
Standalone Web Diagrams and
Lightweight Plugins for Web-IDEs

such as Visual Studio Code and Theia

Christoph Fricke

Bachelor’s thesis
September 28, 2021

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M.Sc. Niklas Rentz

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Web technologies have become more capable and are more widely used than ever before. The
continuous improvements to available web APIs and the addition of new APIs have enabled
more complex, web-based applications. One of the most popular code editors, Visual Studio
Code, is built with web technologies, and every day new applications are developed with a
web-first approach.

Previous work by Domrös and Rentz has created the KEITH project, which integrates
tooling for the KIELER project in the web-based IDE platform Theia. This work ports the
created diagram view for KLighD-synthesized models to Visual Studio Code and a standalone
browser view to enable new use cases.

A solution for such implementation can be approached from multiple angles. Different
approaches are discussed and ultimately one approach is picked and implemented for this
thesis, based on requirements that should be fulfilled by this approach. The new diagram
view avoids code duplication between Visual Studio Code and the standalone view and is
extensible for future work.

To achieve this, abstractions have been identified that not only simplify the development
of features but also make the new diagram view accessible beyond the scope of the KIELER

project. The newly released applications that are the result of this work make the diagram
view for KLighD models accessible to many more potential users.

Acknowledgements

I would like to thank Prof. Dr. Reinhard von Hanxleden for the opportunity to write my
bachelor’s thesis in his working group. Many thanks go to Niklas Rentz who advised my
thesis and has provided continuous support, ideas, and feedback. Furthermore, I would like
to thank Alexander Schulz-Rosengarten for his feedback regarding the approach for a Visual
Studio Code extension.

I would also like to thank Lena Fricke and Claus-Dieter Piontke for proofreading and
reviewing this thesis. Lastly, I am very grateful for my family who continuously supported
and motivated me while writing my thesis.

v

Contents

List of Figures ix

Listings xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Outline . 3

2 Used Technologies 5
2.1 KIELER Lightweight Diagrams . 5
2.2 Node.js, npm and yarn . 6
2.3 TypeScript . 6
2.4 Visual Studio Code . 7
2.5 Language Server Protocol . 9
2.6 Theia . 11
2.7 Sprotty . 11
2.8 Snabbdom . 13
2.9 Fastify . 14
2.10 Commander . 15

3 Related Work 17
3.1 Mermaid . 17
3.2 Sprotty Examples . 18
3.3 Kiel Environment Integrated in Theia . 19
3.4 Software Architecture . 19

4 Concepts 21
4.1 Understanding the Foundation—KEITH . 21

4.1.1 Available Diagram Features . 21
4.1.2 Project Structure . 23

4.2 Visual Studio Code Support . 24
4.2.1 Webviews . 25
4.2.2 Inter-extension Communication . 26

4.3 Theia Support . 27
4.4 Standalone Diagram View . 28

4.4.1 Hosted Service . 28
4.4.2 Locally Running Service . 29

vii

Contents

4.5 New Architecture . 30
4.5.1 Location of Diagram Features . 32

4.6 Reusable User Interface for Diagram Options . 33
4.6.1 Behavior of the Additional User Interface 34

5 Implementation 37
5.1 Services . 37

5.1.1 Connection . 38
5.1.2 Session Storage . 38
5.1.3 Persistence Storage . 39

5.2 Managing State . 40
5.3 Sidebar API . 41

5.3.1 Creating a Sidebar Panel . 43
5.4 Implementing the CLI Application . 45
5.5 Implementing the VS Code Diagram Extension 46
5.6 Publishing the Applications . 47

6 Evaluation 49
6.1 A Word About Performance . 49

6.1.1 Diagram Visualization Performance . 49
6.1.2 Sidebar Rendering Performance . 50
6.1.3 Startup Performance . 50

6.2 Feature Comparison with KEITH . 51
6.2.1 Changes to the Features . 51
6.2.2 Missing Behavior . 53

6.3 Implementation Effort for Other Projects . 53
6.3.1 Developing a VS Code Extension . 54
6.3.2 Integrating the Core Package . 55
6.3.3 Embedding the Standalone Diagram View 56

7 Conclusion 57
7.1 Summary . 57
7.2 Future Work . 58

Acronyms 61

Bibliography 63

viii

List of Figures

2.1 Overview of VS Code’s UI . 8
2.2 Language Server Protocol communication sequence 10
2.3 Architecture of the Sprotty framework . 12

3.1 Mermaid live editor . 18
3.2 Layered architecture sketch . 20

4.1 Screenshot of the KEITH editor . 22
4.2 Relations between KEITH packages . 24
4.3 VS Code extension with a webview and language server 25
4.4 WebSocket proxy solution . 29
4.5 Overview of the new architecture . 31
4.6 Floating options UI . 36

5.1 Extended Sprotty architecture . 41
5.2 Class diagram of the sidebar API . 42
5.3 Sequence diagram of the persistence communication in VS Code 46

6.1 Diagram views in KEITH and VS Code . 52

ix

Listings

2.1 SynthesisPicker expressed as a UI component using Snabbdom flavored JSX. . 14
4.1 Example of a command call between two VS Code extensions. 27
5.1 Example of a SidebarPanel that displays an interactive counter. 44
6.1 Minimal extension code required for a working klighd-vscode integration. . . . 55
6.2 Minimal code required to integrate the diagram core. 56

xi

Chapter 1

Introduction

Today’s software solutions often rapidly grow in size and complexity. This decreases the
ability to fully understand the system. At the same time changing requirements have to be
met, bugs have to be fixed, and the whole system has to be maintained and updated with
technological advances and new features.

To tame the complexity, system architects and developers rely on visualizations to obtain
an overview of the system and to communicate the system architecture to new team members.
Further, visualizations are used to communicate new requirements and to detect potential
problems during the design phase.

These visualizations have to be maintained manually more often than not [SSH13]. Without
a strong commitment to keeping the documentation and visualizations up to date, both
become outdated over time and no longer apply to the current software system. Generating
visualizations directly from the source helps to avoid outdated visualizations, but they might
not be as meaningful as handcrafted visualizations, since general purpose languages are not
able to semantically express the intent behind the code. Domain specific languages not only
enable source code that is focused on the problem domain, but enable the generation of more
meaningful visualizations as well.

The Real-Time and Embedded Systems Group of the Department of Computer Science at
Kiel University develops and maintains the research project Kiel Integrated Environment for
Layout Eclipse Rich Client (KIELER). The project aims to integrate different modeling languages,
such as their synchronous language Sequentially Constructive Charts (SCCharts) [HDM+14],
into the Eclipse platform. Supported languages are enhanced with interactive diagrams,
whose view models are synthesized using the KIELER Lightweight Diagrams (KLighD) frame-
work [SSH13].

Over the years, web technologies have advanced and have become more capable than ever.
The development of Node.js, a JavaScript runtime, and frameworks, such as Electron1, has
allowed web technologies to spread into many new application areas. Most notably, newer
and more lightweight Integrated Development Environments (IDEs), such as Atom or Visual
Studio Code (VS Code), are built with these technologies and have quickly gained popularity.
The 2021 Stack Overflow survey asked 82 thousand developers about their IDE of choice.
Around 71% answered that they use VS Code, making it the most popular IDE according to the
survey [Ove21].

Together with the release of Microsoft’s VS Code, the company popularized the idea

1 A framework for cross-platform desktop applications built with web technologies.

1

1. Introduction

of separating programming language-specific functionality from IDEs. A language server
provides functionality, such as hover information and suggestions, for a language behind
a clearly defined communication protocol, called the Language Server Protocol (LSP)2. IDEs

can integrate such language servers, which allows them to support more languages with less
effort.

The working group has seen the development of the LSP and the advancement of web
technologies as an opportunity to experiment with new technologies and discover new
research topics that arise with web technologies [Ren18]. Further, it opens their project to
more tools and thus makes it accessible for more developers. Past work by Domrös and Rentz
has created a language server and integrated parts of their tooling into the open-source IDE

platform Theia [Dom18]. Based on the new custom IDE, they created the Kiel Environment
Integrated in Theia (KEITH) project, which contains a web-based diagram visualization using a
library called Sprotty [Ren18]. The diagram synthesis with KLighD is implemented behind the
LSP in the language server, while Sprotty is used to transform the resulting model to Scalable
Vector Graphics (SVG) and display it in Theia.

In version 1.4 Theia deprecated its support for the LSP to reduce maintenance cost [Köh20].
Instead, developers should wrap their language server in a VS Code extension, which are
supported by Theia since its 1.0 release [Eff20b].

This change in Theia’s development forces the working group to port their tooling
developed for Theia to a VS Code extension to support newer versions of Theia. Obviously,
developing a VS Code extension will add support for VS Code to their project. The development
of a VS Code extension is further motivated by requests of industry partners to support the
tools they commonly use, such as VS Code.

However, the need for visualization motivated in the beginning is not fully covered by
tooling that is integrated into IDEs. Even though VS Code and Theia start fairly quick compared
to Eclipse, if a developer wants to quickly open an interactive visualization, a standalone
diagram view is often preferable. Furthermore, interactive visualizations can improve the
communication inside an organization. The ability to share a link to an interactive diagram
view that runs in a browser allows non-technical and technical people to benefit from the
visualization without installing specific applications, such as an IDE. This can be coupled with
the possibility to enhance other digital media with interactive visualizations. Many web-based
wiki solutions, such as Confluence, are able to embed external websites. Embedding a diagram
view in such wiki solutions allows a reader to interactively explore a visualization, which can
help to further comprehend documentation [RDH20].

1.1 Problem Statement

The main focus of this thesis is to explore and implement a solution for a diagram view in a
standalone website, Theia, and VS Code. The diagram view must support diagram models that
are synthesized with KLighD, so it is usable by the KIELER project. Instead of implementing the

2https://microsoft.github.io/language-server-protocol

2

https://microsoft.github.io/language-server-protocol

1.2. Outline

diagram view from scratch, the current solution in KEITH should be refactored to be reusable
as a foundation. In the end, all diagram-related features that are available in KEITH should be
available in VS Code and a standalone website as well.

Throughout this thesis, the term platforms will be used to refer to VS Code, Theia, and a
browser as a whole. Common occurrences include target platforms or new platforms when Theia
is not considered since it is an already supported platform. Even though the term platform is
often used to refer to operating systems, it is also used to refer to technologies upon which
other applications are developed3. In this case, VS Code, Theia, and a browser are applications
that serve as runtime platforms, which will be used to provide diagram visualizations to
users of the KIELER project.

Further requirements can be imposed to refine the problem statement and to determine
the quality of a solution. It should focus on avoiding code duplication between the different
target platforms. If possible, a core implementation that contains most features should be
reused for each platform. KIELER is not the only project that contains languages which can be
visualized with the use of KLighD. Further, the new platforms are not exhaustive and do not
cover all possible use cases. Therefore, a solution should be extensible with new features and
open for easy adoption by other projects.

1.2 Outline

Chapter 2 introduces JavaScript libraries that have been used extensively in the implemen-
tation for this thesis, as well as foundational software, such as KLighD, VS Code, and Node.js.
It is followed by related work that inspired the solution for this thesis in Chapter 3. Chap-
ter 4 discusses and outlines concepts and approaches for the different platforms, which
are composed to an overall architecture and approach. Some core components have been
created that enable and simplify the implementation of diagram-related features, which are
introduced in Chapter 5, as well as an outline of the implementation for each platform. The
new implementation is compared with KEITH in Chapter 6. Furthermore, it reasons about
the diagram view performance and outlines the effort required to adopt it for other projects.
Chapter 7 summarizes this thesis and motivates future work.

3https://www.techopedia.com/definition/3411/platform-computing

3

https://www.techopedia.com/definition/3411/platform-computing

Chapter 2

Used Technologies

Developing a diagram visualization for three different platforms requires knowledge about
many libraries and applications. Each platform provides its own guidelines and Application
Programming Interfaces (APIs) that have to be understood to successfully target the platform.
Furthermore, different libraries are used to support the development of a diagram visual-
ization. Additional libraries are used to increase the maintainability of the codebase, and to
create a build setup to bundle and distribute the code for each platform.

This chapter introduces various libraries and applications that are used throughout the
thesis. The list is not exhaustive but includes all relevant technologies that are used extensively
or fulfill an important role.

2.1 KIELER Lightweight Diagrams

KIELER Lightweight Diagrams (KLighD) is a framework introduced by Schneider et al. [SSH13]
that can be used to create diagram visualizations with automatic graph layout and interactivity.
The framework is independent of any rendering library and thus can be integrated by multiple
applications. KLighD synthesizes a diagram model which describes how the visualization is
supposed to look and is mapped into a final visualization by a rendering library. Furthermore,
the framework uses an input language called KRendering [SSH13]. KLighD allows adding
support for any model by registering a model transformation, which describes how an input
maps to KRendering. A transformation is referred to as a synthesis. The resulting model
contains layout information, which however is not final. Instead, it is further used by KLighD

to calculate the final position for each element in the model.
KLighD supports interactive features for the diagram models, such as semantic zoom-

ing, which includes expanding and collapsing regions in a model to show or hide more
elements [SSH13]. Furthermore, KLighD is able to evaluate options that are provided by the
synthesis and change the resulting diagram model [Ren18]. When a user triggers an interac-
tive feature or changes an option, the framework has to rerun the layout or even re-execute
the synthesis.

KIELER uses KLighD as its main framework for automatic diagram views, which has been
added to KEITH as well [Ren18]. In KEITH, the diagram generation is separated between a
client and server, with the model synthesis being implemented on the server. This thesis
reuses the existing server and integrates the web-based rendering on the client into the new
target platforms.

5

2. Used Technologies

2.2 Node.js, npm and yarn

Traditionally, JavaScript has been developed for usage in a browser. It was intended to be a
scripting language to add interactivity to otherwise static web pages. Today, JavaScript is one
of the most used and demanded languages with one of the largest developer ecosystems,
partly due to a project by Ryan Dahl.

In 2009, Ryan Dahl released the JavaScript runtime Node.js1, which enables the execution
of JavaScript outside the browser. Node.js is built on the open-source JavaScript engine V8
developed by Google, which is used to compile and execute JavaScript in Google Chrome and
other Chromium-based browsers. The asynchronous event-driven runtime makes Node.js a
good candidate for Input/Output (I/O)-heavy applications, such as web servers [Fou21].

Nowadays, developing software for applications that run in either Node.js or a browser
heavily relies on open-source libraries. Most of the time, the npm2 registry is used to
distribute libraries as so-called packages, and currently hosts more than 1.7 million packages.
To manage dependencies to other packages, Node.js-based software projects use npm’s
provided Command Line Interface (CLI) or the package manager yarn3, which is a popular
alternative that also utilizes the npm registry. The tooling required to build and maintain
web-based software is often developed with JavaScript and distributed with npm, thus using
the same technologies as the rest of the codebase. This eases the development and usage of
new tools for the JavaScript community, because more developers are able to contribute.

Together with Node.js, npm forms the foundation of any modern, web-based software
by providing dependency management, tooling setup, and script execution capabilities. This
is the case for this thesis as well, which uses Node.js and yarn. To bundle the code for
distribution and to ensure compliance with JavaScript coding standards, an extensive tooling
setup has been established that relies on multiple npm packages, such as Webpack, ESLint,
and pkg.

2.3 TypeScript

Over time web-based applications have grown in size and complexity as the web ecosystem
continuous to grow with more capabilities. Developing these big applications often involves
multiple software developers. Even if an application is developed by a single person, it gets
harder over time to remember every part of the codebase. Using JavaScript, a dynamically
typed language, does not help to maintain the codebase either. Common questions arise
during development that are hard to answer without reading the implementation. What was
the shape of the object that the function expects? What was the signature of the required
callback? These questions are hard to answer with a dynamically typed language, which

1https://nodejs.org
2https://npmjs.com
3https://classic.yarnpkg.com

6

https://nodejs.org
https://npmjs.com
https://classic.yarnpkg.com

2.4. Visual Studio Code

often causes runtime errors that could have been fixed during development with a statically
typed language [Mic21e].

To improve development with JavaScript, Microsoft has developed TypeScript4 which is a
superset of JavaScript. This means that any JavaScript code is also valid TypeScript code, but
can be enhanced with type definitions [Mic21e]. The addition of interfaces, generics, and access
modifiers makes TypeScript suitable for object-oriented programming. To be able to properly
type existing and often flexible JavaScript code, TypeScript requires a powerful type system.
TypeScript’s type system is based on structural subtyping, where two types are compatible
if their structure matches. This contrasts with nominal typing used by most object-oriented
languages [Mic21e]. Additionally, TypeScript has features, such as type inference, conditional
types, union types, type narrowing, and discriminated unions. They allow TypeScript to fully
type libraries that have a very flexible API.

This work has used TypeScript extensively. In fact, all code developed for this thesis is
written in TypeScript. All libraries that are used include TypeScript definitions as well, which
makes it easier to work with them. To execute TypeScript code, a build system has been
established to transpile TypeScript back to JavaScript.

