
Interactive Incremental
Hardware Synthesis

for SCCharts

Francesca Rybicki

Bachelor Thesis
March 2016

Kiel University
Prof. Dr. von Hanxleden

Real-Time and Embedded Systems

Advised by: Dipl.-Inf. Christian Motika

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

SCCharts [vHDM+14] is a synchronous visual language used for the modeling
of embedded reactive systems. SCCharts are under development within the
context of KIELER. KIELER is a research project of the real-time and embedded
systems group of Kiel University. The KIELER Compiler (KiCo) provides various
model-to-model transformations originating in SCCharts and uses the interactive
incremental approach [MSvH14]. Models transformed by the KIELER Compiler
within its compilation chain have the same behavior as the original SCChart model
but come with various information content.

Adapting the incremental approach, this thesis proposes a further transforma-
tion. It synthesizes circuits from SCCharts by using a sequentialized representation
of SCCharts to identify data-flow dependencies. Those dependencies occur if
multiple writes to one variable exist within one program. In a first step the se-
quentialized model is transformed into a Static Single Assignment [CFR+91] form,
resolving the data-flow problems. This form then is synthesized into hardware
which can be visualized and simulated in the KIELER SCCharts framework. Inte-
grating the transformations listed above for the hardware synthesis guarantees
the tool chain and the model-to-model transformations to be continuous and
incremental. Since the KIELER SCCharts framework offers a multifunctional user
interface, the user may interact with the modeled program. More precisely, the
user may choose target models and modify the original model as well as simu-
late models individually or side by side. This interactive incremental improves
understandability, traceability or optimization issues.

v

Contents

1 Introduction 1
1.1 Synchronous Languages . 1

1.1.1 Sequential Constructiveness 1
1.1.2 Sequentially Constructive Charts 2

1.2 The Sequentially Constructive Graph 2
1.3 Interactive Incremental Compilation 2
1.4 Hardware Synthesis from SCCharts 3
1.5 Problem Statement . 4
1.6 Outline of this Document . 4

2 Related Work 7
2.1 Hardware Synthesis from C and Java 7
2.2 Hardware Synthesis from Statecharts 8
2.3 Hardware Synthesis from Esterel . 8
2.4 Hardware Synthesis from SCCharts 9
2.5 Incremental Hardware Synthesis . 9
2.6 Tooling for Hardware Description Languages 10

3 Used Technologies 11
3.1 Eclipse . 11

3.1.1 The Eclipse Modeling Framework 12
3.1.2 Xtend . 13

3.2 The Kiel Integrated Environment for Layout Eclipse Rich Client . . 14
3.2.1 Semantics . 14
3.2.2 Pragmatics . 15

4 Interactive Incremental Hardware Synthesis 17
4.1 Preliminaries . 18

4.1.1 SCCharts . 18
4.1.2 Sequential Constructiveness 20
4.1.3 Interactive Incremental Compilation of SCCharts 20
4.1.4 The Sequentially Constructive Graph 22

4.2 Hardware Synthesis . 27
4.2.1 Userstory for Incremental Interactive Hardware Synthesis . 27
4.2.2 Circuit Meta-Model . 29

vii

Contents

4.2.3 Circuit Transient View for SCGs 31
4.2.4 Complete Transformation Example with AO 40
4.2.5 Simulation . 42
4.2.6 Complete ABRO Example . 44

5 Implementation 47
5.1 Plug-in Overview . 47
5.2 Circuit Feature Group Transformations 49

5.2.1 SCG to SSA SCG Transformation 49
5.2.2 SSA SCG to Circuit Transformation 50

5.3 KLighD Circuit Diagram Synthesis . 52
5.4 Simulation Visualization . 53

6 Evaluation 55
6.1 Comparing ABO . 55
6.2 Simulation of AO . 57
6.3 Validation Improvements . 60
6.4 Scaling . 60

7 Conclusion 63
7.1 Summary . 63
7.2 Future Work . 64

References 67

viii

List of Figures

1.1 KiCo compile chain with expanded feature groups Circuit, SCG and
Code Generation . 3

3.1 Editor and different views in Eclipse workbench 12
3.2 Subset of EMF meta-model [Mot09] 13
3.3 The different areas of the KIELER project 14

4.1 Interactive Incremental Hardware Synthesis workflow overview . 17
4.2 SCChart for ABO – the "Hello World!" of SCCharts illustrates con-

cepts of core SCCharts . 19
4.3 Two ABO traces . 20
4.4 Screen shot of KIELER SCCharts tool adopted from [MSvH14]. . . 21
4.5 Mapping of core SCChart elements into SCG elements and hardware. 23
4.6 SCG for ABO with Basic Blocks and guards 24
4.7 Sequential SCG for ABO . 25
4.8 Screenshot of KIELER SCCharts tool annotated with high-level user

story for incremental interactive model-based hardware synthesis 26
4.9 Circuit meta-model . 30
4.10 φ-function used for optimization in CFGs 33
4.11 SCCharts model for a program which simply sets an output O to

true in the first non–immediate tick. 34
4.12 Transformation of sequentialized SCG into SSA SCG for an output

variable O. 34
4.13 Organization of the circuit and its regions in the context of the

controlled environment . 35
4.14 AO reset logic . 38
4.15 Signal curve of reset logic . 39
4.16 Hardware synthesis for assignment nodes 39
4.17 Hardware synthesis for conditional nodes 40
4.18 AO SCChart . 41
4.19 Left: AO SCG, Right: AO SSA SCG . 41
4.20 AO Circuit . 42
4.21 Simulation visualization of AO SSA SCG. 43
4.22 Simulation visualization of AO circuit. 43

ix

List of Figures

4.23 ABRO – the "Hello World!" of synchronous programing. Left:
ABRO SCChart. Right: ABRO SSA SCG 45

4.24 Annotated ABRO circuit. Only program logic region is shown. . . 46

5.1 Conditional node (left) and assignment node (right) after SSA SCG

transformation. 50

6.1 The ABO example transformed with the introduced transformation 56
6.2 The ABO example transformed from SCCharts [Joh13] 57
6.3 Examplary simulation of AO. A is set to true in the first tick. . . . 58
6.4 Examplary simulation of AO. A is set to true in the fourth tick. . . 59
6.5 Validation of the circuit transformation with ESO files 60
6.6 Scaling of synthesized circuits compared to the corresponding SSA

SCG and SCCharts depending on the number of nodes. 62

7.1 ABRO Esterel program and its circuit translation. 66

x

List of Tables

4.1 Comparing the predecessor SCL2VHDL [Joh13] with the introduced
circuit tranformation . 28

4.2 Circuit meta-model requirements and corresponding components
and concepts of the meta-model. 30

4.3 Visualization of logic gates . 36

5.1 Overview of implemented plug-ins and functionalities 48
5.2 Valid links between port types for each region. 52

xi

Abbreviations

ALU Arithmetic Logic Unit

BB Basic Block

CFG Control Flow Graph

CPU Central Processing Unit

EMF Eclipse Modeling Framework

FPGA Field Programmable Gate Array

FSM Finite-State-Machines

IDE Integrated Development Environment

ISE Integrated Software Environment

iur initialize-update-read

HDL Hardware Description Language

KAOM KIELER Actor Oriented Modeling

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KiCo KIELER Compiler

KIEM KIELER Execution Manager

KLighD KIELER Lightweight Diagrams

MDE Model-Driven Engineering

MoC Model of Computation

MUX Multiplexer

MV-SIS Multi-Value Logic Synthesis and Verification

RCP Rich Client Platform

SCG Sequentially Constructive Graph

xiii

List of Tables

SCL Sequentially Constructive Language

SLIC Single-Pass Language-Driven Incremental Compilation

SC MoC Sequentially Constructive Model of Computation

SCPDG Sequentially Constructive Program Dependency Graph

SCT SCCharts Textual Language

SMoC Synchronous Model of Computation

SSA Static Single Assignment

VHDL Very High Speed Integrated Circuit Description Language

xiv

Chapter 1

Introduction

Meanwhile, synchronous reactive systems are omnipresent. Such systems run
at the same speed as their environment they are embedded in. They interact
with their environment in three steps: 1) In the first step they receive input
from the environment, 2) followed by the computation of the reaction on the
inputs. 3) Finally, these computed outputs are sent back to the environment.
Since such reactive systems are often used in automotive industry, aerospace
industry or in medical devices a deterministic behavior is essential. Programming
languages such as C or Java providing concurrency do not meet the degree
of determinism required for synchronous executions. Therefore, appropriate
synchronous languages have been developed.

1.1 Synchronous Languages

With deterministic behavior as an essential precondition for reactive systems,
programming languages such as C or Java are not sufficient for the description
of such systems. Concurrent running threads and resulting race conditions
do not effect determinism. For that reason synchronous languages such as
Lustre [HCRP91], Esterel [BG92] or SynchCharts [And96] have been designed.
The reaction chain described above, caused by an input in reactive systems, is
called macro step or tick. Ticks are considered atomic. The Synchronous Model
of Computation (SMoC) subdivides time into disrcete ticks. The computation
during one tick takes place in multiple micro steps. According to the synchrony
hypothesis[PBEB07a] a system runs perfectly synchronous if no time is consumed
for the computation. That means outputs are emitted to the environment as soon
as inputs from the environment are read. Hence, a tick is executed in zero time.
To ensure determinism, the synchronous languages prevent multiple assignments
to one variable within one and the same tick.

1.1.1 Sequential Constructiveness

Introduced by von Hanxleden et al. in 2013 [vHMA+13], the Sequentially Con-
structive Model of Computation (SC MoC) aims to guarantee determinism while

1

1. Introduction

not being overly restrictive. Therefore, the initialize-update-read (iur) protocol is
introduced: The iur protocol allows multiple reads from and writes to the same
variable within one and the same tick and still ensures determinism. This requires
the usage of variables instead of signals which can either be absent or present
within one tick.

1.1.2 Sequentially Constructive Charts

Sequentially Constructive Charts (SCCHarts) is a visual synchronous language
introduced by von Hanxleden et al. in 2014 [vHDM+14]. It is specially developed
and designed for synchronous reactive systems. SyncCharts is a synchronous
language introduced by Charles André in 1996 [And96]. It is a graphical represen-
tation of Esterel and is the predecessor of SCCharts. While SyncCharts is restricted
by the SMoC, SCCharts leverage the SMoC. SCCharts uses a from Statecharts [Har87]
adapted notation and provides determinate concurrency. There are two form of
SCCharts: Core SCCharts and Extended SCCharts. Core SCCharts consist of only
a limited number of elementary feature. Extended SCCharts provide additional
means to maintain expressiveness for more complex models, e. g., signals are
reintroduced as syntactical sugar. Every Extended SCCharts model can be expressed
with Core SCCharts functionality. Hence, both forms have sufficient means to
express all features of the SC MoC.

1.2 The Sequentially Constructive Graph

Sequentially Constructive Graphs (SCGs) are control-flow representations of SC-
Charts. They allow to analyze the behavior of a modeled system, e. g., dependen-
cies within SCCharts. Figure 1.1 shows the compile chain of the KIELER Compiler.
The inplace transformations of SCGs culminate in the sequentialized SCG. This
sequentialized SCG and its transformation from core SCCharts has been studied
by Smyth [Smy13]. Combining all informations of previous transformation steps,
the sequentialized SCG provides the basis for the circuit transformation.

1.3 Interactive Incremental Compilation

SCCharts are developed in context of the Kiel Integrated Environment for Layout
Eclipse Rich Client (KIELER) project. The KIELER Compiler (KiCo) is based on
model-to-model transformations. Figure 1.1 shows the whole KIELER compile
chain including feature transformations implemented in this thesis, namely SSA
SCG and Circuit. In the visualization of the KiCo compile chain nodes represent

2

1.4. Hardware Synthesis from SCCharts

Figure 1.1. KiCo compile chain with expanded feature groups Circuit, SCG and Code
Generation

all provided features. As shown, each feature transformation depends on former
feature transformations. Thus, all features represent the same program while the
information content differs from feature to feature. This incremental approach
causes the immediate change of all feature models if the original program is
modified. Thus, the KIELER application reacts to the user’s inputs and performs
all transformations selected by the user. This kind of interaction supports, e. g.,
fast detection of potential malfunction of programs and is further discussed by
Motika, Smyth and von Hanxleden [MSvH14].

1.4 Hardware Synthesis from SCCharts

The challenge of maintaining determinism while supplying concurrency in pro-
gramming of embedded reactive systems has been approached by several lan-
guages such as SyncCharts or Esterel. Both of these come with restrictions.
SCCharts uses the SC MoC to enhance modeling of reactive systems in a less re-
strictive way while still guaranteeing determinism. Pursuing this approach the
synthesis into hardware will be introduced in the following.

In 2013 Johannsen [Joh13] introduced a hardware synthesis from SCCharts.
Johannsen chose an approach using the Very High Speed Integrated Circuit De-
scription Language (VHDL) as target of his synthesis. The transformed VHDL

programs were simulated and visualized with help of the Integrated Software
Environment (ISE) tool which translates VHDL programs into circuits. Since Field
Programmable Gate Arrays (FPGAs) can be programed with VHDL code the trans-
formed program could be used on FPGAs. However, the outcome of Johannsen’s
transformation is only visible in an external ISE tool. Thus, modifications done
in the original SCChart are not immediately visible while modeling. For each

3

1. Introduction

modification the whole process has to be executed from transforming the modified
SCChart into VHDL code and loading this code into ISE to simulate and visualize
the circuit. Hence, Johannsen’s work does not cover analysis or optimization
purposes nor good comprehensibility of the connection between circuits and
SCCharts elements due to an uncontinuous compile tool chain.

1.5 Problem Statement

The new hardware synthesis introduced in this thesis offers considerably more
opportunities for analysis, optimization and understandability for the modeler
and the tool smith. Since the transformation and visualization of circuits is
directly integrated into the KIELER SCCharts project, the interactive and incre-
mental synthesis approach is adopted. Thus, each modification of the SCChart
is immediately applied by the incremental and interactive transformation chain
culminating in those transformations selected by the user. Moreover, each incre-
mental step is visible for the user because each incremental result is a valid and
inspectable model. This highly improves the traceability of hardware synthesis.
To additionally support the comprehensibility of how the circuit derives from
the sequentialized SCG, a simulation which highlights active regions of SCGs and
circuits in each tick needed to be implemented. Hence the simulation facilitates
understanding the dynamics of the circuit under development. On top of this, the
simulation helps in validating the correctness of the hardware synthesis itself and
eases development and maintenance of the compiler for the tool smith.

