
Modular Code Generation
for SCCharts

Gavin Lüdemann

Bachelor's Thesis
September 2021

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
M.Sc. Alexander Schulz-Rosengarten

and Dr.-Ing. Steven Smyth

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Modularization is a central concept of software development. It enables programmers to use well-
documented and tested code instead of solving every problem from scratch. The synchronous language
SCCharts has a modularization system called Referenced SCCharts that allows a model to be included
by another model. Its current implementation does not, however, support modular code generation: a
model cannot be compiled separately from the modules that it uses.

This thesis aims to enrich SCCharts by introducing Module Call Semantics (MCS), an implementation
of Referenced SCCharts amenable to modular code generation, to the language. MCS allows SCCharts
to be compiled into self-sufficient units that can be called by any other model. Module behavior is
executed atomically and scheduled using a black-box approach. In this thesis, the concepts behind
MCS are presented and its implementation into KIELER is documented. The run-time performance
and model size implications of MCS are benchmarked and analyzed.

v

Acknowledgements

I want to thank Alexander Schulz-Rosengarten and Dr.-Ing. Steven Smyth, in no particular order, for
advising this thesis, providing valuable feedback on both my methods and my writing, and gently
reminding me of the finitude of time whenever necessary. Furthermore, I want to thank Prof. Dr.
Reinhard von Hanxleden for giving me the opportunity to write this thesis, as well as his detailed
feedback and valuable advice.

Finally, I want to thank all attendees of the Real-Time and Embedded Systems Group's daily virtual
morning tea for helping to keep me sane while working on this thesis during these times of social
distancing.

vii

Contents

1 Introduction 1
1.1 Sequentially Constructive Statecharts . 1

1.1.1 Module Expansion Semantics . 1
1.2 Problem Statement . 3
1.3 Contributions . 3
1.4 Related Work . 4
1.5 Outline . 4

2 Modular Code Generation 5
2.1 Preliminaries . 5

2.1.1 SCCharts Preliminaries . 5
2.1.2 Additional Terminology . 6

2.2 Module Call Semantics . 6
2.3 Transformation Rules . 7

2.3.1 The Module Call SCCharts Transformation . 7
2.3.2 The Module Call SCG Transformation . 9

2.4 Separate and Simultaneous Compilation . 11
2.5 Parallels to Argument Handling . 12
2.6 Code Size and Performance Implications . 13

3 Implementation 15
3.1 Used Technologies . 15

3.1.1 Eclipse . 15
3.1.2 KIELER . 15
3.1.3 Xtend . 16

3.2 Implementation into KIELER . 16
3.2.1 The Reference Call Pre-processor . 17
3.2.2 The Reference Call Processor . 19

4 Evaluation 23
4.1 Supported Model Elements . 23

4.1.1 Types . 23
4.1.2 Actions, Hierarchy and Concurrency . 24
4.1.3 Suspend and Complex Transitions . 24
4.1.4 Mixed References. 25

4.2 Limitations . 25
4.3 Performance Analysis . 27

4.3.1 Methodology . 27
4.3.2 Evaluated Models . 28
4.3.3 Analysis . 33

4.4 Discussion . 45

ix

Contents

5 Conclusion 47
5.1 Summary . 47
5.2 Future Work . 47

5.2.1 Instantaneous Bidirectional Communication . 47
5.2.2 Array Passing . 48
5.2.3 Synthesis and Target Language Support . 48
5.2.4 Gray-box Scheduling . 48

Bibliography 49

x

List of Figures

1.1 Overview of Sequentially Constructive Statecharts (SCCharts) features 2
1.2 An example for referenced SCCharts and Module Expansion Semantics (MES) 3

2.1 The netlist-based C compiler pipeline . 5
2.2 An example SCChart before transformation . 8
2.3 The same model as in Figure 2.2 after SCCharts transformation 8
2.4 The non-instantaneous transformation . 9
2.5 The non-final transformation . 10
2.6 The non-final, non-instantaneous transformation . 10
2.7 Model before and after Sequentially Constructive Graph (SCG) transformation 11
2.8 Callee code generated from the model introduced in Figure 2.2 12
2.9 Caller code generated from the model introduced in Figure 2.2 13
2.10 The Contains101 model along with its source and header file 14

3.1 The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) Project 16
3.2 The modified compiler pipeline . 16
3.3 The TwoCalc model . 18
3.4 The TwoCalc model after transformation . 19
3.5 The filteredParamsFromBindings method . 20
3.6 Caller SCG for different numbers of callee input variables 21

4.1 A minimal model not schedulable using MCS . 25
4.2 The dependency cycle introduced by MCS . 25
4.3 A sketch of a workaround for the mutex problem . 26
4.4 An abstract structural diagram of the Backhoe model . 29
4.5 An abstract structural diagram of the Barcode model . 29
4.6 The Counter model and its sub-modules . 30
4.6 The Counter model and its sub-modules (cont.) . 31
4.7 The Counter model after module expansion . 32
4.8 Counter variations . 33
4.9 Mean aggregated tick times . 34
4.10 Tick times of the Barcode model . 35
4.11 Tick times of the Backhoe model . 36
4.12 Backhoe (sparse): histogram . 37
4.13 Backhoe (sparse): scatterplot . 37
4.14 Tick times of the Counter model . 39
4.15 Tick time quartiles of the Counter variations . 40
4.16 Lines of code . 41
4.17 Executable size . 41
4.18 Mean aggregated tick times and tick time standard deviation for all traces when

compiled with -O0 . 42
4.19 Tick time quartiles for the Backhoe model (sparse trace) when compiled with -O0 43

xi

List of Figures

4.20 Tick time quartiles for the Barcode model when compiled with -O0 43
4.21 Tick time quartiles for the Counter model when compiled with -O0 44
4.22 Net executable sizes for all models when compiled with -O0 44

xii

List of Tables

3.1 Significant methods in ReferenceCallPreprocessor . 18
3.2 Methods in ReferenceCallProcessor . 20

4.1 References and unique references. 28

xiii

List of Abbreviations

MES Module Expansion Semantics

MCS Module Call Semantics

MoC Model of Computation

SCMoC Sequentially Constructive Model of Computation

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

SCCharts Sequentially Constructive Statecharts

iur initialize-update-read

SCG Sequentially Constructive Graph

SC Sequentially Constructive

LoC Lines of Code

CLI Command Line Interface

KiCo KIELER Compiler

IQR Interquartile Range

CFS Complex Final State

RCP Rich Client Platform

xv

Chapter 1

Introduction

Embedded systems are ubiquitous. Every car, train and airplane produced today relies on them for
control and communication. Even small household appliances commonly use embedded systems. A
key challenge of such systems is the handling of concurrency.

It is arguably often easiest to model time-independent tasks as concurrent. A popular concurrency
model is the thread model: each task has a set of instructions that operate independently on shared
variables. These shared variables are used to communicate results between threads. However, there
is no inherent guarantee that the order of execution of these threads does not influence their results.
In order to avoid such race conditions, traditional imperative languages like C and Java employ
synchronization techniques such as barriers and mutual exclusion that partially constrain the order of
operations. However, the correct usage of such techniques is generally left to programmers.