2.4 Visual Studio Code

Visual Studio Code (VS Code) is a modern code editor developed by Microsoft that is based on
web technologies. While the product is published for free under the Microsoft product license5,
it is developed together with the community as an open-source editor under the MIT license6.
VS Code is written in TypeScript and is powered by the Monaco editor7, which is developed by
Microsoft as well. The Monaco editor was first developed as part of VS Code to provide the core
of its rich editing experience. Since 2016, Monaco has been extracted to empower anyone to
develop rich code editing experiences for the browser [Mic16a]. Furthermore, VS Code utilizes
the Electron8 framework to distribute the web-based product as a cross-platform desktop
application. The editor provides a powerful, well documented extension API9 to integrate
additional features, theming, and support for many languages and developer tools.

Since its version 1.0 release in April 2016, VS Code has grown a large community of
developers that use the editor daily and actively extend its capabilities with new extensions.
At the time, the editor already achieved over two million installs since the public preview
release a year before [Mic16b]. In the year 2021, the editor has been used by around 71% of
the 82 thousand developers that were asked about their regularly used editors in the yearly
Stack Overflow survey [Ove21]. This makes it one of the most used editors today. Together

4https://www.typescriptlang.org
5https://code.visualstudio.com/License
6https://github.com/Microsoft/vscode
7https://microsoft.github.io/monaco-editor
8https://www.electronjs.org
9https://code.visualstudio.com/api/references/vscode-api

7

https://www.typescriptlang.org
https://code.visualstudio.com/License
https://github.com/Microsoft/vscode
https://microsoft.github.io/monaco-editor
https://www.electronjs.org
https://code.visualstudio.com/api/references/vscode-api

2. Used Technologies

Figure 2.1. Overview of major VS Code UI components, which have been highlighted with red lines.
The components are 1: an activity bar, 2: a sidebar, 3: a main area, 4: a panel, 5: a status bar.

with such popularity, the amount of available extensions has also grown rapidly to support a
wide range of usage, which is why many consider VS Code an IDE.

Compared to other IDEs, such as Eclipse or Jetbrain’s IDEs, VS Code takes a different
approach to its User Interface (UI). Instead of many panels and a toolbar that is cramped with
various buttons and context menus, VS Code has a more minimal UI. Most interactions that
do not involve code editing are defined as commands that can be invoked from a command
palette. Further, commands can also be invoked by buttons that are placed in small groups
throughout the UI. VS Code tries to keep the number of buttons to a minimum, and locates
them near the context they will actually affect [Mic21b]. For example, commands for running
and debugging a program are located in a Run and Debug view.

Figure 2.1 provides an overview of the major components that define the UI of VS Code.
These components form the shell and the different areas of the editor. Other items are placed
inside these components. These items include toolbars and views for different content, such as
a file explorer, an integrated terminal, and an outline for the opened file [Mic21b]. Following
the numeration in Figure 2.1, the container components are:

1. The activity bar which is probably one of the most characteristic features of VS Code. Multiple
views in VS Code are grouped into view containers. Each container is represented by an
icon in the activity bar. For example, the Extensions view container uses four boxes as an

8

2.5. Language Server Protocol

icon in the activity bar and contains views that show the installed, recommended, enabled,
and disabled extensions.

2. The sidebar which is a resizable container that can be collapsed or expanded. It displays
the currently active view container that has been selected in the activity bar.

3. The main area which contains the editor where files are opened in editor tabs. The area
can be split horizontally and vertically, similar to the behavior in many other IDEs. More
advanced content can be opened in a custom editor or a webview, which are displayed in
the editor area as well.

4. The resizable panel which contains the integrated terminal, as well as a debug console,
output, and problems view.

5. The status bar which contains common information about the opened file, such as the cur-
rent line number, indentation scheme, and language. Furthermore, it contains information
about the current git repository if the opened folder is part of a git repository.

2.5 Language Server Protocol

Together with the release of VS Code, Microsoft popularized the Language Server Protocol
(LSP)10. The idea is to separate programming language-specific functionality from IDEs. Instead
of implementing features, such as auto complete, go to definitions, and hover information
for each language, over and over again, an IDE should only have to implement these features
once. With the LSP, any IDE only has to implement support for the protocol and integrate
language servers for the languages it wants to support. The functionality for each language
is implemented by the corresponding language server and communicated between the IDE

and language server with the LSP. Therefore, a language server can be used by many IDEs

and simplifies their support for multiple languages. Especially languages with a smaller
community are able to support multiple IDEs by building one language server and multiple
small plugins for each IDE to integrate their language server.

The communication defined by the LSP uses JSON-RPC11 messages to be independent
of any programming language [Mic21d]. The LSP does not make assumptions about how
the messages are transported. While any transport is possible in theory, often Inter Process
Communication (IPC) between the IDE and language server is used.

To separate the visualization of a diagram between a client and a server, KEITH extends
the LSP to communicate diagram-related messages between the client and server [Ren18]. The
server in KEITH is a language server with support for KIELER model languages, which has been
extended with KLighD synthesis support. Figure 2.2 visualizes the LSP communication that
is required to display a diagram model, which is synthesized with KLighD on the language
server.

10https://microsoft.github.io/language-server-protocol/overviews/lsp/overview
11https://www.jsonrpc.org/specification

9

https://microsoft.github.io/language-server-protocol/overviews/lsp/overview
https://www.jsonrpc.org/specification

2. Used Technologies

Client
Language

Server

Request: initialize; Params: { capabilities, clientInfo }

Response: initialize; Params: { capabilities }

Notification: initialized; Params: null

Notification: textDocument/didOpen; Params: { documentURI, languageID }

Notification: diagram/accept; Action: { kind: "requestModel", options }

Notification: diagram/accept; Action: { kind: "setSyntheses", syntheses[] }

Notification: diagram/accept; Action: { kind: "requestTextBounds", textDiagram }

Notification: diagram/accept; Action: { kind: "computedTextBounds", bounds }

Notification: diagram/accept; Action: { kind: "updateOptions", options[] }

Notification: diagram/accept; Action: { kind: "setModel", newRoot }

Figure 2.2. LSP communication sequence required to display a diagram.

Before a diagram model can be requested, the connection between the client and server has
to be initialized, and the server has to be notified about the document that will be visualized.
During the initialization, the client and server exchange their capabilities, which describe the
features they are able to support [Mic21d]. Afterwards, the client informs the server about
an opened document by sending a textDocument/didOpen notification with the document’s
Unique Resource Identifier (URI) as a parameter. The server is able to access the content of the
document through the URI. Alternatively, the content can be sent as a parameter as well.

After this standard LSP communication, the customized diagram communication is able
to start. Each message is send as a diagram/accept notification with a diagram action as a
parameter. Every action has a unique kind and potentially more data. The client starts the
message exchange with a requestModel action to request a diagram model for a previously
opened document. The server responds with a list of KLighD syntheses that are available for
the requested model, and requests a text bound calculation from the client [Ren18]. After the
client has responded with calculated text bounds, the server sends the synthesized diagram
model to the client, as well as a list of available synthesis and layout options that can be
changed by a user.

The software developed for this thesis uses the same message sequence between the
client and language server for the new platforms. The standalone diagram view also has

10

2.6. Theia

to implement the whole initialize and open document communication, which in contrast is
already implemented in VS Code by the platform.

2.6 Theia

Theia12 is an open-source IDE developed by TypeFox. The UI of Theia is very similar to VS Code.
In fact, Theia makes use of the Monaco editor as well [Eff17].

Just as VS Code, Theia can be used as a desktop application that is powered by Electron
as well. What makes Theia unique to VS Code is the fact that it can also be used in a browser.
In this scenario, the IDE is separated between a client and a server, which does not have
to be executed on the same computer as the browser that runs the client. Therefore, it is
possible to run the IDE in a cloud application scenario [Eff17], which has already been done by
TypeFox with Gitpod13. Gitpod is an IDE as a service that can be used to access a development
environment from anywhere with any device as long, as it is able to run a browser. Theia has
been used as the underlying IDE in Gitpod, but they recently added support for VS Code as
well [Eff20a].

Generally, this trend towards VS Code can be observed in Theia as well. Not only does
Theia look very similar, but it also supports the usage of VS Code extensions [Eff20b]. This
integration has matured enough, so Theia deprecated support for features, such as the LSP, in
their own extension API to reduce maintenance cost [Köh20].

Theia has been used as the IDE for KEITH. However, with the deprecation of features that
are relevant for KEITH, Theia can no longer be updated to the latest version. Therefore, KEITH

is stuck with an older version until all features are moved to a VS Code extension, which in
return can be used with newer versions of Theia. This thesis has started the transition to a
VS Code extension by porting the diagram support that has been previously implemented for
Theia.

2.7 Sprotty

Sprotty is a web-based framework for rendering interactive diagrams that is developed by
TypeFox [Köh17]. The goal of the framework is to be highly customizable and extensible. To
achieve this goal, Sprotty centers its design around the Inversion of Control (IoC) container
library InversifyJS14. Every part of the framework can be customized and configured by
registering custom implementations in the IoC container or by using the provided default
implementations.

This approach allows Sprotty to be extensible for different usage scenarios and en-
vironments. Sprotty provides integrations for VS Code extensions15, Theia extensions, and

12https://theia-ide.org
13https://gitpod.io
14https://inversify.io
15https://github.com/eclipse/sprotty-vscode

11

https://theia-ide.org
https://gitpod.io
https://inversify.io
https://github.com/eclipse/sprotty-vscode

2. Used Technologies

ActionHandler

Viewer

CommandStack

ActionDispatcher

ModelSource

View

DOMDiagramServer

Action

Command Model

VDOM

ModelElement

VDOM

Action
Command,
Action
or nothing

Action
Command,
Action
or nothing

Color Legend:
Flux-like event/data flow

Figure 2.3. Overview of Sprotty’s Flux-like architecture inspired by its documentation [Spö19].

standalone views in a browser. Furthermore, the framework can also be separated between
a client and a server. In this setup, the client only stores the current diagram model. The
server is responsible for generating and changing the model for the client. Model changes and
other interactions with the diagram visualization are represented as action objects, which are
communicated as JavaScript Object Notation (JSON) between the client and server [Köh17].

The architecture of Sprotty is inspired by Flux and follows a unidirectional event and data
flow [Spö19]. The unidirectional flow of a Flux architecture can be summarized in three steps.
The view dispatches actions which describe an intent. Actions are handled by a data store
that updates the stored state corresponding to the given action. The view is notified about the
update and re-renders based on the new state. The implementation of this idea in Sprotty is
visualized in Figure 2.3. The unidirectional Flux-like flow is highlighted in orange.

A diagram visualization in Sprotty is started with a model request action. The action is
handled by a ModelSource. The ModelSource returns an action that contains the diagram model
and is required in every Sprotty IoC container. As explained above, the ModelSource can either
be implemented locally or as a DiagramServer that synchronizes its handled actions with a
server. Actions in Sprotty are always dispatched through the ActionDispatcher, which forwards
actions to registered ActionHandlers. They convert an action into a command, further actions,
or handle them without returning anything.

Commands describe how the locally stored diagram model should be modified, and
describe how the modification can be undone and redone. The local diagram model is
stored and managed by the CommandStack, which executes and potentially buffers incoming
commands.

The diagram model is provided to the Viewer, which uses registered Views to map the

12

2.8. Snabbdom

model to a virtual Document Object Model (DOM) structure, which is described in the next
section. It is used to patch the actual DOM with the SVG representation of the model, so the
diagram is displayed to a user. When a user interacts with the visualization, new actions are
dispatched and the Flux-like cycle is executed again.

Sprotty is used in KEITH to render diagram models that are received from the language
server [Ren18]. The implementation for this thesis continues to use Sprotty in the same way as
KEITH, and extends the idea of a unidirectional, action-based flow with support for additional
application data and views that are not concerned with the diagram model. The extension is
part of the Sprotty IoC container and reuses the ActionDispatcher system.

2.8 Snabbdom

Sprotty uses Snabbdom to define its diagram model views declaratively. Snabbdom16 is a
virtual DOM library that focuses on simplicity and performance. In a web page, the DOM

represents the structure of the page so that JavaScript is able to interact with it and change
the structure, style, and content. A virtual DOM is a data structure used by many UI libraries,
such as React and Vue.js, that describes how the actual DOM should look like. Based on the
virtual DOM, libraries are able to identify changed nodes during a render update and apply
granular changes to the DOM, instead of replacing the whole structure [Rea19].

In Snabbdom the application UI is expressed as a function of its state. The function
receives arbitrary data, referred to as props, and returns a virtual node. Multiple functions
are composed together to create the virtual DOM for the entire application. Functions that are
composed to a virtual DOM structure are commonly referred to as components.

JSX17 is an approach to compose UI components in JavaScript with a familiar syntax. It
reads similar to HTML but can be written in JavaScript files. Since JSX is just JavaScript at
runtime, it requires a build step that transpiles JSX expressions to pure JavaScript functions,
which can be called by a UI library [Rea20]. Snabbdom provides an additional library18 to use
their function, used to describe virtual nodes, as a JSX compilation target.

Listing 2.1 highlights the usage of JSX and Snabbdom in the implementation for this thesis.
The SynthesisPicker component describes a select UI that a user can interact with to change
the synthesis for the visualized diagram model. The available options and currently selected
option change based on the given props. Curly braces can be used to embed JavaScript
expressions inside JSX. For example, inside Listing 2.1 a JavaScript expression maps an array
of syntheses information to option nodes. Another assigns the synthesis identifier as a value
attribute to each option node.

16https://www.npmjs.com/package/snabbdom
17https://facebook.github.io/jsx
18https://www.npmjs.com/package/snabbdom-jsx

13

https://www.npmjs.com/package/snabbdom
https://facebook.github.io/jsx
https://www.npmjs.com/package/snabbdom-jsx

2. Used Technologies

1 interface SynthesisPickerProps {

2 currentId: string;

3 syntheses: { displayName: string; id: string }[];

4 onChange: (newValue: string) => void;

5 }

6

7 function SynthesisPicker(props: SynthesisPickerProps): VNode {

8 return (

9 <div classNames="options__column">

10 <label htmlFor="synthesisSelect">Current synthesis:</label>

11 <select

12 id="synthesisSelect"

13 classNames="options__selection"

14 on-change={(e: any) => props.onChange(e.target.value)}

15 >

16 {props.syntheses.map((synthesis) => (

17 <option value={synthesis.id} selected={synthesis.id === props.currentId}>

18 {synthesis.displayName}

19 </option>

20))}

21 </select>

22 </div>

23);

24 }

Listing 2.1. SynthesisPicker expressed as a UI component using Snabbdom flavored JSX.

2.9 Fastify

Since Node.js is an asynchronous event-driven runtime, it is a good candidate for web-
server applications. Due to the event loop, Node.js is able to handle multiple connections
concurrently [Fou21]. Although Node.js is designed without threads since JavaScript is a
single-threaded language, the built-in cluster module can be used to enable load balancing
between multiple processor cores. While Node.js has built-in support for creating HTTP servers,
multiple libraries have been developed to simplify the implementation of a Node.js based
web server.

One of the most popular Node.js libraries for creating a web server is Express19. Although
the library currently has 16 million weekly downloads, it has not received many updates in
recent years. At the time of writing, the latest stable version has been released two years ago
and the latest alpha version over a year ago. This causes the library to lack support for newer
JavaScript features, such as Promises20, which are a data structure that represents the eventual
completion of asynchronous operations.

19https://expressjs.com
20https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

14

https://expressjs.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

2.10. Commander

A newer alternative for a web-server library is Fastify21. The library is actively maintained
and receives regular updates. Furthermore, in synthetic benchmarks conducted by Fastify to
evaluate the overhead of a library, Fastify is able to handle significantly more requests per
second than Express22.

Fastify has been built to be extremely modular [Fas21]. Everything is a plugin, which
adds encapsulation and modularity to the library. A plugin can contain anything and might
include route handlers, middleware, and request hooks. Furthermore, Fastify provides an
official plugin to handle WebSocket connections.

The official support for WebSocket connections is important for this thesis and the main
reason for using Fastify instead of Express. The modular approach further increases the
reusability of the Fastify server developed for this thesis. A Fastify server has been configured
that can serve standalone diagram views. Other projects or future work are able to reuse the
server and extend its functionality by registering custom plugins.

2.10 Commander

Commander23 is an npm package that is used to develop CLI applications. It is one of the most
downloaded packages with 67 million weekly downloads. Commander takes a declarative
approach to writing a Node.js CLI. The CLI script is able to focus on the actual logic and does
not have to handle parsing and validation of options and arguments. Instead, a script declares
available commands and specifies their expected options and arguments, as well as a callback
function that will be called with the parsed arguments and options when a user executes
its command. Furthermore, Commander provides helpful information to the user with an
auto-generated help text. A script is able to modify and change parts of the text if required.

