is not as intuitive as in pure C/C++. A non SCCharts version of the software also helps
comparing the implementation process.

For the further understanding some information about the proximity value reading
is given. Every tick calls the proximityRead function, which checks whether one of the
sensor-handling Arduinos has sent new data. Listing 5.5 gives an extract for one of the
Arduinos and shows the procedure.

1 i f ( newData [ i ] ) {
2 newData1 = f a l s e ;
3 newProxData ++;
4 for ( i n t i = 0 ; i < 5 ; i ++) {
5 i f ( S e r i a l 2 . a v a i l a b l e ( ) > 0) {
6 cm[ i ] = S e r i a l 2 . read ( ) ;
7 }
8 }
9 d i g i t a l W r i t e (INTERRUPT_SEND1, HIGH) ;

10 delayMicroseconds ( 1 0 ) ;
11 d i g i t a l W r i t e (INTERRUPT_SEND1, LOW) ;
12 }

Listing 5.5. Extract of the proximityRead function for one Arduino

Whenever the proximityRead function finds the according field in newData on true, the
first additional Arduino has sent new values and triggered the first interrupt service
routine. As a result the variable is set to false immediately, and the counter newProxData is
incremented. newProxData helps the flight controller to know when all additional Arduinos
have sent their values. The loop from line 4 to line 8 in Listing 5.5 reads all received values
on the Serial port, which is connected to the respective Arduino, and writes them to the
cm array. Subsequently, an interrupt is sent in lines 9 to 11 to notify the sensor-handling
Arduino that all values have been received and the flight controller is ready to get new
values during the next tick.

Because in Arduino the standard C++ library is missing1, containers such as sets cannot
be used by default. As SCCharts does also not support such objects, the collision avoidance
algorithm implementation is done without a third party library or the usage of sets by
creating an array of allowed flight directions directly as described in Section 4.4.

Before the first step of determining the forbidden and allowed flight directions using
the sensors’ proximity values, the proximityCheck function defines the attentionThreshold,

1https://www.arduino.cc/en/Reference/Libraries
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the dangerThreshold, and the strength, which declares to which degree the quadcopter needs
to be tilted away from a detected obstacle in case of a potential collision.

1 void proximityCheck ( ) {
2 i n t at tent ionThreshold = 1 3 0 ;
3 i n t dangerThreshold = 8 0 ;
4 i n t s t r en gt h = 2 ;

Listing 5.6. Variable declaration and definition in the proximityCheck function

Next, an array of size 8 for the allowed and forbidden directions allowedDirections is
created in line 5 in Listing 5.7. Every field is initiated with -1 to indicate that is has not
been set yet. Each array field is reserved for a direction with indices corresponding to the
indices of the sensors as described in Section 4.4. If any field later holds the value of 0
this means a blocked direction, if it holds the value of 1 the direction is allowed. To fill
the array with the according values, a loop is run over all sensors to check whether any
of them has detected an obstacle in a distance below the attentionThreshold. If this check
evaluates to true for a sensor a range variable is set to 1 in line 8. range defines the number
of neighbor directions on both sides, that are blocked as well, as shown in Figure 4.8. In
case the measured distance is even smaller than the dangerThreshold, range is set to 2.

With Equation (4.4.3) and Equation (4.4.4) the allowed flight directions are the directions,
which are not forbidden by any sensor. This means that any sensor can overwrite an allowed
flight direction but not vice versa. For this reason, if a sensor detects an object too close
and the range is set to 1 or 2, in line 12 the respective sensor’s and its neighbors’ allowed
directions can be set to 0 without further checks.

If no obstacle is detected within the attention radius the according field in the allowed-
Directions array can be set to 1 if and only if the field has not been changed from -1. If any
other sensor has already blocked the direction, another change of the field is not permitted.