In order to address these issues in reactive systems, synchronous languages like Esterel [Ber00] and
LUSTRE [CPH+87] and, more recently, Blech [GG18] and SCCharts [HDM+13] were introduced. They
divide program execution into reactions (or ticks). In a tick, inputs are read and a new internal state,
as well as outputs, are computed. A sequence of ticks is called a trace. By definition, synchronous
languages encode determinate programs. A program is determinate if for every program trace, i. e.,
equal inputs produce equal outputs. In Esterel and many other synchronous languages, a variable is
restricted to have exactly one value in each tick.

1.1 Sequentially Constructive Statecharts

The Sequentially Constructive Model of Computation (SCMoC) [HMA+14], is a conservative extension
of the synchronous Model of Computation (MoC), i. e., all constructive programs as defined by the
synchronous MoC are also Sequentially Constructive (SC) and retain their semantics under the SCMoC.
Additionally, variables are allowed to have multiple values per tick, provided a schedule that ensures
determinacy can be found. In particular, sequentially ordered accesses on the same variables are
always permitted.

Sequentially Constructive Statecharts (SCCharts) [HDM+13] is a graphical synchronous language
semantically based on the SCMoC. Its visual syntax is closely related to SyncCharts [And03] and
StateCharts [Har87]. SCCharts can be modeled using a dedicated textual syntax. The language's
more permissive scheduling thanks to sequential constructiveness allows the modeler to use more
traditional, imperative constructs prohibited in other synchronous languages. This makes SCCharts
more accessible to programmers experienced with developing software in languages like C or Java.
An overview of SCCharts'features is shown in Figure 1.1.

1.1.1 Module Expansion Semantics

Like many other programming languages, SCCharts provides a mechanism for modularization. It is
known as referenced SCCharts. Referenced SCCharts were first described in the Railway Project Technical

1

1. Introduction

Figure 1.1. The SCCharts Cheat Sheet gives an overview of the language's features as well as textual and visual
syntax [SMS+19].

Report [SMS+15] as one of the SCCharts extensions necessary in order to develop an SCCharts model
as large as the Railway Controller the report centers around. In addition to the root model, an arbitrary
number of additional models can be defined, either in the same or in additional source files. A model
can then have references to these models, which contain the referenced model's name and a variable
binding specification as seen in Figure 1.2a. Any valid SCCharts model can be referenced this way.

The existing implementation of referenced SCCharts is provided by Module Expansion Semantics
(MES). MES is closely related to C-style macro expansion in that it is purely a replacement system: all
references in the root model are replaced by the content of the referenced model, the local variables of
which are then renamed to conform to the binding specification. Figure 1.2b shows how the variables
are renamed. If the referenced models themselves contain references, they are recursively resolved.

Because references are expanded into the root model before an execution schedule is determined,
it is possible for the compiler to arbitrarily interleave concurrent statements from all models. This
white-box scheduling allows the compiler to find schedules for models that it could not find if referenced
models were a black box.

2

1.2. Problem Statement

(a) Example for referenced SCCharts: the model has two references, A and B, to the same model, CountPositive. The first
reference binds a to x, the second binds b to x. Both bind c to y. In effect, the model counts the cumulative number of positive
integers in two input streams.

(b) The same model after reference expansion

Figure 1.2. An example for referenced SCCharts and Module Expansion Semantics (MES)

1.2 Problem Statement

The strong coupling between root and referenced models using MES has a number of disadvantages.
Every reference to another model increases the root model's size by the size of the referenced model.
Hence, there is no economy of scale regarding multiple instances of the same behavior. Because of
white-box scheduling, referenced models cannot be compiled in separation from the root model. White-
box scheduling also leads to the possibility that purely structural changes to a referenced model that
do not modify external behavior drastically alter the whole model's scheduling requirements—or even
make it no longer SC and therefore unschedulable. This behavior is problematic w.r.t. encapsulation.
Hence, in order to support modular code generation, SCCharts needs a modularization system that
does not rely on white-box scheduling.

1.3 Contributions

This thesis proposes Module Call Semantics (MCS) as an alternative reference resolution approach
that enables modular code generation to complement MES. An implementation into Kiel Integrated

3

1. Introduction

Environment for Layout Eclipse Rich Client (KIELER) supporting the netlist-based C compiler is given
and its size and execution time performance versus MES is evaluated. Advantages and limitations of
MCS are discussed and recommended use cases are derived.

1.4 Related Work

In synchronous languages, there are multiple different approaches to modularization. These can be
categorized by the compiler's knowledge of the inner workings of modules:

Ź White-box approaches like Esterel modules [Est08] and SCCharts MES [SMS+15; HDM+13] have full
knowledge of every module. In Esterel and SCCharts MES, modules are expanded into the main
model, similar to macro expansion in C [SW87]. Therefore, the entire source code of every module
must be available at compile time.

White-box scheduling is the most permissive approach. However, it is not applicable to modular
code generation because it requires all modules to be compiled together with the main model.

Ź Gray-box approaches, for which the compiler is provided with some—usually automatically
generated—scheduling information, have been described by Hainque et al. [HPL+99] for Esterel
and Lublinerman et al. [LST09] for SCADE and Simulink.

There are many different gray-boxing techniques. They generally trade computational complexity
during the compilation of modules for more permissive scheduling. Arguably, MCS applies very
primitive gray-boxing by providing some high-level scheduling information, such as whether or
not a module can terminate instantaneously.

Ź Gretz et al. [GGM+20] formalized the semantics for black-box scheduling. This allows the inclusion
of modules without any knowledge of internal behavior. Recently, Smyth [Smy21] proposed a
black-box approach for compiling SCCharts. MCS is based on that approach.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 introduces MCS and its underlying
concepts, along with the necessary preliminaries on SCCharts. In Chapter 3, the implementation
details associated with MCS are documented. The newly introduced model processors are shown
and put into context with KIELER as a whole. Chapter 4 evaluates both the concept of MCS and the
approach taken in this thesis, demonstrating their conceptual and implementation based limitations
and advantages. As a central part of this chapter, performance measurements on several models, both
synthetic and real-world are given and analyzed. In closing, Chapter 5 gives a summary of the results
of the thesis, as well as pointing out future work.

4

Chapter 2

Modular Code Generation

The ability to generate code from SCCharts in a modular fashion is desirable for multiple reasons.
It enables more efficient build processes, easier unit testing and the distribution of SCCharts-based
libraries without disclosure of the source code. This chapter presents the Module Call Semantics (MCS),
which allows modular code generation in SCCharts. Its concepts are laid out in Section 2.2 and its
integration into SCCharts is explained in Section 2.3. Section 2.4 explains how separate compilation
is supported. In Section 2.5, MCS is compared to call-by-value argument handling. Finally, Section 2.6
discusses the possible implications of MCS for run-time performance.

2.1 Preliminaries

The concepts and design decisions behind MCS depend on details about the features and compilation
of SCCharts described in this section. Furthermore, the following sections use terminology specific to
SCCharts and MCS. This terminology is defined here.

2.1.1 SCCharts Preliminaries

SCCharts is characterized by a hierarchical set of features: every model's behavior can be expressed in
terms of a small set of model elements called Core SCCharts. These are the basis for Extended SCCharts,
which encompass all of the language's high-level features. All extended features are defined in terms
of their transformation into either extended or core features [Mot17].