The software developed for this thesis uses Commander to implement a CLI for the
standalone view that is easy to maintain. The help text provided to the user also serves as the
user documentation.

21https://fastify.io
22https://www.fastify.io/benchmarks
23https://www.npmjs.com/package/commander

15

https://fastify.io
https://www.fastify.io/benchmarks
https://www.npmjs.com/package/commander

Chapter 3

Related Work

Using web technologies to visualize diagrams is not a new concept. Many frameworks and
libraries exist to ease the implementation of diagram visualizations with web technologies.
An overview of different, web-based diagram libraries has been created by Eugene [Eug20].
However, while many applications are able to display diagrams in a browser, only a few can
also be used in VS Code, with support often added by third-party developers. The next section
introduces a project that uses web technologies for diagram visualizations. It is followed by
Sprotty examples that provide inspiration for a possible solution and the KEITH project, which
serves as the foundation for this thesis. The last section introduces an architecture pattern
that inspires the overall architecture for this thesis.

3.1 Mermaid

Mermaid1 is a project that aims to help documentation catch up with development by
providing easy-to-edit diagram visualizations for documentation. It specifies a Markdown-
inspired syntax to define diagrams as text, so it integrates into Markdown more fluently,
which is often used as a markup language in documentation tools. Mermaid has support
for different diagram types, such as flowcharts, sequence diagrams, and class diagrams. The
Mermaid documentation provides an overview about all supported diagram types and their
syntax.

Next to integrations for various documentation platforms and generation tools, Mermaid
provides a standalone live editor as well that can be easily accessed in a browser2. Figure 3.1
shows the editor visualizing a sequence diagram. The left side provides a basic text editor to
edit the diagram definition, which also provides an idea about the syntax used by Mermaid for
sequence diagrams. The live editor includes a synchronized preview of the editable diagram
definition, which can be exported as an image or SVG. Furthermore, Matt Bierner developed
a VS Code extension3 that adds Mermaid support to the Markdown preview integrated in
VS Code.

While Mermaid provides tools for platforms that are also focused on by this thesis, the
diagram visualization and generation are part of the client. In contrast, this thesis continuous
to separate the diagram visualization and generation between a client and a language server.

1https://mermaid-js.github.io
2https://mermaid-js.github.io/mermaid-live-editor
3https://marketplace.visualstudio.com/items?itemName=bierner.markdown-mermaid

17

https://mermaid-js.github.io
https://mermaid-js.github.io/mermaid-live-editor
https://marketplace.visualstudio.com/items?itemName=bierner.markdown-mermaid

3. Related Work

Figure 3.1. Mermaid live editor that runs in a browser.

Furthermore, Mermaid’s live editor combines a simple text editor and diagram view, whereas
this thesis focuses on the diagram view without the ability to edit the source.

3.2 Sprotty Examples

TypeFox has developed numerous examples and smaller projects that highlight different
use cases of Sprotty. Generally, these examples serve as inspiration for this thesis and
highlight different aspects that must be taken into consideration. Such aspects include the
communication between a client and server for the different platforms and more broadly the
integration of Sprotty into these platforms.

The sprotty-server repository4 contains an example that uses Sprotty in a standalone
website. The example synthesizes the diagram model on a server, which is communicated
to the website through a WebSocket connection. This highlights the use of Sprotty in a
standalone view with a client-server separation. However, the communication does not use
the LSP, which is a requirement for this thesis since the diagram synthesis with KLighD is
part of a language server. The communication between a website and a language server is
implemented by a CodeMirror LSP adapter project5, which inspires the implementation for
the standalone view in this thesis.

Another inspiring example is an npm package dependency inspector created by Type-

4https://github.com/eclipse/sprotty-server
5https://codemirror-lsp.wylie.su

18

https://github.com/eclipse/sprotty-server
https://codemirror-lsp.wylie.su

3.3. Kiel Environment Integrated in Theia

Fox [Spö18]. The website of the inspector6 mainly consists of a dependency graph visualized
with Sprotty. However, it also contains an additional UI next to the diagram to search and
select packages for which dependencies should be visualized. The implementation of the UI is
independent of the Sprotty diagram and is added as an additional feature to the website. The
standalone view for this thesis also requires additional UI on top of the diagram to display
diagram options that allow a user to change aspects of the diagram synthesis. Therefore, the
package dependency inspector showcases a possible implementation of additional UI in a
standalone view.

Lastly, TypeFox also provides an example of a Sprotty VS Code integration [Köh19]. The
example contains a language server for a simple state machine language. Further, the example
contains a language extension that integrates the language server in VS Code. Sprotty is used
to visualize a state machine model in a VS Code webview. To integrate Sprotty with VS Code,
the sprotty-vscode glue code is used. This integration example inspires a possible VS Code

integration of KLighD diagrams for this thesis. It fulfills many requirements that have to be met
by a solution and is used as an integration guide for sprotty-vscode, since the documentation
around the glue code is sparse.

3.3 Kiel Environment Integrated in Theia

This thesis is of course closely related to the master’s theses of Rentz [Ren18] and Dom-
rös [Dom18], who created the initial implementation of the KEITH project. The KEITH project
has implemented a language server for model languages supported in KIELER. The language
server has been integrated into the web-based Theia IDE. Furthermore, the language server
is used to synthesize diagram models with KLighD. Since Sprotty has the ability to separate
diagram generation and visualization between a client and a server, it is used to visualize
the synthesized diagram models in the Theia client. Their theses have focused on Theia as a
target platform for their implementation. In contrast, this work has developed a solution for
multiple target platforms. The solution is based on their implementation in KEITH and reuses
as many parts as possible. The language server can be completely reused without changes.
The existing Sprotty code on the client is reused with small modifications. Additional features
related to the diagram visualization were implemented with Theia dependent code, which
have to be rebuilt to be useable in multiple target platforms.

3.4 Software Architecture

While the examples developed by TypeFox inspire implementations for the new target
platforms, they only focus on one platform at a time. To achieve the goal of a high reusability
and easy adoption by other projects, an architecture has to be found that contains as much
logic as possible in a central core package to reuse the logic.

6http://npm-dependencies.com

19

http://npm-dependencies.com

3. Related Work

Core Layer 1 Layer 2
implements implements

Figure 3.2. Concept behind a layered architecture similar to the clean architecture.

In software development, every project is concerned with reusable code and abstractions.
Creating a well-structured codebase with clear abstractions and reusable parts is important for
software that should be maintainable and extensible with new features. Over the years many
architecture patterns have been created and generalized, which try to provide a foundation
for a well-structured codebase. Since no codebase is the same and every project has different
prerequisites and requirements, no architecture pattern exists that fits them all. Instead,
understanding the idea behind each pattern can help to find an architecture that best fits the
own project. The solution might even be a combination of two or more patterns, which only
contains parts of each pattern and applies them to different areas of the codebase.

One architecture pattern that inspired the overall architecture of the implementation for
this thesis is the clean architecture introduced by Martin [Mar12]. While the exact definition
of the clean architecture does not fit well with the prerequisites for this thesis, which is the
existing code in KEITH, the general idea of the architecture can be applied to achieve greater
code reusability.

It divides the software into layers that form around a software core. Code towards the
core contains policies and business logic and is rather abstract from any concrete implemen-
tation [Mar12]. This changes with each layer built on top of the core. Contracts for features,
such as data persistence and transports, are replaced with actual implementations. The idea
is roughly visualized in Figure 3.2. The key point and main inspiration for this thesis is the
flow of source code dependencies. Dependencies in the clean architecture are only allowed to
point inwards [Mar12]. This can be achieved with the dependency inversion principle. If the
core logic requires access to a database, it should define an interface for the required data
persistence functionality and only rely on the interface. The interface is implemented in an
outer layer that has access to a database and the implementation is provided to the core by
that layer. This avoids dependencies that point outwards, since the inner layer only relies on
its defined interfaces.

This idea has influenced the software developed for this thesis, which implements an
architecture that consists of many reusable parts and can be easily adopted by other projects.
The existing diagram rendering core in KEITH is reused and extended with most features that
are related to diagram visualizations, and has no implemented dependencies to platform-
specific functionality.

20

Chapter 4

Concepts

This chapter gradually introduces and outlines the new architecture proposed for this work.
The current implementation in KEITH serves as a foundation for the new architecture, which
reuses as much code as possible. Therefore, the structure of KEITH and existing diagram-
related features are introduced first to understand what can be reused.

Often, multiple approaches exist to support a target platform. The following sections
introduce the approach taken for each target platform and discuss possible alternatives.
Afterwards, the approaches are combined into the new overall architecture that has been im-
plemented for this thesis. As part of the new architecture, decisions about the implementation
of previously existing features and their location in the new architecture are outlined. This
work has put a focus on a coherent UI for additional diagram features, which is discussed in
the last section.

4.1 Understanding the Foundation—KEITH

KEITH is using Theia as its IDE platform, which enables it to run in a browser and as a desktop
application. Since it behaves the same as any text editor, the user is able to open and edit files
along other common IDE features. This work will focus on the diagram-related features that
are special for KEITH and are available for languages supported by the KIELER project. More
information about KEITH can be found in its documentation1.

A user is able to visualize the model in a supported file by opening the context menu and
selecting Open in Diagram. This opens a new editor tab that shows the diagram visualization.

4.1.1 Available Diagram Features

Based on the screenshot of the KEITH editor in Figure 4.1 and actual usage, the following
features can be identified that are related to the diagram visualization. These features where
first implemented and are further described by Rentz [Ren18]. They should be present in the
new platforms as well. Therefore, it is important to not only identify the features but also
determine how they are implemented in KEITH to identify parts that can be reused in the new
architecture. The following features are also marked in Figure 4.1 for better clarity.

1https://rtsys.informatik.uni-kiel.de/confluence/x/TYAkAw

21

https://rtsys.informatik.uni-kiel.de/confluence/x/TYAkAw

4. Concepts

Figure 4.1. Screenshot of the KEITH editor with the current model visualized as a diagram. Features
are 1: a diagram view, 2: an options view, 3: a synthesis picker, 4: actions, 5: selection synchronization.

1. A diagram view uses a Sprotty IoC container to visualize the opened model and provides a
user the ability to interact with the diagram. The interactions include zooming, panning,
selecting elements, and showing hover information.

2. Next to the diagram view, an options view is located, which is implemented as a Theia
widget. The options view contains synthesis and layout options, which affect how the
diagram model is synthesized by KLighD. Changes to the options are persisted and are
used to initialize the options in a future session.

3. A status bar contains information about the current synthesis that has been used by KLighD.
In Figure 4.1, the synthesis has been set to the SCChartsSynthesis. Clicking the label reveals
a dropdown selection in Theia where the user is able to select another synthesis from a list
of available syntheses provided by KLighD.

4. A toolbar on top of the diagram view contains actions that affect the current visualization.
For this thesis, the center, fit, and refresh actions are relevant. Center resets the zoom of
the diagram view and centers the diagram. Fit zooms the diagram view and centers the

22

4.1. Understanding the Foundation—KEITH

diagram to fit into the diagram view while consuming all available space. Refresh requests
a refresh of the diagram model from KLighD.

5. The user is able to synchronize the text selection in the editor with the element selection in the
diagram view. For example, selecting handleB in the text editor selects the corresponding
region in the diagram view, which is indicated by a light blue border around the region.
This feature can be enabled for both directions or a single direction, e.g. only selections in
the diagram view highlight the corresponding text, or turned off completely in Theia’s
editor settings.

To support all of these features in the new target platforms, many have to be completely
re-implemented in the client to make them usable in the new target platforms. As indicated
in Section 3.3, the original implementation of these features is used as a reference for the new
implementation.

4.1.2 Project Structure

The KIELER language server in KEITH runs on the Java virtual machine and is not part of the
web-focused KEITH repository. Since the LSP is developed to support multiple platforms with
one language server by relying on a platform-independent protocol [Mic21d], each new target
platform can reuse the language server as long as it is able to communicate with the server.
VS Code, being the first IDE that supported the LSP, is able to reuse the language server. With
some considerations about the connection, a browser is also able to communicate with the
language server. Therefore, the language server implementation can be reused and does not
require changes as long as the exchanged messages presented in Section 2.5 remain the same.
It does not prevent the implementation of previous features for each target platforms.

The main reason for a required re-implementation is a dependency to Theia that exists
for most features on the client. Obviously, the Theia API is not available in VS Code and a
standalone browser view. Therefore, they have to be implemented without a dependency
to Theia. Currently, KEITH consists of multiple Theia extensions. All extensions are Node.js
packages, which are managed together in a repository. Figure 4.2 visualizes the relation
between KEITH’s packages that implement diagram-related features.

The keith-sprotty package contains a Sprotty IoC container that is able to render models
that are synthesized by KLighD. The container registers Sprotty views that describe how the
diagram model is translated to SVG, so it can be displayed by the diagram view [Ren18].
Keith-sprotty imports and registers an IoC container module that is provided by keith-interactive.
The module adds interactive layout capabilities to the Sprotty IoC container, which were
introduced by Petzold [Pet19] and Schönberner [Sch19]. Both packages do not rely on Theia
and can be considered the core of the diagram visualization in KEITH.

The container is integrated into Theia by the keith-diagram package, which uses the glue
code provided by the sprotty-theia library. A ModelSource, which is required by a Sprotty
container, is not implemented in keith-sprotty. Since the model is provided by the language
server, a DiagramServer that functions as a ModelSource is implemented in keith-diagram and

23

4. Concepts

keith-language

keith-interactive

keith-diagram

keith-sprotty

keith-diagram-options

Figure 4.2. Dependencies between KEITH’s packages that implement diagram related features.

registered in keith-sprotty’s IoC container. The DiagramServer uses a language client provided
by the keith-language package to communicate with the KIELER language server.

Most of the available features listed above are implemented in the keith-diagram package.
An exception is the diagram options view, which is implemented in the keith-diagram-options
package. The view is based on a Theia Widget to integrate it into Theia’s UI. Changes to
the options are communicated to the language server with the language client provided by
keith-language. Further, the package depends on keith-sprotty to import TypeScript interfaces
for the different options. Information about the current diagram is provided to the options
view by keith-diagram.

The new solution is only able to reuse the keith-sprotty and keith-interactive packages,
because they are the only packages that do not depend on Theia. Therefore, the Sprotty IoC

container that has been created in KEITH can be reused.
In a diagram visualization that is based on the Sprotty framework, the Sprotty IoC container

forms the core of the visualization. Therefore, the remainder of this thesis will refer to the keith-
sprotty and keith-interactive packages as the core or diagram core. The Sprotty IoC container in
these packages will form the core of the new architecture.

4.2 Visual Studio Code Support

VS Code extensions are plugins that extend VS Code with new capabilities, such as support for
new languages, color themes, new views, and more. Support for new languages is usually
achieved with a language server that adheres to the LSP and is integrated into VS Code by an
extension.

VS Code provides an npm package called vscode-languageclient2 that should be used to start

2https://www.npmjs.com/package/vscode-languageclient

24

https://www.npmjs.com/package/vscode-languageclient

4.2. Visual Studio Code Support

VS Code Extension

Webview
Extension

with
Language Client

Message APILanguage
Server

IPC

Figure 4.3. Communication flow in a VS Code extension that uses a language server and webview.

a language server in a VS Code extension [Mic21c]. This npm package creates and configures
a language client, which is used to manage and to connect to a language server. During
runtime, an instance object of such a language client can be used to communicate with the
language server that is started and managed by the instance. The communication can use
different transports, such as sockets and IPC.

To continue to start quickly with many extensions installed, VS Code activates extensions
only when they are required. All extensions define activation events, which allows VS Code to
call their activation function when a defined event occurs. Such events may include opening a
file for a language that is supported by the extension, or executing a command that should be
handled by the extension.

This work has implemented and published a VS Code extension to support VS Code as a
new target platform. The remainder of this section introduces two VS Code extension concepts
that are important for the implementation for this thesis. Refer back to Section 2.4 for general
information about VS Code and the general structure of VS Code.

4.2.1 Webviews

Webviews are special views in VS Code that are able to display fully customizable content. A
webview in VS Code works similar to an Inline Frame (iframe) element in a website [Mic21f].
VS Code displays a webview as a distinct editor in the editor area, where it can be used in split
view together with other open editors. Since webviews are able to run arbitrary code, they
are isolated from the rest of the extension. Similar to an iframe, the content of a webview is
defined by a custom HTML structure, which is able to load custom JavaScript and CSS styles.

Due to the isolation of webviews, a webview is not able to call code from its extension
directly. Instead, a message API has to be used to send data as messages to and from the
webview [Mic21f]. The communication between a webview and its extension is visualized in
Figure 4.3. If a webview wants to send a notification to a language server, it has to send the
notification as a message to the extension. The extension has to handle the received message
event and has to proxy the included notification to the language server through a language
client instance.