5 i n t 8 _ t a l lowedDirect ions [ 8 ] = { ´1 , ´1, ´1, ´1, ´1, ´1, ´1, ´1};
6 for ( i n t 8 _ t i = 0 ; i < 8 ; i ++) {
7 i f (cm[ i ] < at tent ionThreshold ) {
8 i n t 8 _ t range = 1 ;
9 i f (cm[ i ] < dangerThreshold )

10 range = 2 ;
11 for ( i n t 8 _ t j = i´range ; j <= i +range ; j ++)
12 al lowedDirect ions [ ( j +8) % 8] = 0 ;
13 } e lse {
14 i f ( a l lowedDirect ions [ i ] < 0)
15 a l lowedDirect ions [ i ] = 1 ;
16 } }

Listing 5.7. Creating the allowedDirections array in the proximityCheck function.
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After having an array of allowed flight directions from all sensors, the second step is to
extend the controller-initiated flight directions by adding movements to escape obstacle
collisions. The current set values for tilting the quadcopter on the x- and y-axes are named
setX and setY. For every forbidden flight direction it the algorithm checks whether the
present setX and setY values are tilting the quadcopter more than the angle of strength
away from it. As line 17 in Listing 5.8 shows, in case of an obstacle in front of the sensor
with index 0, it requires a negative setY value to avoid a collision. If the controller-intended
setY value is already smaller than a negative strength it does not need to be changed. In
case it is not, it will be overwritten.

17 i f ( a l lowedDirect ions [ 0 ] == 0) setY = ( setY<́ s t r en gt h ) ? setY : ´s t r en gt h ;
18 i f ( a l lowedDirect ions [ 4 ] == 0) setY = ( setY >s t r e ng th ) ? setY : s t re ng th ;
19 i f ( a l lowedDirect ions [ 2 ] == 0) setX = ( setX<́ s t r en gt h ) ? setX : ´s t r en gt h ;
20 i f ( a l lowedDirect ions [ 6 ] == 0) setX = ( setX >s t r e ng th ) ? setX : s t re ng th ;
21 i f ( a l lowedDirect ions [ 1 ] == 0) {
22 setY = ( setY<́ s t r en gt h ) ? setY : ´s t r en gt h ;
23 setX = ( setX<́ s t r en gt h ) ? setX : ´s t r en gt h ;
24 }
25 i f ( a l lowedDirect ions [ 3 ] == 0) {
26 setY = ( setY >s t r en g th ) ? setY : s t r e ng th ;
27 setX = ( setX<́ s t r en gt h ) ? setX : ´s t r en gt h ;
28 }
29 i f ( a l lowedDirect ions [ 5 ] == 0) {
30 setY = ( setY >s t r en g th ) ? setY : s t r e ng th ;
31 setX = ( setX >s t r en g th ) ? setX : s t r e ng th ;
32 }
33 i f ( a l lowedDirect ions [ 7 ] == 0) {
34 setY = ( setY<́ s t r en gt h ) ? setY : ´s t r en gt h ;
35 setX = ( setX >s t r en g th ) ? setX : s t r e ng th ;
36 }

Listing 5.8. Expanding the controller-intended movements by movements to escape obstacles.

In some situations it can happen that both the front sensor and the back sensor
recognize an object within the attention radius. In this instance line 17 would verify that
the setY value is -strength or smaller and line 18 would overwrite setY with strength. To
solve this problem the resulting setX and setY values are verified with the earlier created
allowedDirections array. Equation (4.4.8) explains the composition of the final quadcopter’s
movements. It takes the combined movements intersected with the allowed flight directions.
Since a positive setY value tilts the quadcopter forwards it needs to be accompanied by the
allowed flight directions front-left, front, and front-right. Similarly, all tilting directions can
be verified, as shown in Listing 5.9.
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37 i f ( setY > 0) {
38 setY = ( a l lowedDirec t ions [ ´1]
39 && al lowedDirec t ions [ 0 ]
40 && al lowedDirec t ions [ 1 ] ) ? setY : 0 ;
41 } e lse {
42 setY = ( a l lowedDirec t ions [ 3 ]
43 && al lowedDirec t ions [ 4 ]
44 && al lowedDirec t ions [ 5 ] ) ? setY : 0 ;
45 }
46 i f ( setX > 0) {
47 setX = ( a l lowedDirec t ions [ 1 ]
48 && al lowedDirec t ions [ 2 ]
49 && al lowedDirec t ions [ 3 ] ) ? setX : 0 ;
50 } e lse {
51 setX = ( a l lowedDirec t ions [ 5 ]
52 && al lowedDirec t ions [ 6 ]
53 && al lowedDirec t ions [ 7 ] ) ? setX : 0 ;
54 }