Figure 2.1. The netlist-based C compiler pipeline

The compilation of SCCharts models is achieved in multiple stages. Figure 2.1 gives an overview
of the netlist-based C compiler pipeline, which is discussed here. In the first stage, extended features
are transformed in a series of model-to-model transformations. Each extended feature is associated
with a corresponding transformation processor. A model that has been processed by such a processor
does not use its associated feature any more, neither does it use features eliminated by previous
transformations. In this manner, a model is passed though each processor exactly once. The result is a
model that uses only Core SCCharts features.

The second stage is normalization. During normalization, model elements are transformed such
that only a five distinct patterns remain: Thread, Parallel, Conditional, Assignment and Delay. Each of
these can then easily be mapped to exactly one element of a Sequentially Constructive Graph (SCG).
The SCG is a graph consisting of statement nodes and control-flow edges. It lends itself to determining

5

2. Modular Code Generation

data dependencies and finding an execution schedule. Note that not every code synthesis uses the SCG

as an intermediary stage.
The execution schedule is determined as follows. First, sequential statements are scheduled in

sequence. Second, concurrent writes are scheduled according to the initialize-update-read (iur) protocol.
The iur protocol specifies that absolute write operations (e. g., x = true) are scheduled before relative
writes using infix notation (e. g., x |= true), which in turn are scheduled before read operations (e. g.,
if x). Third, if multiple concurrent absolute (resp. relative) writes occur, they must be confluent, i. e., the
result does not depend on the order of execution. If they are not, the model is rejected.

The final stage of compilation is code generation. Three functions are generated: tick, reset and
logic. The tick function is called by the host software in order to compute the model's reaction for a
single tick. The reset function is called by the host software before the first tick. It initializes the model.
The logic function implements most of the model's behavior. However, because it is generally only
called from the tick function, it is conflated with the tick function for the remainder of this thesis.

By design, the state of all internal variables (including guards, registers used to determine control
flow) is computed in every tick of a program compiled using the netlist-based synthesis. This generally
leads to more predictable execution times for each tick, e. g., when compared to the priority-based
approach [Pei17].

2.1.2 Additional Terminology

In the following, a module is an SCCharts model that provides some functionality to another model.
The two models are in a caller-callee relation. A caller can rely on an arbitrary number of callee modules.
Every callee can also be a caller to another module. If a caller holds multiple references to the same
module, each of these references is an instance of the module.

2.2 Module Call Semantics

The alternative to MES presented in this section is to not expand a referenced SCChart into the root
model. Instead, its behavior is compiled into a separate source file containing a tick function and a
reset function that can then be called from within any other model. Additionally, each instance of a
module has its own datastructure to hold its variables.

MCS is not meant replace MES. Rather, it is meant to be an alternative explicitly chosen by the modeler.
They should be able to make this choice for each individual reference. Therefore, it makes sense to
make the distinction between the two a grammatical feature, not a compiler option. Furthermore,
substituting one approach for the other for any given reference should not require large amounts of
text editing. Consequently, it was decided to syntactically distinguish the two approaches by using the
new calls keyword in place of the is keyword in reference statements to specify a MCS reference. In
the visual syntax, the @ token is then also replaced by calls in order to indicate an MCS reference.

In order to make their use as intuitive as possible, it was decided that MCS references must be
resolved such that the following conditions hold:

(i) The callee's tick function is called if and only if its referencing state is active within the caller
model.

(ii) The callee's reset function is called if and only if its referencing state is (re-)entered, and before
the tick function is called.

6

2.3. Transformation Rules

(iii) All concurrent (absolute and relative) writes to the callee's input variables are completed before
its tick function is called.

(iv) Output values read from the callee can only be read after the callee's tick function has returned
and cannot be concurrently overwritten.

(iii) and (iv) is accomplished by using assignments in order to copy values into and out of the
callee's data structure. If inputs and outputs are written directly before and after each call to the tick
function, the iur protocol enforces these conditions: let a and b be variables of the caller, x an input
variable and y an output variable of the callee such that a is passed to x and b is retrieved from y.
Then according to the iur protocol all concurrent absolute or relative writes to a must occur before the
value of a is assigned to x. Similarly, if b is read concurrently, the iur protocol demands that the value
of y is written before it can be read. Because the assignment of y to b is an absolute write operation, all
other concurrent absolute writes are prohibited. Because the copying of inputs, call to the tick function
and copying of outputs are sequentially ordered, their execution order is fixed.

In order to ensure (i), the caller's reference to the callee is replaced by a complex state, the proxy
state. The sequence of statements specified above can be placed within such that the tick function is
called exactly once in each tick during which the proxy state is active. Then the proxy state must be
entered in order for the tick function to be called. In SCCharts, there are two ways a complex state can
be exited: by (strong or weak) abort and by termination. If the proxy state is strongly aborted, then
the tick function cannot be called. Therefore, aborting the proxy state aborts the callee as required.
However, termination by the callee must be handled explicitly. To that end, the callee's termination
status is checked after execution of its tick function. If the callee terminates, the proxy state must also
transition into a final state. Finally, (ii) can be accomplished by ensuring that the proxy state's initial
state has exactly one outgoing transition that triggers a call to the callee's reset function.

2.3 Transformation Rules

This section shows how the design considerations laid out in the previous section are implemented.
All existing Extended SCCharts features can be defined by their respective transformations into other
SCCharts features. This is not the case for MCS, however, because passing of input and output variables,
as well as calling a model's tick function, require a level of reflection that SCCharts does not provide.

It is therefore necessary to implement MCS using target language features. Nonetheless, it is
best practice to operate as generically as possible. Consequently, the MCS transformation is split
into two parts: the SCCharts transformation, which operates on an SCCharts model and is target
language independent, and the SCG transformation, which operates on an SCG. These two caller-side
transformations are sufficient in order to call any SCCharts model. The following subsections explain
each transformation in detail.

2.3.1 The Module Call SCCharts Transformation

This transformation modifies an input model that uses MCS references into one that does not. However,
unlike other Extended SCCharts transformations, the resulting model is not in and of itself equivalent
to the input model. This is only achieved later in the compilation by the SCG transformation.

Figure 2.2 shows an SCChart that uses a single MCS reference. The caller model has two boolean
variables a and b that are bound to the input x and the output y of the callee, respectively. The inner
behavior of the callee does not impact the transformation in any way.

7

2. Modular Code Generation

Caller
bool a, b

C calls Callee (a, b)
+

-

Callee
input bool x
output bool y

S/ y = !x

-

Figure 2.2. An example SCChart before transformation: the callee on the left is referenced by the caller on the
right.

Caller
bool a, b
Callee {

bool x
bool y
void tick ()
void reset ()
void copy_inputs (bool x)
void copy_outputs (bool y)
bool get_term ()
bool _TERM

} _C

C

I C

D

T
/ _C.reset()

/ _C.copy_inputs(a);
_C.tick();

 _C.copy_outputs(b)

1: _C.get_term()

2:

-

-

Figure 2.3. The same model as in Figure 2.2 after SCCharts transformation

The results of the transformation can be seen in Figure 2.3. First, a proxy class for the callee is added
to the caller. The class has the following members:

Ź The callee's input and output variables;

Ź The callee's termination flag;

Ź A method declaration for the tick and reset functions; and

Ź Placeholder declarations for methods that copy inputs and outputs, as well as determine termination.