Since all computations in circuits run in parallel and the SC MoC proposes
sequential computation the circuit has to be adjusted accordingly. Thus, circuits
are not directly transformed out of the SCChart but out of the associated se-
quentialized SCG. Before transforming the sequentialized SCGs into circuits one
intermediate step is necessary to resolve data-flow dependencies. In this step
the sequentialized SCG is transformed into the SSA SCG which uses Static Single
Assignments (SSAs) for each new write to a variable. Moreover, after each tick the
state of the SCChart is saved to provide informations for the next tick. This state
has to be saved in the circuit for the same reason. Furthermore, circuits should
provide means for reset and start.

1.6 Outline of this Document

The implemented interactive incremental synthesis into hardware and all inter-
mediate steps are discussed in the following chapters of this thesis. Chapter 2
summarizes different hardware synthesis originating in, e. g., C, Java or Esterel. It

4

1.6. Outline of this Document

is argued why the implementation of a new hardware synthesis is necessary and
which concepts and ideas of former hardware synthesis are adapted. Focusing
on visualization and simulation of circuits described in Hardware Description
Languages, a few tools are introduced. Furthermore, the context of the term
incremental synthesis is set.

Chapter 3 gives an overview of used technologies for the implementation of
the incremental interactive hardware synthesis. This synthesis is implemented
as part of the KIELER project which uses plug-ins and Eclipse. Hence, the KIELER

project itself, Eclipse and its modeling framework are introduced. Furthermore,
Xtend which is a Java dialect and used for programing of the transformations is
presented.

Chapter 4 presents the steps for the actual hardware synthesis conceptually.
Since the hardware synthesis is integrated into KIELER and originates in SCCharts,
KIELER SCCharts are introduced. The interactive incremental approach which
is exemplary adapted by the KIELER Compiler is explained as well as several
provided model-to-model transformations and their visual representations. One
of those transformation results is the sequentialized SCG. This SCG is described in
detail and is used as basis for the hardware synthesis. Before the synthesis itself
is introduced, data-flow dependencies need to be resolved. This intermediate step
and the developed SSA SCG without data-flow dependency problems is introduced.
Finally, Capter 4 presents the created meta-model for circuits and the circuit
transformation and a simulation for the synthesized circuits are presented.

Chapter 5 describes the implementation of the in Chapter 4 conceptually
introduced steps.

Chapter 6 presents simulation results. Those results are used for verification
and further verification methods are introduced. Moreover, the scaling of circuits
is inspected.

Chapter 7 summarizes the in this thesis presented solutions for the problems
stated in Section 1.5 and gives suggestions for future work addressing the topic
of hardware synthesis from SCCharts.

5

Chapter 2

Related Work

The subject of hardware synthesis is covered by various papers which mainly
challenge the parallel execution in hardware. This real parallel execution in
hardware differs from the concepts of concurrency in C or Java. To interconnect
both concepts, hardware synthesis means mostly a translation into a Hardware
Description Language (HDL). This HDL then is executed on integrated circuits like
FPGAs or in tools specially designed for simulation of HDLs.

2.1 Hardware Synthesis from C and Java

Hardware synthesis from C or Java is prevalently proposed for reasons of popu-
larity and familiarity of both languages. Since C and Java code may be generated
from SCCharts, approaches for the hardware synthesis from C or Java code are of
interest. De Micheli [DM99] lists difficulties of hardware synthesis from C or C++.
To use C or C++ requires a synthesizable subset of the languages to be defined in
most cases. Also, e. g., concurrency and communication mechanisms need to be
added.

Edwards [Edw05] focuses in his paper on two fundamental challenges con-
cerning hardware synthesis from C-like languages. 1. concurrency and 2. timing
control. Edwards introduces various languages and approaches dealing with
these two topics. Exemplarily, a few languages and their benefits are given:

Ź HardwareC [KD90] has a C-like syntax and supports timing constraints within
the language.

Ź C2Verilog is a compiler used to transform C code to Verilog which is an HDL.
It can translate pointers, recursions or dynamic memory allocation. Soderman
and Panchul [SP98], e. g., used C2Verilog for implementation of system-level
algorithms in integrated circuits.

Ź Cones [SMP88] synthesizes each function in combinational blocks. Condition-
als are handled by its strict C subset.

The hardware synthesis from Java is also a well discussed topic. Thomson,
Chouliaras and Mulvaney [TCM06] describe a synthesis of digital hardware from

7

2. Related Work

a subset of the Java language. Each Java object instance corresponds to a hardware
module instance. The synthesized system outputs VHDL code.

Kuhn and Rosenstiel [KR00] use Java as object oriented language and the
extension JavaBeans. Concurrency is translated into hardware by translating each
thread into control-flow graphs. These control-flow graphs are transformed into
VHDL processes which may be synthesized into hardware.

Although huge progress concerning this topic is observable, the hardware
synthesis from C or Java comes with too many restrictions and additional steps in
workflow. These are, e. g., parallelism or timing constraints. Moreover, the SC MoC

used in SCCharts and the structure of SCCharts models are designed to improve
modeling, description and validation of synchronous systems. This structural
model design is lost when transformed into C or Java code.

2.2 Hardware Synthesis from Statecharts

The hardware synthesis from Statecharts [Har87] introduced by Drusinsky and
Harel [DH89] uses statecharts as behavioral HDL. The idea is to use single
machines implementing Finite-State-Machines. The interconnection of those
machines in a tree implements the behavior of the statechart.

Since statecharts have no deterministic behavior this approach is not taken
into consideration for the hardware synthesis from SCCharts.

2.3 Hardware Synthesis from Esterel

Esterel [Ber00, BC85] is a synchronous language tailored for the development of
embedded reactive applications in hardware and software. Esterel programs can
directly be translated into circuits [Ber92]. Those circuits are divided into two
sections:

1. Combinational logic, which computes the outputs and new states from the
inputs and current state.

2. Sequential logic, which holds registers to store the current state of the
system. In each global clock tick the state is updated.

Since SCCharts is based on an other MoC, the Sequentially Constructive Model
of Computation, the semantics for hardware synthesis from Esterel [PBEB07a] is
not adopted for the hardware synthesis from SCCharts. However, the ideas of
conceptually separated regions and the usage of registers to store the system state
is adapted. Sequentially Constructive Esterel (SCEst) studied by Rathlev et al.
[RSM+15] leverages the restrictive SMoC. Thus, SCEst in addition with SSAs could
be considered as a new basis for hardware synthesis in future approaches.

8

2.4. Hardware Synthesis from SCCharts

2.4 Hardware Synthesis from SCCharts

The subject of hardware synthesis from SCCharts has been studied by Johannsen
[Joh13]. His approach translates SCCharts into the Hardware Description Lan-
guage VHDL. Further, the ISE tool is used for simulation and visualization of the
circuit described by the VHDL program. For additional testing purposes the VHDL

code is used to program an FPGA. Each of the described steps is encapsulated
within its own tool. This means that the user has to perform several intermediate
steps to investigate the transformed circuit. The model as well as the VHDL code
is generated in the KIELER SCCharts environment. Hence, changes to the model
are immediately adopted by the VHDL code. Nevertheless the user has to use the
external ISE tool to observe these changes in the circuit and on the FPGA.

The interactive and incremental approach proposed in this thesis has no
breaks in the tool chain. All transformations are performed and integrated in the
KIELER SCCharts environment. This means all changes to the SCCharts model are
immediately observable in the transformed circuit. Furthermore, traceability of the
circuits behavior is supported since all intermediate transformations originating in
an SCChart are visible. This improves comprehensibility, optimization, verification
and analysis potential of the synthesized hardware. However, the ideas of an
intermediate transformation step into SSA form and the reset logic studied by
Johannsen are conceptually adopted.

2.5 Incremental Hardware Synthesis

The main idea of an incremental synthesis approach is an improvement of comfort-
able usability. Changes in synthesis sources cause changes in synthesis outputs.
However, considering various intermediate synthesis steps instead of only one
step, the incremental approach describes an interconnection between those steps
building up each other. Each step comes with different output information.

Exemplarily, Ren [Ren11] uses an incremental approach for hardware discrete
controller synthesis. The proposed incremental technique also applies to commu-
nicating systems. Prasad, Anirudhan and Bosshart [PAB94] use an incremental
approach for updates on gate-level implementations and reoptimization processes.

Another interpretation of incremental synthesis is introduced by Brand et al.
[BDKN94]. This interpretation deals with investments program designers have
when implementing. For example such an investment is the expense of physical
design or simply time spent to understand the implementation. Hence, in incre-
mental synthesis an old and a new version of design exists. Brand et al. propose
a method to reuse gates from old implementations and restrict synthesis to the

9

2. Related Work

modifies portions only.
However, this interpretation of the term incremental synthesis is not adopted

in this thesis. Furthermore, in this thesis the incremental approach is understood
as a purpose for incremental model-to-model transformations.

2.6 Tooling for Hardware Description Languages

Since most of the introduced hardware synthesis use Hardware Description
Languages in the following several tools for visualization and simulation of HDL

programs are listed.

Ź Sigasi1 is a free and professional tool for HDLs design such as VHDL or Ver-
ilog which may be integrated into Eclipse as well as be used as standalone
application.

Ź The ISE Simulator2 is a complete free HDL simulator which supports VHDL and
Verilog.

Ź Simulink3 is a block diagram environment for simulation and Model-Based-
Design. Some of the key features are the graphical editor which allows manag-
ing hierarchical block diagrams, or the simulation engine with scopes and data
displays for viewing simulation.

The proposed interactive incremental hardware synthesis is integrated into
the KIELER framework and thus uses KIELER layout and visualization. Therefore,
no external tool is necessary. Nevertheless, keeping future work in mind, the
simulation tools for HDL languages are of interest.

1http://www.sigasi.com
2http://www.xilinx.com/products/design-tools/isim.html
3http://mathworks.com/products/simulink

10

Chapter 3

Used Technologies

This chapter summarizes the technologies used for the implementation of the
circuit transformation. The transformed circuits are integrated into the KIELER

project which is a research project of the real time and embedded systems group
at Kiel University. It is based on Eclipse. Therefore, Eclipse is used for the
implementation of the plug-ins for the circuit transformation. A new meta-model
is deaveloped by use of Eclipse Modeling Framework (EMF). This meta-model
serves as abstraction from circuits. All needed transformations leading from
SCCharts into the circuit meta-model have been written in Xtend and have been
integrated into KIELER. Finally, a synthesis for the visualization of circuits has
been implemented in KIELER Lightweight Diagrams (KLighD) which are also part
of the KIELER project.

3.1 Eclipse

The plug-ins developed within this thesis have been implemented in Eclipse1.
Eclipse is an open source Integrated Development Environment (IDE) containing
a base workspace which can individually be extended by plug-ins. It is mainly
written in Java and was introduced in 2001 by IBM. Although Eclipse is known
for being primarily used for the development of Java applications it may also be
used for development of applications in other programming languages such as C
or for modeling purposes. The Eclipse Rich Client Platform (RCP) provides core
components and plug-ins to extend the functionality of the RCP. This modular
expandability allows incremental development of complex programs.

Eclipse provides a set of different views and editors which are put together in
a workbench as shown in Figure 3.1. For example, the Plugin Explorer on the left
side helps the user to navigate through the workspace while the Outline on the
right side helps the user to navigate within the file opened in the editor which is
located in the center.

Aside from these different views, the workbench provides many functionalities
such as menu buttons, one of which is the Run button. Pressing this button starts

1https://eclipse.org

11

3. Used Technologies

Navigate through
plug-ins Edit code

Navigate through
written code

Observe running plug-ins
in debug mode

Navigate through
git repository

Figure 3.1. Editor and different views in Eclipse workbench

the plug-ins mentioned in the Run Configuration. This configuration specifies
which plug-ins will be used in the next run of the implemented program.

3.1.1 The Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)2 EMF is an Eclipse plug-in for model-
driven development and is required for the creation of meta models in this
approach. EMF produces a set of Java classes for a model specification described
in XMI. It consists of three fundamental pieces:

1. The core EMF framework uses a meta model (Ecore) for the description of
models and provides runtime support for the models.

2. The EMF.Edit framework uses generic reusable classes for building editors for
EMF models.

3. The EMF.Codegen is capable of generating everything needed to build a com-
plete editor for an EMF model

2http://www.eclipse.org/modeling/emf

12

3.1. Eclipse

Figure 3.2. Subset of EMF meta-model [Mot09]

Modeling in EMF

Eclipse Modeling Framework (EMF) uses meta-models which are simply models
which describe a set of models. The model used to represent models in EMF is
called Ecore. Since Ecore is an EMF model it is a meta-model itself. Figure 3.2
shows a simplified subset of the Ecore meta-model depicting the classes which
were used for modeling in the context of this thesis. EMF models consist of classes
which may have attributes and references to other classes. While attributes must
have a name and a dataType, references represent associations in-between classes
and have a name and a boolean flag to indicate if the target class is a containment
class or the a container class.

3.1.2 Xtend

Xtend3 is a flexible and expressive dialect of Java. It integrates with EMF and is
used for model-to-model transformations in the context of KIELER. Xtend is a
statically-Xtend provides several improvements compared to Java source code
such as extension methods, lambda expressions or type inference. Extension methods
are where the name Xtend originates from. They allow to add new methods to
existing types without modification. Lambda expressions are kind of anonymous
classes with one single method. They may declare parameters without declaring
types due to type inference.

3http://www.eclipse.org/xtend

13

3. Used Technologies

KIELER	Semantics
SCCharts,	SCG,
KIELER	Compiler,
Execution	Manager

Demonstrators
KGraph,	

Ptolemy	Browser,
KLighDning

OpenKIELER
DebuKViz,	KlassViz,
EcoreViz,	KLayJS-D3

KIELER	Pragmatics	&	Layout
KLighD,	KIML,	KLay,	KWebS,	GrAna

Kiel University GitHub

Figure 3.3. The different areas of the KIELER project

3.2 The Kiel Integrated Environment for Layout Eclipse
Rich Client

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)4 is an
open source research project promoted by the Real-Time and Embedded Systems
Group at Kiel University. It integrates into the Eclipse rich client platform and
focuses on the enhancement of graphical model-based design of complex systems.
Therefore, the idea is to consistently employ automatic layout in all components
of a diagram. The project is divided into different areas depicted in Figure 3.3. In
the following, a set of the areas and a part of their projects will be introduced.