Listing 5.9. Verifying the allowed directions.

5.4 Collision Avoidance in SCCharts

   CollisionAvoidance   
int  sct_attentionThreshold  = 130 
int  sct_dangerThreshold  = 80 
int  sct_strength  = 2 
int  sct_allowedDirections [8 ] 
input  int  sct_cm [10 ] 
input  output  float  sct_setX 
input  output  float  sct_setY 

[-] 
   CheckAllowedDirections   

entry   / sct_allowedDirections [0 ] = -1 
entry   / sct_allowedDirections [1 ] = -1 
entry   / sct_allowedDirections [2 ] = -1 
entry   / sct_allowedDirections [3 ] = -1 
entry   / sct_allowedDirections [4 ] = -1 
entry   / sct_allowedDirections [5 ] = -1 
entry   / sct_allowedDirections [6 ] = -1 
entry   / sct_allowedDirections [7 ] = -1 

[+] Front 

[+] FrontRight 

[+] Right 

[+] BackRight 

[+] Back 

[+] BackLeft 

[+] Left 

[+] FrontLeft 

   FleeFromObstacles   

[+] 

   VerifyFlightDirections   

[+] Yaxis [+] Xaxis 

Figure 5.1. Collapsed SC-
Chart

Implementing the presented collision avoidance procedure
in the synchronous language SCCharts can be done similarly.
Figure 5.1 illustrates the variable initialization and all three
mentioned steps in separate superstates, which are connected
via immediate termination transitions.

It also shows how the first superstate CheckAllowedDirec-
tions initializes the allowedDirections array with -1 and includes
eight regions with threshold checks for one of the horizon-
tally aligned sensors each. The initial state in every region is
Unknown, as can be seen in Figure 5.2, which must lead to
one of the following states immediately. In case the attention
threshold or even both thresholds are undercut it is switched
to state Attention or Danger and the sensor’s direction as well
as its regarding neighbors’ directions are forbidden. If no
obstacle for this sensor is within the threshold radius the
SCChart ends with state Okay and if and only if the sensor’s
direction has not been modified by another sensor, the di-
rection is allowed. The "initialize-update-read" protocol of
SCCharts ensures that the parallel states in the CheckAllowed-
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Directions superstate are handled correctly and all Okay states’
entry actions are executed after the ones of the states Danger
and Attention.

SCCharts provides the ability of using referenced states. With this technique and bound
variables a second SCChart can be integrated, if necessary multiple times, in an existing
region. Listing 5.10 shows how the second SCChart Sensor can be referenced as a state.
Every region contains an index integer that is passed to the referenced SCChart in addition
to other required variables.

1 region Front :
2 i n t index = 0 ;
3 i n i t i a l f i n a l s t a t e ThresholdCheck r e f e r e n c e s Sensor
4 bind index to index ,
5 a t tent ionThreshold to at tent ionThreshold ,
6 dangerThreshold to dangerThreshold ,
7 cm to cm,
8 al lowedDirect ions to a l lowedDirec t ions ;

Listing 5.10. Region definition for referenced threshold check SCChart

While there exist some depiction errors with the entry actions, it is visible in Figure
5.3 how the bound index variable is used to identify the regarding fields in the cm and
allowedDirections array. Unfortunately using variables as array identifiers is currently not
supported, which is why the implementation is realized as described in Section 5.4 without
referenced states.