The callee's input and output variables and its termination flag, as well as the tick and reset functions,
are declared in order to reference them in the proxy state. The copy_inputs, copy_outputs and get_term

functions do not exist; calls to them are replaced during the SCG transformation. The signature of
copy_inputs and copy_outputs contains the inputs and outputs of the callee, respectively. Note that while
a proxy state exists for each instance, the proxy class is created only once for each unique callee.

Second, the reference is converted into the proxy state. The proxy state is a simple state machine
that implements the considerations discussed in Section 2.2. When it is entered, the reset function is
called, inputs are copied, the tick function is called and outputs are retrieved. If the callee terminates,
so does the proxy state. Otherwise, control rests such that in the next tick, the tick function is called
again.

8

2.3. Transformation Rules

Support for Non-instantaneous Modules

Because the proxy state can potentially terminate instantaneously, scheduling restrictions apply. For
instance, if the state joins to itself, the compiler detects an instantaneous loop and the model is rejected.
This is expected behavior if the callee model can indeed terminate instantaneously. In order to be able
to have a non-instantaneous callee join to itself regardless, the @isDelayed annotation is introduced.
If the callee is annotated with @isDelayed, the alternative proxy state seen in Figure 2.4 is used. As a
consequence, the proxy state cannot terminate within its first tick.

Caller
bool a, b
Callee {

bool x
bool y
void tick ()
void reset ()
void copy_inputs (bool x)
void copy_outputs (bool y)
bool get_term ()
bool _TERM

} _C

C

I

C

T

/ _C.reset(); _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

/ _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

1: _C.get_term()

2:

-

-

Figure 2.4. The model from Figure 2.2 after the alternative, non-instantaneous transformation

Support for Complex Final States.

A Complex Final State (CFS) is a final state with internal behavior or outgoing transitions. CFSs

present a challenge to MCS because the proxy state normally cannot transition out of its final state.
Therefore, if the callee finishes any tick in a final state, it remains there until re-entered. This conserves
computational resources by not executing a callee that has already terminated. However, if a callee
is no longer executed after reaching a CFS, it has no effect. In order to allow CFS to be used in callee
models, the @nonFinal annotation is introduced. It adds an outgoing transition to the proxy state's final
state, allowing execution to be resumed after callee termination. The resulting proxy state is shown
in Figure 2.5. Note that @nonFinal can be combined with @isDelayed. Figure 2.6 shows the resulting
proxy state.

2.3.2 The Module Call SCG Transformation

This transformation takes the output of the existing SCCharts to SCG transformation as its input.
Figures 2.7a and 2.7b show the SCGs generated from the example model by this SCCharts to SCG

transformation. Note that during simultaneous compilation (as detailed in the next section), one SCG is
generated for each model. Both generated SCGs are shown here: the callee SCG and the caller SCG.

As mentioned above, the module call SCG transformation is target language dependent. Note
that while generation of Java code is currently unsupported, the transformation for Java is entirely

9

2. Modular Code Generation

Caller
bool a, b
Callee {

bool x
bool y
void tick ()
void reset ()
void copy_inputs (bool x)
void copy_outputs (bool y)
bool get_term ()
bool _TERM

} _C

C

I

C

D

T

/ _C.reset()

/ _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

1: _C.get_term()

2:

-

-

Figure 2.5. The model from Figure 2.2 after the alternative, non-final transformation

Caller
bool a, b
Callee {

bool x
bool y
void tick ()
void reset ()
void copy_inputs (bool x)
void copy_outputs (bool y)
bool get_term ()
bool _TERM

} _C

C

I

C

T

/ _C.reset(); _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

/ _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

1: _C.get_term()

2:

/ _C.copy_inputs(a); _C.tick(); _C.copy_outputs(b)

-

-

Figure 2.6. The model from Figure 2.2 after the combined non-final and non-instantaneous transformation

analogous. Hence, this section describes only the C transformation in detail. As C does not have objects
or methods, the syntax has to be modified accordingly. The transformation is as follows:

Ź The tick and reset method calls are replaced with function calls. The function's names are obtained
by suffixing the method identifier with the callee's name. Its argument is a pointer to the callee
instance.

Ź The get_term method call is replaced by a read access of the instance's termination flag.

10

2.4. Separate and Simultaneous Compilation

entry

exitsurface

depth

y = !x

(a) The callee SCG

entry

exit surface

depth

surface

depth

_C.reset()

_C.get_term()

_C.copy_inputs(a)

_C.tick()

_C.copy_outputs(b)

true

(b) The caller SCG before transformation

entry

exit surface

depth

_C._TERM

resetCallee(&_C)

tickCallee(&_C)

surface

depth

_C.x = a

b = _C.y

true

(c) The caller SCG after transformation

Figure 2.7. The model from Figure 2.2 and Figure 2.3 before and after the module call SCG transformation

Ź The copy_inputs and copy_outputs method calls are replaced by a sequence of appropriate assignment
operations.

Signals cannot be set to false once emitted. This enables a special optimization w.r.t. schedulability
under the iur protocol: while outputs of any other type must be retrieved by an absolute write operation,
signals are retrieved using a relative write, i. e., x |= Callee.y. Furthermore, input signals are not reset
at the beginning of the tick—the caller or host software is expected to reset them. This allows a signal
to be used as an input and output variable of a callee module. Otherwise, the fact that signals are
initialized by absolute write in each tick would cause the initialization and retrieval of outputs to be in
a write-write conflict.

The result of the transformation of the running example model is shown in Figure 2.7c. Note that
the callee's SCG is not modified, provided that it does not itself have MCS references.

Figures 2.8 and 2.9 shows the code generated at the end of compilation. In Figure 2.8, it is visible
that the callee's tick and reset functions, as well as its struct, are suffixed with the callee's name.
Therefore, the definition of the TickData struct in Figure 2.9a and the function calls in Figure 2.9b are
valid. The TickData struct contains a TickDataCallee struct. A pointer to this struct is handed into the
callee's tick and reset functions. If the caller had multiple references to the callee, its TickData would
simply contain multiple TickDataCallee instances. The implementation of the callee's tick and reset
functions would not be replicated.

2.4 Separate and Simultaneous Compilation

There are two modes of compilation for MCS: separate and simultaneous. The simultaneous mode is
similar to the way references are included when using MES. The callee module is present either within
the same SCCharts source file as their caller or otherwise included from another SCCharts source
file by an import statement. The models are then compiled side-by-side but independently from one
another.

Separate compilation allows the inclusion of pre-compiled modules. This requires the generated
target language files and an SCCharts header file. The header file is an SCCharts file with a special
structure: it contains the name and input and output variables of the module and is annotated with
@header, as well as any other annotations that apply to the module. In order to use a header file, the
modeler simply includes it either in the caller's source code or by importing it. In order for a model to

11

2. Modular Code Generation

1 typedef struct {

2 char x;

3 char y;

4 char _GO;

5 char _TERM;

6 } TickDataCallee;

7

8 void resetCallee(TickDataCallee* d);

9 void logicCallee(TickDataCallee* d);

10 void tickCallee(TickDataCallee* d);

(a) Callee.h (abridged)

1 #include "Callee.h"

2

3 void logicCallee(TickDataCallee* d) {

4 if (!d->_GO) {

5 d->x = !d->y;

6 }

7 }

8

9 void resetCallee(TickDataCallee* d) {

10 d->_GO = 1;

11 d->_TERM = 0;

12 }

13

14 void tickCallee(TickDataCallee* d) {

15 logicCallee(d);

16

17 d->_GO = 0;

18 }

(b) Callee.c (abridged)

Figure 2.8. Callee code generated from the model introduced in Figure 2.2

be usable as a pre-compiled module, it must be prefaced with the #code.naming suffix pragma before
compilation. Its tick and reset functions, as well as its TickData struct are then named as required.