3.2.1 Semantics

KIELER semantics consists an infrastructure for simulations of graphical modeling
languages with emphasis on synchronous languages. One main contribution of
this area are SCCharts as mentioned in Section 1.1.2. The approach introduced
in this theses benefits from the provided infrastructure. It expands the existing
simulation and incremental compilation possibilities by a hardware synthesis and
a simulation of the synthesized circuits.

4http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER

14

3.2. The Kiel Integrated Environment for Layout Eclipse Rich Client

The KIELER Compiler

The KIELER Compiler (KiCo)5 project is used as generic framework. This framework
allows to register step-by-step compilation transformations of EObjects. The
transformations can be written in Xtend or Java and reach from SCCharts up to
the SCG and C Code generation. The circuit transformation is a new transformation
step located as low-level synthesis and new back end behind the high-level synthesis
of SCGs. The KIELER Compiler is a generic framework based in the interactive
incremental Single-Pass Language-Driven Incremental Compilation approach
[MSvH14].

The KIELER Execution Manager

The KIELER Execution Manager (KIEM)6 [Mot09] can be used to execute arbitrary
domain-specific models. KIEM itself does not do any simulation computation but
allows to easily integrate arbitrary simulation components. Simulation results can
also be visualized by dedicated visualization components. The behavior of the
synthesized circuit is simulated and visualized with the help of KIEM.

3.2.2 Pragmatics

In the context of MDE, the pragmatics area of KIELER focuses on the simplification
of the daily work of modelers. Therefore, the creation and modification of models
as well as the synthesis of various views on those models are topics. One project
addressing these topics is KLighD. KLighD is used for the synthesis of graphical
representations of models. Visualization and simulation of the in this approach
synthesized circuits are realized by means of KLighD.

KIELER Lightweight Diagrams

KIELER Lightweight Diagrams (KLighD)7 project aims to offer transient lightweight
representations of models. Graphical or textual representations of components in
models are created by synthesizing them into underlaying KGraph meta-model
components which can be depicted by KLighD.

5http://rtsys.informatik.uni-kiel.de/confluence/x/aYCQ
6http://rtsys.informatik.uni-kiel.de/confluence/x/nwEF
7http://rtsys.informatik.uni-kiel.de/confluence/x/swEF

15

Chapter 4

Interactive Incremental Hardware
Synthesis

This chapter conceptually summarizes the interactive and incremental hardware
synthesis from SCCharts. The main subject, namely the transformation of SCGs into
circuits (5) is described in Section 4.2.3. As all transformations are integrated into
the KIELER compile chain, a brief introduction of SCCharts and of its interactive
incremental compilation using the currently possible transformations provided
by the KiCo will be given in Section 4.1. In this context different visualizations
of SCGs are introduced in Section 4.1.4. The circuit transformation will originate
from the sequentialized SCG adopting and expanding the incremental compilation
of KiCo.

Highlighting

SCG Metamodel

SCG Sequentialized
SCG

SSA SCG

KIELER Compiler

Circuit

Circuit
Metamodel

Circuit KLighDSCG KLighD

SCCharts
Model

C Code

GCC

KIELER Execution Manager

SCCharts
Metamodel SCG	Guards

SSA SCG Simulator

SCG
KiVi

SCG
KiVi

1 2

3

4

5

6

7

Figure 4.1. Interactive Incremental Hardware Synthesis workflow overview

17

4. Interactive Incremental Hardware Synthesis

Figure 4.1 presents an overview of all necessary steps from 1 to 7 to realize
the transformation from SCCharts into circuits. The blue marked incremental
synthesis steps are those studied and implemented as part of this thesis, namely
steps 3 to 7. The overview shows how the hardware synthesis steps are integrated
into KIELER and how they depend on each other.

As shown, a meta-model for circuits was created (4). Subsection 4.2.2 gives a
closer look at this meta-model which serves as an abstraction of circuits. Based on
this meta-model, circuits are transformed and visualized as described in Section
4.2.3.

The transformation from sequentialized SCGs into circuits needs one interme-
diate step which is introduced in Section 4.2.3 (3). This step is a transformation
which uses Static Single Assignments (SSAs) to resolve data-flow dependencies
appearing in SCGs. Eventually, the actual transformation into circuits takes place
(5).

The visualization of the circuits is another model-to-model transformation and
is described in Section 4.2.3 (6).

To support the understanding of the dynamic behavior of circuits depending
on the corresponding SCG‘s behavior a simulation is proposed which also has
been implemented and is introduced in Section 4.2.5 (7).

4.1 Preliminaries

This chapter introduces language concepts and their impact on the incremental
hardware synthesis. Therefore, the incremental interactive approach of KiCo is
presented, as well as the integration of the circuit synthesis into this approach.

4.1.1 SCCharts

Synchronous Constructive Charts is a synchronous language introduced by
von Hanxleden et al. [vHDM+14] designed for safety-critical reactive systems.
Its visual syntax uses a Statecharts [Har87] notation borrowed from SyncCha-
rts [And96]. The SCCharts semantics is based on the SC MoC which follows a
synchronous approach providing determinism while being less restrictive than
SyncCharts. The execution of SCCharts uses a discrete tick function as abstraction
from time. In each tick, outputs are computed as reaction of inputs given to
the model. There are two sets of features which can be used when modeling
SCCharts.

1. Core SCCharts have all basic instructions for modeling state machines and
additionally fork/join concurrency.

18

4.1. Preliminaries

ABO
input output bool A
input output bool B
output bool O1
output bool O2

Init

WaitAB

WaitA DoneA
A / B = true; O1 = true

[-] HandleA

WaitB DoneB
B / O1 = true

[-] HandleB

GotAB
 / O1 = false; O2 = false / O1 = false; O2 = true

[-]

Figure 4.2. SCChart for ABO – the "Hello World!" of SCCharts illustrates concepts of core
SCCharts

2. Extended SCCharts extend the instruction set of Core SCCharts by syntactical
sugar which allows to improve readability by hiding complexity of the model. For
example they provide different types of aborts or transitions such as strong aborts,
weak aborts or conditional terminations. However, all these advanced instructions
can be expressed in and transformed into Core SCCharts.

ABO Example Figure 4.2 shows ABO, the "Hello World!" of SCCharts. ABO has
two boolean inputs A, B and two boolean outputs O1 and O2 as shown in the
declaration interface. The initial state Init is entered when the program starts
execution. In the same initial tick, the immediate transition to the state WaitAB is
taken and the outputs O and O2 are set to false. The system is now in the initial
states of the regions HandleA and HandleB namely WaitA and WaitB. Those regions
run concurrently. Now two different execution traces depicted in Figure 4.3 are
exemplarily given.

First trace: As the system is in the initial tick, the immediate transition in
HandleA triggers if A is set to true in this tick. Assuming this is the case and the
transition to the final state DoneA is taken, B and O1 are set to true. Since this is
the first tick, the non-immediate transition in HandleB is not triggered even if B
is set to true. In the second tick no input variables are set to true which means
the program remains in the states WaitB and DoneA. As soon as B is set to true the
transition to DoneB triggers and O1 is set to true. In the same tick but sequentially
afterwards, the termination transition changes O1 to false and O2 to true.

Second trace: Here the system is not in the initial tick but in any other tick of
the execution. The system is in the states WaitA and WaitB. If now A is set to true
and the effect of the transition to DoneA sets O1 and B to true, which triggers the
transition to DoneB, the program terminates in this tick setting O1 back to false
and O2 to true.

19

4. Interactive Incremental Hardware Synthesis

A

B
O1

B

B
O2

. . .
A
B

B
O2

. . .

Figure 4.3. Two ABO traces

ABO illustrates concurrency and sequential overwriting of variables which
is allowed according to the synchronous constructive execution semantics of
SCCharts as long as a determinate scheduling exists. The sequential access to B as
described above has to be guaranteed since HandleA and HandleB run concurrently
and B could be read from before set to true as an effect of the transition in HandleA.

4.1.2 Sequential Constructiveness

The ABO example shows that concurrent reads and writes to shared variables
and consequently possible race conditions lead to problems. Those problems are
handled deterministically by the SC MoC. The SC MoC proposes a protocol which
controls concurrent accesses to variables, the initialize-update-read protocol. This
protocol is introduced by von Hanxleden et al. [vHMA+14].

4.1.3 Interactive Incremental Compilation of SCCharts

The interactive incremental compilation [MSvH14] offers enhanced opportunities
regarding the control over the compilation by choosing the compilation strategy
and observing intermediate results. Figure 4.4 shows the interactive incremental
based user story for the KIELER SCCharts tool which exhibits the ideas around
interactive incremental compilation. Its key is the Interactive Compilation Control
depicting the KiCo compilation chain at the bottom of Figure 4.4.

(1) The user may create SCCharts by describing the system to be modeled in
the SCCharts Textual Language (SCT). SCT is the textual format of SCCharts. The
editor view for SCT is on the left side of Figure 4.4. The SCChart as graphical
diagram is automatically synthesized and shown, based on the SCT program. The
visualization of the SCChart is located on the left side of the middle view.

(2) Since the SCCharts tool provides the compilation chain, the user may
choose from various features the one of particular interest.

(3) The transformed model is depicted on the right side of the middle view.
Hereby, the user may compare the original SCChart with the visualization of
the model transformation chosen by the user. Any modification of the SCT is
immediately adopted from all visualized models.

20

4.1. Preliminaries

1. Edit SCT code

2. Select transformations

4. Adjust layout3. Inspect original + transformed SCChart

Textual Entry Visual Browsing
Layout
Control

Interactive Compilation
Control

Figure 4.4. Screen shot of KIELER SCCharts tool adopted from [MSvH14]. Annotations
for user story for interactive model-based compilation.

(4) On the right side of Figure 4.4 layout options for the depicted models
are listed. The user may choose different kinds of options to adjust the model
visualization for their purposes.

Single-Pass Language-Driven Incremental Compilation

The incremental model-based compilation strategy [MSvH14] is based on a set
of model-to-model transformations. These transformations originate in a source

21

4. Interactive Incremental Hardware Synthesis

model and are consecutively constructed culminating in some target. The essential
properties of SLIC are as follows.

Single-pass means that every transformation is only performed once.
Since each transformation step depends on the former compiled transforma-

tion it can be considered as increment of the compilation.
The language features and their transformations determine the order in which

the transformations are applied. This is the language-driven approach.
All intermediate results of the transformations can be expected as stand-

alone models which the user may inspect.

4.1.4 The Sequentially Constructive Graph

The Sequentially Constructive Graph (SCG) is used as an alternative representation
for core SCCharts to ease down-stream compilation and to support understanding
the incremental interactive compilation steps. The SCG is created as a model-to-
model transformation from normalized Core SCCharts. It is a set of statement
nodes and control-flow edges. The node types are entry and exit, assignments,
conditionals, forks/joins and surfaces/depths which delimit tick boundaries. The edge
types are flow edges, dependency edges and pause edges. Figure 4.5 shows how
core SCChart elements are mapped to SCG components. It further shows how SCG

components are translated into hardware.
The SCG comes with several different representation options and further

model-to-model transformations some of which are displayed in the following.
All options provide different informations. Nevertheless, it is possible to draw
the SCG without these options.

SCG Dependency Representation

The SCG provides means to illustrate the different types of dependencies regarding
concurrent access to shared variables. Those dependencies are:

Ź write - write dependencies,

Ź absolute write - relative write dependency,

Ź write - read dependency and

Ź realtive write - read dependency.

Those dependency representations are useful for analyzing, e. g., causality and
schedulability problems.

22

4.1. Preliminaries

Figure 4.5. Mapping of core SCCharts elements into SCG elements and hardware. Adopted
from [MSvH14]

SCG Basic Block and Guard Visualization

Basic Blocks (BBs) qualify parts of the SCG in which the control-flow does not
branch or join different branches. That means a BB can be executed as single block
without rescheduling. The most conservative way of splitting the SCG up into BBs

is to qualify each node as BB. However, in SCGs as many nodes as possible are
summarized in one BB while any node must not occur in two different BBs.

Every BB has a guard which determines if its BB is either active or inactive
in the current tick. A BB is active if the dependencies to previous BBs or data
dependencies expressed in its guard are evaluated to true. Figure 4.6 depicts the
SCG for ABO wit BBs and guards.

If the result of the dependency analysis and the BB analysis as described by
Smyth [Smy13] is that the program contains no cyclic dependencies the transfor-
mation into sequentialized SCGs is possible since no causality problems exist. A
sequentialized SCG has no concurrency and the control-flow is executed in each
tick in due consideration of the BB dependencies and the current state of the
program.

All considerations regarding dependencies and scheduling have been taken
into account resulting in the sequentialized SCG. For that reason the circuit

23

4. Interactive Incremental Hardware Synthesis

transformation will be built on sequentialized SCGs. Additionally, sequentialized
SCGs only consist of conditional and assignment nodes which simplifies the
transformation into circuits.

entry

A
true

g1 (g0)
_GO

B = true

O1 = true

exit

g2
_GO && A || g4 && A

surface

g3
_GO && !A || g4 && !A

depth

A
true

g4
pre(g3)

HandleA - Potentially instantaneous entry

g5 (g0)
_GO

surface

g6
g7b && !B || _GO

depth

g7
pre(g6)

B
true

g7b
g7

O1 = true

exit

g8
g7b && B

HandleB - Delayed

entry

O1 = false

O2 = false

fork

g0
_GO

join

O1 = false

O2 = true

g9
(g2_e1 || g2) && (g8_e2 || g8) && (g2 || g8)

surface

g10
g11 || g9

depth

g11
pre(g10)

exit

g12
<null>

Figure 4.6. SCG for ABO with Basic Blocks and guards

24

4.1. Preliminaries

Sequential SCG

entry

g0 = _GO

g0

O1 = false

O2 = false

g4 = pre(g3)

g2 = _GO && A || g4 && A

g2

B = true

O1 = true

g3 = _GO && !A || g4 && !A

g7 = pre(g6)

g7b = g7

g6 = g7b && !B || _GO

g8 = g7b && B

g8

O1 = true

g2_e1 = !g3

g8_e2 = !g6

g9 = (g2_e1 || g2) && (g8_e2 || g8) && (g2 || g8)

g9

O1 = false

O2 = true

g11 = pre(g10)

g10 = g11 || g9

exit

true

true

true

true

Figure 4.7. Sequential SCG for ABO

The set of assignment nodes is composed by assignment nodes carried over from
the SCG and new assignment nodes representing the guards and dependency
expressions of the BBs.