If a diagram that is rendered with Sprotty should be displayed in VS Code, a webview

25

4. Concepts

has to be used to display the custom content [Köh19]. The webview contains the Sprotty IoC

container and has to be managed by the extension. Managing a webview includes creating the
webview if a visualization is requested for a file. Further, the file URI has to be communicated
to the webiew, otherwise Sprotty cannot start to request a diagram model from a language
server. The actions that are communicated between Sprotty and a language server have to be
proxied by the extension as shown in Figure 4.3. When a user switches to a different file that
is supported as well, the existing webview should be notified to start updating the visualized
diagram for the new file. In case the webview is closed by the user, existing references and
resources have to be cleaned up.

All this boilerplate to wire-up and manage a webview is almost the same for every
diagram visualization in VS Code that uses Sprotty. Therefore, Sprotty created a glue code
library, called sprotty-vscode, that hides this boilerplate [Köh19]. Instead of implementing its
own glue code, the implementation for this thesis uses sprotty-vscode to rely on an existing
boilerplate, so it does not create a potentially worse copy that increases maintenance cost for
future maintainers of the project. If possible, required changes should be contributed back to
the community and not to its own copy.

4.2.2 Inter-extension Communication

Custom commands can be defined by an extension to create interactions for the user [Mic21a].
These commands are defined in an extension configuration file. The implementation of com-
mands is later registered when the extension is activated by VS Code. Inside the configuration,
contribution points can be defined as well to place toolbar buttons or context-menu items in
the UI, which trigger their corresponding commands.

However, commands are not only useful to create user interactions. They can be executed
by other extensions as well [Mic21a]. This is one of two possibilities to enable inter-extension
communication, which can be useful to provide common functionality to many extensions
through commands in a shared extension that they can depend on.

Listing 4.1 contains a minimal example of a communication between two extensions that
uses command calls. Extension A registers a basic echo command that returns any argument
it receives. Extension B declares Extension A as a dependency in its configuration file to ensure
that Extension A will be installed when Extension B is installed by a user. In the example,
Extension B calls the echo command with an object and stores the result. Comparing the object
with the echoed object by referential equality reveals that they have the same reference. This
shows that objects are passed by reference between commands in VS Code and no copy is
created.

Therefore, a language client instance, which is provided to another extension through
a command call, would be the same instance and would contain a working connection
to the language server that is represented by the client. This pattern can be used in the
implementation for this thesis to further minimize the boilerplate for projects that want to
visualize KLighD-synthesized diagram models in VS Code.

The VS Code extension that is developed for this thesis is therefore split into two extensions.

26

4.3. Theia Support

1 // Extension A

2 vscode.commands.registerCommand("extA.echo", (obj: unknown) => {

3 return obj;

4 });

5

6 // Extension B

7 const obj = { key1: "Hello", key2: "World" };

8 const res = await vscode.commands.executeCommand("extA.echo", obj);

9

10 console.log(obj === res); // => true

Listing 4.1. Example of a command call between two VS Code extensions.

The first extension is a diagram extension that uses sprotty-vscode to visualize Sprotty diagrams.
It uses a language client to communicate to a language server with KLighD synthesis support.
Similar to the dependency inversion principle discussed in Section 3.4, an instance of the
language client is provided by other extensions through a command call. The second extension
integrates the KIELER language server in VS Code and depends on the first extension for
visualization support.

4.3 Theia Support

Section 2.6 already mentioned the future of the LSP support in Theia. Supporting many
programming languages and frameworks is a difficult task for any IDE [Eff20b]. While the
LSP removes most of the work required, a language server still has to be integrated into an
IDE. Further, an IDE has to actively keep up to date with the LSP and implement support
for changes and additions to the protocol. IDEs can solve this either by growing a massive
community of extension developers, which is hard to achieve, or by hiring many developers,
which is very costly [Eff20b]. As Efftinge puts it, Theia solves this problem by leveraging
the largest and most active IDE extension community [Eff20b]. Instead of growing a massive
community themself or hiring dozens of developers, Theia taps into the VS Code community
by supporting the VS Code extension API.

With the support of VS Code extensions, Theia deprecated their own support for the LSP

in version 1.4 [Köh20]. Developers should implement their language extensions as VS Code

extensions and use them in Theia directly.
Therefore, the solution for this thesis will not focus further on the Theia-based IDE

developed in KEITH. Instead, it will ensure that the VS Code extension developed during this
thesis can also be used in Theia and therefore be used by KEITH.

To publish their VS Code extensions, developers rely on the Visual Studio Marketplace3

from Microsoft. VS Code integrates with the marketplace and allows users to download

3https://marketplace.visualstudio.com

27

https://marketplace.visualstudio.com

4. Concepts

extensions from within their IDE. However, the marketplace’s Terms of Use4 prevent non-
Visual Studio products from accessing the marketplace. As an open-source alternative, the
Open VSX registry has been developed to host and download VS Code extensions from a
vendor-neutral marketplace [Eff20b].

Theia uses the Open VSX registry as its default extension registry [Eff20b]. Furthermore,
a custom Theia IDE is able to provide built-in extensions by defining a URL to a VS Code

extension, such as one hosted on the Open VSX registry, in its build configuration [Fug20].
Therefore, Theia powered IDEs, such as Gitpod or KEITH, can either install or pre-bundle
VS Code extensions from the Open VSX registry.

To ensure that the VS Code extensions developed for this thesis are accessible in Theia, the
extensions are not only published to the Visual Studio Marketplace, but also to the Open VSX
registry.

4.4 Standalone Diagram View

A standalone diagram view that is displayed in a browser can be approached from two
general directions. Each has unique advantages and disadvantages, which are discussed in
this section.

In both cases, the diagram view has to establish a full-duplex communication with the
language server, which means that the server has to be able to send messages to the client
and the other way around. To achieve this in a browser, a WebSocket connection has to be
established.

While the KIELER language server supports socket connections for debugging purposes,
it does not support WebSocket connections. Further, a language-server process is supposed
to handle a single connection and the KIELER language server does not accept multiple
concurrent socket connections. If WebSocket support is implemented in the language server
directly, it should be able to handle multiple concurrent connections as well to support use
cases, which are discussed in the next subsection.

A cleaner approach implements a web server as an intermediate proxy layer, which is
required anyway to serve the website. The web server can be extended with WebSocket
support, which is outlined in Figure 4.4. If a client tries to establish a WebSocket connection,
the web server spawns a language server for that client and proxies all messages via IPC. With
this approach, the language server does not have to be modified. Further, it only needs to
handle a single connection, because the web server spawns multiple language servers for
multiple connections.

4.4.1 Hosted Service

The first approach to support a standalone diagram view uses a hosted diagram service. The
service consists of a web server, which serves the user interface and creates a language-server

4https://aka.ms/vsmarketplace-ToU

28

https://aka.ms/vsmarketplace-ToU

4.4. Standalone Diagram View

Web Client

Web Server /
Message Proxy

Language Server
IPCWebSocket

Web Client
WebSocket

Language Server
IPC

Figure 4.4. Web server that proxies multiple WebSocket connections to language server processes.

process for incoming connections, as discussed above. A user navigates with a browser to a
registered domain to use the service. To view a diagram visualization, the user has to select
a file that contains a supported model from his/her computer. The diagram service does
not necessarily require the user to upload a file to make it accessible for the language server,
because the content of a file can also be transmitted during the LSP textDocument/didOpen
notification sent by the client [Mic21d]. However, to enable more advanced use cases other
than viewing a diagram visualization, the service would have to upload and store the selected
file.

This approach enables embeddable diagram views and shareable links for interactive
diagram visualizations that were motivated in Chapter 1. If a file is uploaded to the server, it
is possible to generate a URL for the contained model, which makes the model accessible to
other users when the URL is shared. A similar URL can be used to link to a minimal interactive
view of a diagram that can be embedded into other websites with an iframe element.

However, some concerns arise when a file is stored on the server. Policies in organizations
often prevent sharing of closed source code. This might include uploading a model file to
such service as well. To work around this, organizations would have to host the diagram
service themself. Furthermore, the Real-Time and Embedded Systems Group noted that they
are currently not planning to host a diagram service, since storing the files securely requires
additional care.

In conclusion, this approach enables advanced use cases that are only possible with a
hosted diagram service, but is currently not feasible due to concerns about hosting such
service.

4.4.2 Locally Running Service

The second approach to support a standalone diagram view uses a locally running diagram
service. The web server together with the language server runs locally on the user’s computer.
To access the diagram view, a user has to start the web server and navigate with a browser
to the opened port on the special localhost URL. Since the language server runs on the local
computer, it has access to the user’s file system and is therefore able to access the content of a
local file URI that is provided with the LSP textDocument/didOpen notification.

29

4. Concepts

However, how does the diagram service know which file should be visualized? If a user
selects a file on the website similar to the hosted approach, the website would not have access
to the actual file path on the local computer. Browsers are sandboxes and prevent a website
from reading the local file path. Therefore, the language server would not receive a URI it can
access. To solve this problem, a user could specify a file URI within the website’s URL when
the diagram view is opened. This skips the whole file selection process on the website since
the URI of the file that should be visualized is already known and can be made accessible to
the language server. The following template shows a URL that follows this approach:

http://localhost:8000?source=file:///<path-to-diagram-file>

The URL search parameter source contains the file URI that will be provided to the language
server. The placeholder <path-to-diagram-file> refers to an absolute path in the user’s file
system.

The process that is currently proposed for visualizing a model with this approach is rather
tedious. A user has to manually start the web server, identify the absolute path of the file
that contains the model, and manually construct and navigate to the website URL to open
the diagram view. These steps can be automated and hidden with a small CLI application.
The user provides a file path to the application, which starts the web server and opens the
diagram view with the constructed URL in a browser. The file path provided by the user does
not need to be absolute and can be converted to an absolute path, further simplifying the
process for the user.

A locally running web server that is started by a CLI application does not support the
more advanced use cases, which could be supported by the previous approach. Since the URL

of the diagram view is only accessible on the local computer, it cannot be shared within an
organization or embedded into online documentation websites. However, it does not require
a hosted service and is therefore feasible for the Real-Time and Embedded Systems Group.
Furthermore, if the documentation is also hosted locally with the diagram source files, the
CLI can be used to start the web server to view embedded diagram visualizations in the local
documentation website.

Going forward, the CLI application approach is implemented for this thesis. All features
of the web server for this approach are also required for a hosted service approach. In case
the latter should be implemented in the future, the existing web server can be extended to
support file uploads.

4.5 New Architecture

Now that the different approaches for each target platform are outlined, they can be combined
into an architecture for the solution implemented for this thesis. The architecture focuses on
reusability and extensibility. This is achieved by sharing as much code between each platform
as possible, and by providing multiple possibilities for future work to extend this solution.

Figure 4.5 visualizes the new architecture at an abstract level. In the diagram, components

30

4.5. New Architecture

Diagram Core
(IoC Container)

Web Server
(Proxy)

Diagram
Web Page

CLI

VS Code
Diagram

Extension

VS Code
Language
Extension

Language
Server

(with KLighD)

starts

serves

uses uses

depends on
&

provides
LS client

integratesprovides

WebSocket

IPC

IPC

Color Legend:
Newly Developed
Core Component
Intermediate Component
End User Component

keith-sprotty
&

keith-interactive

based on

Figure 4.5. Connection and communication between the different components in the new architecture.

that are newly developed for this thesis are outlined in red. Furthermore, each component
is color-coded by the role it fulfills. Core components are colored blue indicating that they
contain core logic and are platform-independent. They are used by intermediate applications,
which are colored orange and provide support for different platforms but are not supposed
to be used directly by end users. Instead, end users have control over the green colored
components, which are end user applications. A special case is the Language Server component.
While it is not directly an application the end user interacts with, it can be replaced by the
user, and a different Language Sever can be used to visualize a model for a different model
language.

The architecture is built around the Diagram Core. It is based on the Sprotty IoC container
that had already been created for KEITH by Rentz [Ren18] and is extracted from keith-sprotty
and keith-interactive, as it is explained in Section 4.1.2.

Following the architecture for the standalone diagram view on the left, the Diagram Core
is integrated into the Diagram Web Page to create a functional web page that displays a
diagram visualization. The implementation follows the approach discussed in Section 4.4.2.
The Diagram Web Page is built into static assets that consist of HTML, JavaScript, and CSS

files, which are served by the Web Server. When the Diagram Web Page is opened, it creates
a WebSocket connection to the Web Server, which spawns a Language Server process and
forwards incoming messages to and from the Language Server via IPC. However, the Web Server
does not have a hard dependency to the Language Server. Instead, the user provides a path to

31

4. Concepts

a Language Server through the CLI. The CLI is the user-facing application that starts the Web
Server and provides the given path to a Language Server. Further, the CLI opens the Diagram
Web Page in the browser that is set as the system’s default browser by the user. Therefore, the
standalone diagram view can be used via the CLI with any Language Server, as long as the
Language Server supports the extended LSP defined by Rentz [Ren18].

The support for VS Code and consecutively Theia is visualized on the right side of the
architecture overview. It uses the approach outlined in Section 4.2 and Section 4.3. The Diagram
Core is integrated into a webview by the VS Code Diagram Extension, which is able to display
Sprotty diagrams in VS Code. The integration uses the sprotty-vscode glue code created by
TypeFox to manage the webview and to route Sprotty actions as messages from the webview
to the language client [Köh19]. In VS Code, a language client provides a configured connection
to a Language Server. The language client is not part of the VS Code Diagram Extension in the new
architecture. Instead, it is provided to the extension by an additional VS Code Language Extension
through a command execution, which also activates the VS Code Diagram Extension. The VS Code

Language Extension is the actual extension that integrates and bundles a Language Server. It
depends on the VS Code Diagram Extension to provide diagram visualizations for the languages
supported by its Language Server. Since the VS Code Diagram Extension does not contain a
language client, it is not ready-to-use and should not be installed by end users directly.
Instead, it enables other projects to add diagram visualizations to their VS Code extension with
minimal effort. As part of this work a VS Code Language Extension is created to integrate the
KIELER language server, which had already been created for KEITH by Domrös [Dom18] and
Rentz [Ren18].

In conclusion, if other projects have a Language Server with KLighD synthesis support, they
have three options to extend and use the diagram visualization. Ordered from most to least
complexity, they can integrate the Diagram Core for maximum flexibility as every component
can be replaced in the IoC container, extend the Web Server with additional functionality and
display the Diagram Web Page in an iframe, or create a VS Code Language Extension that depends
on the VS Code Diagram Extension. Alternatively, the CLI can be downloaded5 and used directly
with their Language Server if a basic browser-based diagram view fulfills their use case.

4.5.1 Location of Diagram Features

While Figure 4.5 provides an overview of the new architecture, it does not clarify where the
diagram-related features that were identified in Section 4.1.1 are located.

One approach would be to keep the Diagram Core a simple Sprotty IoC container that is
able to render a diagram model to SVG. All other features, such as the synthesis picker and
diagram options widget, would be implemented in the Diagram Web Page and VS Code Diagram
Extension. Furthermore, the model source that is required by the Sprotty container would
have to be implemented by each platform. Depending on the platform, it requires a different
connection type to the Language Server. In the Diagram Web Page, a WebSocket connection has

5https://github.com/kieler/klighd-vscode/releases

32

https://github.com/kieler/klighd-vscode/releases

4.6. Reusable User Interface for Diagram Options

to be used to communicate with the Language Server. In the VS Code Diagram Extension, the
webview message API is used to exchange Sprotty actions between the Sprotty container in
the webview and the extension, where they are routed to the Language Server by the language
client.

However, with this approach, all features would have to be implemented twice. Another
project that wants to build upon the Diagram Core would also have to implement these
features if they should be available as well. This goes against the idea of achieving a high
reusability. Ideally, all features are only implemented once. Therefore, every feature should be
implemented in the Diagram Core, because it is shared between all platforms. To achieve this,
the IoC container in the Diagram Core should not be considered as a container for the Sprotty
framework that happens to be a generic IoC container, but rather as a generic IoC container
that happens to support diagrams with the Sprotty framework. With this mindset, it is easier
to perceive that the IoC container is able to hold generic application data, such as diagram
options or the names of available syntheses, as well as additional UI components, which are
required for the diagram options view and synthesis picker.

To move the model source into the Diagram Core, an implementation that does not depend
on a specific connection has to be used. The chosen approach relies on the dependency
inversion principle and the idea of architecture layers introduced in Section 3.4. Inside the
Diagram Core, the model source implementation injects and uses a Connection interface from
the IoC container. However, the Connection is not implemented in the Diagram Core. Instead, it
is implemented and registered in the IoC container by each target platform that integrates the
Diagram Core. This approach hides the model source specific logic, such as handling custom
Sprotty actions, from the applications, and at the same time keeps the Diagram Core free from
platform-specific logic related to the transport of actions.