Figure 2.10 shows an example module named Contains101, its SCCharts source code and an
appropriate header file. The module is a simple state machine that accepts any sequence containing
the subsequence [true, false, true]. Because it cannot terminate instantaneously, it is annotated with
@isDelayed.

The SCCharts header file can be automatically generated. This includes detection of instantaneity
and CFS. If a module is non-instantaneous, the @isDelayed annotation is added to the header. Similarly,
if the module uses CFS, the header is annotated with @nonFinal. Note that the current implementation
does not provide automatic generation of header files.

2.5 Parallels to Argument Handling

Many of the design decisions explained in this chapter have the explicit goal of making MCS as similar
to MES as possible. That extends to syntax as well as semantics. There are, however, discrepancies
roughly analogous to the difference between call-by-reference and call-by-value argument handling.

From a purely SCCharts perspective, i. e., before compilation, a modeler can view MES references
as similar to a procedure in an imperative language that operates on pointers to its inputs and outputs.
The comparison is somewhat misleading in the sense that conflicting concurrent writes to shared
variables, a behavior normally associated with call-by-reference in a concurrent context, are precluded
by the iur protocol. Conversely, it is accurate in the sense that the referenced module can arbitrarily
write to input variables. Because these input variables are identical to the root model's variables they
are bound to, these writes are persistent. Actually, MES does not differentiate between input and output
variables at all. Every non-local variable is shared between the two models. Consequently, avoiding

12

2.6. Code Size and Performance Implications

1 #include "Callee.h"

2

3 typedef struct {

4 char a;

5 char b;

6 TickDataCallee _C;

7 char _g1;

8 char _g5;

9 char _GO;

10 char _cg1;

11 char _TERM;

12 char _pg1;

13 } TickData;

14

15 void reset(TickData* d);

16 void logic(TickData* d);

17 void tick(TickData* d);

(a) Caller.h (abridged)

1 #include "Caller.h"

2

3 void logic(TickData* d) {

4 d->_g5 = d->_pg1;

5 d->_g5 = d->_GO || d->_g5;

6 if (d->_g5) {

7 d->_C.x = d->a;

8 tickCallee(&d->_C);

9 d->b = d->_C.y;

10 }

11 d->_cg1 = d->_C._TERM;

12 d->_g1 = d->_g5 && !d->_cg1;

13 }

14

15 void reset(TickData* d) {

16 d->_GO = 1;

17 d->_TERM = 0;

18 resetCallee(&d->_C);

19 d->_pg1 = 0;

20 }

21

22 void tick(TickData* d) {

23 logic(d);

24

25 d->_pg1 = d->_g1;

26 d->_GO = 0;

27 }

(b) Caller.c (abridged)

Figure 2.9. Caller code generated from the model introduced in Figure 2.2

the modification of input variables, where undesired, is left to the modeler.
In the same sense, MCS is much more similar to functions using call-by-value. Writes to input

variables inside the callee do not change the value of the caller's associated variable. Furthermore,
only the callee can write to its own output variables. This departure from the MES interface variable
handling is necessary in order to allow concurrent writes to input variables. If input variables were
written back after execution of the tick function, write-write conflicts would arise.

2.6 Code Size and Performance Implications

The main advantage of MCS over MES is that it enables modular code generation. In addition to the
benefits regarding unit tests, build times and closed-source distribution this provides, it is reasonable
to assume MCS can also be superior to MES in terms of code size and performance.

If a single callee module is referenced multiple times, its tick function is defined only once. While
multiple instances of a callee module each require a proxy state in the caller model, this state is
likely much smaller and less complex than the module itself. Therefore, the generated code can be

13

2. Modular Code Generation

Contains101
input bool b
output bool accept = false

S0
S1

S2 F

b !b

2:
1: b / accept = true

-

(a) The Contains101 model

1 scchart Contains101 {

2 input bool b

3 output bool accept = false

4

5 initial state S0

6 immediate if b go to S1

7

8 state S1

9 if !b go to S2

10

11 state S2

12 if b do accept = true go to F

13 go to S0

14

15 final state F

16 }

(b) The source file Contains101.sctx

1 @header

2 @isDelayed

3 scchart Contains101 {

4 input bool b

5 output bool accept

6 }

(c) The header file Contains101-header.sctx

Figure 2.10. The Contains101 model along with its source and header file

conjectured to be smaller.
Even if the callee module is used only once, MCS has two further possible advantages. First, what

would have been a single tick function using MES is split into multiple tick functions using MCS. These
smaller functions may lead to more optimal caching behavior. Second, SCCharts compiled using the
netlist-based synthesis recompute all registers and guards for each tick. If the callee's proxy state is not
active in a tick, its tick function is not called. Therefore, such a tick is less computationally intensive
overall. If multiple callees are active in at different times, but never in the same tick, worst-case
execution time can be expected to decrease.

14

Chapter 3

Implementation

This chapter presents the implementation of MCS. Technologies used in the implementation are briefly
described in Section 3.1 and the implementation itself is presented in Section 3.2.

3.1 Used Technologies

The implementation presented in this chapter is an addition to the KIELER project, specifically the
KIELER Compiler (KiCo). KIELER integrates into the Eclipse IDE's Rich Client Platform (RCP).

3.1.1 Eclipse

Eclipse1 is an open-source IDE originally released in 2004 as a tool for Java development that has
since gained support for various programming languages and frameworks thanks to its extensibility:
since version 3.0, Eclipse is made up of the Equinox framework2, which serves as a plug-in host,
and numerous plug-ins, collectively known as the Eclipse Rich Client Platform (RCP). This allows
applications other than the Eclipse IDE itself to be built upon the platform and to use its dynamic
plug-in management and extension points, as well as other features.

3.1.2 KIELER

One such application using the Eclipse RCP is KIELER. Figure 3.1 gives an overview of the KIELER project
and its components. KIELER provides the reference implementation for SCCharts and serves as an IDE
for SCCharts and many other synchronous languages, combining source editor, compiler, simulator,
visualizer and debugger. An integral part of KIELER is KiCo, a modular compiler for synchronous
languages. KiCo allows developers to specify individual operations on models as processors as described
by Smyth et al. [SSH18].

1https://www.eclipse.org/eclipseide/
2https://www.eclipse.org/equinox/

15

https://www.eclipse.org/eclipseide/
https://www.eclipse.org/equinox/

3. Implementation

Kieler Semantics
SCCharts, SCL, KICo,

KIEM, KLOTS

Demonstrators
KGraph Text, Ptolemy
Browser, KLighDning

OpenKieler
DebuKViz, KlassViz,
EcoreViz, KLayJS-D3

Kieler Pragmatics
KLighD, KIVi, KSBase

Eclipse Layout Kernel
Layout infrastructure and algorithms

Figure 3.1. The KIELER Project3

3.1.3 Xtend

Xtend4 is a programming language layered on top of Java. It provides extension methods, in-line
anonymous functions, type inference and many other conveniences. One of its features are Exten-
sion Methods, which allow developers to add methods to existing classes. Large parts of KiCo are
implemented in Xtend.