Each time a BB in the SCG contains an assignment, the transformation into
sequentialized SCGs invokes the creation of a conditional node containing the
BB‘s guard as expression. This conditional node is subsequently used in the
sequentialized SCG. Figure 4.7 shows the sequentialized SCG for ABO.

25

4. Interactive Incremental Hardware Synthesis

Textual Entry (1)
Visual C

ircuit B
row

sing
(3c)

Visual SC
C

hartB
row

sing
(3a)

Visual SC
G

 B
row

sing
(3b)

C
om

pilation C
ontrol (2)

Sim
ulation Execution (4)

Sim
ulation

O
bserver &

C

ontrol
(5)

Figure
4.8.

Screenshot
of

K
IELER

SC
C

harts
tool

annotated
w

ith
high-level

u
ser

story
for

increm
ental

interactive
m

od
el-based

hardw
are

synthesis

26

4.2. Hardware Synthesis

4.2 Hardware Synthesis

Starting with step number 4 as depicted in Figure 4.1, the hardware synthesis is
conceptually explained in the following. This chapter will provide all information
leading to the visualization of circuits representing the same logical behavior as
the corresponding sequentialized SCG. At first, the user story of Section 4.1.3 is
expanded and the new features are explained. Hereafter, the subsequent sections
describe each step leading to the final result.

4.2.1 Userstory for Incremental Interactive Hardware Synthesis

The incremental interactive model-based compilation approach introduced by
Motika, Smyth and von Hanxleden [MSvH14] is a strategy for the realization of
the abstract compilation concepts exemplified by the KIELER SCCharts compilation.
Referring to the user story given by Motika, Smyth and von Hanxleden [MSvH14]
the new incremental transformation for hardware synthesis and interactive will
be introduced in the following. Consider the extended user story depicted in
Figure 4.8:

(1): The textual entry window serves the user as editor for the model. The textual
representation of a model is written in SCT. In this case AO is shown. It
remains in the initial state until the boolean input A is set to true to emit a
boolean output O and then terminate.

(2): The interactive compilation control window allows the user to select different
model-to-model transformations. Those transformations incrementally de-
pend on each other. The new feature group Circuit contains the interactive
incremental hardware synthesis introduced in this thesis.

(3): The visual browsing windows let the user see the result of the transforma-
tions selected in step (2). The depicted visualizations correspond to the SCT

program (1). (3a) is the visualization of the modeled SCChart , (3b) shows a
SSA SCG and (3c) shows the hardware circuit. (3b) and (3c) are the visualized
results of the transformations which will be introduced in the following sec-
tions. If the user decides to modify their model written in (1), all active visual
browsing windows will accordingly adjust their transformation visualization.

(4): In the simulation execution window the user may add components to simulate
the program in the in (2) selected transformation. If the simulation is started,
in each tick the active components of the visualized model will be highlighted.
This improves the dynamic comprehensibility of the circuit.

27

4. Interactive Incremental Hardware Synthesis

(5): During the run of a simulation the user may set input variables and thus
observe the reaction of the system for different kind of situations.

Hardware Synthesis from SCCharts

Johannsen [Joh13] studied and implemented the synthesis of VHDL code from
SCCharts and visualizes circuits with the help of the ISE. The new approach here is
to integrate the visualization directly into the compile chain to maintain the incre-
mental interactive usage. An intermediate step which transforms sequentialized
SCGs into SSA SCGs is implemented and also available as model-to-model transfor-
mation in the compile chain. Hence, the new approach extends Johannsen’s work
and gives improvements by adopting the incremental interactive compilation
approach.

Table 4.1. Comparing the predecessor SCL2VHDL [Joh13] with the introduced circuit
tranformation

SCL2VHDL

Project
SCG2Circuit
Project

VHDL/circuits from SCCharts + +
VHDL/circuits from SCGs/SCL + +
Visualize circuits + +
Directly program FPGAs + +/-
Open source / no license needed - +
Seamless tool-chain - +
Circuits visible while modeling - +
Simulation visualization - +
Side-by-side co-simulation - +
Understanding circuits - +
Element tracing: SCChart Ø circuit - +
Reuse SSA representation - +

Table 4.1 compares both projects. Both projects deal with the hardware synthe-
sis from SCCharts and hence a transformation from SCCharts into circuits exist in
both projects. Since SCGs and their textual representation, e. g., the Sequentially
Constructive Language (SCL), are transformed from SCCharts, a circuit transfor-
mation s in both cases and the circuits may be visualized. While Johannsen uses
the external ISE tool, the new approach visualizes the circuits directly in KIELER.
The latter enables a seamless tool-chain and the circuit is visible while modeling.
Further, the interactive incremental approach makes the circuit immediately adopt

28

4.2. Hardware Synthesis

every change of the model. The VHDL transformation in Johannsen’s hardware
synthesis requires an intermediate step by loading the program in ISE to visualize
the circuit. Hence, changes to the original model are not immediately adopted.
Furthermore, ISE allows to load the program on FPGAs. In the new approach no
VHDL transformation exists at time of writing. This transformation is a desired
step which ought to be implemented to tie in with Johannsen’s approach. Since
the new circuit transformation is integrated in KIELER, the KIELER infrastructure
may be used for simulation of the circuits and co-simulation of circuits and other
models. The incremental compilation helps to understand circuits by depicting
each intermediate feature the circuit transformation builds up on. Particularly the
SSA SCG transformation is investigatable by the user as it is an intermediate step
in the KiCo compiler chain.

4.2.2 Circuit Meta-Model

Step 4 in Figure 4.1 depicts the creation of a meta-model by means of which
circuits may be represented. This chapter introduces the resulting requirements
as well as limitations concerning the meta-model. The resulting meta-model will
strongly be based on the KAOM meta-model [MSF+11].

Requirements

The overriding objective was to create a meta-model appropriate for the repre-
sentation of circuits. However, with regard to future work and usage of this
meta-model, its highly generic design suggested itself.

Generally speaking, circuits are composed of wires, different kinds of logical
gates, which include the arithmetical unit, and memory units. Wires are used to
connect those gates or memory units with each other forwarding signal informa-
tions. Moreover circuits react to input signals given by the environment. Those
signals will be processed within the circuit and output signals addressing the
environment are emitted.

Hence, the meta-model should provide means to depict input and output
signals as well as logical gates, memory units and wires. Furthermore, means to
describe which parts of the circuit are connected by wires should be provided.
Furthermore, each wire should have a unique source and a unique target. This
restriction serves to keep the meta-model simple to prevent hyperedge usage.

As known from, e. g., Arithmetic Logic Units (ALUs) in CPUs, it is desirable
to encapsulate some parts of circuits within blocks of the same. This is done to
enhance readability and for simplification. For that reason a hierarchical structure
of circuit components is supported by the meta-model.

29

4. Interactive Incremental Hardware Synthesis

Table 4.2. Circuit meta-model requirements and corresponding components and concepts
of the meta-model.

Requirement Meta-Model Component
Depiction of circuit contents Created
- Wire - Class Link
- Gate - Class Actor
- Entry/Exit ports - Class Port
Hierarchical Structure Nested actors, containment dependencies
Make annotations possible Abstract class NamedObject
Linking constraints Abstract class Linkable
Reusability Unspecified design

- only three classes
- no enumerations

Since the meta-model may potentially be reused in future projects with other
subjects than circuits, the meta-model should be generic and provide means to
model any kind of flow diagram. Furthermore, within all parts of the meta-model
annotations give the opportunity to attach additional generic information. Table
4.2 summarizes all meta-model requirements.

Actor

type : EString

Port

type : EString

Link

Linkable

NamedObject
(from annotations)

name : EString

innerActors

0..*

innerLinks 0..*

ports
0..*

incomingLinks0..*

outgoingLinks0..*

Figure 4.9. Circuit meta-model

30

4.2. Hardware Synthesis

Circuit Meta-Model

The meta-model as presented in Figure 4.9 meets all requested requirements.
The abstract class Linkable declares which object classes may be connected by

links. In this case linkable objects are of class Actor and Port. The Actor class may
be used for the depiction of logical gates and memory units, such as Registers or
FlipFlops. The hierarchical structure is achieved through innerActors as possible
containment of an actor object. The Port class objects serve as connection points
between links and actors. Nevertheless, their usage is optional since actors
themselves are linkable. While all linkable objects can have several incoming and
outgoing links, an object of class Link itself has at most one source and one target
linkable object.

Due to the objective of an utmost generic design, no enumerations for, e. g.,
gate types have been implemented. To differentiate between types of actors or
ports, it is possible to assign an ID as type. Additionally, all three implemented
classes inherit from the abstract class NamedObject to assign a name to each object.
Moreover, the use of this class provides the opportunity to assign annotations to
objects.

4.2.3 Circuit Transient View for SCGs

The circuit transient view serves to improve the understandability of SCGs on
hardware level. It models the SCG’s program logic and can therefore be used for
optimization issues. As the transformation takes place after sequentialized SCGs

have been generated, all improvements, informations and optimizations of former
transformation steps in the interactive compile chain are integrated into the circuit
transformation step.

SSA SCG Transformation

After creating the meta-model, a transformation from sequentialized SCGs into
circuits seems already possible by applying the mapping of Figure 4.5. But a
closer look at the Sequentially Constructive Graphs (SCGs) to be transformed
reveals data-flow problems. Those problems emerge if multiple assignments to
one variable occur within one program. The main difficulty is to decide, which
of the multiple assignments is the one to be used subsequently. As described by
Johannsen [Joh13] SSAs are used to identify and resolve these data-flow problems.

Static Single Assignments As defined by Alpern, Cytron, Ferrante, Rosen,
Wegman and Zadeck [AWZ88, CFR+91, RWZ88] a program is in SSA form, if each

31

4. Interactive Incremental Hardware Synthesis

1 x = 0;

2 y = 4;

3 x = y + 1;

1 x_0 = 0;

2 y_0 = 4;

3 x_1 = y_0 + 1;

Listing 4.1. Transformation of assignments in simple program code into Static Single
Assignments

1 y = 0;

2 if(C) { y = 4; }

3 else { y = 9; }

4 z = y;

1 y_0 = 0

2 if(C) { y_1 = 4; }

3 else { y_2 = 9; }

4 z_0 = phi(y_1, y_2);

Listing 4.2. A φ-function identifies the version of a variable to be assigned subsequently

variable is target of exactly one assignment in the program text. SSAs are used
for program optimization such as redundancy analysis, detection of equality of
variables or numeration of global variables.

Listing 4.1 illustrates the SSA form for a simple example in pseudo-code. Each
variable V gets a new version number V_i for every new assignment targeting this
variable, e. g., the variable is written to. Thus, every variable has a unique name
and is only once targeted by an assignment. If a variable is used as part of an
assignment, its latest version is used instead of the variable itself as shown in the
third line of Listing 4.1.

In cases of multiple control-flow branches, such as invoked by if-then-else

statements, a φ-function is used to determine which version of a variable should
be assigned subsequently. As shown in Listing 4.2, the assignment to z_0 depends
on the result of the φ-function. If condition C it true y_1 is assigned to z_0.
Otherwise, y_2 is assigned to z_0. This behavior emphasizes that the return
value of the φ-function depends on the same condition as the decision which
branch of an if-then-else statement is executed. Since the condition can either
be evaluated to true or to false only one of the alternative execution branches is
operated. Hence, an optimization for reducing the number of variables is possible.
This optimization is illustrated in the Control Flow Graphs (CFGs) in Figure 4.10.
Rather than using two different variables y_1 and y_2, both execution branches
assign to the same variable. That implies the assignment to z_0 is now y_1 instead
of a φ-function as it was before optimization. Notice that now there are two
assignments to y_1 but only one of them will be executed before y_1 is read.

32

4.2. Hardware Synthesis

y_0 = 0

C

y_1 = 4y_2 = 9

y_3 = 𝜙(y_1, y_2)

truefalse

z_0 = y_3

y_0 = 0

C

y_1 = 4y_2 = 9

truefalse

C

z_0 = y_3

y_3 = y_1y_3 = y_2

truefalse

y_0 = 0

C

y_1 = 4y_1 = 9

truefalse

z_0 = y_1

Figure 4.10. φ-function used for optimization in CFGs

Optimized SSA SCG

Preparative for the circuit transformation, one intermediate transformation of
sequentialized Sequentially Constructive Graphs into SSA SCGs has been developed.
In this step each relevant variable is replaced by its own SSAs and the φ-function
is optimized as described above.

As mentioned in Section 4.1.4 the sequentialized SCG only consists of assign-
ment and conditional nodes. More complex program constructs such as loops
or goto statements are not taken into consideration for the transformation of
sequentialized SCGs into SSA form.

Furthermore, not every variable occurring in the sequentialized SCG is relevant
for the transformation. Merely, variables addressed by multiple assignments
need to be transformed and are therefore relevant. In case of SCGs this means
that output variables and input output variables are relevant. Since assignments
to relevant variables in sequentialized SCGs always depend on a condition, the
interesting parts for the transformation are the conditional nodes and their alter-
native branches. Conditional nodes in sequentialized SCGs have no assignment
nodes on their else-branches. This means the SSA optimization step creates new
assignment nodes which are positioned on the else-branch in the same sequential
order as the associated assignments on the then-branch.

These new assignment nodes consist of an expression on the right side and a
target of this expression on the left side. The target variable is named after the
variable which is addressed by an assignment on the then-branch. Additionally, it
gets a version number. This number is the highest version of the corresponding
variable addressed by an assignment at this point of the execution. If the original
variable on the then-branch was, e. g., named V, the variable on the then-branch

33

4. Interactive Incremental Hardware Synthesis

might be V_3 if this is the third time V is written to. This step highly simplifies the
transformation into circuits. It is illustrated in Figure 4.12 for a simple program
which emits a boolean output variable O when started. The original SCChart is
depicted in Figure 4.11.

As there are two different kinds of relevant variables an important distinction
needs to be made:

Input output variables are set at the beginning of each tick. They may be addressed
by different assignments several times during a tick. The value of the last
assignment within one tick will be emitted as output to the environment at
the end of this tick. Hence, it is not necessary to store the output value of the
variable as input for the next tick. In the optimization step of the SSA with the
lowest version number the assignment node on the else-branch assigns the
input output variable itself.