4.6 Reusable User Interface for Diagram Options

This section takes a step back and focuses on concepts for a UI to display diagram options and
a synthesis picker. When it comes to a UI, trade-offs have to be made between implementing
a UI that feels as native to each platform as possible, and a UI that is reusable between all
platforms.

A UI for diagram options that is native to VS Code would have to be implemented as a
view in VS Code. An additional view container could be placed in the activity bar to include
the diagram options view in the sidebar. The synthesis picker could be placed in the status
bar to show the current synthesis and a VS Code selection dropdown when it is clicked, similar
to the previous approach in KEITH.

However, such UI implemented for VS Code is not usable in the standalone view and
requires an additional implementation just for the standalone view. Furthermore, expanding
the solution to more platforms requires an additional implementation of the UI as well. This
goes against the goal of achieving a high reusability and the idea to implement all features in
the diagram core, which has been outlined in the previous section. It forces each platform to

33

4. Concepts

re-implement diagram options and a synthesis picker just to have a UI that feels as native as
possible.

An architecture that implements the diagram options and synthesis picker in the diagram
core requires a solution for rendering an additional UI, which is not related to the diagram
visualization, inside the diagram core. While such a solution does not use a native UI approach,
it is able to provide one UI implementation for all platforms. Depending on the visual design
of the UI, it might be able fit in quite well with small compromises in the user experience. An
advantage of such solution is that the UI is always implemented near the diagram visualization,
keeping them contextually close together.

One solution is an additional layer on top of the IoC container in the diagram core. It
might be implemented with a UI library, such as React6, to create a component tree for the
diagram view and additional UI, which can be rendered into the DOM by any platform that
integrates the diagram core. However, this approach abstracts the IoC container it is layered
on top of, which makes the approach less flexible for modifications by integrating platforms,
since they are no longer able to replace every part of the diagram core. Furthermore, the
approach prevents the usage of the sprotty-vscode glue code, because sprotty-vscode requires
access to the Sprotty IoC container. The glue code should be used to integrate the diagram
core in VS Code to avoid re-implementing the webview management code, which is provided
by the library.

Instead, an undocumented feature in Sprotty can be used to implement additional UI as
part of the IoC container. Sprotty has a concept called UI extensions, which are only documented
in the git commit7 that introduced them. A UI extension is rendered in a separate DOM element
on top of Sprotty diagrams. It is registered in the IoC container and thus is part of the general
Sprotty architecture (Section 2.7), which enables it to dispatch actions for user interactions.

For the implementation of this thesis the UI extensions approach is used to add a UI and
thus all features in the diagram core, while preserving the ability to use sprotty-vscode and the
ability to replace any part of the diagram core. Therefore, the goal of a high reusability can be
achieved and is not prevented by a UI solution.

4.6.1 Behavior of the Additional User Interface

The diagram options UIs in both KEITH and KIELER have been implemented next to the
visualized diagram, as it can be seen in Figure 4.1. The available screen space for the diagram
view is shared between the diagram options UI and the visualized diagram. While the options
can be collapsed in both implementations and moved to different widget regions in KEITH,
they are often kept open and consume screen space.

For future use cases, the standalone diagram view might be embedded into documentation
where the available space can become quite tight. Furthermore, the available space for the
diagram view in an IDE can also be quite tight if a file is opened next to diagram view or
the IDE does not consume all available screen space. Therefore, it must be possible to hide

6https://reactjs.org
7https://github.com/eclipse/sprotty/commit/f67631f3503e7402ecacf440fdb5639f7ca94370

34

https://reactjs.org
https://github.com/eclipse/sprotty/commit/f67631f3503e7402ecacf440fdb5639f7ca94370

4.6. Reusable User Interface for Diagram Options

the diagram options, as it has been before, to use all available space for the diagram view.
This is even more important in documentation where the focus is on the diagram and not the
diagram options.

Under the assumption that a user focuses on the diagram view most of the time and only
interacts with the diagram options for short periods, this thesis diverges from the previous UI

approach in KEITH and KIELER. The diagram options UI is hidden by default and can be shown
by clicking a small trigger. When the UI is shown, it should be placed on top of the diagram
visualization instead of next to it. Most of the time, the diagram is still visible enough to see
the effects of an option change. While the diagram might be mostly covered in smaller views,
there is not enough space to fit the options UI next to the diagram comfortably. This is solved
by rendering them on top of the diagram. The diagram options UI gets closed as soon as the
user closes it explicitly or starts to interact with the diagram again, shifting the focus away
from the options. In short, the new UI shares the available screen space between the diagram
and diagram options, and gets out of the way, as it is only visible when it should be.

This work has experimented with two approaches for a floating diagram options UI. The
result of each approach can be seen in Figure 4.6.

The first approach in Figure 4.6a uses a popover, which floats near the right edge of the
diagram view. The effect is visually achieved through the use of a soft shadow and a margin
to the edges of the view. The trigger to show the popover is a small icon button that is not
visible in Figure 4.6a. It is underneath the popover in the top right. A mouse press outside
the popover hides it again.

A drawback of this approach is the lack of support for new features. During the implemen-
tation for this thesis, other theses, which were implemented at the same time, have already
shown interests in supporting additional UI as well. They would have to implement another
popover and trigger to follow a coherent design. The additional triggers may be placed in
the top right with a margin to the edges as well, which creates a cluster of icon buttons.
This cluster might grow rather quickly, thus consuming too much space in the diagram view,
caused by the fact that they are not placed completely on the edge. Furthermore, switching
between the different UIs would require closing the current one to open another one. This
additional step might get annoying over time and worsens the user experience.

The second approach in Figure 4.6b tries to fix the drawbacks of the first approach. It
is a sidebar placed on the right edge of the diagram view that is inspired by a drawer. The
trigger icon buttons are grouped underneath one another on the right edge. When a trigger
is clicked by the user, the sidebar opens and slides in on from the right, while floating on
top of the diagram view. The sliding effect is animated and just like before, the floating effect
is achieved with a soft shadow. When a trigger is clicked while the sidebar is already open,
the sidebar content is replaced with the content that should be shown for the clicked trigger.
Therefore, the user is able to switch between the UIs without having to close the sidebar first.
Clicking the already active trigger, highlighted in light gray, or interacting with the diagram
view closes the sidebar, which causes the sidebar to slide out. The trigger icon buttons remain
visible on the right edge, ready to be clicked again.

35

4. Concepts

(a) UI floating as a popover. (b) UI floating as a slide-in panel.

Figure 4.6. Two approaches to show a floating UI for diagram options above the diagram.

With this approach new features are able to contribute additional UIs to the diagram view,
which are collected and displayed in a coherent approach. All triggers are placed to the far
right of the diagram view, thus not consuming as much space as the first approach. The
UI that can be contributed to the sidebar has been named a sidebar panel. A sidebar panel
contains an icon that should be used for its trigger and the content that should be shown
when its trigger is active.

For this thesis, the first approach has been abandoned, and the second approach has
been implemented. This is the reason why the diagram options in Figure 4.6a look different
compared to Figure 4.6b and has nothing to do with the actual approaches. The popover never
left the proof of concept phase, since the sidebar has solved its drawbacks. The implementation
for this thesis splits the synthesis picker and diagram options into two sidebar panels. The
first panel contains the synthesis picker, as well as user preferences and quick actions. The
second panel contains the diagram options that are provided by the diagram synthesis and
can be seen in Figure 4.6b.

36

Chapter 5

Implementation

Implementing the architecture that has been developed in the previous chapter requires
smaller and bigger software changes and additions. Many of them follow the Sprotty examples
that have been introduced in Section 3.2 and are nothing special for this thesis compared to
the examples. For the most part, these include the integration of the Sprotty IoC container
in sprotty-vscode and the web page. The code for the entire implementation can be found in
a software repository on GitHub1, except for the KIELER language server VS Code extension,
with can be found on BitBucket2.

This chapter instead focuses on aspects of the implementation that are not straightforward
to implement with the Sprotty examples and KEITH as a template. The main focus is on the
implementation of concepts that enable the integration of other diagram-related features in
the Sprotty IoC container. This chapter discusses how the diagram core is able to rely on
infrastructure that is different between platforms, and how arbitrary data can be stored in
the IoC container. Furthermore, it introduces the sidebar API that has been designed to add a
coherent UI to the diagram view. Lastly, it outlines the implementation of the CLI and VS Code

diagram extension, as well as the motivation for moving the source code to GitHub and the
new build process that has been enabled by this move.

5.1 Services

Services are a new concept that has been added to the diagram core. If a feature in the
diagram core requires functionality that might be different between each platform, it should
use a service. Common functionality that is different for each platform is infrastructure,
such as the connection to a language server and storage capabilities. A service abstracts this
infrastructure behind an interface, which is registered in the IoC container, so it can be used by
other parts of the diagram core. This approach follows the ideas of the clean architecture that
is introduced in Section 3.4. The diagram core is able to rely on these services without them
being implemented in the core. Each platform that integrates the core has to create a concrete
implementation for each service interface, and registers them in the IoC container. Otherwise,
the container cannot be initialized, because it would not be able to inject all services into its
modules.

The implementation for this thesis requires the following services, which are introduced

1http://github.com/kieler/klighd-vscode
2https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse?at=refs%2Fheads%2Fcfr%2Fmaster

37

http://github.com/kieler/klighd-vscode
https://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/keith/browse?at=refs%2Fheads%2Fcfr%2Fmaster

5. Implementation

and motivated in the next subsections. While they cover all basic infrastructure that is currently
required for a diagram visualization, they can be further extended and more services can be
added if new requirements arise in the future.

5.1.1 Connection

Each Sprotty IoC container requires an implementation for a ModelSource. The ModelSource

can also be implemented as a DiagramServer class that forwards requests for a diagram model
to a server, such as a language server. To connect a DiagramServer with a server, Sprotty
uses class inheritance to implement different connection types. For a standalone view, a
WebSocketDiagramServer class can be used or further extended to connect to the server via
a WebSocket. A VS Code extension that uses sprotty-vscode can integrate or extend the class
VscodeDiagramServer, which forwards Sprotty actions from the Sprotty IoC container, which
runs in a webview, to the extension.

If the diagram core uses the suggested approach of class inheritance to add a DiagramServer

implementation to the IoC container, the implementation would have to be provided by the
integrating platforms. The existing DiagramServer implementation in KEITH registers custom
Sprotty actions, which should be handled by an instance of the class and forwarded to the
actual server. This logic would have to be duplicated between each platform. Even though the
only difference between these implementations is how they send and receive Sprotty actions
to and from the server.

Instead of relying on inheritance, object composition can be used to implement one
DiagramServer in the diagram core, which relies on a Connection service to communicate
Sprotty actions with a language server. Therefore, the logic for the DiagramServer only has
to be implemented once. The only part that has to be implemented by each platform is the
Connection service that is genuinely different between them.

Apart from sending and listening for received Sprotty actions, the Connection service
also supports sending LSP notification messages for other features in KEITH, which do not
use Sprotty actions to communicate their data to the language server. Such features include
diagram options and user preferences, which enable or disable the selection synchronization
between the diagram view and text editor. Furthermore, the Connection service allows the
diagram core to wait until a connection is established before it starts to send messages.
This is achieved with an onReady method that returns a Promise, which is resolved by an
implementation once the connection is established, or resolved immediately if the connection
is already established.

5.1.2 Session Storage

KLighD supports images in a diagram model. The content of the images that are included in a
model is sent separately as base64 encoded data. In KEITH, received images are cached by the
client for the duration of a user session. When the user closes the application, the cache is

38

5.1. Services

emptied. Additional client-server communication allows the server to request a list of cached
images to avoid sending all images for every subsequent diagram model update.

This functionality has been ported to the new implementation for this thesis as well.
The logic is implemented as part of the DiagramServer in the diagram core and requires a
SessionStorage service to cache received images. The interface of the service is identical to the
standard Storage API3, and is just a type alias in case custom modifications have to be made
to the service interface in the future. The Storage API represents a key-value store with the
ability to save a given value under a given key. A value for a key can be updated by setting
a new value, and values can be retrieved or deleted for a given key. An implementation of
the SessionStorage service should ensure that the storage is cleared after a user ends the
session. Often, the web-native sessionStorage object should be sufficient and can be used as
an implementation if available.

5.1.3 Persistence Storage

KEITH is able to persist changed diagram options between user sessions and informs the
language server about the persisted options during the LSP initialization. For example, if a
user changes the layout direction of a diagram from down to right, a new diagram will also
use a right layout direction when the diagram view is opened again. To persist the changed
options and notify the server about them, they are stored in a map collection, with the option
identifier as the key and the changed option value as the value. Different option types, such
as synthesis options and render options, are persisted as separate groups in a key-value store.

To long-term persist the different option types in a key-value store, a PersistenceStorage

service has been defined for this implementation. The interface for the service could also
follow the Storage API. However, to long-term persist data in VS Code, the diagram core has to
send the data from the webview to the extension, where VS Code’s Memento API4 can be used
to properly persist the data, which stores data based on keys as well. Furthermore, the data
has to be persisted in the VS Code extension, because it has to be able to inform the language
server about the persisted data during the LSP initialization, which happens before a webview
with the diagram core is opened.

Since receiving all persisted data in the webview via message events is an asynchronous
operation, data stored with the PersistenceStorage service can only be safely accessed
asynchronously. Therefore, the synchronous Storage interface has to be slightly modified to
allow asynchronous reads for implementations of the PersistenceStorage service.

The modification of the getItem method returns a Promise instead of the value, which
should resolve to the value once an implementation of the PersistenceStorage service is able
to provide the value.

Furthermore, writing a value to a key has been optimized in the service interface for
asynchronous access. Often, the value for a key should not be replaced but rather updated
based on the old value. This would require receiving the value first before it can be written.

3https://developer.mozilla.org/en-US/docs/Web/API/Storage
4https://code.visualstudio.com/api/references/vscode-api#Memento

39

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://code.visualstudio.com/api/references/vscode-api#Memento

5. Implementation

To avoid the necessary read for an update, an implementation of the service is required to
accept a callback function that returns the new value, instead of expecting the new value
directly. When the setItem method is called with the key to change and an update callback,
the callback function is called with the current value once this data can be accessed, and the
return value of the callback is used as the new value for the key. This avoids explicitly reading
the value for an update and makes code that calls the service a little more compact.

5.2 Managing State

There are multiple features that require a way to manage general data, which is not the
diagram model, in the IoC container of the diagram core, so it can be accessed and modified
during runtime. Such data includes diagram options provided by a KLighD synthesis, as well
as user preferences and the current synthesis, and is often referred to as state in frontend
development. Other parts of the IoC container, such as sidebar panels or diagram model
views, have to be able to subscribe to the state that is managed by a registered class, so they
can react to changes. Otherwise, the UI would not update when the state changes and would
display an outdated state.

To achieve this, it is not required to use an extensive observer pattern that is typically found
in object-oriented programming with multiple interfaces, which have to be implemented by
both providers and observers. In JavaScript, functions are first-class citizens and can be passed
as arguments. A simple but effective observer pattern in JavaScript uses callback functions
that are registered in a state management class. Anytime the state changes, all subscribers are
notified by calling their provided callback, which prompts them to react to the changes.

One approach to updating state that is stored in the IoC container is to call modifying
methods on the storing class directly. While this object-oriented programming approach
works fine, state management can be integrated into the IoC container with the Flux-like
unidirectional event/data flow that is already established by Sprotty. Figure 5.1 visualizes how
Sprotty’s architecture has been extended to manage state in the IoC container with multiple
ActionHandlers. The concept for such ActionHandlers has been abstracted into Registries,
which are highlighted green in Figure 5.1. An abstract base class ensures that every inheriting
class implements the IActionHandler interface. Furthermore, it abstracts the pattern used for
subscriptions that is described above. This allows a Registry that extends the abstract class to
not be concerned with managing subscription callbacks. It only has to implement access to
the managed state and a handle method to handle received Sprotty actions.

To modify the state in a Registry, a custom Sprotty action should be dispatched in the
container. If a Registry is registered to handle the action, the ActionDispatcher will call the
Registry with the action and its state can be updated. After an update, a Registry should
call its notifyListeners method, which is provided by the abstract base class and informs all
subscribers about the state change.

The biggest advantage of extending Sprotty’s architecture is that actions can be handled by
multiple ActionHandlers. A state update does not map directly to a method call. Instead, the

40

5.3. Sidebar API

ActionHandler

Viewer / UI

CommandStack

ActionDispatcher

ModelSource

View

DOMDiagramServer

Action

Command Model

VDOM

ModelElement

VDOM

Action
Command,
Action
or nothing

Action
Command,
Action
or nothing

Color Legend:
Flux-like event/data flow
Registry Extension

Registry
Action State

Figure 5.1. Extension for the Sprotty architecture to use its Flux-like flow for state management.

update that is supposed to happen is described by a custom Sprotty action. For example, an
update to synthesis options is handled by the OptionsRegistry and by an OptionsPersistence

action handler, which calls the PersistenceStorage service to persist changes to all kinds
of diagram options. Furthermore, actions can be dispatched from anywhere through the
ActionDispatcher provided by Sprotty, even from outside the diagram core by an integrat-
ing platform. An application is able to update user preferences, which are stored by the
PreferencesRegistry in the diagram core, by dispatching a SetPreferencesAction without
knowing anything about the PreferencesRegistry.