3.2 Implementation into KIELER

KiCo compilation chains, or systems, are sequences of transformations. Each of these transformations
is either itself a system or otherwise implemented as a processor. Most processors take a model and
return a transformed version, although there are others. A system can be defined simply by listing the
systems and processors in order of execution.

MCS is implemented in KIELER by two processors: ReferenceCallPreprocessor, which implements
the MCS SCCharts transformation, and ReferenceCallProcessor, which implements the MCS SCG trans-
formation. Both processors are implemented using Xtend.

Figure 3.2. The modified netlist-based SCCharts to C compiler pipeline. Additions are highlighted in red.

Figure 3.2 shows the netlist-based C system with the newly added processors. The
ReferenceCallPreprocessor is inserted into the Extended SCCharts system. It is executed directly

3https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview, accessed 12 September, 2021
4https://www.eclipse.org/xtend/documentation/index.html

16

https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
https://www.eclipse.org/xtend/documentation/index.html

3.2. Implementation into KIELER

after the module expansion processor, which implements MES. Since the ReferenceCallPreprocessor is
the second processor in the system, it can use the entire Extended SCCharts feature set, excluding MES

references.
The ReferenceCallProcessor is inserted into the netlist-based (C) system on the top level. A

corresponding Java processor would take its place in the Java netlist-based system. It is executed after
the model has been converted to SCG and optimized, but before the synthesis-specific (i. e., netlist-based
or priority) transformations.

The primary design goal of both processors is readability and comprehensibility of intermediate
models. KIELER allows the modeler to view—and even visualize the simulation of—every intermediate
result of the compilation. This can help them debug and better understand their own model. This
feature provides an incentive to SCCharts developers to encode even transient data into the transformed
model instead of storing it externally.

3.2.1 The Reference Call Pre-processor

The class ReferenceCallPreprocessor in the package de.cau.cs.kieler.sccharts.processors imple-
ments the module call SCCharts transformation discussed in Section 2.3.1. A proxy class is created
for each module. It acts as a stand-in for the callee's data structure. Recall that this data structure is
defined outside of the caller and thus cannot be accessed during compilation. Hence, the stand-in
is needed. Later, during C code generation, the proxy class is interpreted as a host type. Thus, all
accesses to it are actually accesses to the callee module's data structure, defined in its source files. This
is what allows separately compiled SCCharts modules to interoperate.

After the proxy class is created, a proxy state is created for each instance of a module. The proxy
state is a proxy for the callee's behavior within the caller model. From the caller's perspective, the
proxy state emulates the callee. It takes input values and returns the corresponding output values. If
the callee terminates, so does the proxy state. This is achieved by accessing an instance of the proxy
class. As the proxy class goes on to become a definition of the callee's data structure, its instances
become actual instances of the data structure. Thus, all accesses to instance members are converted
into accesses to the data structure's fields. This, in turn, is how actions in the proxy state can operate on
callee variables that are defined in a separate source file. Table 3.1 summarizes the roles of significant
methods of the ReferenceCallPreprocessor.

In the following, implementation considerations are illustrated on the example of the handling of
bindings. Recall that in MES, the reference contains a set of binding definitions. A variable of the root
SCChart is bound to an interface variable of the referenced model. In MES, this is accomplished by
renaming variables during expansion. MCS uses the same syntax for binding definitions, albeit with
call-by-value semantics. In MCS, values are copied from one variable to the other. This could have been
accomplished by inserting assignment actions directly into the transitions of the proxy state. However,
doing so could massively increase the amount of visual bloat in the intermediate model. This would
directly violate the design goal of readability stated earlier in this section.

Thus, it was decided to keep the assignment of inputs and retrieval of outputs abstract by instead
inserting calls to methods copy_inputs and copy_outputs defined in the proxy class. This has the
additional benefit that future implementations could directly implement these methods without much
re-engineering, e. g., for a more object-oriented Java implementation. However, the binding definition
is stored as part of the reference, which is removed during the transformation. Hence, it must be
stored elsewhere. As stated above, it is good practice to encode transient data within the model. Thus,
it was decided to store the binding definition implicitly in both the parameters of the copy_inputs and
copy_outputs methods and the arguments they are called with.

17

3. Implementation

Table 3.1. Significant methods in ReferenceCallPreprocessor

transform The entry point of the transformation. transformRootState is
called for each root state. Subsequently, @header models are
removed.

transformRootState This method finds all module call references in a given model
and transforms each as follows. Externally imported models are
copied into the root model and recursed into. If no proxy class
representing the model exists, it is created. Finally, the model's
proxy state is created.

createOrGetProxyClass This method returns the proxy class representing a given model.
If none exists, it is first created according to the specification
given in Section 2.3: The model's input and output variables
and termination flag, as well as placeholder methods, are de-
clared. The created class is annotated with @Model in order to
differentiate it from user defined classes.

createProxyState This method creates the proxy state for a module in-
stance, delegating either to createDelayedTransitions or
createInstantaneousTransitions, depending on whether or not
the module is annotated with @isDelayed.

createInstantaneousTransitions This method fills the module's proxy state with the instanta-
neous state machine shown in Figure 2.3. An extra transition is
added if the module is annotated as @nonFinal; cf. Figure 2.5.

createDelayedTransitions This method fills the module's proxy state with the non-
instantaneous state machine shown in Figure 2.4. Similar to
createInstantaneousTransitions, a transition is added if the
module is @nonFinal.

The parameters of copy_inputs are the input variables of the callee module in order of declaration.
These are known either from the callee header file or its source file. The arguments of the method
call are the caller variables from the binding definition. Their order is determined by looking up each
variable's bound callee variable and sorting them according to the order of declaration. Thus, their
respective index in the argument list matches the index of their bound callee variable in the parameter
list. Output variables are handled analogously.

TwoCalc

input int a, b, c

output int o, p

S calls Calculation (a, b, o)

+

-

T calls Calculation (a, c, p)

+

-

Calculation

input int x, y

output int z

Figure 3.3. The TwoCalc model

Figure 3.3 shows an example model. The callee module Calculation has input variables x and y

and an output variable z. The caller model TwoCalc has two instances of Calculation, one with bindings

18

3.2. Implementation into KIELER

TwoCalc

input int a, b, c

output int o, p

Calculation {

int x, y

int z

void tick ()

void reset ()

void copy_inputs (int x, int y)

void copy_outputs (int z)

bool get_term ()

bool _TERM

} _S, _T

S

I C

D

T

/ _S.reset()
/ _S.copy_inputs(a, b); _S.tick(); _S.copy_outputs(o)

1: _S.get_term()

2:

-

-

T

I C

D

T

/ _T.reset()
/ _T.copy_inputs(a, c); _T.tick(); _T.copy_outputs(p)

1: _T.get_term()

2:

-

-

Figure 3.4. The TwoCalc model after transformation

(a, b, o) and one with bindings (a, c, p). Figure 3.4 shows how the bindings are encoded into the model.
x and y become the parameters of copy_inputs, z the sole parameter of copy_outputs. In proxy state
S, copy_inputs is called with arguments (a, b). This reflects that a is bound to x and b to y. In T, the
arguments are (a, c), again reflecting the binding.