Output variables on the contrary get no input from the environment. Their output
value for each tick has to be stored in a register as input for the next tick. This

shoutO
output bool O = false

Init Done
 / O = true

[-]

Figure 4.11. SCCharts model for a program which simply sets an output O to true in the
first non–immediate tick.

Figure 4.12. Transformation of sequentialized SCG into SSA SCG for an output variable O.

34

4.2. Hardware Synthesis

Input 1

Input n

Output 1

Output m

Initialization
Region

Program Logic
Region

Environment

Reactive Circuit

Figure 4.13. Organization of the circuit and its regions in the context of the controlled
environment

is expressed by means of pre declarations. As shown in Figure 4.12 the lowest
SSA version of output variable O is target of the assignment of pre(O). This
pre(O) value is the output value of O from the preceding tick. Moreover a
pre(V) declaration for an output variable V is not transformed into SSAs since
it is no new assignment to V but rather a storage container for the value of V.

Additionally, if an SSA variable is subsequently used on the right side of an
assignment, this variable has to be replaced by the latest version of itself but no
new version of this varibale is created. This assures that the right value is used.

Circuit Transformation

Step 5 in Figure 4.1 describes the circuit transformation. The circuit’s structure
is depicted in Figure 4.13. Transformed circuits are divided into two parts. The
first part, the Initialization Region, provides the reset and tick logic and serves
as initialization of the circuit. The second part, the Program Logic Region, is the
translation of the information given by the SSA SCG and represents the program’s
logic. As the circuits are synthesized from SCCharts and therefore from a
model of a reactive system, they are meant to be embedded in some kind of
environment. This means, inputs from the environment are read and outputs
for the environment are computed. Input variables and output variables as well
as input output variables may appear in SCCharts. For each input variable and
each input output variable one input port needs to be created. Likewise one
output port is created for each output variable or input output variable. All local
variables do not interact with the environment and therefore no ports are created
for them.

35

4. Interactive Incremental Hardware Synthesis

Circuit Visualization

In order to visualize the circuits, for each kind of logic operation one logic gate is
drawn as shown in Table 4.3. This small set of logic gates with additional wires is
sufficient to create circuits for complex programs. The register’s tick input gate is
marked with a small triangle. Its reset input port is found at the bottom of the
register. The number of input ports for OR and AND gates is not limited whereas
NOT gates have only one input to be inverted. The implemented MUX have two
input ports and one selection port at their bottom. The input port selected if the
condition at the selection port evaluates to true is marked with a small 1. Links or
wires are depicted as lines connected to ports.

To improve the readability of circuits, for each assignment node and its
expression the circuit is divided into regions marked with red lines which contain
the logic gates of the operation expressions.

Table 4.3. Visualization of logic gates

Register OR-Gate AND-Gate NOT-Gate MUX

Registers Registers are used to save values of variables within a circuit. This is
necessary since the value of a simple wire may change within one tick whereas
the output of a register is constant and may only change if a tick signal emerges.
A register as depicted in Table 4.3 has three entry and one output port. The wire
which holds the value to be saved in the register is applied to the first entry port.
The tick signal is applied to the second port. Each time a rising edge from the
tick signal emerges, the value applied to the first port is applied to the output
port. The third entry port is the reset port. Each time the tick signal emerges and
the reset signal is set, the register is reset. Registers marked with FF are sample
registers. Those registers can not be reset.

In the course of the circuit transformation three different kinds of registers are
created.

1. In the circuit initialization region, one register for each input variable and
for each input output variable is created to ensure that input signals have a
constant value throughout a tick.

36

4.2. Hardware Synthesis

2. For each pre declaration, a register in the program logic region is created. All
Surface/Depth node constructs in SCGs result in such pre declarations. These
declarations are used to symbolize that the stored system’s state from the
former tick is used.

3. The SSA SCG transformation needs a pre declaration for every output variable
to save values for the next tick as pointed out in Section 4.2.3. Thus, a register
in the program logic region is created for each of such pre declaration.

Circuit Initialization Region

The circuit initialization region enhances the circuit with those elements not
necessarily needed to model the program’s logic in hardware. It rather provides
the circuit with means which guarantee the circuit to be in a stable state in each
tick and particularly when reset. In words, even if the reset signal is present for
more than one tick and one or more input signals alternate, the circuit’s state and
its output signals must not change.

In a simpler variant, as pointed out by Johannsen [Joh13], the computation
of the circuit starts in the same tick as the tick the reset signal is present. That
means the reset signal is equatable with the _GO signal. In this variant the input
registers have no reset entry since their input signals need to be present in the
reset tick. Thus, if the reset signal is present for more than one tick and an input
signal alternates, this method incurs the disadvantage of changing output signals
for each reset tick computed as the first tick.

To avoid this behavior the reset tick is separated from the start of computation.
The _GO signal needs to be present one tick after the last tick the reset signal was
present. Figure 4.14 depicts the reset logic in the initialization region of the AO
program. The desired behavior is achieved by the following steps:

1. Add reset entries to the input registers. Since computation is meant to start
one tick after the last tick the reset signal was present, alternating signals are
not taken into account before start of computation.

2. Create a register to store the reset signal. This register has no reset entry for
reset purpose but the reset signal as input to store. Each time the tick signal is
present the output of this register tells if the reset signal is present.

3. Create a register to emit the _GO signal. This register will be placed behind the
reset register. Thus, the output of the reset register is applied to this register as
soon as no reset signal is present. The presence of the _GO signal is caused by
the delay of the upstreamed reset register. If this is the first tick the reset signal
is absent. At the beginning of this initial tick each register applies its input to

37

4. Interactive Incremental Hardware Synthesis

Figure 4.14. AO reset logic

its output. The _GO register and the reset register do that simultaneously. Since
the reset signal was present in the last tick, the output of the reset register is
still a present signal at the start of this tick. This present signal is the input of
the _GO register and is applied to the _GO registers output. Thus, the _GO signal
is emitted. The reaction computation starts.

4. To guarantee a stable state of the circuit, all pre registers need to be reset during
the initial tick. Therefore the reset register’s output and the reset signal are
considered and put together in a logic or gate whose output is applied to the
reset entries of all pre registers.

Figure 4.15 shows the signal curve for the described reset logic. The pre

registers remain reset until they set their outputs in the second tick one tick after
the _GO signal is set.

Program Logic Region

After the initialization region of the circuit has all necessary content the second
region, the Program Logic Region as seen in Figure 4.13 needs to get its content. The
content for this region is the complete circuit transformed from the beforehand

38

4.2. Hardware Synthesis

Tick

Reset

Reset_local

Reset_pre

_GO

Tick 1 Tick 2 Tick 3

pre register
behaviour undefined defined

Reset Reset Reset

Figure 4.15. Signal curve of reset logic

created SSA SCGs. Since this SCG only consists of assignment nodes and conditional
nodes a transformation of both components is exemplarily shown in the following.

g3 = g2 || O_1

guard to be assigned disjunction operator

guards/variables intertwined by logic
operator

(a) Assignment node

g3
g2
O_1

(b) Hardware
translation for
assignment node

Figure 4.16. Hardware synthesis for assignment nodes

Assignment Nodes consist of a right and a left side. On the left side is the
variable or guard addressed by the assignment. On the right side is the expression
of the assignment. In Figure 4.16a the expression g2 || O_1 is to be assigned
to the guard g3. In this case the circuit transformation creates a new OR gate
called g3. It has two inputs namely g2 and O_1. Its output is g3 as expressed the
assignment node. In this case the variable O_1 could be a SSA variable former
known as O but changed to O_1 in the SSA SCG transformation step.

In this example the operation is a disjunction. For other operations such as
negation or conjunction, other associated gates are created. Figure 4.16b shows
the corresponding hardware gate to the example assignment. If an expression on
the right side of an assignment consists of more than one operation other gates
need to be created and connected to each other according to those expressions.
Particularly one input port for each for each subexpression is created and the

39

4. Interactive Incremental Hardware Synthesis

subexpression itself invokes the creation of a new logic gate whose output is used
as input for the gate created for the assignment.

g3

O_2 = trueO_2 = O_1

truefalse

conditional node
with condition g3

SSA variable as
target of the
assignment

assignment
value for true or
false case of
condition

(a) Conditional node

g3

O_2
vcc

O_1

(b) Hardware
translation for
conditional node

Figure 4.17. Hardware synthesis for conditional nodes

Conditional Nodes as shown in Figure 4.17a split the control-flow into two
branches. The control-flow will follow only one of both branches which de-
pends on the condition. If g3 is present the condition evaluates to true and the
then-branch is taken. Otherwise, if the condition evaluates to false the else-branch

is taken. In the circuit transformation for each assignment node affected by a
condition a Multiplexer (MUX) is created. It has two entries. One entry for the
expression of the true case and one entry for the expression of the false case.
Additionally, the MUX has one selection entry. This entry determines which of the
incoming signals is applied to the MUX’s output.

The MUX O_1 created according to the example applies g3 to the selection
entry and a constant one to the entry which is to be applied to the output if g3 is
present. The output of an other MUX namely O_1 is connected to the entry which
is applied to the output if the condition evaluates to false. The hardware synthesis
for this example is shown in Figure 4.17b.

4.2.4 Complete Transformation Example with AO

This section aims to illustrate the introduced transformations by means of an
example. The AO program as depicted in Figure 4.18 has an input variable A

40

4.2. Hardware Synthesis

and an output variable O. The program remains in the initial state Init until the
input A is set to true. In this case the immediate transition to the final state Done

is triggered and as a effect the output O is set to true. Since the transition is an
immediate transition the program may terminate in the initial tick, if A is true.

Figure 4.19 shows the SCG and the SSA SCG for AO which has been introduced
in Section 4.2.1. Finally Figure 4.20 shows the transformed circuit. In this
view the tick wires are omitted for clarity. The initialization region on the left
and the logic region on the right are expanded. The sequentialized SCG is not
optimized regarding minimization of expressions. This is observable, e. g., at
assignment node g1 = g3 && A || _GO && A. The sequentialized SCG does not use
the minimal expression (g3 || _GO) && A. Since the circuits are transformed from
sequentialized SCGs, they are as well not minimized.

AO
input bool A
output bool O = false

Init Done
A / O = true

[-]

Figure 4.18. AO SCChart

entry

exit

A

O = false

O = truesurface

depth

A
truetrue

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

Figure 4.19. Left: AO SCG, Right: AO SSA SCG

41

4. Interactive Incremental Hardware Synthesis

gnd
0

1

O_1pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

FF

Reset_local _GO

Reset_pre

A

Reset_pre

_GO

A
A

Reset

Tick

Circuit Initialization

Input A
A

Output O
O

AO

Figure 4.20. AO Circuit

4.2.5 Simulation

For reasons of comprehensibility and traceability, a simulation for the behavior
of the transformed circuits was developed and implemented. This simulation
corresponds with the simulation of the sequentialized SCG which already existed.
In each tick the active guards are highlighted. Since assignments with guards and
their expressions were translated into circuit components as described above, the
corresponding logic gates can easily be highlighted in the circuit view. Thus, the
understandability of how the program reacts to certain inputs is improved.

Figure 4.21 shows the highlighting of the simulation for the AO program. On
the left hand side a sequentialized SCG is depicted. The program is not in its initial
tick, otherwise the assignment node g0 = _GO would be highlighted. Instead, g2
is highlighted since the input variable A is not true. g3 saves the true value of g2
for the next tick and is therefore also highlighted. As long as A remains false this
program state will not change. In the sequentialized SCG on the right hand side A

has finally been set to true. Since g3 saves the true value of g2 from the last tick,
g1 is now highlighted and set to true. Hence, the conditional node g1 evaluates to
true and the output O is set to true.

Figure 4.22 shows the same tick as the right SSA SCG in Figure 4.21. The

42

4.2. Hardware Synthesis

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = _GO && A || g3 && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = g3 && !A || _GO && !A

exit

O_1 = pre(O)

O = O_1
true

true

Figure 4.21. Simulation visualization of AO SSA SCG. Active guards and their assignment
nodes are highlighted. Left: Non initial tick and the boolean input A is not set to true.
Right: One tick later A is set to true.

gnd
0

1

O_1pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

FF

Reset_local _GO

Reset_pre

A

Reset_pre

_GO

A
A

Reset

Tick

Circuit Initialization

Input A
A

Output O
O

AO

Figure 4.22. Simulation visualization of AO circuit. The to the SSA SCG corresponding
logic gates are highlighted. In this tick A has been set to true.

orange color is reserved for signals which change from 0 to 1. As shown, the
circuit behaves as desired and the input A set to true implies the output O to be
true. Green highlighted wires mark that a MUX applies the value from its input

43

4. Interactive Incremental Hardware Synthesis

port 1 to its output. That means, the selection port input was true. Hence, the
corresponding conditional node in the sequentialized SCG was evaluated to true.
Notice that a green highlighted wire does not necessarily imply a true signal or
voltage on the wire.

4.2.6 Complete ABRO Example

To exemplify the circuit transformation and its simulation working for more
complex programs than AO, the ABRO example is fully transformed into a circuit
and simulated. Figure 4.23 shows ABRO, the "Hello World!" of SyncCharts,
as SCCharts on the left side and its corresponding SSA SCG on the right side.
Figure 4.24 shows the program logic of the corresponding circuit. The initialization
region as well as all tick wires are omitted due to space limitations.

ABRO’s Behavior: The ABRO SCChart has three boolean inputs A, B and R and
one boolean output O as shown in the declaration interface. The initial state
ABthenO and the state WaitAandB as well as the initial states wA and wB are entered
when the program starts. The regions HandleA and HandleB run concurrently in
WaitAandB. Initially when state ABthenO is entered, the output O is set to false. This
happens each time this state is reentered. In region HandleA the program remains
in state wA until the input A is set to true. In that case it transitions to the final
state dA. Region HandleB provides the same behavior for input B. If both final
states are reached, the termination transition to the final state done is immediately
taken and O is set to true. However, if the reset signal R is present at a time during
execution the state ABthenO is preempted and the self strong preemptive transition
(red dot) is taken. ABthenO is reentered. This transition is taken even if in the
same tick the immediate transition to done would have been taken. O is reset to
false and the program reenters the initial states wA and wB.