5.3 Sidebar API

Services add functionality to the diagram core that depends on the capabilities of integrating
platforms. Registries add the ability to store and manage state in the diagram core IoC

container. These new concepts that have been added to the core can be used to develop
features in the diagram core. However, a user would currently not be able to interact with a
feature, since the ability to create an additional UI is still missing. Section 4.6 discusses the
concepts for a UI in the diagram core and introduces the sidebar as a concept to create a
coherent UI. This section will introduce the sidebar in more detail and outlines how developers
are able to create a sidebar panel for their features.

For the sidebar, an API has been designed that allows the addition of sidebar panels by
registering them in the diagram core IoC container, so they can be injected and displayed

41

5. Implementation

Registry

- listeners: Array

+ handle(action): void | Action
+ onChange(listener): void
notifyListeners(): void

<<interface>>
IUIExtension

+ id(): string
+ hide(): void
+ show(root): void

AbstractUIExtension

activeElement: Element
containerElement: HTMLElement

+ containerClass(): string
+ id(): string
initialize(): boolean
initializeContents(container): void
onBeforeShow(container): void

Sidebar

+ ID: string = "sidebar"
- oldPanelContentRoot: VNode
- patcher: Patcher

+ update(): void
- addClickOutsideListener(container): void
- handlePanelButtonClick(id): void

PatcherProvider

+ patcher: Patcher

createModules(): Array

Sprotty wrapper
around Snabbdom

SidebarPanelRegistry

- currentPanelID: string | null
- panels: Map

+ get allPanels(): Array
+ get currentPanel(): ISidebarPanel
+ get currentPanelID(): string | null

1

0..*

SidebarPanel

+ position: int = 0 {readOnly}
- updateCallbacks: Array

+ get id(): string
+ get icon(): VNode
+ get title(): string
+ update(): void
+ render(): VNode

<<interface>>
ISidebarPanel

+ id: string {readOnly}
+ icon: VNode {readOnly}
+ position: int {readOnly}
+ title: string {readOnly}

+ onUpdate(callback); void
+ render(): VNode

ConcreteSidebarPanel

Figure 5.2. Hierarchy of the classes and interfaces that form the sidebar API.

by the sidebar. Furthermore, a sidebar panel has to be able to re-render when the state that
influences the displayed content changes.

The classes that form the sidebar API and their relations are visualized in Figure 5.2.
As mentioned in Section 4.6, the sidebar is built on Sprotty’s undocumented UI extensions
feature. A UI extension has to implement the IUIExtension interface and has to be bound to
the UI extension symbol in the IoC container. The symbol is used to access all IUIExtension
implementations, so their visibility state can be managed by Sprotty. This multi-dependency
injection mechanism has also been used for the new sidebar API to access all registered
sidebar panels in the IoC container. To create an IUIExtension, an implementation should
inherit from the AbstractUIExtension class. It implements most boilerplate code for mounting
the IUIExtension in the DOM, and shifts the focus of inheriting classes to providing the UI

content. The sidebar API contains a Sidebar class that extends the AbstractUIExtension class
and thus implements the IUIExtension interface. It is responsible for rendering and updating
the sidebar that consists of registered sidebar panels.

Existing features in Sprotty that extend the AbstractUIExtension class create the UI ex-
tension content imperatively with the native DOM API. However, based on experience, im-
peratively creating a DOM structure that updates when dependent state changes, quickly

42

5.3. Sidebar API

becomes tedious and unpleasant to work with. Therefore, most JavaScript UI libraries rely on
a declarative approach to create the UI based on state with JSX or templates. Furthermore,
Sprotty depends on Snabbdom to create views for the diagram model declaratively with
JSX. Sidebar panels should also be able to define their content declaratively to create a more
pleasant API. To achieve this, the Sidebar class depends on a PatcherProvider class provided
by Sprotty, to create a virtual DOM root with Snabbdom’s patch function, which is rendered
in the DOM. Upon render updates, the created virtual DOM root is patched with virtual nodes
that are created by sidebar panels.

A panel that should be rendered by the Sidebar has to implement the ISidebarPanel

interface. The interface requires a panel to define general content, such as the panel title
and trigger icon, as well as a render method that returns the panel content as a virtual node,
which is created with Snabbdom. Furthermore, a subscription mechanism, which is similar to
Section 5.2, has to be implemented by a panel to inform the Sidebar when it should re-render.
Instead of calling an update method on the Sidebar directly from within a panel, the Sidebar

subscribes to every panel with a callback function, which can be called to request a render
update. This inversion of control allows the Sidebar to ignore a render-update request in case
the Sidebar is closed, or the requestor is not the currently shown panel. The implementation
of the subscription mechanism is hidden from sidebar panels by the abstract SidebarPanel
class. Instead of implementing the ISidebarPanel interface directly, panels should inherit from
this abstract class. It exposes an update method, which must be called to request a render
update from the subscribed Sidebar.

Instances of ISidebarPanel that are registered in the IoC container are managed in the
SidebarPanelRegistry class. It extends the abstract Registry class presented in Section 5.2 to
inherit a subscription mechanism and the IActionHandler interface. Opening and closing the
sidebar or switching between panels is realized with actions that are dispatched by the UI and
handled by the SidebarPanelRegistry. It updates its reference to the current sidebar panel
accordingly and informs all subscribers about the state change. Besides subscribing to each
panel provided by SidebarPanelRegistry, the Sidebar subscribes to the SidebarPanelRegistry

as well, to keep the sidebar UI synchronized with the opened/closed state and currently open
panel.

5.3.1 Creating a Sidebar Panel

The sidebar API hides the complexity of showing, hiding, and switching different sidebar
panels from features that want to contribute an additional UI to the diagram view. Furthermore,
all boilerplate that is required to update the UI after state changes is hidden by the Registry

and SidebarPanel class. The code that is still required is reduced to a minimum. A feature
that adds a sidebar panel only has to provide its content, which is done declaratively with
JSX, as well as an identifier, a title, and an icon for the sidebar panel. Apart from the identifier,
all of these directly contribute to the UI shown to the user.

A small example of a sidebar panel implementation is shown in Listing 5.1. The panel
displays a counter, which can be incremented and decremented between zero and ten. After

43

5. Implementation

1 export class CounterPanel extends SidebarPanel {

2 private count = 0;

3

4 get id(): string { return "counter-panel"; }

5 get title(): string { return "Counter"; }

6 get icon(): VNode { return <i attrs={{ "data-feather": "percent" }}></i>; }

7

8 render(): VNode {

9 return (

10 <div>

11 <p>Current count: {this.count}</p>

12 <button on-click={() => this.changeCount(1)} disabled={this.count >= 10}>

13 Increment

14 </button>

15 <button on-click={() => this.changeCount(-1)} disabled={this.count <= 0}>

16 Decrement

17 </button>

18 </div>

19);

20 }

21

22 private changeCount(by: number): void {

23 this.count += by;

24 // Requests a re-render from the Sidebar

25 this.update();

26 }

27 }

Listing 5.1. Example of a SidebarPanel that displays an interactive counter.

the current count is changed, the panel requests an update from the Sidebar, to display
the new count in the UI. The code for more complex panels scales with the UI that should
be shown to a user. In this basic example, the state is managed inside the panel. Features
with a more complex state should use a Registry to manage the state. If a Registry is used,
the SidebarPanel should subscribe to the Registry with a callback that calls update on the
SidebarPanel, to reflect Registry changes in the UI. An example5 of this approach can be
found in the source code for this thesis. The created sidebar panel provides a UI for state that
is stored in multiple registries and subscribes to all of them, after an instance of the panel is
created by the IoC container.

Sidebar panels, registries, and services are the foundation upon which the other diagram
features that are identified in Section 4.1.1 have been built in the diagram core. They abstract
most non-feature-specific logic, so the code for each feature can be written in a straightforward
way. For the most part, requirements for a feature can be reduced to storing state in registries,

5https://github.com/kieler/klighd-vscode/blob/main/packages/klighd-core/src/options/general-panel.tsx#L59

44

https://github.com/kieler/klighd-vscode/blob/main/packages/klighd-core/src/options/general-panel.tsx#L59

5.4. Implementing the CLI Application

communicating actions to and from a language server, and displaying an interactive UI, such
as diagram options, in the sidebar.

5.4 Implementing the CLI Application

The standalone diagram view that is opened by a CLI has to wrap the diagram core in a web
page. This requires implementations for all services. An instance of the SessionStorage service
is directly provided with the web-native sessionStorage object, which implements the Storage

interface. The implementation for the PersistenceStorage service is a lightweight wrapper
around the web-native localStorage object to support the small deviations from the Storage

interface. To implement the Connection service, a WebSocket connection is established with
the web server, which forwards messages to the language server. The connection is wrapped
by the vscode-ws-jsonrpc library to abstract and support the communication of LSP-conform
messages, which despite its name functions in a browser as well.

With an implementation for all services, the web page is able to create the diagram
core IoC container and registers instances for all services in the container. After the LSP-
initialization messages are exchanged and the language server is notified about the file that
will be visualized, the diagram core is able to dispatch a model request action to start the
visualization. In case an error occurs on the connection or during the initialization process,
a small popup UI has been added to the standalone view, which is used to inform the user
about problems.

The web server that forwards LSP messages has been created with Fastify, which has
been introduced in Section 2.9. For an incoming WebSocket connection, the server spawns
a language server process and establishes message forwarding between the connection and
process. Furthermore, the web server is used to serve the standalone diagram view as a
static website, which is created by bundling the sources into HTML, JavaScript, and CSS. In
the future, the server instance can be extended with more functionality by adding additional
Fastify plugins to the server instance.

The CLI application that is used to wrap the web server for users has been created
with Commander, which has been introduced in Section 2.10. It allows a user to open the
standalone view for a file from the command line and provides usage information in form
of a help text. By using Commander, argument parsing and help text generation is handled
by the library, and did not have to be implemented explicitly. To simplify the distribution
and installation of the CLI for users, it is packaged into a self-contained executable. For each
major operating system, an executable is packaged that contains the CLI script, web server,
web assets, and a Node.js runtime. Therefore, a user can download the single executable file
and does not have to install a specific Node.js version just to use the CLI application.

Both the CLI and web server have been implemented with Node.js libraries. The alternative
would have been Java applications to use the same runtime as the language server. However,
in that situation they would have been part of the KLighD repository and not the web-based
repository. Since the web page for the standalone diagram view has to be able to import

45

5. Implementation

StorageService MessagePersistenceStorage

{ type: "persistence/getItems" }

{ type: "persistence/reportItems", payload: { items } }

{ type: "persistence/setItem", payload: { key, newValue } }

{ type: "persistence/reportItems", payload: { items } }

Memento
Arbitrary
Feature

getItem(key)

get(key)

return data

return item

setItem(key, callback)

set(key, value)

callback(value)

return newValue

Extension Webview

Figure 5.3. Sequence diagram visualizing the communication for persisting data from the webview in
VS Code.

the diagram core and is bundled with a Node.js tool-chain, it is part of the web-based
repository. Creating the web server and CLI in Java, would create a cyclic dependency
between the repositories, where the web-based repository depends on the language server for
development, and the KLighD repository depends on the web assets to build the web server.
To avoid this cyclic dependency between the repositories, the CLI and web server have been
developed with Node.js, so only the web-based repository has a dependency on the language
server for development.

5.5 Implementing the VS Code Diagram Extension

As it has been discussed in Section 4.2.1, the VS Code diagram extension uses sprotty-vscode
to integrate the diagram core in VS Code. Since the diagram core is executed in a webview,
the required services have to be implemented as part of the webview as well. Similar to
the standalone diagram view, an instance of the SessionStorage service is provided by the
web-native sessionStorage object. Therefore, images that are stored by the diagram core are
cached until the webview is closed. To properly implement the other services, they have to
access APIs that are running in the extension code.

As outlined in Section 5.1.3, the Memento API has to be used to long-term persist data
in VS Code. Therefore, the PersistenceStorage service is implemented in two parts. An ex-
ample communication between the two parts is visualized in Figure 5.3. The first part,
which is the MessagePersistenceStorage class, runs in the webview where it implements the
PersistenceStorage interface and is usable by the diagram core. The implemented methods
forward changes via messages to the second part in the extension. The second part, which
is the StorageService class, receives the messages and converts them to operations that are

46

5.6. Publishing the Applications

applied to the data stored with the Memento API. The changed data is reported back as a
message to the MessagePersistenceStorage, which updates its data cache accordingly.

The implementation of the Connection service uses messages as well. It sends notifications
for the language server as messages to the extension, where sprotty-vscode forwards them
to the language server. In return, sprotty-vscode sends notifications that are received from
the language server as messages to the webview, where they are handled by the Connection

service implementation and forwarded to subscribers.
Originally, the webview abstraction and message forwarding in sprotty-vscode only handle

messages that are Sprotty action messages, which are sent to the language server as diagram/ac-
cept LSP notifications. However, the Connection service sends other LSP notification types as
well, which were defined for KEITH to communicate changes of the diagram options. Further-
more, the webview abstraction has to be able to send arbitrary messages to the webview as
well to support the custom messages for the PersistenceStorage service implementation.

Therefore, the implementation in sprotty-vscode has been partly overwritten to enable the
communication of custom messages and forwarding of other LSP notification types. Since
sprotty-vscode uses a class-based design for its implementation, the modifications have been
implemented with custom subclasses that overwrite the behavior of their parent classes.

Such modifications to sprotty-vscode have also been applied for an editor syncing feature
that is available in KEITH. When a user changes the active editor, the diagram view changes
as well to show the diagram for the content of the currently active editor. The user can
disable this feature, which causes the diagram view to not update when the active editor
changes. This behavior is only implemented in the VS Code diagram extension and not in the
diagram core, because it requires access to the extension and makes no sense in the standalone
diagram view, where the user cannot change between multiple source files. This feature is
not supported by sprotty-vscode, so it has been implemented by overwriting a reloadContent

method on its webview abstraction, which is called whenever the active editor changes.

5.6 Publishing the Applications

Many projects host their open-source software on the development platform GitHub6. This
is also the case for KLighD, which is part of the KIELER organization on GitHub. During the
development for this thesis, the diagram view on the client has been decoupled from the
KIELER language server. It is no longer dependent on this specific language server and can
be used by other projects as well. While working on the implementation for this thesis,
we7 decided to move the software, which is able to visualize KLighD-synthesized models,
from BitBucket to GitHub next to the KLighD repository. GitHub is widely accepted in the
open-source community for hosting source code, which further increases the visibility and
discoverability of the client code.

6https://github.com
7"We" refers to the author and other members of the Real-Time and Embedded Systems Group.

47

https://github.com

5. Implementation

Apart from the increased discoverability, this also enables an automated publishing
process for the applications with GitHub Actions8. Actions are GitHub’s implementation
of a continuous integration service that is deeply integrated in its platform. They can be
configured to trigger on various events that occur in a GitHub repository, such as creating an
issue, opening a pull request, pushing code to a branch, publishing a release, and many more.
Actions are configured in workflow files that define triggers and jobs that are executed for the
workflow.

The new GitHub repository9, which contains most of the software developed for this
thesis, has been fitted with GitHub Actions automations as well. The automations that are
currently applied consist of three workflows:

Ź When a pull request is opened against the main branch or code is pushed to the main
branch, a general continuous integration workflow is executed that confirms that the code
can be build and analyzes the code for problems with ESLint10.

Ź When code is pushed to the main branch, a packaging workflow, which is comparable to a
nightly build, builds the applications in the codebase and attaches them as artifacts, which
can be downloaded, to the workflow run.

Ź When a new version is published in the repository as a GitHub release, a publishing
workflow builds the applications and publishes the VS Code diagram extension to the Visual
Studio Marketplace and the Open VSX registry, and the extension bundle is attached to
the release notes in case someone wants to install the extension from a local source. The
self-contained CLI application is attached to the release notes for download as well.

These automations ensure that the code, which is contributed via pull requests in the
future, does not break the application builds before it is merged on the main branch, and
are common for many projects that use GitHub Actions for their continuous integration.
Distributing a new version to users has become as simple as publishing a new release11

with informative release notes. Ensuring that the applications are actually distributed to all
relevant places is taken care of by an automation.

During the migration to GitHub, the resulting Node.js packages have been renamed to
closer represent their connection to KLighD. The diagram core and interactive module are now
called klighd-core and klighd-interactive. The klighd-cli package contains the CLI application,
standalone view, and web server. The VS Code diagram extension is now called klighd-vscode.