The method filteredParamsFromBindings shown in Figure 3.5 is the generic implementation used
for both input and output parameters. Its parameter predicate determines whether input or output
parameters are to be processed. Lines 7 through 9 perform the sorting of arguments according to their
declaration order.

3.2.2 The Reference Call Processor

The class ReferenceCallProcessor in the package de.cau.cs.kieler.scg.processors implements the
module call SCG transformation discussed in Section 2.3.2. Table 3.2 summarizes the methods defined
in the class. The two tasks of this processor are the translation of syntax and the expansion of method
calls into sequences of assignments.

Translating object-oriented syntax into C syntax is relatively straightforward in this case. Recall that
callee data structure and function names are constructed by suffixing the callee's name to the structure
or function name. Hence, a statement c.tick(), where c is an instance of Callee, is simply transformed
into tickCallee(&c).

The expansion of method calls is more complex. For the copy_inputs method, a distinction is made
between three cases:

(i) The method call has no arguments.

19

3. Implementation

1 protected def List<Parameter> filteredParamsFromBindings(State ref, ValuedObject instance,

2 Function1<Binding, Boolean> predicate) {

3 val bindings = ref.createBindings

4 val parameters = <Parameter>newArrayList

5 val classVarVOs = ref.classDeclaration.declarations.filter(VariableDeclaration)

6 .map[valuedObjects].flatten.toList

7 for (binding : bindings.filter(predicate).sortBy [b |

8 classVarVOs.indexOf(classVarVOs.findFirst[name == b.targetValuedObject.name])

9]) {

10 parameters.add(createParameter => [

11 expression = binding.sourceExpression.copy

12])

13 }

14

15 return parameters

16 }

Figure 3.5. The filteredParamsFromBindings method

Table 3.2. Methods in ReferenceCallProcessor

transformAll The entry point of the transformation. Calls transform for each SCG.
transform This method is the implementation of the transformation discussed

in Section 2.3. All tick and reset method calls are replaced by function
calls. The copy_inputs and copy_outputs method calls are each replaced
with a sequence of assignment nodes. Calls to get_term, all of which are
contained within conditional nodes, are each replaced with a reference
to their callee's termination flag.

getModuleClasses This method finds all classes annotated with @Module. It is invoked
by transform in order to guard user-defined classes and method calls
against inadvertent modification.

handleOperatorExpression This method recursively inspects an operator expression such as a log-
ical conjunction for calls to get_term and replaces them appropriately.

(ii) The method call has exactly one argument.

(iii) The method call has more than one argument.

(i) corresponds to a callee that does not have any inputs. In this case, the node is skipped entirely.
All incoming edges of the node are redirected to its target and the node is removed from the SCG.

(ii) corresponds to exactly one input being copied to the callee. In this case, the topology of the
SCG can remain unchanged. The statement of the node containing the call is simply replaced by an
assignment operation.

(iii) corresponds to multiple input variables and is handled similarly. The original node is replaced
by the assignment of the first parameter. All subsequent assignments are placed in newly created
nodes. These assignment nodes are then chained by pointing the outgoing edge of the original node to
the second node, the second to the third, etc. The outgoing edge of the last node is then pointed to the
target of the original node. Figure 3.6 shows the caller SCG for a callee with zero, one or three input
variables and no output variables.

20

3.2. Implementation into KIELER

Calls to copy_outputs are handled analogously. Finally, calls to get_term are replaced with the callee's
termination flag. Generally, the procedure is similar to case (ii) above. However, SCG-level optimization
can introduce additional complexity. For instance, two chained conditional nodes can be combined
into one conditional node. The condition of this new node is the logical conjunction of the two nodes'
conditions. Hence, if the condition of a conditional node is a complex expression, it must be recursively
searched for calls to get_term.

entry

exit

resetNoArgs(&_A)

surface

depth

_A._TERM

tickNoArgs(&_A)

surface

depth

true

(a) No input variables

entry

exit

resetOneArg(&_B)

surface

depth

_B._TERM

tickOneArg(&_B)

surface

depth

_B.x = a

true

(b) One input variable

entry

exit

resetThreeArgs(&_C)

surface

depth

_C._TERM

tickThreeArgs(&_C)

surface

depth

_C.x = a

_C.y = b

_C.z = c

true

(c) Three input variables

Figure 3.6. Caller SCG for different numbers of callee input variables

21

Chapter 4

Evaluation

This chapter evaluates both the concept of MCS and the approach taken in this thesis, demonstrating
their theoretical and practical limitations and advantages. As a central part of this chapter, performance
measurements on several models, both synthetic and real-world, are given and analyzed. From this,
recommendations for modelers are derived.

4.1 Supported Model Elements

There are some SCCharts model elements that cannot be supported by MCS for structural reasons.
Others could not be implemented within the time constraints of this thesis. This section breaks down
the model elements that SCCharts provides w.r.t. MCS's ability to support them. The results of this
section are based on manual tests.

4.1.1 Types

Callee modules support all SCCharts types for local variables without any constraints. For interface
variables, i. e., variables declared input and/or output, certain conditions apply.

Base types. The following base types can be used as input and output variables without any restric-
tions: bool, int, float and signal. As string is an alias for a char* in C, caution is advised. While a
model using strings for caller-callee communication will compile, there is no protection against buffer
overflows, etc. Therefore, it is not recommended to use strings.

host types are generally supported, provided they support assignment. E. g., if a host type aliases
string or any other array type, it is unsupported; if it is a struct, regular struct assignment1 is used.

Arrays. Structurally, arrays cannot be used as input or output variables at all. The reason is that C
does not support assignments to arrays. While there are two obvious solutions, each of them carries
heavy disadvantages: it is possible, instead of using the assignment operator to copy an array, to insert
a call to the appropriate auxiliary copy function (i. e., strcpy or memcpy). Doing so would cause every
array to be copied each time a callee model that declares it as an input or output variable is called,
leading to potentially severe performance penalties. The alternative solution is to use a pointer to the
array. However, this would be inconsistent with the call-by-value philosophy discussed in Section 2.5.

Constants and static variables. While local constants can be used—and behave as expected—in callee
modules, const input and const output variables are currently not supported. A local const variable
a in the caller model can be bound to a (non-constant) input variable b of the callee, in which case b is
assigned the constant value of a each time the callee is called.

1struct members are shallow-copied

23

4. Evaluation

static variables in SCCharts are similar to static variables in C, i. e., they are not reset on state
re-entry as described by von Hanxleden et al. [HDM+13]. Because static variables are currently reset
in the first tick of every root model, the static keyword does not affect variables whose scope is the
root level of a callee module. Until this is fixed, a possible workaround is wrapping the entirety of the
referenced model inside a complex state.

4.1.2 Actions, Hierarchy and Concurrency

In callee models, all kinds of actions, hierarchy and concurrency except for CFSs can be used without
any additional restrictions. As discussed in Section 2.3.1, CFSs have to be enabled manually by
annotating the callee with @nonFinal, leading to the callee's tick function being called after termination.