44

4.2. Hardware Synthesis

entry

g0 = _GO

g5 = pre(g4)

g7 = g5 && !R

g6 = g5 && R || g7 && A

g10 = pre(g9)

g12 = g10 && !R

g11 = g12 && B || g10 && R

g6_e1 = !g5

g11_e2 = !g10

g13 = (g6_e1 || g6) && (g11_e2 || g11) && (g6 || g11)

g15 = g13 && !R

g15

O_1 = true

g14 = g13 && R || g15

g18 = pre(g17)

g19 = g18 && R

g14_e1 = !(g5 || g10)

g19_e2 = !g18

g20 = (g14_e1 || g14) && (g19_e2 || g19) && (g14 || g19)

g1 = g20 || _GO

g1

O = false

g4 = g1 || g7 && !A

g9 = g1 || g12 && !B

g17 = g18 && !R || g1

exit

O_1 = pre(O)

O = O_1

true

true

ABRO
input bool A, B, R
output bool O

ABthenO
entry / O = false

WaitAandB

wA dA
A

[-] HandleA

wB dB
B

[-] HandleB

done

 / O = true

[-]

R
[-] Main

Figure 4.23. ABRO – the "Hello World!" of synchronous programing. Left: ABRO SCChart.
Right: ABRO SSA SCG

45

4. Interactive Incremental Hardware Synthesis

g5

g5

g7

!R

g7

g6

(g5 && R)

(g7 && A)

g6

g10

g10

g12

g12
g11

(g10 && R)

(g12 && B)

g11

g11_e2

g11_e2

g6_e1

g6_e1

g13
(g6_e1 || g6)

(g11_e2 || g11)

(g6 || g11)

g13

g15

g15

vcc
1

1

O
_1

pre(O
)

g14
(g13 && R)

g14

g18

g18

g19

g19

g14_e1
(g5 || g10)

g14_e1

g19_e2

g19_e2

g20
(g14_e1 || g14)

(g19_e2 || g19)

(g14 || g19)

g20

g1

g1

gnd
0

1

O

g4
(g7 && !A)

!A

g4

g9
(g12 && !B)

!B

g9

g17
(g18 && !R)

g17

_G
O A BR

O

Tick

Reset_pre

Program
 Logic

Com
putation	of	O

Resets	O_1	to	false	if	_GO	or	R	is	present
And	resets	the	circuit:	g4	and	g9	turn	true

Signals	if	R	is	present

Signals	if	B	||	R		and	A	||	R	are	present

Handles	input	A	and	R
Handles	input	B	and	R

Figure
4.24.A

nnotated
A

BR
O

circuit.O
nly

program
logic

region
is

show
n.

46

Chapter 5

Implementation

To validate the proposed interactive incremental hardware synthesis approach, I
have implemented the corresponding SLIC transformations and the circuit diagram
synthesis in KIELER based on a set of Eclipse plug-ins. Figure 4.1 describes the
components and how they integrate into the KIELER project. The circuit meta-
model provides the basis for the circuit transformation and the visualization in
KLighD. A detailed description of the meta-model and its components can be
found in Section 4.2.2 and is not further discussed in this chapter.

All transformations are implemented using Xtend and are model-to-model
transformations. This means the transformed models have a source and a target
meta-model. If source and target meta-model are the same, the transformation is
called inplace [Mot09] transformation. The first introduced transformation from
sequentialized SCG into SSA SCG is such an inplace transformation.

5.1 Plug-in Overview

Table 5.1 gives an overview of the implemented classes and the containing plug-ins.
The circuit meta-model and all generated code for the classes and interfaces con-
tained in the meta-model are located in the de.cau.kieler.circuit plug-in. Since
the plug-ins de.cau.kieler.circuit.edit, de.cau.kieler.circuit.editor and as
well the plug-in de.cau.kieler.circuit.test have been automatically generated,
they are not part of this chapter.

The implemented transformations from sequentialized SCG into SSA SCG and
the circuit transformation are located in the de.cau.kieler.scg.circuit plug-in.
Both of which are part of the Circuit Feature Group in KiCo and are discussed in
Section 5.2. The transformation into SSA SCG is an inplace model transformation
since the SCG meta-model is target and source model of the transformation. The
circuit transformation whereas is a transformation from SCG meta-model in circuit
meta-model.

The de.cau.cs.kieler.circuit.klighd contains the visualization component
for circuits. In this plug-in the class CircuitDiagramSynthesis initiates the trans-
formation resulting in a KGraph model which is visualized. Section 5.3 covers

47

5. Implementation

Table 5.1. Overview of implemented plug-ins and functionalities

Plug-in Content Description

de.cau.kieler.circuit The Ecore file circuit.ecore contains the cir-
cuit meta-model.

All generated Java classes of the
model’s object are found in the
de.cau.cs.kieler.circuit package.

de.cau.cs.kieler.scg.circuit The class SeqSCG2SSA_SCGTransformation

transforms the sequentailized SCGs into SSA
form. (1)

The class SSA_SCG2CircuitTransformation

transforms the SSA SCGs into circuits. (2)

The class CircuitInitialization adds input
and output ports to the circuit and creates
reset logic and registers for the Initialization
Region.

The class LinkCreator adds all links to the
circuit’s regions.

de.cau.cs.kieler.circuit.klighd
(3)

The class CircuitDiagramSynthesis starts the
transformation of circuit meta-model ele-
ments into KGraph elements.

The class ActorSynthesis calls a synthesis for
a specified gate type depending on the actor
type which is to be transformed.

The interface IDrawableActor ensures all by
the ActroSynthesis called gate synthesis have
a method to actually draw the specified gate.

de.cau.cs.kieler.circuit.kivi (4) The class CircuitVisualizationDataComponent
is responsible for the highlighting of circuit
elements when the simulation is started.

this synthesis. The simulation is located in the de.cau.cs.kieler.circuit.kivi

plug-in. It is discussed in Section 5.4.

48

5.2. Circuit Feature Group Transformations

5.2 Circuit Feature Group Transformations

The SCG to SSA SCG transformation (1) as well as the SSA SCG to circuit transforma-
tion (2) are located in the de.cau.cs.kieler.scg.circuit plug-in. Both of them
are implemented as one-pass-transformations meaning only one iteration through
the source model is necessary for the complete transformation into their target
models.

5.2.1 SCG to SSA SCG Transformation

This intermediate transformation step (1) has been introduced in Section 4.2.3. It
is a model-to-model transformation from the SCG meta-model into the same. As
conceptually described for each new write to an output variable, a new version of
this variable is created and replaces the former target variable. Furthermore, all
subsequent references to this variable are replaced by its latest version. Figure 5.2.1
shows the assignment node and conditional node example shown in Figures 4.16a
and 4.17a as seen from the perspective of the implementation. This transformation
searches for the entry node and uses it as starting point. Since the input of the
transformation is a sequentialized SCG the entry node is unique. Beginning with
this entry node, the transformation follows the control-flow and calls either a
method to transform assignment nodes or a method to transform conditional
nodes and those nodes influenced by the conditional node. A sequentialized SCG

has only assignment and conditional nodes and one entry and one exit node.
Listing 5.2.1 shows the iteration through the SCG. Transformation methods are
called depending on the node type.

Before the transformation takes place in case of conditional nodes and the
subsequent forking control-flow, no assignment nodes on the else-branch exist.
Hence, for each assignment node on the then-branch a new assignment node on
the else-branch is created. Further on a new valued object is created. This valued
object has the name of the target variable of the assignment plus a version number.
The left side of Figure 5.2.1 depicts the described case. Before transformation the
else-branch pointed directly to the end of the fork and the assignment node of
the then-branch contained O = true. As O happens to have already been written
before the new version number is 2. If the condition is evaluated to false it
is desired to ensure that the older version, in this case O_1, is assigned to O_2.
Therefore the valued object reference to O_1 is assigned to O_2 as an expression. If
the then-branch itself contains a conditional node, the same procedure is called
recursively.

The right side of Figure 5.2.1 depicts the situation in which the left side
of the assignment node is not an output variable which has to be replaced.

49

5. Implementation

g3

O_2 = trueO_2 = O_1

truefalse

conditional node
with valued
object, named
g3, as condition

new valued
object, named
O_2, as target of
the assignment

expressions or valued
object references which
are assigned

g3 = g2 || O_2

valued object, named
g3 operator expression

valued object references to g2 and O_2

Figure 5.1. Conditional node (left) and assignment node (right) after SSA SCG transforma-
tion.

Comparatively, the expression on the right side of the assignment contains such
a variable. Before transformation, this assignment node contained g3 = g2 || O.
Since the input of this transformation is a sequentialized SCG, it simply follows
the control flow. Thus, the highest version of every SSA variable can be stored
and the former created valued object for this version is referenced if an output
variable emerges in an expression. Each time a new valued object is crated for the
same variable, it replaces the stored valued object associated with this variable.

5.2.2 SSA SCG to Circuit Transformation

In Section 4.2.3 the circuit transformation is introduced conceptually. This trans-
formation is a model-to-model transformation from the SCG meta-model into the
meta-model for circuits. Before the transformation of the SSA SCG takes place,
three actors are created:

1. One root actor as the complete circuit region containing all nodes for inputs
and outputs, 2. the circuit initialization region and 3. the program’s logic region.
The initialization region is filled with gates as described in Section 4.2.3. For the
transformation of the program’s logic, again, the entry node is searched and used
as a starting point. Similar to the SSA SCG transformation, this transformation
follows the control flow beginning with the identified entry node. Since the SSA

50

5.2. Circuit Feature Group Transformations

1 def void createSSAs(Node n, SCGraph scg) {

2 if (!(n instanceof Exit)) {

3 if (n instanceof Assignment) {

4 transformAssignmentNodes(n, scg)

5 createSSAs(n.next.target, scg)

6 } else if (n instanceof Conditional) {

7 val target = n.^else.target

8 transformConditionalNodes(n, n, n, n.^else.target, scg)

9 createSSAs(target, scg)

10 }

11 }

12 }

Listing 5.1. Extract from SeqSCG2SSA_SCGTransformation. Iteration through sequential-
ized SCG following the control-flow and calling transformation methods for assignment
and conditional nodes.

1 def void transformNodesToActors(Node n, Actor logic) {

2 if (!(n instanceof Exit)) {

3 if (n instanceof Assignment) {

4 transformAssignment(n, logic)

5 transformNodesToActors(n.next.target, logic)

6 } else if (n instanceof Conditional) {

7 transformNodesToActors(transformConditionalNodes(n,

8 n.then.target, n.^else.target, logic), logic)

9 }

10 }

11 }

Listing 5.2. Extract from SSASCG2CircuitTransformation. Iteration through SSA SCG
following the control-flow and calling transformation methods for assignment and condi-
tional nodes.

SCG contains the same node types as the sequentialized SCG, only assignment
and conditional nodes need to be distinguished. Listing 5.2.2 shows the iteration
through the SSA SCG. Depending on the node type, transformation methods are
called. After creating all gates and their ports they need to be connected via
links. For each region of the circuit the LinkCreator class is executed. This class
creates links in each region by connecting ports with equal names with each
other. Ports can have different types: "In", "Out", "InConnector" + nameOfRegion,
"OutConnector" + nameOfRegion. In each region different types of ports may be
connected as shown in Table 5.2. For all links, the connected ports must not be
contained by the same gate.

51

5. Implementation

5.3 KLighD Circuit Diagram Synthesis

For actually visualizing circuits yet another model-to-model transformation (3)
from the circuit meta-model into the KGraph meta-model is necessary. This
transformation extends the AbstractDiagramSynthesis provided by KLighD. With
this, a transform method needs to be overwritten. This method returns a KNode

as root object of the subsequently transformed KGraph model. Furthermore,
it presumes a root object of the source model which is to be synthesized. In
case of the circuit visualization this root object is an Actor object. Iterating
through the circuit, each Actor object is transformed into a KNode, each Link

object is transformed into a KEdge and each Port is transformed into a KPort. All
transformed objects are associated with their source circuit objects which is an
important step for further usage, such as in the simulation. Listing 5.3 shows the
synthesis for a NOT gate.

Each actor of the circuit has a type parameter. According to this parameter the
visualization transformation links all information of how the visual representation
shall look like to the KNode object which is associated to the actor. This is done by
classes for each circuit element type which hold the drawing informations. For
example one of this classes is AndActorSynthesis. This class holds the information
how a logic and gate is to be drawn in the circuit visualization. The method draw
is inherited from the interface IDrawableActor which has to be implemented by
each class used to depict a circuit element.

Table 5.2. Valid links between port types for each region.

Initialization Region "Out" – "In"

"InConnectorInit" – "In"

"Out" – "OutConnectorInit"

Program Logic Region "Out" – "In"

"InConnectorLogic" – "In"

"Out" – "OutConnectorLogic"

Reactive Circuit Region "Out" – "InConnectorInit"

"OutConnectorInit" – "InConnectorLogic"

"OutConnectorLogic" – "In"

52

5.4. Simulation Visualization

5.4 Simulation Visualization

The simulation (4) is implemented as DataComponent and integrated into KIEM.
As a DataComponent the circuit visualization class needs to supply at least the
following five methods:

1. initialize(): This method is called before the simulation begins. In the circuit
simulation, this phase is used to fill up several maps with data. Mainly, the
drawing information of actors are linked to the associated actor’s names. These
informations are later used to highlight the circuit components according to
the names of active guards. Those names are the same as the names of the
active gates or registers in the circuit.

Additionally, in this phase all wires of the circuit are grayed out since no wire
has any signal on it.

2. wrapup(): If the simulation is stopped by the user, this method is called. It

1 override draw(Actor actor) {

2 val KNode node = actor.node

3 node.setNodeSize(30, 30);

4 node.addRectangle => [

5 it .invisible = true

6 it .addPolygon => [

7 it .id = "highlightable"

8 it .lineWidth = 1

9 it .lineCap = LineCap.CAP_ROUND;

10 it .lineJoin = LineJoin.JOIN_ROUND;

11 it .background = "white".color;

12 it .selectionBackground = "gray".color;

13 it .addKPosition(LEFT, 0, 0, TOP, 1, 0)

14 it .addKPosition(RIGHT, 2, 0, TOP, 0, 0.5f)

15 it .addKPosition(LEFT, 0, 0, BOTTOM, 1, 0)

16];

17 it .addEllipse => [

18 it .id = "highlightable"

19 it .setBackground("white".color).lineWidth = 1;

20 it .setAreaPlacementData.from(LEFT, 24, 0, TOP, 12, 0)

21 .to(RIGHT, 0, 0, BOTTOM, 12, 0);

22]

23];

24 return node;

25 }

Listing 5.3. Extract from NotActorSynthesis.xtend. draw method for NOT gate.