The second state FleeFromObstacles is responsible for the movement extension. As shown
in Figure 5.4, it includes the sequential check for all directions. Analogously to the second
step in Section 4.4, every field in the allowedDirections array is checked, and if it’s direction
is forbidden, the setX or setY values are adjusted until the termination transition leads to
the last superstate VerifyFlightDirections.

[-] Front 

 Unknown  

   Okay   
entry  sct_allowedDirections [0 ] < 0  / sct_allowedDirections [0 ] = sct_allowedDirections [0 ] + 2 

   Attention   
entry   / sct_allowedDirections [7 ] = 0 
entry   / sct_allowedDirections [0 ] = 0 
entry   / sct_allowedDirections [1 ] = 0 

   Danger   
entry   / sct_allowedDirections [6 ] = 0 
entry   / sct_allowedDirections [7 ] = 0 
entry   / sct_allowedDirections [0 ] = 0 
entry   / sct_allowedDirections [1 ] = 0 
entry   / sct_allowedDirections [2 ] = 0 

 End  

 3:   2: sct_cm[0] < sct_attentionThreshold  1: sct_cm[0] < sct_dangerThreshold 

Figure 5.2. Referenced sensor SCChart
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   Sensor   
input  int  index 
input  int  attentionThreshold 
input  int  dangerThreshold 
input  output  int  allowedDirections [8 ] 
input  int  cm [10 ] 

[-] 

 Unknown  

   Okay   
entry  allowedDirections [index ] < 0  / allowedDirections [index ] = allowedDirections [index ] + 2 

   Attention   
entry   / allowedDirections [(index  + 7 ) % 8 ] = 0 
entry   / allowedDirections [index ] = 0 
entry   / allowedDirections [(index  + 9 ) % 8 ] = 0 

   Danger   
entry   / allowedDirections [(index  + 6 ) % 8 ] = 0 
entry   / allowedDirections [(index  + 7 ) % 8 ] = 0 
entry   / allowedDirections [index ] = 0 
entry   / allowedDirections [index  + 9  % 8 ] = 0 
entry   / allowedDirections [index  + 10  % 8 ] = 0 

 End  

 3:   2: cm[index] < attentionThreshold  1: cm[index] < dangerThreshold 

Figure 5.3. Referenced sensor SCChart

   FleeFromObstacles   

[-] 

 Init  

 CheckFront  

   FleeFront   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 

 CheckFrontRight  

 1: sct_allowedDirections[0] == 0 

 2:  

 CheckFrontLeft  

   FleeFrontLeft   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  <= sct_strength  / sct_setX  = sct_strength 

 Done  

 1: sct_allowedDirections[7] == 0 

 2:  

 CheckFrontLeft  

   FleeFrontLeft   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  <= sct_strength  / sct_setX  = sct_strength 

 Done  

 1: sct_allowedDirections[7] == 0 

 2:  

   FleeFromObstacles   

[-] 

 Init  

 CheckFront  

   FleeFront   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 

 CheckFrontRight  

   FleeFrontRight   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  >= sct_strength  / sct_setX  = sct_strength 

 CheckRight  

   FleeRight   
entry  sct_setX  >= sct_strength  / sct_setX  = sct_strength 

 CheckBackRight  

   FleeBackRight   
entry  sct_setY  <= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  >= sct_strength  / sct_setX  = sct_strength 

 CheckBack  

   FleeBack   
entry  sct_setY  <= sct_strength  / sct_setY  = sct_strength 

 CheckBackLeft  

   FleeBackLeft   
entry  sct_setY  <= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  <= sct_strength  / sct_setX  = sct_strength 

 CheckLeft  

   FleeLeft   
entry  sct_setX  <= sct_strength  / sct_setX  = sct_strength 

 CheckFrontLeft  

   FleeFrontLeft   
entry  sct_setY  >= sct_strength  / sct_setY  = sct_strength 
entry  sct_setX  <= sct_strength  / sct_setX  = sct_strength 