The klighd-cli and klighd-vscode packages have already been published with the automated
approach. The VS Code language extension that integrates the KIELER language server is
currently not published and can only be installed from a local bundle. Previously existing
features that are not directly part of the diagram visualization, such as simulation and
compilation, should be added first and are out of scope for this thesis.

8https://docs.github.com/en/actions
9https://github.com/kieler/klighd-vscode

10https://eslint.org
11https://github.com/kieler/klighd-vscode/releases

48

https://docs.github.com/en/actions
https://github.com/kieler/klighd-vscode
https://eslint.org
https://github.com/kieler/klighd-vscode/releases

Chapter 6

Evaluation

The main goal of this thesis has been to find a solution and implementation that ports the
existing diagram view in KEITH to VS Code and a standalone view. While the performance of
the diagram view is generally important for a pleasant user experience, it has not been a
pressing criterion for this work. Instead, this work has been focused on scalability to other
projects and platforms.

This chapter discusses the expected performance for the new implementation and com-
pares available features of the new implementation with KEITH. Lastly, it outlines the imple-
mentation effort for new platforms and projects.

6.1 A Word About Performance

The performance of a diagram view that is separated between a client and server is influenced
by multiple factors. For the most part, the previous performance of the diagram view in KEITH

has remained largely the same for the new target platforms. However, while the performance
regarding the diagram plays a big role, the render speed and responsiveness of the new
sidebar also affect the user experience.

6.1.1 Diagram Visualization Performance

A big factor is the time that is required to communicate the diagram model between the client
and server, and the time required to render the diagram model on the screen. Since both client
and server are located on the same computer in this implementation, the communication
time is mainly affected by the size of exchanged messages. To render the received diagram
model, Sprotty translates it to SVG, which is rendered on the screen by the browser engine.
Therefore, the rendering performance is mainly affected by the SVG rendering speed of the
browser engine.

This work has not made any changes to the messages that are communicated between the
client and server. The message payload and order has remained the same. Furthermore, it
does not change the translation of the diagram model to SVG. Therefore, the timings evaluated
by Rentz [Ren18] still hold for this implementation and are still relevant.

The standalone diagram view is often used in a full-screen browser window, thus the
browser has to render a bigger area compared to VS Code and KEITH, where the view is opened
next to the model source. Therefore, it can feel noticeably slower compared to VS Code or the
previous implementation in KEITH. Rentz introduced a new approach for rendering shadows

49

6. Evaluation

in the diagram view [Ren18]. While these shadows look smoother and more realistic, they are
more intensive to render for the browser. Paired with the often bigger rendering area in the
standalone view, they are the main cause for rendering-performance decreases. Disabling the
shadows in the diagram options and resizing the browser window to a smaller area can help
to increase the rendering performance in the standalone view, in case panning the diagram
feels slow.

6.1.2 Sidebar Rendering Performance

Diagram options that require a long time to show their new state after a user integration may
be confusing as they do not provide instant feedback to the user. The time required to show
an update is influenced by the render speed of the UI, as well as the time that is required to
communicate a change to the language server and back, which is the source of truth for the
diagram options. To avoid waiting for the server communication, the implementation of the
diagram-options sidebar panel uses optimistic updates. The stored state is changed locally,
causing the sidebar panel to re-render and instantly reflect the change, while the change is
communicated to the language server. Afterwards, the optimistic update is replaced with the
newly received options and the sidebar panel is updated once again to show options from the
source of truth. If nothing goes wrong, the optimistic update already reflects the new options.
Paired with quick re-rendering times of the sidebar, optimistic updates are able to provide
instant feedback to users.

Throughout the development and testing of the sidebar, the time that is required to re-
render the sidebar has been continuously measured. While a single option update re-evaluates
the whole sidebar content, Snabbdom only updates the single option in the DOM. Switching
between panels or opening the sidebar requires Snabbdom to update the whole DOM structure
for the sidebar content. Opening and switching between a sidebar panel require between 3 to
10ms to update. Updating a single option usually finishes within 2ms and rarely spikes up to
5ms. These numbers measure the time that is required to update the DOM, and do not include
the browser paint times. If a target of 60 frames per second is considered, the browser has to
finalize a new frame every 16ms. The measured timings for a sidebar update fit within this
frame budget, thus the sidebar does not prevent the browser from reaching this target. While
these timings can vary for different systems and system load, they indicate and quantify the
general responsiveness of the new sidebar UI.

6.1.3 Startup Performance

The client and server have to establish a connection and exchange the LSP-initialization
messages. In VS Code and KEITH, a user waits for the IDE to finish its startup, which also
includes the initialization of the LSP communication. However, in the standalone view the
user would see a blank page while the LSP communication is not initialized. During the
development, the time that is required for the LSP initialization has been measured as well.
The WebSocket connection between the client and web server is established after 40 to 80ms.

50

6.2. Feature Comparison with KEITH

Afterwards, the client has to wait around 2 to 5s for the KIELER language server to answer
the LSP initialize request. To show some feedback until the LSP communication is initialized,
a loading spinner has been added to the standalone view that informs the user about the
initialization step.

6.2 Feature Comparison with KEITH

The new implementation for VS Code and the standalone view contains all diagram-related
features that exist in KEITH and have been identified in Section 4.1.1. Throughout this thesis,
the importance and necessity of moving all diagram-related features into one diagram core to
avoid duplication has been discussed. While these features still exist, they had to move to a
different location in the UI. This section outlines the changes made to the features and their
new location in the UI.

Some additional features have been added that were previously only available in the
KIELER IDE. Added features from KIELER include the ability to clear persisted diagram options.
The feature is implemented as a command in VS Code that can be toggled from the command
palette, and as a CLI option in the standalone view that can be set when a diagram view is
opened. Furthermore, the ability to refresh the diagram layout has been added. The Sprotty
action for this feature was already available in KEITH but was not accessible for a user.

6.2.1 Changes to the Features

Figure 6.1 compares the diagram view in KEITH with the new diagram view in VS Code. The
diagram visualization in the standalone view is identical to the content of the VS Code webview.
Since Theia and VS Code are very similar, it is more meaningful to compare the implementation
for both IDEs, rather than the standalone view with KEITH. The sidebar panel for general items,
which is shown in Figure 6.1b, contains more features that are important for this comparison
than the diagram options panel, which can otherwise be seen in Figure 4.6b. On that note,
the biggest change is the location of diagram options. They have moved from a Theia widget
next to the diagram view, into a sidebar panel that opens on top of the diagram. Thus, one
implementation can be used for all platforms. Otherwise, they are the same with slight visual
modifications, which clarify their hierarchy to improve their readability.

Most of the features that were previously located in the Theia UI in KEITH have been moved
into the diagram view. In Figure 6.1a, quick actions to center, refresh, and fit the diagram to
the screen are located on top of the webview. Information about the current synthesis with
the ability to change the synthesis is located in the status bar.

In the new implementation in Figure 6.1b, these features have been moved into a general
sidebar panel. Therefore, they are accessible in the standalone diagram view as well. The
general sidebar panel contains a mix of features that do not require their own sidebar panel.
The quick actions have been moved to the top of the general panel. New quick actions have
been added to refresh the layout and export the diagram as SVG, since they were already

51

6. Evaluation

(a) Diagram view in KEITH (b) Diagram view in VS Code

Figure 6.1. Side by side comparison between the diagram view in KEITH and in VS Code.

available as Sprotty actions in the source code. The synthesis picker is now located underneath
the quick actions and instead of an IDE-native selection popup, a select input is used to change
the synthesis, because it is generally available in browser-based environments.

The editor settings in KEITH contain user preferences that allow the user to enable and
disable synchronization of the selected element between the editor and diagram view. Changes
to these preferences affect the diagram view immediately.

The editor settings in VS Code still contain the previously available user preferences. They
have been extended with a preference to force a light background for the diagram view, and
a toggle, which disables resizing of the diagram to fit the viewport after a diagram update,
has been moved from the top of the webview in KEITH to the preferences. These preferences
have been added to the general sidebar panel to make them accessible in the standalone view.
Therefore, the preferences in the editor settings have been changed to initial preferences that
are applied to new diagram views. To change them for an open diagram view, the user must
change the preferences in the sidebar. Changing the preferences in the editor settings to initial
preferences prevents them from getting out of sync with the preferences in the panel during
usage.

Finally, KEITH has the ability to disable syncing with the editor, via a preference located in
the editor toolbar overflow menu. Normally the diagram view changes its content when a

52

6.3. Implementation Effort for Other Projects

user changes the active editor. If it is not able to generate a diagram for the content of the
editor, a placeholder is shown. When syncing is disabled, the diagram view continues to
show the same diagram. Furthermore, it is not possible to explicitly update the diagram view.
A user has to enable the preference first before the diagram can be changed.

This is the only feature that did not move into the diagram view, because it is only available
in VS Code. Still, this feature behaves slightly differently in the new implementation for VS Code.
If the content of an editor is not supported, it will not update the diagram view. Furthermore,
the option to toggle this preference has moved to the editor toolbar, so it requires one click to
toggle instead of two. When syncing is disabled, the user is now able to update the diagram
view explicitly by executing the Open in Diagram command. This enables the user to visualize
a new diagram model without having to re-enable the Sync with Editor preference.

With these changes, it has been possible to share all features between the VS Code extension
and standalone view. If they were implemented in VS Code like they are implemented in KEITH,
they would have been implemented twice. This would be against the initial requirement to
avoid code duplication, which has motivated all of these changes. Supporting all platforms
would have been a bigger effort and would require more maintenance work in the future.

6.2.2 Missing Behavior

The extension for VS Code feels nearly as productive as the KEITH implementation. While most
diagram-related features have moved to another location, they still exist and are accessible for
a user. However, one behavior could not be implemented in VS Code: When a user closes and
opens KEITH again, the diagram view remains open.

The VS Code extension has not been able to implement this feature, because it is blocked by
sprotty-vscode. To persist a diagram view, which is a webview, between reloads, an extension
has to implement a WebviewPanelSerializer [Mic21f]. The serializer receives a webview
instance and has to set its content. Further, the received instance must be stored and used to
access and attach event listeners to the recreated webview. This clashes with the sprotty-vscode
glue code, because it would be unable to attach event listeners to the received webview.
Therefore, it would not be able to attach message listeners and properly manage the webview
lifecycle. The ability to restore the webview has to be implemented in the glue code, to ensure
that everything works together as expected.

6.3 Implementation Effort for Other Projects

The original goal and topic that was proposed for this thesis has been to port the diagram view
in KEITH to VS Code and a standalone view, so the KIELER project is usable on these platforms
as well. The only criterion has been that it should extend the original implementation and
function with the KIELER language server.

While working on this thesis, the potential to create a general diagram view has been
identified, which can be used with any language server that supports KLighD syntheses.

53

6. Evaluation

Therefore, the goal of this thesis has been extended to make the new diagram views usable for
other projects as well. Throughout this thesis, it has been explained how the implementation
is structured to achieve this goal.

This work has created integrations with the diagram view for the KIELER language server,
which prove that the idea of separating the diagram views from specific a language server
generally works. Rentz has been able to prove that the new implementation can indeed be
used by other projects as well. He created a VS Code extension1 that uses the klighd-vscode
extension to visualize OSGi™ projects [RDH20]. The created language server has also been
used successfully with the diagram CLI, which proves that it is possible to use the new CLI for
different projects.

This section highlights the work that is required to implement a diagram view for another
project. The new implementation provides three possibilities to extend the diagram view, two
of them are outlined in this section. The last possibility is to extend the web server created for
the standalone view. Since the web server provides an already fully working diagram view,
any extension depends on the specific requirements, and cannot be generalized as required
work for other projects.

6.3.1 Developing a VS Code Extension

Integrating the new klighd-vscode extension to create a VS Code language extension with
diagram support requires only a few steps. They are documented in the overview2 of the
klighd-vscode extension as well. These steps assume that a language server with KLighD

synthesis support has already been created.
Listing 6.1 contains a minimal implementation of the activate function for an extension,

which is required to use klighd-vscode. It has to create a LanguageClient to integrate its language
server into VS Code. The klighd-vscode extension has to be informed about the language server to
activate the extension and to provide a connection to a KLighD synthesis. The LanguageClient

instance is provided by executing the klighd-vscode.setLanguageClient command with the
instance as the first argument. The second argument is an array of file endings that are
supported by the language server. It ensures that the diagram view in klighd-vscode only
updates for active editors that can actually be visualized. At last, the extension has to initialize
the language server connection by calling start.

The command call to klighd-vscode returns an identifier that has to be passed to further
command calls to the extension. At the moment, extensions are able to register an action
handler through an additional command execution, which can intercept Sprotty actions before
they are sent to the language server.

To ensure that klighd-vscode is installed, a dependency to the extension should be declared
in the extension configuration file. Furthermore, an extension should declare contributions to
allow users to open a diagram for its supported languages. Such contributions are declared
in the extension configuration file as well.

1https://marketplace.visualstudio.com/items?itemName=kieler.osgiviz
2https://marketplace.visualstudio.com/items?itemName=kieler.klighd-vscode

54

https://marketplace.visualstudio.com/items?itemName=kieler.osgiviz
https://marketplace.visualstudio.com/items?itemName=kieler.klighd-vscode

6.3. Implementation Effort for Other Projects

1 export async function activate(context: vscode.ExtensionContext) {

2 const clientOptions = { /* ... */ }

3 const serverOptions = { /* ... */ }

4

5 const lsClient = new LanguageClient("Language Server", serverOptions, clientOptions);

6

7 const refId = await vscode.commands.executeCommand(

8 "klighd-vscode.setLanguageClient",

9 lsClient,

10 ["<lang>"]

11);

12

13 console.debug("Starting Language Server...");

14 lsClient.start();

15 }

Listing 6.1. Minimal extension code required for a working klighd-vscode integration.

6.3.2 Integrating the Core Package

If parts of the diagram view should be replaced with custom implementations or a web-based
application should be supported that cannot be supported with the VS Code extension and
standalone view, the klighd-core package can be used as a starting point. However, the package
has not been published to npm yet, which has to be done before it can be used by other
projects. It provides the most flexibility but also requires the most effort to create a working
implementation. An integration has to implement all services defined in Section 5.1, and
potentially more while development continuous. The steps required to integrate the core
package are documented in the package overview3 as well.

The service implementations will be different for each application and project. Therefore,
Listing 6.2 assumes that they are already implemented and are ready to be used. It highlights
the code that is required to integrate the diagram core container. An implementation has to
import and bundle the styles that are provided for the diagram view. Further, it has to create
the diagram IoC container and has to provide an identifier for an element in the DOM that is
used to mount the diagram view. Afterwards, the implemented services have to be registered
in the container and a model request has to be dispatched to start the diagram visualization.

As it can be observed in the listings, both usage possibilities do not require much code
to bootstrap a diagram visualization. The klighd-vscode extension hides all logic for other
extensions that would otherwise be required to manage the diagram webview and message
forwarding between the language client and webview. The klighd-core package contains all
logic that is required to visualize KLighD-synthesized diagram models. Details about the
diagram visualization are hidden behind API interfaces for other applications that build upon

3https://github.com/kieler/klighd-vscode/blob/main/packages/klighd-core/README.md

55

https://github.com/kieler/klighd-vscode/blob/main/packages/klighd-core/README.md

6. Evaluation

1 import "@kieler/klighd-core/styles/main.css";

2

3 import { createKlighdDiagramContainer, requestModel,

4 getActionDispatcher, bindServices } from "@kieler/klighd-core";

5 import { ConnectionImpl } from "./services/connection";

6 import { PersistenceStorageImpl } from "./services/persistence";

7 import { SessionStorageImpl } from "./services/session";

8

9 async function init(sourceUri: string) {

10 const connection = new ConnectionImpl();

11 const persistenceStorage = new PersistenceStorageImpl();

12 const sessionStorage = new SessionStorageImpl();

13

14 const diagramContainer = createKlighdDiagramContainer("container-id");

15 bindServices(diagramContainer, { connection, sessionStorage, persistenceStorage });

16

17 const actionDispatcher = getActionDispatcher(diagramContainer);

18 await requestModel(actionDispatcher, sourceUri);

19 }

Listing 6.2. Minimal code required to integrate the diagram core.

the core package. However, if required, they are still able to access and replace everything
through the exposed IoC container.

6.3.3 Embedding the Standalone Diagram View

If the diagram visualization of the CLI is sufficient to fulfill given requirements, the new
CLI can be used directly without any changes. Furthermore, it can be used to embed a
visualization into other web pages, such as web-based documentation. To simplify this use
case, an additional command has been added to the CLI, which starts the web server without
constructing a URL for a given file and opening the diagram view. Any web page can embed
the diagram view with an iframe element, which specifies a URL that points to the started web
server and includes the source parameter that is required by the diagram view, as explained
in Section 4.4.2. Diagram files that are part of a locally hosted documentation can therefore
be visualized interactively in the documentation. An example of multiple diagram views that
are embedded in a local documentation can be found in the source code repository4.