53

5. Implementation

provides clean-up code which removes all kinds of highlighting from the circuit
visualization.

3. step(): After the simulation has started and the initialize method has finished,
the user may prompt as many steps as wanted. Each time a step is prompted,
this method is called. This method gets a JSONObject which holds the data
of which guards are to be highlighted in this step. Since the circuits are
transformed from SCCharts, each step can be assumed as a tick. Hence, the
simulation highlights the active gates according to the active guards in each tick.
Furthermore, all outgoing wires of active gates are highlighted and thereby
subsequently activated gates and wires are highlighted as well.

4. isProducer(): Since the circuit visualization produces no data for other Data-
Components, this predicate returns false.

5. isObserver(): This predicate returns true since the circuit DataComponent
observes data from the JSONObjectDataComponent.

54

Chapter 6

Evaluation

In this chapter the transformed circuits are analyzed for correct behavior. The
synthesized circuits are compared to circuits generated in former works. The
behavior is validated with means of the simulation. Furthermore, the scaling of
circuits depending on the number of nodes in sequentialized SCGs is evaluated.

6.1 Comparing ABO

As first validation method the ABO circuit extracted from Johannsen’s the-
sis [Joh13] was compared to the newly generated ABO circuit of this thesis.
Figures 6.2 and Figure 6.1 depict both circuits. In both figures, the inputs are
on the left side and the outputs are on the right side. Both circuits have been
generated from SCCharts. Whereby Johannsen worked with a former implemen-
tation of SCCharts. Furthermore, Johannsen used the Sequentially Constructive
Language (SCL) which is the textual representation of SCGs as basis for his transfor-
mation. The incremental interactive approach introduced in this thesis uses SCGs

as basis. The frames colored similarly represent the equivalent translated compo-
nents of the circuits. As shown, both circuits use several MUXs for computation of
the output values. The green marked areas depict the parallel running regions
of ABO. One of which depicts the thread waiting for A. The other one depicts
the thread waining for B. Their join is expressed as and-gate. The gray registers
in Figure 6.2 do not occur in Figure 6.1 since they have been implemented in
the CircuitInitialization region which is not depicted since it does not express any
program logic. The red marked register holds the _GO signal in both circuits.
Since Johannsen’s circuits are transformed from a former version of SCCharts a
few gates differ comparing the circuits. For example while Johannsen’s circuit has
only one MUX for B the newly generated circuit has two. That means one MUX for
each new assignment to B which can be compared to the SSA SCG. Additionally,
the new circuit has a logic which is activated in the case A is set to true, namely
the area g2. The area g3 describes the logic for the case A is not set to true. This
strict distinction and aggregation of gates in areas is an improvement compared
with Johannsen’s circuit.

55

6. Evaluation

vcc
1

1

B_1

gnd
0

1

O
1_1

pre(O
1)

gnd
0

1

O
2_1

pre(O
2)

g4

g4

g2

(g0 && A)

(g4 && A)

g2

vcc
1

1

B_2

vcc
1

1

O
1_2

g3

(g4 && !A)

!A

(g0 && !A)

g3

g7

g7

g6
(g7 && !B_2)

!B_2

g6

g8

g8

vcc
1

1

O
1_3

g2_e1

g2_e1

g8_e2

g8_e2

g9
(g2_e1 || g2)

(g8_e2 || g8)

(g2 || g8)

g9

gnd
0

1

O
1

vcc
1

1

O
2

g11

g11

g10

g10

_G
O A

A

B

BO
1

O
2

Tick

Reset_pre

Program
 Logic

Figure
6.1.The

A
BO

exam
ple

transform
ed

w
ith

the
introduced

transform
ation

56

6.2. Simulation of AO

or2

Reset_Reset_local_OR_6_o1

I0

I1
O

or2

A_out1

I0

I1
O

fd

Reset_local

C

D Q

fdr

g6_pre

C

D

R

Q

and2b1

g8_1_B_1_AND_4_o1

I0

I1
O

fdr

O1_pre

C

D

R

Q

fdr

g4_pre

C

D

R

Q

fdr

GO_local

C

D

R

Q

and2

g9_11

I0

I1
O

or2

g6_11

I0

I1
O

and2b1

g4_11

I0

I1
O

Mmux_O1_11

Mmux_O1_11

Sel(0)

Data0

Data1

Result

or2

g2_11

I0

I1
O

or2b1

g9_1_e6_1_OR_4_o1

I0

I1
O

or2

g3_1_g9_1_OR_5_o1

I0

I1
O

or2b1

g3_1_e2_1_OR_3_o1

I0

I1
O

Mmux_O1_21

Mmux_O1_21

Sel(0)

Data0

Data1

Result

fdr

O2_pre

C

D

R

Q

gnd

XST_GND

G

and2

g3_11

I0

I1
O

fdr

B_local

C

D

R

Q

vcc

XST_VCC
P

and3

g1_11
I0

I1

I2

O

Mmux_O1_31

Mmux_O1_31

Sel(0)

Data0

Data1

Result

Mmux_O2_11

Mmux_O2_11

Sel(0)

Data0

Data1

Result

fdr

A_local

C

D

R

Q

Mmux_B_11

Mmux_B_11

Sel(0)

Data0

Data1

Result

Mmux_O1_41

Mmux_O1_41

Sel(0)

Data0

Data1

Result

Mmux_O2_21

Mmux_O2_21

Sel(0)

Data0

Data1

Result

ABO:1

ABO

A

B

Reset

tick

A_out

B_out

O1

O2

Figure 6.2. The ABO example transformed from SCCharts [Joh13]

6.2 Simulation of AO

To validate the correct behavior of the generated circuits AO has been simulated
and tested with two execution traces. In the following the different highlighting
of the SSA SCG and the circuit are depicted for each tick in the two traces. The first
of which is simply a test for the immediate transition in AO. That means in the
very first tick A is present and O should be set to true as can be seen in Figure 6.3.
In the second example A is not present in the first three ticks and is set to true in
the fourth tick. Figure 6.4 shows the first four ticks of this simulation.

In this thesis the simulation of AO is exemplarily depicted for validation
purposes since AO is not as complex as ABRO or ABO. However, the latter have
been tested with various execution traces and both circuits delivered the expected
outputs for defined inputs and ticks.

57

6. Evaluation

In the first example the simulation shows that A set to true in the first tick
triggers the output O to be true at the end of the tick. The or-gate g1 selects the
green marked input of the MUX O to be applied to its output.

In the second example in the first tick the output O is set to false caused by
the _GO impulse g0 which applies the green marked value – in this case 0 – to
the output of MUX O_1. The gates in region g1 are not activated until an input
A is set to true. Up to this point of the execution solely the gates of region g2
are activated in each tick waiting for an input A and remembering to restart the
request for an input A to be true with help of the register g3. Eventually, in the
fourth tick A is set to true and hence the output O is set to true.

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1

true

true

gnd
0

1

O_1

pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

Figure 6.3. Examplary simulation of AO. A is set to true in the first tick.

58

6.2. Simulation of AO

First tick, A is false Second tick, A is false

Third tick, A is false Fourth tick, A is set to true

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

entry

g0 = _GO

g0

O_1 = false

g3 = pre(g2)

g1 = g3 && A || _GO && A

g1

O = true

g2 = _GO && !A || g3 && !A

exit

O_1 = pre(O)

O = O_1
true

true

gnd
0

1

O_1

pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

gnd
0

1

O_1

pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

gnd
0

1

O_1

pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

gnd
0

1

O_1

pre(O)

g3

g3

g1

(g0 && A)

(g3 && A)

g1

vcc
1

1

O

g2

(g0 && !A)!A

(g3 && !A)

g2

_GO

A

O

Tick

Reset_pre

Program Logic

Figure 6.4. Examplary simulation of AO. A is set to true in the fourth tick.
59

6. Evaluation

6.3 Validation Improvements

The simulation introduced in this paper uses the C code generated from the
sequentialized SCG to highlight gates and wires. This approach assumes the user
to validate whether the circuit reacts as expected. More precisely, the user needs
to compare inputs and outputs of the circuit to the inputs and outputs of the
corresponding SCG or SCChart.

An enhanced solution is to translate the circuits back into an SCGs and compare
the ESO files as described in the following and in Figure 6.5. First of all, an ESO
file is generated by creating outputs for certain inputs for SCCharts models. Those
outputs are gained by the transformation into SCGs and C code which is executed
in KIEM. In case a transformation from circuits back to SCGs exists, C code may be
generated out of these SCGs and hence outputs and ESO files can be compared.

SCChart

ESI

SCG
C

inputs

KIEM

ESO

outputs SCG
C

KIEM

Circuit
SCG

=

outputs

Figure 6.5. Validation of the circuit transformation with ESO files

This validation method is extendable if the ESO file is not generated from
SCCharts but from Esterel. Again the Esterel–based ESO file and an ESO file
generated from SCGs which are re-generated based on circuits may be compared.

A third approach would be to translate the circuits in a Ptolemy model and to
execute a simulation in this tool.

6.4 Scaling

To validate the circuit transformation scales well, different models have been tested.
For this purpose five different programs have been modeled. The programs sorted
by number of nodes in ascending order are AO, ABO, ALDO, ABRO, Elevator and
DVDPlayer. The nodes are counted for normalized SCCharts, SCG, sequentialized
SCG, SSA SCG and Circuits. In the following, the number of nodes in circuits is
measured in the program logic region omitting multiple occurrences of gnd and
vcc gates.

60

6.4. Scaling

Figure 6.6 shows the size of circuits depending on the corresponding SSA

SCG’s node size. In normalized SCCharts the number of nodes is between 5 for
the AO model and 86 for the DVDPlayer model. The number of nodes in the
sequentialized SCG and the SSA SCG is in all models almost the same. This is not
surprising, since merely a few assignment nodes on conditional else-branches
are added for the case the condition evaluates to false. The number of nodes in
the SSA SCG reaches from 12 in AO to 155 in the DVDPlayer model. Focusing on
the circuits, it is observable that in no case the number of nodes exceed twice
the number of nodes in the SSA SCGs. The AO circuits has 11 nodes and the
DVDPlayer has 200 nodes.

There are three different aspects which influence the scaling of circuits de-
pending on the nodes in sequentialized SCGs:

1. Expressions like gX = gY are simply translated as one wire with two different
names and therefore do not increment the number of nodes in circuits.

2. Guard expressions like gX = gY || gZ produce as many logic gates as nested
operator expressions exist. gX = gY || gZ or gX = pre(gZ), e. g., produce only
one gate, gX = (gY || gZ) && A, e. g., produces two gates. Notice that the pre

operator results in the creation of a register which stores. Guard expressions
can grow very large depending on the number of concurrent running regions in
SCCharts. The joining guards tend to have expressions with multiple operation
expressions. While those joining guards result in only one assignment node in
the sequentialized SCG. However, large expressions in the SCG result in a high
number of logic gates in the circuit.

3. The new assignment nodes on else-branches in SSA SCGs do not double the
number of created logic gates in circuits, since only one MUX is created. Each
MUX summarizes two assignment nodes: One from the then-branch and one
from the else-branch. This is the reason why, e. g., the ALDO circuit has less
nodes than the sequentialized SCG.

61

6. Evaluation

0

50

100

150

200

250

Normalized SCCharts States

SCG Nodes

SCG Seq Nodes

SCG SSA Seq Nodes

Circuit Elements

Figure 6.6. Scaling of synthesized circuits compared to the corresponding SSA SCG and
SCCharts depending on the number of nodes.

62

Chapter 7

Conclusion

This chapter summarizes the proposed interactive incremental hardware synthesis,
the developed implementation and evaluation results. It further checks again
the requirements in the initial problem statement. Finally, possible directions for
future work are suggested.

7.1 Summary

This thesis introduces a hardware synthesis from SCCharts adopting the in-
teractive incremental approach as implemented in the KIELER SCCharts tools
[MSvH14]. All implemented transformations have been integrated into KIELER

and are available as feature transformation steps in the compilation chain.
The sequentialized SCGs introduced by Smyth [Smy13] has been the starting

point for the introduced approach. The sequentialized SCG has been chosen due
to several reasons.

(a) The parallel execution of the transformed circuits needs to be restricted to
a sequential execution applying to the SC MoC. By detection of data dependencies
and computing one possible static schedule for a program, the sequentialized SCG

is generated. Thus, a sequential execution of a program is guaranteed. Hence,
choosing the sequentialized SCG as starting point results in a sequential behavior
of the circuit.

(b) The SSA SCG solves data-flow problems. Those problems occur if several
assignments to one variable exist within one program. The SSA SCG uses SSAs as
solution. Hence, all targets of multiple assignments get version numbers. In the
SSA SCG the closer to the end of the program an assignment occurs the higher is
the target‘s version number. This intermediate transformation was integrated as
feature in KiCo and therefore improves the traceability of the circuit transformation
step.

(c) After resolving the data-flow dependencies, a circuit transformation has
been implemented. In this transformation assignment nodes and conditional
nodes are translated into corresponding circuit components and links between
those components are created.

63

7. Conclusion

(d) Furthermore, the circuit transformation creates an initialization region. This
region contains the tick and reset logic of the circuit and provides registers for
each input variable which assures the signal of inputs to be constant throughout
a tick.

(e) So called pre-registers are provided in order to save values of output
variables across the edges of ticks.

(f) To visualize the generated circuits, a KLighD circuit diagram synthesis was
implemented and delivers a few options modifying the appearance of the circuit.

(g) To support the comprehensibility of the transformed circuits and going
beyond the interactive incremental approach, a simulation has been implemented.
This simulation adopts the information coming from the C code which is generated
for the simulation of sequentialized SCGs. In each tick the active gates of the circuit
are highlighted as well as all wires or links with applied voltage.

In this thesis all of these steps are conceptually introduced and their imple-
mentation is presented. Aside of supporting the comprehensibility of circuits,
the simulation serves as validation tool. Used for evaluation and documented
in the evaluation chapter, the simulation prooves circuits to behave as expected
according to the associated sequentialized SCGs and given execution traces.

7.2 Future Work

Various works in literature cover the issue of hardware synthesis. However,
this thesis delivers an interactive incremental approach of hardware synthesis
exemplified for SCCharts compilation. The introduced concept is worth further
enhancements. In the following a few suggestions for future work on this topic
are given.