 Done  

 1: sct_allowedDirections[0] == 0 

 2:  

 1: sct_allowedDirections[1] == 0 

 2:  

 1: sct_allowedDirections[2] == 0 

 2:  

 1: sct_allowedDirections[3] == 0 

 2:  

 1: sct_allowedDirections[4] == 0 

 2:  

 1: sct_allowedDirections[5] == 0 

 2:  

 1: sct_allowedDirections[6] == 0 

 2:  

 1: sct_allowedDirections[7] == 0 

 2:  

Figure 5.4. Shortened movement extension in the SCChart with small preview of the whole
superstate on the right
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As described before, both set values are verified in the last step VerifyFlightDirections.
Because the only writing operations are the adjustment of both values, they can be
processed in two separate regions. Analogously to the last described step in Section, Figure
5.5 presents the final movement verification.

   VerifyFlightDirections   

[-] Yaxis 

 Init  

   VerifyPositiveMovement   
entry  !sct_allowedDirections [7 ] || !sct_allowedDirections [0 ] || !sct_allowedDirections [1 ] / sct_setY  = 0 

   VerifyNegativeMovement   
entry  !sct_allowedDirections [3 ] || !sct_allowedDirections [4 ] || !sct_allowedDirections [5 ] / sct_setY  = 0 

 1: sct_setY > 0  2: sct_setY < 0 

[-] Xaxis 

 Init  

   VerifyPositiveMovement   
entry  !sct_allowedDirections [1 ] || !sct_allowedDirections [2 ] || !sct_allowedDirections [3 ] / sct_setX  = 0 

   VerifyNegativeMovement   
entry  !sct_allowedDirections [5 ] || !sct_allowedDirections [6 ] || !sct_allowedDirections [7 ] / sct_setX  = 0 

 1: sct_setX > 0  2: sct_setX < 0 

Figure 5.5. Movement verification in the SCChart divided into two regions

The complete SCChart is called in every tick in which at least two ultrasonic sensor-
handling Arduinos have sent new values by the flight controller. Hence, all transitions
must be immediate to process the new values instantaneously.

5.5 Telemetry Software

For the remote control and to receive responses from the quadcopter, a telemetry software
in Java 8 and JavaFX was written to provide compatibility to all common operating systems.
In addition, the jSerialComm library introduced in Section 3.3 gives an environment
independent access to serial ports.

The interface is structured into three parts, as visible in Figure 5.6. The very top of the
window holds control elements and information icons for the connection to and status of
the quadcopter. Listing A.1 gives a code snippet which shows how easily the jSerialComm
library can be used.

The second segment consists of a set of buttons for controlling the movements and
leaves space for other toggles of different usages. As long as the window is focused the
quadcopter can also be controlled via keyboard inputs. The exact assignment of keys can
be found in Appendix B.

Below the controls a log view is located, which shows every pressed key and every
initiated action as well as incoming messages from the quadcopter with the regarding
timestamps. This way, in case of a critical incident the course of events can be compre-
hended. To receive messages after a successful connection a separate thread is started to
open an input stream and catch all incoming data.
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5.5. Telemetry Software

As mentioned in Section 4.5 the flight control of the quadcopter needs a periodical
keep-alive signal to be sure that the Bluetooth connection is okay. Therefore the telemetry
software starts a keepAliveHandler together with the motors. This handler sends the keep-
alive signal 0x99 every 300ms.

Figure 5.6. Telemetry Software
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Chapter 6

Evaluation

The evaluation is divided into two sections, the judgement of the sensor behavior and the
comparison of both software solutions. For the sensor processing it is important to assess
the quality of the values that are used by the collision avoidance algorithm. Comparing
both software solutions helps to find problems with SCCharts but also shows its strengths.