While the CLI can be used for visualizations in locally hosted documentation, it does not
replace the hosted service that has been described in Section 4.4.1. Such service provides URLs

that can be embedded into online documentation and function for anyone that views the
documentation. Furthermore, the CLI cannot be used to share a URL to a visualization with
other people, which is possible with a hosted service.

4https://github.com/kieler/klighd-vscode/tree/main/examples/local-documentation

56

https://github.com/kieler/klighd-vscode/tree/main/examples/local-documentation

Chapter 7

Conclusion

This chapter summarizes the work for this thesis and outlines future work that extends the
implemented applications with more functionality.

7.1 Summary

For this thesis, the diagram visualization in KEITH that has been previously developed by
Rentz [Ren18] has been ported to VS Code and a standalone diagram view for a browser. While
working on this thesis, the potential to extract the KIELER language server and to generalize
the resulting applications for multiple language servers has been identified and applied to
the implementation. The ability to support different language servers has been tested with a
KIELER language server integration that has been created for this thesis and an integration for
the OSGiViz project created by Rentz.

For VS Code, two extensions have been developed. The first is called klighd-vscode and
adds general visualization support for KLighD-synthesized diagrams. The second extension,
which is currently called keith-vscode, integrates the KIELER language server and depends on
klighd-vscode to visualize diagrams for KIELER model languages. The standalone view has been
implemented as a CLI application that starts a web server and opens the standalone view for
a given file. The CLI does not have a hard dependency on any language sever and has been
successfully used with the KIELER and OSGiViz language servers. GitHub Actions have been
created to publish the CLI and klighd-vscode extension1 automatically.

To avoid code duplication between klighd-vscode and the standalone view, the Sprotty IoC

container developed for KEITH, which translates diagram models to SVG, has been extended
to include the implementation for most diagram-related features. To properly implement
the features, the container has been extended with the concept of services, registries, and
a sidebar UI to create a foundational infrastructure in the IoC container for communicating,
storing, and displaying application data that is not the diagram model. The sidebar has been
designed to support a UI for different content and features in a coherent design through
sidebar panels, which allows the addition of panels in a straightforward way.

The implementation for this thesis has created applications that can be used with other
language servers, and thus can be integrated by more projects than just the KIELER project
without much effort. The created core package contains almost all features, which simplifies
the support for future applications that are web-based or support web content. The required

1https://github.com/kieler/klighd-vscode/releases

57

https://github.com/kieler/klighd-vscode/releases

7. Conclusion

effort for an integration has been outlined in Section 6.3. This focus on reusability has opened
the visualization of KLighD-synthesized models to more projects and platforms and thus to
many more potential users.

7.2 Future Work

While the applications created for this thesis are already usable by users, there is still room to
further improve them and to add new features.

Section 6.2.2 discusses that the diagram view is currently not restored in VS Code and has
to be reopened by the user every time VS Code is opened. Restoring the webview automatically
after VS Code is opened might improve the user experience, and is equivalent to the behavior
of other editor tabs, such as a markdown preview, which is automatically restored as well.
However, this feature should probably be implemented in sprotty-vscode to ensure that the
library has access to the restored webview and is able to correctly initialize its class instances.

During the implementation of klighd-vscode, a bug has been found in sprotty-vscode. If
a user opens a diagram, switches to another, and closes the webview, the reference to the
disposed webview panel is not properly cleaned up. When the user tries to open the first
diagram again, sprotty-vscode wants to access the disposed webview panel, which throws an
error. The issue2 has been reported with greater detail in the sprotty-vscode repository.

On the topic of VS Code extensions, the klighd-vscode extension can be used by multiple
extensions. However, only one extension that depends on klighd-vscode can be active in a
workspace at the same time. This should be fine for most cases, but gets annoying when files
that are supported by different extensions exist in a workspace. In such situation, all files
for one extension have to be closed and VS Code reloaded, before files for the other extension
can be visualized. A solution to fix this in klighd-vscode has to ensure that messages from the
webview can properly be routed to multiple registered language clients. Special care must
be taken to not interfere with the webview management of sprotty-vscode, because it requires
one SprottyVscodeExtension instance for each language client, whereas sprotty-vscode assumes
that only one is created. A solution might remove sprotty-vscode and implement the webview
management and message routing from scratch. The issue3 for this problem is tracked in the
source repository.

For this thesis, the diagram options have been changed from being placed next to the
diagram to being placed on top of the diagram in a sidebar, as explained in Section 4.6.1.
Further, they are hidden when a user does not interact with them. Future work could add a
preference that toggles the sidebar between the floating mode and a docked mode. When
docked, the sidebar is rendered next to the diagram and remains open when the user interacts
with the diagram. This mode might be preferred by users when enough space is available to
display both the sidebar and diagram comfortably next to each other. An implementation

2https://github.com/eclipse/sprotty-vscode/issues/42
3https://github.com/kieler/klighd-vscode/issues/6

58

https://github.com/eclipse/sprotty-vscode/issues/42
https://github.com/kieler/klighd-vscode/issues/6

7.2. Future Work

should ensure that the slide-in and slide-out animations of the sidebar still exist in docked
mode to continue conveying the idea of a drawer.

To improve the performance of the diagram view, future work can explore other methods
for rendering shadows in the diagram visualization. As explained in Section 6.1.1, the method
that is currently implemented is the main cause for rendering-performance problems in the
standalone view. As the shadows are drawn across a larger area in a full-size standalone
view, the browser struggles to render these intensive shadows when the diagram is panned.
If applicable, an improved method might use box-shadows to keep the smooth look, which are
CSS-based and thus may be rendered more efficiently by a browser.

Finally, future work can implement the hosted diagram service that has been discussed
in Section 4.4.1. Such service should extend the existing Fastify web server to reuse the
diagram-view web page and WebSocket proxy logic. The server has to be extended with a file
upload plugin to make files accessible for other users and to the language server. Furthermore,
a second web page has to be added to include a file upload UI on the website. After a file is
uploaded, the diagram view web page can either be embedded with an iframe to visualize the
diagram, or by changing the URL to the diagram view web page. Such service enables sharable
diagram visualization URLs and embeddable visualizations for online documentation.

59

Acronyms

API Application Programming Interface

CLI Command Line Interface

CSS Cascading Style Sheets

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I/O Input/Output

IDE Integrated Development Environment

iframe Inline Frame

IoC Inversion of Control

IPC Inter Process Communication

JSON JavaScript Object Notation

KEITH Kiel Environment Integrated in Theia

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KLighD KIELER Lightweight Diagrams

LSP Language Server Protocol

SCCharts Sequentially Constructive Charts

SVG Scalable Vector Graphics

UI User Interface

URI Unique Resource Identifier

URL Unique Resource Locator

VS Code Visual Studio Code

61

Bibliography

[Dom18] Sören Domrös. “Moving model-driven engineering from Eclipse to web tech-
nologies”. https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf.
Master’s thesis. Kiel University, Department of Computer Science, Nov. 2018.

[Eff17] Sven Efftinge. Theia — One IDE For Desktop & Cloud. 2017. url: https://www.typefox.
io/blog/theia-one-ide-for-desktop-cloud (visited on 08/09/2021).

[Eff20a] Sven Efftinge. Root, Docker and VS Code. 2020. url: https://www.gitpod.io/blog/root-
docker-and-vscode (visited on 08/09/2021).

[Eff20b] Sven Efftinge. Theia 1.0 — Finally a Good Browser IDE. 2020. url: https://dev.to/
svenefftinge/theia-1-0-finally-a-good-browser-ide-3ok0 (visited on 07/28/2021).

[Eug20] Eugene. My Top 13 JavaScript Diagram Libraries. 2020. url: https://hackernoon.com/my-
top-13-javascript-diagram-libraries-g2a53z6u (visited on 07/11/2021).

[Fas21] Fastify. The hitchhiker’s guide to plugins. 2021. url: https://www.fastify.io/docs/v3.15.
x/Plugins-Guide (visited on 08/08/2021).

[Fou21] OpenJS Foundation. About Node.js. 2021. url: https://nodejs.org/en/about (visited
on 09/23/2021).

[Fug20] Vincent Fugnitto. Consuming Builtin and External VS Code Extensions. 2020. url:
https://github.com/eclipse- theia/theia/wiki/Consuming- Builtin- and- External- VS- Code-

Extensions (visited on 08/02/2021).

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications”. In: Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’14). Edinburgh, UK: ACM, June 2014, pp. 372–383.

[Köh17] Jan Köhnlein. sprotty — A Web-based Diagramming Framework. 2017. url: https://
www.typefox.io/blog/sprotty-a-web-based-diagramming-framework (visited on 07/08/2021).

[Köh19] Jan Köhnlein. Graphical VS Code Extensions with Eclipse Sprotty. 2019. url: https:
//www.typefox.io/blog/using-sprotty-in-vs-code-extensions (visited on 07/15/2021).

[Köh20] Jan Köhnlein. Domain-Specific Languages in Theia and VS Code. 2020. url: https:

//www.typefox.io/blog/domain- specific- languages- in- theia- and- vs- code (visited on
04/07/2021).

[Mar12] Robert C. Martin. The Clean Architecture. 2012. url: https://blog.cleancoder.com/

uncle-bob/2012/08/13/the-clean-architecture (visited on 08/06/2021).

63

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
https://www.typefox.io/blog/theia-one-ide-for-desktop-cloud
https://www.typefox.io/blog/theia-one-ide-for-desktop-cloud
https://www.gitpod.io/blog/root-docker-and-vscode
https://www.gitpod.io/blog/root-docker-and-vscode
https://dev.to/svenefftinge/theia-1-0-finally-a-good-browser-ide-3ok0
https://dev.to/svenefftinge/theia-1-0-finally-a-good-browser-ide-3ok0
https://hackernoon.com/my-top-13-javascript-diagram-libraries-g2a53z6u
https://hackernoon.com/my-top-13-javascript-diagram-libraries-g2a53z6u
https://www.fastify.io/docs/v3.15.x/Plugins-Guide
https://www.fastify.io/docs/v3.15.x/Plugins-Guide
https://nodejs.org/en/about
https://github.com/eclipse-theia/theia/wiki/Consuming-Builtin-and-External-VS-Code-Extensions
https://github.com/eclipse-theia/theia/wiki/Consuming-Builtin-and-External-VS-Code-Extensions
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://www.typefox.io/blog/using-sprotty-in-vs-code-extensions
https://www.typefox.io/blog/using-sprotty-in-vs-code-extensions
https://www.typefox.io/blog/domain-specific-languages-in-theia-and-vs-code
https://www.typefox.io/blog/domain-specific-languages-in-theia-and-vs-code
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture

Bibliography

[Mic16a] Microsoft. May 2016 (version 1.2). 2016. url: https://code.visualstudio.com/updates/
May_2016 (visited on 08/03/2021).

[Mic16b] Microsoft. Visual Studio Code 1.0! 2016. url: https://code.visualstudio.com/blogs/

2016/04/14/vscode-1.0 (visited on 08/03/2021).

[Mic21a] Microsoft. Commands. 2021. url: https://code.visualstudio.com/api/extension-guides/
command (visited on 08/04/2021).

[Mic21b] Microsoft. Extension Guidelines. 2021. url: https : / / code . visualstudio . com / api /

references/extension-guidelines (visited on 08/03/2021).

[Mic21c] Microsoft. Language Server Extension Guide. 2021. url: https://code.visualstudio.

com/api/language-extensions/language-server-extension-guide (visited on 08/13/2021).

[Mic21d] Microsoft. Language Server Protocol Specification. 2021. url: https://microsoft.github.
io/language-server-protocol/specifications/specification-3-16 (visited on 07/21/2021).

[Mic21e] Microsoft. The TypeScript Handbook. 2021. url: https://www.typescriptlang.org/docs/
handbook/intro.html (visited on 08/08/2021).

[Mic21f] Microsoft. Webview API. 2021. url: https://code.visualstudio.com/api/extension-

guides/webview (visited on 08/04/2021).

[Ove21] Stack Overflow. 2021 Developer Survey. 2021. url: https://insights.stackoverflow.

com/survey/2021 (visited on 08/03/2021).

[Pet19] Jette Petzold. “Intentional layout in Sprotty Diagrams: Defining User Interaction”.
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jet-bt.pdf. Bachelor’s
thesis. Kiel University, Department of Computer Science, Sept. 2019.

[RDH20] Niklas Rentz, Christian Dams, and Reinhard von Hanxleden. “Interactive vi-
sualization for OSGi-based projects”. In: 2020 Working Conference on Software
Visualization (VISSOFT). Adelaide, Australia: IEEE, Sept. 2020, pp. 84–88. doi:
10.1109/VISSOFT51673.2020.00013.

[Rea19] React. Virtual DOM and Internals. 2019. url: https://reactjs.org/docs/faq-internals
(visited on 08/09/2021).

[Rea20] React. Introducing JSX. 2020. url: https://reactjs.org/docs/introducing-jsx (visited
on 08/09/2021).

[Ren18] Niklas Rentz. “Moving transient views from Eclipse to web technologies”. https:
//rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf. Master’s thesis.
Kiel University, Department of Computer Science, Nov. 2018.

[Sch19] Connor Schönberner. “Intentional Layout in Sprotty Diagrams: Reevaluating
Introduced Constraints”. https://rtsys.informatik.uni- kiel.de/~biblio/downloads/

theses/cos-bt.pdf. Bachelor’s thesis. Kiel University, Department of Computer
Science, Sept. 2019.

64

https://code.visualstudio.com/updates/May_2016
https://code.visualstudio.com/updates/May_2016
https://code.visualstudio.com/blogs/2016/04/14/vscode-1.0
https://code.visualstudio.com/blogs/2016/04/14/vscode-1.0
https://code.visualstudio.com/api/extension-guides/command
https://code.visualstudio.com/api/extension-guides/command
https://code.visualstudio.com/api/references/extension-guidelines
https://code.visualstudio.com/api/references/extension-guidelines
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
https://microsoft.github.io/language-server-protocol/specifications/specification-3-16
https://microsoft.github.io/language-server-protocol/specifications/specification-3-16
https://www.typescriptlang.org/docs/handbook/intro.html
https://www.typescriptlang.org/docs/handbook/intro.html
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jet-bt.pdf
https://doi.org/10.1109/VISSOFT51673.2020.00013
https://reactjs.org/docs/faq-internals
https://reactjs.org/docs/introducing-jsx
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cos-bt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cos-bt.pdf

Bibliography

[Spö18] Miro Spönemann. Visualizing npm Package Dependencies with Sprotty. 2018. url:
https://www.typefox.io/blog/visualizing-npm-package-dependencies-with-sprotty (visited
on 07/14/2021).

[Spö19] Miro Spönemann. Architectural Overview. 2019. url: https://github.com/eclipse/

sprotty/wiki/Architectural-Overview (visited on 08/10/2021).

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just
model! – Putting automatic synthesis of node-link-diagrams into practice”.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’13). San Jose, CA, USA: IEEE, Sept. 2013, pp. 75–82. doi:
10.1109/VLHCC.2013.6645246.

65

https://www.typefox.io/blog/visualizing-npm-package-dependencies-with-sprotty
https://github.com/eclipse/sprotty/wiki/Architectural-Overview
https://github.com/eclipse/sprotty/wiki/Architectural-Overview
https://doi.org/10.1109/VLHCC.2013.6645246

	List of Figures
	Listings
	Introduction
	Problem Statement
	Outline

	Used Technologies
	KIELER Lightweight Diagrams
	Node.js, npm and yarn
	TypeScript
	Visual Studio Code
	Language Server Protocol
	Theia
	Sprotty
	Snabbdom
	Fastify
	Commander

	Related Work
	Mermaid
	Sprotty Examples
	Kiel Environment Integrated in Theia
	Software Architecture

	Concepts
	Understanding the Foundation—KEITH
	Available Diagram Features
	Project Structure

	Visual Studio Code Support
	Webviews
	Inter-extension Communication

	Theia Support
	Standalone Diagram View
	Hosted Service
	Locally Running Service

	New Architecture
	Location of Diagram Features

	Reusable User Interface for Diagram Options
	Behavior of the Additional User Interface

	Implementation
	Services
	Connection
	Session Storage
	Persistence Storage

	Managing State
	Sidebar API
	Creating a Sidebar Panel

	Implementing the CLI Application
	Implementing the VS Code Diagram Extension
	Publishing the Applications

	Evaluation
	A Word About Performance
	Diagram Visualization Performance
	Sidebar Rendering Performance
	Startup Performance

	Feature Comparison with KEITH
	Changes to the Features
	Missing Behavior

	Implementation Effort for Other Projects
	Developing a VS Code Extension
	Integrating the Core Package
	Embedding the Standalone Diagram View

	Conclusion
	Summary
	Future Work

	Acronyms
	Bibliography