Reintroduce VHDL

The approach introduced by Johannsen [Joh13] translated SCCharts into the VHDL.
With this, the usage of the code in ISE was possible. The transformation of circuits
into VHDL code is desirable. Simulations and a visualization in ISE could be
compared to the in KIELER created circuits and their simulation. This could signify
a new resource for validation. Furthermore, FPGAs could be programed with
the generated VHDL code and the program could be executed under real time
conditions.

64

7.2. Future Work

Transform Sequentially Constructive Graphs

As mentioned in Section 7.1 (a), the circuit is transformed from the sequentialized
SCG. On the one side, this decision assures a sequential behavior of the circuit.
On the other side, this decision may be too restrictive, since the sequentialized
SCG depicts solely one static schedule. The approach to transform circuits from
Sequentially Constructive Program Dependency Graph (SCPDG) without sequen-
tialization but still keeping data dependencies in mind is an interesting topic. The
Sequentially Constructive Program Dependency Graph (SCPDG) was studied by
Weiß [Wei15] and resolves dependencies while maintainig maximum parallelism.

Improve Validation

Section 6.3 introduces validation methods. These methods could be implemented
as described and executed. Further validation methods help to guarantee the
transformed circuits to be correct and behave as expected. Before FPGAs are
programmed with generated VHDL code the circuits should be tested sufficiently
to prevent any malfunction of the FPGAs. Moreover, sufficient testing to guarantee
a smoothly run of simulations for more complex systems is a great enhancement
for the incremental interactive approach.

Optimizations

Based on the synthesized hardware, several optimizations are viable. For opti-
mization of hardware logic, laws such as , e. g., DeMorgan’s Laws or other rules
known from boolean algebra are helpful.

As seen in Figure 4.24 the ABRO circuit is relatively larger compared to the
AO circuit. Figure 7.1 shows an ABRO circuit synthesized from Esterel and
optimized. This circuit compared to the ABRO circuit in Figure 4.24 is remarkably
smaller. The different scaling of both circuits is explainable since the Esterel
ABRO has no initialization region. Furthermore, the usage of signals instead of
variables simplifies the Esterel ABRO and multiple occurrences of vcc and gnd in
the introduced synthesis of this thesis enlarge the generated circuits. Additionally,
since the sequentialized SCGs are not optimized, the circuits transformed from
them are not optimized as well. Dumitru, Edwards and Berry [PBEB07a] describe
which steps lead to the optimized circuit. Part of the optimization steps should be
considered to minimize sequentialized SCGs in KIELER to gain optimized circuits.
The Multi-Value Logic Synthesis and Verification (MV-SIS) tool could be used for
minimization as described by Gädtke [Gäd07]. The minimization further enhances
efficiency in verification and understandability of the circuits.

65

7. Conclusion

Figure 7.1. ABRO Esterel program and its circuit translation. Extracted from [PBEB07b,
p. 105]

66

Bibliography

[And96] Charles André. SyncCharts: A visual representation of reactive
behaviors. Technical Report RR 95–52, rev. RR 96–56, I3S, Sophia-
Antipolis, France, Rev. April 1996.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality
of variables in programs. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’88, pages 1–11, New York, NY, USA, 1988. ACM. URL: http://doi.

acm.org/10.1145/73560.73561, doi:10.1145/73560.73561.

[BC85] Gérard Berry and Laurent Cosserat. The esterel synchronous pro-
gramming language and its mathematical semantics. In Seminar
on Concurrency, Carnegie-Mellon University, pages 389–448, London,
UK, UK, 1985. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
646723.702721.

[BDKN94] Daniel Brand, Anthony Drumm, Sandip Kundu, and Prakash Narain.
Incremental synthesis. In Proceedings of the 1994 IEEE/ACM Interna-
tional Conference on Computer-aided Design, ICCAD ’94, pages 14–18,
Los Alamitos, CA, USA, 1994. IEEE Computer Society Press. URL:
http://dl.acm.org/citation.cfm?id=191326.191338.

[Ber92] Gérard Berry. Mechanized reasoning and hardware design. chapter
Esterel on Hardware, pages 87–104. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1992. URL: http://dl.acm.org/citation.cfm?id=149943.
149953.

[Ber00] G. Berry. The Esterel V5 Language Primer: Version V5_91. Centre de
Mathématiques Appliquées, Ecole des Mines and INRIA, 2000. URL:
https://books.google.de/books?id=JYSNMQAACAAJ.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous
programming language: design, semantics, implementation. Sci-
ence of Computer Programming, 19(2):87 – 152, 1992. URL:
http://www.sciencedirect.com/science/article/pii/016764239290005V, doi:http://

dx.doi.org/10.1016/0167-6423(92)90005-V.

67

http://doi.acm.org/10.1145/73560.73561
http://doi.acm.org/10.1145/73560.73561
http://dx.doi.org/10.1145/73560.73561
http://dl.acm.org/citation.cfm?id=646723.702721
http://dl.acm.org/citation.cfm?id=646723.702721
http://dl.acm.org/citation.cfm?id=191326.191338
http://dl.acm.org/citation.cfm?id=149943.149953
http://dl.acm.org/citation.cfm?id=149943.149953
https://books.google.de/books?id=JYSNMQAACAAJ
http://www.sciencedirect.com/science/article/pii/016764239290005V
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(92)90005-V

Bibliography

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, October 1991. URL: http://doi.acm.org/10.1145/

115372.115320, doi:10.1145/115372.115320.

[DH89] D. Drusinsky and D. Harel. Using statecharts for hardware descrip-
tion and synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 8(7):798–807, Jul 1989. doi:10.1109/43.31537.

[DM99] G. De Micheli. Hardware synthesis from c/c++ models. In De-
sign, Automation and Test in Europe Conference and Exhibition 1999.
Proceedings, pages 382–383, 1999. doi:10.1109/DATE.1999.761150.

[Edw05] Stephen A. Edwards. The challenges of hardware synthesis from c-
like languages. In Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 1, DATE ’05, pages 66–67, Washington,
DC, USA, 2005. IEEE Computer Society. URL: http://dx.doi.org/10.

1109/DATE.2005.307, doi:10.1109/DATE.2005.307.

[Gäd07] Sascha Gädtke. Hardware/Software Co-Design für einen Reaktiven
Prozessor. Diploma thesis, Kiel University, Department of Computer
Science, May 2007.

[Har87] David Harel. Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231 – 274, 1987. URL:
http://www.sciencedirect.com/science/article/pii/0167642387900359, doi:http://

dx.doi.org/10.1016/0167-6423(87)90035-9.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous data flow programming language lustre. Proceedings of the
IEEE, 79(9):1305–1320, Sep 1991. doi:10.1109/5.97300.

[Joh13] Gunnar Johannsen. Hardwaresynthese aus SCCharts. Master thesis,
Kiel University, Department of Computer Science, October 2013.
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf.

[KD90] David Ku and Giovanni DeMicheli. Hardwarec – a language for
hardware design (version 2.0). Technical report, Stanford, CA, USA,
1990.

[KR00] Tommy Kuhn and Wolfgang Rosenstiel. Java based object oriented
hardware specification and synthesis. In Proceedings of the 2000 Asia

68

http://doi.acm.org/10.1145/115372.115320
http://doi.acm.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
http://dx.doi.org/10.1109/43.31537
http://dx.doi.org/10.1109/DATE.1999.761150
http://dx.doi.org/10.1109/DATE.2005.307
http://dx.doi.org/10.1109/DATE.2005.307
http://dx.doi.org/10.1109/DATE.2005.307
http://www.sciencedirect.com/science/article/pii/0167642387900359
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1109/5.97300
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf

Bibliography

and South Pacific Design Automation Conference, ASP-DAC ’00, pages
579–582, New York, NY, USA, 2000. ACM. URL: http://doi.acm.org/10.
1145/368434.368809, doi:10.1145/368434.368809.

[Mot09] Christian Motika. Semantics and execution of domain specific
models—KlePto and an execution framework. Diploma thesis,
Kiel University, Department of Computer Science, December 2009.
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf.

[MSF+11] Christian Motika, Miro Spönemann, Hauke Fuhrmann, Christoph
Krüger, John Julian Carstens, and Reinhard von Hanxleden. KIELER
Actor Oriented Modeling (KAOM). Poster presented at 9th Biennial
Ptolemy Miniconference (PTCONF’11), Berkeley, CA, USA, February
2011.

[MSvH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Com-
piling SCCharts—A case-study on interactive model-based compila-
tion. In Proceedings of the 6th International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2014),
volume 8802 of LNCS, pages 443–462, Corfu, Greece, October 2014.
doi:10.1007/978-3-662-45234-9.

[PAB94] S. C. Prasad, P. Anirudhan, and P. Bosshart. A system for incremen-
tal synthesis to gate-level and reoptimization following rtl design
changes. In Proceedings of the 31st Annual Design Automation Con-
ference, DAC ’94, pages 441–446, New York, NY, USA, 1994. ACM.
URL: http://doi.acm.org/10.1145/196244.196461, doi:10.1145/196244.196461.

[PBEB07a] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gerard Berry.
Compiling Esterel. Springer Publishing Company, Incorporated, 1st
edition, 2007.

[PBEB07b] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.
Compiling Esterel. Springer, May 2007.

[Ren11] Mingming Ren. An incremental approach for hardware discrete con-
troller synthesis. Theses, INSA de Lyon, July 2011. URL: https:

//tel.archives-ouvertes.fr/tel-00679296.

[RSM+15] Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von
Hanxleden, and Michael Mendler. SCEst: Sequentially Constructive
Esterel. In Proceedings of the 13th ACM-IEEE International Conference

69

http://doi.acm.org/10.1145/368434.368809
http://doi.acm.org/10.1145/368434.368809
http://dx.doi.org/10.1145/368434.368809
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://dx.doi.org/10.1007/978-3-662-45234-9
http://doi.acm.org/10.1145/196244.196461
http://dx.doi.org/10.1145/196244.196461
https://tel.archives-ouvertes.fr/tel-00679296
https://tel.archives-ouvertes.fr/tel-00679296

Bibliography

on Formal Methods and Models for System Design (MEMOCODE’15),
Austin, TX, USA, September 2015.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value num-
bers and redundant computations. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’88, pages 12–27, New York, NY, USA, 1988. ACM. URL:
http://doi.acm.org/10.1145/73560.73562, doi:10.1145/73560.73562.

[SMP88] Charles E. Stroud, Ronald R. Munoz, and David A. Pierce. Behavioral
model synthesis with cones. IEEE Des. Test, 5(3):22–30, May 1988.
URL: http://dx.doi.org/10.1109/54.7960, doi:10.1109/54.7960.

[Smy13] Steven Smyth. Code generation for sequential constructiveness.
Diploma thesis, Kiel University, Department of Computer Science,
July 2013. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

ssm-dt.pdf.

[SP98] D. Soderman and Y. Panchul. Implementing c algorithms in recon-
figurable hardware using c2verilog. In FPGAs for Custom Computing
Machines, 1998. Proceedings. IEEE Symposium on, pages 339–342, Apr
1998. doi:10.1109/FPGA.1998.707944.

[TCM06] R. Thomson, V. Chouliaras, and D. Mulvaney. The hardware synthe-
sis of a java subset. In Norchip Conference, 2006. 24th, pages 217–220,
Nov 2006. doi:10.1109/NORCHP.2006.329214.

[vHDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika,
Steven Smyth, Michael Mendler, Joaquín Aguado, Stephen Mercer,
and Owen O’Brien. Sccharts: Sequentially constructive statecharts
for safety-critical applications: Hw/sw-synthesis for a conservative
extension of synchronous statecharts. SIGPLAN Not., 49(6):372–
383, June 2014. URL: http://doi.acm.org/10.1145/2666356.2594310, doi:

10.1145/2666356.2594310.

[vHMA+13] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado,
Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mer-
cer, Owen O’Brien, and Partha Roop. Sequentially Construc-
tive Concurrency—A conservative extension of the synchronous
model of computation. Technical Report 1308, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, August 2013.
ISSN 2192-6247.

70

http://doi.acm.org/10.1145/73560.73562
http://dx.doi.org/10.1145/73560.73562
http://dx.doi.org/10.1109/54.7960
http://dx.doi.org/10.1109/54.7960
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf
http://dx.doi.org/10.1109/FPGA.1998.707944
http://dx.doi.org/10.1109/NORCHP.2006.329214
http://doi.acm.org/10.1145/2666356.2594310
http://dx.doi.org/10.1145/2666356.2594310
http://dx.doi.org/10.1145/2666356.2594310

Bibliography

[vHMA+14] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado,
Björn Duderstadt, Insa Fuhrmann, Christian Motika, Stephen Mer-
cer, Owen O’Brien, and Partha Roop. Sequentially Constructive
Concurrency—A conservative extension of the synchronous model
of computation (revisited). Technical report, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, 2014. ISSN
2192-6247.

[Wei15] Tibor Weiß. Von Nebenläufigkeit zu Parallelität in SCCharts, October
2015.

71

	Introduction
	Synchronous Languages
	Sequential Constructiveness
	Sequentially Constructive Charts

	The Sequentially Constructive Graph
	Interactive Incremental Compilation
	Hardware Synthesis from SCCharts
	Problem Statement
	Outline of this Document

	Related Work
	Hardware Synthesis from C and Java
	Hardware Synthesis from Statecharts
	Hardware Synthesis from Esterel
	Hardware Synthesis from SCCharts
	Incremental Hardware Synthesis
	Tooling for Hardware Description Languages

	Used Technologies
	Eclipse
	The Eclipse Modeling Framework
	Xtend

	The Kiel Integrated Environment for Layout Eclipse Rich Client
	Semantics
	Pragmatics

	Interactive Incremental Hardware Synthesis
	Preliminaries
	SCCharts
	Sequential Constructiveness
	Interactive Incremental Compilation of SCCharts
	The Sequentially Constructive Graph

	Hardware Synthesis
	Userstory for Incremental Interactive Hardware Synthesis
	Circuit Meta-Model
	Circuit Transient View for SCGs
	Complete Transformation Example with AO
	Simulation
	Complete ABRO Example

	Implementation
	Plug-in Overview
	Circuit Feature Group Transformations
	SCG to SSA SCG Transformation
	SSA SCG to Circuit Transformation

	KLighD Circuit Diagram Synthesis
	Simulation Visualization

	Evaluation
	Comparing ABO
	Simulation of AO
	Validation Improvements
	Scaling

	Conclusion
	Summary
	Future Work

	References