6.1 Sensor Behavior

During flight a UAV is exposed to strong airstreams which make a stable flight complicated.
This leads to small unpreventable movements like shaking and vibrating on different axes.
To evaluate the value correctness a test person can hold the quadcopter in both hands with
a monitored sensor directed to a proper wall and simulate typical flight movements. There
are three possible motions that change the sensor’s view on the wall:

1. Moving the quadcopter up and down:
When pointing the sensor towards a flat surface and moving the quadcopter up and
down frequently without changing the sensor’s view angle, the sensor value stays
constant.

2. Tilting or turning the quadcopter:
While turning the quadcopter on the z-axis or titling it towards the wall and back, the
distance logically increases, but a small angle of about 15˝ is enough to lose the obstacle
and get the "out of range" value instead. Section 4.2 explains the reason behind lost
echoes. Figure 6.1 sketches the movement and the loss of the sensor’s echo.

3. Moving the quadcopter towards the wall and away from it:
With movements towards the wall or away from it, the correctness of the measured
values depends on the movement speed as Figure 6.2 shows. Over a short period of
time two approaches of increasing the distance to the wall are made. The orange graph
describes the value variation with a quick movement while the blue graph displays a
moderate movement. The results can be explained by the Doppler Effect and emerge
to be one of the big disadvantages with sonic distance measurement in comparison
to measuring with light. As a consequence the quadcopter must not do any quick
movements to avoid wrong measurements of this type.
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6. Evaluation

(a) A rotation of 7˝ returns an echo. (b) A rotation of 20˝ mostly leads to a lost echo
with a flat surface.

Figure 6.1. Rotating the quadcopter only a few degrees can cause the loss of a sensor’s echo.
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Figure 6.2. Measured values from one sensor while increasing the distance to a wall with different
speed.

A similar problem results from the vibrations of the sensors, as already brought up in
Section 4.3, which seems to be solved with the pieces of sponge attached between the
sensors and the quadcopter.
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6.2. Collision Avoidance Implementation

Tabletop

Rotor

Sensor

Figure 6.3. Side view on one of the quadcopter’s arms next to a tabletop. The sensor does not
recognize the table.

When pointing the sensor towards a person wearing clothes or a soft object such as
a curtain, the second reason for lost echoes can be experienced, as it was mentioned in
Section 4.2. This makes a deployment in a populated area hard.

Even with a large delay between processing the sensors, the in Section 4.2 described
ghost echoes can be noticed when testing in a large room with multiple obstacles such as
pillars or edges. With more space the lifetimes of sound waves are much longer and round
pillars increase the chance of a sensor detecting echoes from other sensors.

The sonic waves created by the sensors propagate horizontally to have a preferably
wide but 2-dimensional field of view. In the instance of encountering a horizontally aligned
flat object such as a table, the quadcopter might be on the same height but have the sensors
underneath the table top. The quadcopter has no chance of detecting the obvious obstacle,
as sketched in Figure 6.3.

6.2 Collision Avoidance Implementation

At first both implementations are compared by numbers.

Ź The C/C++ implementation counts 55 lines of code.

Ź The code which was needed to model the SCChart counts 300 lines.

Ź The C code that was compiled from the SCChart counts 745 lines.

The result shows the typing effort to write the implementations by hand. The pure
C/C++ code is probably written in less time while the development of the idea cannot be
measured and compared here. One implementation needed to be written first and in turn
inspires the second one.

Although the C/C++ version is much smaller, both versions can be included in an
Arduino sketch and compiled with the related compiler.
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6. Evaluation

Ź The compiled C/C++ implementation is 5.382 bytes in size.

Ź The compiled SCCharts model is 67.032 bytes in size.

This comparison shows the required storage on the device. Both sizes can be handled
by an Arduino without difficulty. One reason of the increased file size is the concurrent
handling of the sensors in SCCharts instead of the sequential processing in C.

After including the both versions in an Arduino sketch each, the runtime of both
algorithms can be compared.

Ź The C/C++ implementation takes 16 microseconds in average.

Ź The SCCharts implementation takes 216 microseconds in average.

In contrast the SCCharts excel by a much higher understandability. Though this
particular implementation does not use much of concurrency, the sequential flow is easily
visible. This tallies with the survey results of The Railway Project Report [SMS+15].

In the following both implementations are compared concerning the realization. The
C/C++ version of the first step of creating the array for the allowed flight directions is
solved sequentially. That way it is ensured that only one sensor at a time is processed and no
race conditions can appear. In case two adjacent sensors would be handled simultaneously
the following scenario could occur:

1. Sensor 1 does detect an obstacle within the attention radius.

2. Sensor 2 does not detect an obstacle within the attention radius.

3. Sensor 2 checks whether its direction has been blocked by another sensor, which is not
the case.

4. Sensor 1 checks whether its direction has been blocked by another sensor, which is also
not the case.

5. Sensor 1 sets its direction and both neighbors’ directions to blocked.

6. Sensor 2 does not know that it must not allow its direction and sets it to allowed.

This possibility would lead to problems during flight regarding collision avoidance. In
SCCharts the MoC solves that issue. Because of the "initialize-update-read" protocol in
concurrent regions, reading states are processed after updating states. At first all sensors
with detected obstacles are processed because they do not do any further checks with their
field in the allowedDirections array. All sensors that do not detect any obstacle within the
attention radius check if their array field has been changed and are consequently processed
afterwards. This example reveals a strong point of modeling in SCCharts.
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6.2. Collision Avoidance Implementation

The second step of extending the intended movements by adding the escape movements
cannot be done concurrently in SCCharts. Listing 5.8 displays that if for example the front
sensor and the back sensor were handled simultaneously, both had to read the value of
setY at first and overwrite it afterwards depending on the evaluation. Since for both sensors
this would result in a different setY, the "initialize-update-read" protocol did not have a
solution for this condition and didn’t know which of both sensors to process at first. Within
the project a discussion arose about the problem that it is currently not feasible to develop
an SCChart for a system such as the quadcopter without writing a framework of host
code. Although it would be possible to include the call of an exemplary sensor-processing
function in a during action of a superstate, it cannot be told when exactly the call is
executed not to mention guaranteeing that the sensor-processing function is the first to be
called in every tick.

When using a single tick function for a modeled SCChart with a negligible loop time
the timing of one state cycle would be equal no matter if taking one transition per tick with
non-immediate transitions or taking all transitions in one tick with immediate transitions.
This is different when including the tick function in another one with an execution time t.
Let it take 20 states for one hypothetical state cycle with an average state execution time of
s. It would take 20 ¨ (t + s) to get a result out of the SCChart when using non-immediate
transitions but only 20 ¨ s when using immediate transitions. Whenever multiple states of
an SCChart can be connected via immediate transitions, they should.
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Chapter 7

Conclusion

To review the whole work the significant results are listed below. In addition some
previously unmentioned points are brought up, which are qualified for future work with
relation to this project.

7.1 Summary

This thesis described the creation of a basic collision avoidance system for a UAV in the
synchronous language SCCharts. Therefore external positioning and internal proximity
sensors were compared. It turned out that external hardware does not meet the assumptions
of an autonomous system in an unknown environment. After a comparison of internal
proximity sensors ten affordable non-processing HC-SR04 ultrasonic sensors were chosen.
Different approaches were declined on how to handle the real-time typical problems of
a slow sensor value generation beside the safety-critical operation of stabilization. As
a final solution two extra Arduinos with the NewPing Library for Arduino handle the
sensor evaluation. In addition, problems with unstable values were best solved by a sensor
attachment that does not transfer the vibrations of the motors and by using a sliding
median filter.

To avoid collisions based on the resulting sensor data, a mathematical approach on
handling allowed and forbidden flight movements was made. Intersecting the combination
of the set of movements which are intended by a human or an autonomous flight controller
and the set of calculated escape movements from potential obstacles with the set of allowed
flight directions led to the resulting actual flight movements.

Avoiding collisions includes dealing with potential errors that could prohibit the flight
controller from continue working. The consequences of both a remote connection loss as
well as a hangup or endless loop on the microcontroller were examined and caught.

Based on the gathered results the required code for the sensor handling Arduinos and
the requested telemetry software for remote control was written. Finally, the results of the
collision avoidance concept are implemented in two versions, a pure C/C++ version and
an SCCharts version, which are compared afterwards. The evaluation also reviews the
whole work and discusses problems that could not be solved.
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7. Conclusion

7.2 Future Work

Although the intended goal was reached and the quadcopter is able to recognize objects
in its surroundings, the detection is far from perfect. Increasing the number of sensors
would result in a higher resolution and probably a better obstacle detection. Also replacing
the sensors or combining the currently used sensors with a different type like IR sensors
would likely improve the results. For better value stability a combination of multiple filters
is imaginable.

The telemetry software allows sending commands to the quadcopter and receiving
messages. Due to the limited capacity of the Bluetooth connection not all debug information
can be transmitted at once. To change the output, the software of the quadcopter needs
to be adjusted and reinstalled. For debugging reasons it would be very helpful if the
particular debug entries could be enabled and disabled remotely via the telemetry software.
Alternatively, the communication device could be switched to another technology with
more capacity. Another important feature for the telemetry software should be the ability
to safe log files. This function is also not implemented at that moment.

If the stability of the quadcopter during flight could be enhanced, extended flight
maneuvers for collision avoidance could be established. With the help of the attached
sensors it would be possible to determine position and movement speed within a room
which could together with the collision avoidance lead to an autonomous navigation
between a starting point and an end point for instance.

The actual protection of the quadcopter could be increased by better rotor guards or
even a cage-like casing.
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Appendix A

Source Code

1 public void connect ( ) {
2 i f ( ! connected ) {
3 port = S e r i a l P o r t . getCommPorts ( ) [ p o r t S e l e c t i o n . getSelect ionModel ( ) .

ge tSe lec tedIndex ( ) ] ;
4 log ( " Trying to connect to port " + port . getSystemPortName ( ) ) ;
5 i f ( port . openPort ( ) ) {
6 log ( " S u c c e s s f u l l y connected to port . " ) ;
7 connected = t rue ;
8 connectButton . s e t T e x t ( " Trennen " ) ;
9 port . setComPortTimeouts ( S e r i a l P o r t . TIMEOUT_READ_SEMI_BLOCKING,

0 , 0 ) ;
10 port . setBaudRate ( 5 7 6 0 0 ) ;
11 i f ( s t a r t S e r i a l R e a d e r ( ) ) {
12 log ( " S t a r t l i s t e n i n g to the quadcopter . " ) ;
13 } e lse {
14 log ( " Could not s t a r t l i s t e n i n g to the quadcopter . " ) ;
15 }
16 } e lse {
17 log ( " Unable to open the port . P lease make sure the port i s not

blocked or r e s t a r t the quadcopter . " ) ;
18 }
19 } e lse {
20 i f ( s topSer ia lReader ( ) ) {
21 port . c l o s e P o r t ( ) ;
22 connected = f a l s e ;
23 connectButton . s e t T e x t ( " Verbinden " ) ;
24 log ( " Connection closed . " ) ;
25 } e lse {
26 log ( " Could not stop l i s t e n i n g to the quadcopter . P lease t r y

again . " ) ;
27 }
28 }
29 }

Listing A.1. Opening serial port in the telemetry software.
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Appendix B

Flight Control

The following gives an overview about the available keyboard inputs at the point of writing
for controlling the quadcopter with the telemetry software or a serial terminal.

q Start motors.

e Initiate emergency landing if not on ground and stop motors afterwards.

w Throttle up.

s Throttle down.

i Tilt forwards.

k Tilt backwards.

j Tilt left.

l Tilt right.

r Balance: set tilting angles to zero.

u Turn ccw.

o Turn cw.
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Appendix C

Wiring
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Figure C.1. Wiring of all electric components
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