However, the CFS transformation does not yet properly support multiple root SCCharts and
erroneously inserts accesses to variables local to the callee into the caller model, leading to rejection by
the C compiler. There is a workaround: if the callee is compiled separately from the caller instead of
simultaneously (cf. Section 2.4), the erroneous accesses described above do not occur. In doing so, CFS

can be used.

In caller models, module call references can be placed within any state or region; cf. Section 4.2 for
the ensuing scheduling constraints.

4.1.3 Suspend and Complex Transitions

Suspend. Normal (strong) suspend, which specifies that a complex state is inactive while a condition
is met, is fully supported; irrespective of whether suspension is used within a referenced model or in
a complex state containing a module call reference, the behavior is identical to a module expansion
reference in an otherwise identical setting. While weak suspend should conceptually behave as expected,
it is still regarded as an experimental feature in SCCharts, therefore no correctness guarantees can be
given when used in conjunction with MCS.

Abort. Both weak and strong abort transitions function as intended. Of course, if the condition of a
strong abort is (or depends on) an output variable of the referenced model, no valid schedule exists.
However, this limitation is not exclusive to MCS.

History. Deep history transitions are inherently supported because skipping the proxy state's initial
state causes the callee's reset function to not be called. shallow history transitions, on the other
hand, do not function as expected. If a referencing state is transitioned into using a shallow history

transition, it behaves exactly as if a deep history transition had been used.

Join. Due to the proxy state's mirroring of the referenced model's termination status, outgoing join

transitions from module call references function correctly.

Deferred. As deferred transitions are still experimental in SCCharts, no guarantees regarding their
correct handling with MCS can be given. However, there are no known issues.

24

4.2. Limitations

4.1.4 Mixed References.

MCS and MES references can be used within the same model. However, not all configurations are
supported at the time of writing. If the references occur in parallel, i. e., an MCS and an MES reference
in the same model before compilation, the references are resolved correctly.

If references are nested, issues arise: an MES reference inside a model referenced by MCS is not
expanded because module expansion occurs before the MCS processing; an MCS reference inside an
MES reference is erroneously expanded by the MES processor. The former issue can be worked around
by separately compiling the referenced model. On their own, MCS references can be nested to arbitrary
levels of depth.

4.2 Limitations

In addition to the restrictions imposed by the current implementation and discussed in the previous
section, there is a conceptual limitation to the applicability of MCS. Some valid SCCharts are rejected
by the compiler if MCS references are substituted for their MES counterparts.

A
bool greater
int x

A1 calls B (x)

B
input output int x

-

-

A2
during / x++

-

Figure 4.1. A minimal model not schedulable using MCS

resetB(&_A1) depth

_A1._TERM

tickB(&_A1)surface

depth

x++ _A1.x = x

x = _A1.x

Figure 4.2. The dependency cycle introduced by MCS

The prime limitation of MCS is due to the design decision of subscribing to a call-by-value-like
binding resolution. This decision leads to assignment statements in each tick before and after the
callee's tick function is called. Excluding signals, these are always absolute write operations. Therefore,
any model that introduces additional dependencies between one of the referenced model's outputs
and one of its inputs is not schedulable according to the iur protocol, irrespective of the callee's internal

25

4. Evaluation

behavior. Even if operations are entirely confluent, the callee model is a black box to the compiler.
Figures 4.1 and 4.2 show a minimal example of a model affected by this.

Because all inputs are read before the callee model's tick function is called and all outputs are
written after it has returned, if the caller model requires an output of a reference in order to determine
an input—back-and-forth communication in other words—MCS does not support it. This pattern can
be found in many larger SCCharts models, for instance in mutual exclusion: if a model requires a lock,
it can only request it by setting an output variable. It can only receive the lock by reading an input
value. Therefore, at least one tick boundary is required to obtain a lock. In other words, MCS prohibits
instantaneous mutual exclusion.

One model that is impacted by this is the Railway Controller, the original motivation for referenced
SCCharts [SMS+15]. Consequently, the model, which is part of the motivation for MCS, cannot be used
to gauge its performance. It would be worthwhile to investigate whether this design limitation can
be overcome without sacrificing functionality. The resulting model could also serve as a large-scale
comparative benchmark.

Main
bool request, grant

Logic @ NeedsLock (grant, request)

NeedsLock
input bool lock_granted
output bool request_lock

A calls NeedsLockA (request_lock)

NeedsLockA
output bool request_lock

-

-

B calls NeedsLockB (lock_granted)

NeedsLockB
input bool lock_granted

-

-

-

-

Lock @ Lock (request, grant)

Lock
input bool request
output bool grant

-

-

Figure 4.3. A sketch of a workaround for the mutex problem

A possible workaround for the mutex problem is shown in Figure 4.3. A module is manually
split into two parts such that the first module, NeedLockA, computes whether a lock is needed and
only the second module, NeedLockB, actually needs the lock. The two modules are then placed as MCS

references within the NeedLock module. This module can then be included using an MES reference. The
MES reference allows the caller to execute instructions between the calls to NeedsLockA and NeedsLockB.
This solution places two proxy states in the caller model and therefore needs twice the space of a
potential single-reference solution. However, the end result can still be smaller than not using MCS at
all, provided the module is large.

Models that rely on the characteristic of MES that causes write operations to a module's input
variables to propagate back to the caller model as discussed in Section 2.5 also diverge when MCS is
used instead. The cause is the design decision to only copy the values of output variables back to the
caller.

26

4.3. Performance Analysis

4.3 Performance Analysis

Section 2.2 introduces the hypothesis that MCS can, if proxy state induced overhead is less significant
than size savings and gained optimizability, improve the performance of SCCharts that make use of
references in terms of computation time per tick, as well as generated code and executable size. This
section describes the steps undertaken in order to evaluate this hypothesis.

4.3.1 Methodology

The performance of a compiled SCCharts model, like any program, depends on many variables. The
size of the model, its hierarchical structure, the synthesis used, as well as the back-end compiler's
configuration play an important role. Furthermore, it cannot be assumed that statistical computation
time for every input and every internal state is equal. This is especially doubtful in the case of MCS

because entire sections of code are not executed in a tick in which a callee's tick function is not called.
Therefore, a number of A/B benchmark tests must be conducted on multiple models with varying
structural characteristics.

In order to ensure consistency, these models must also be supplied with deterministic inputs for
each tick. KIELER supports such a functionality in the form of traces. When simulating a model, inputs
and outputs can be captured and written to a trace file. This trace file can be read during subsequent
simulations, with the added benefit that deviations between a model's output and a pre-recorded trace
can be automatically detected and flagged. Therefore, if any semantic differences between MCS and
MES were to arise in the tested models, they would not remain undetected.

The KiCo Command Line Interface (CLI) features a highly configurable benchmark tool alongside
its automated testing framework. Given a list of models, each of which requires a trace file, the tool
embeds each compiled model in a simulation executable that sets its inputs, executes its tick function
and measures the wall clock execution time for each tick in the associated trace. Additionally, the Lines
of Code (LoC) of the generated source code is determined as a secondary statistic.

The measurements in this section were obtained using the above-mentioned tool. For every trace
and both reference resolution approaches, 50 runs were analyzed in order to be able to effectively
identify and remove outliers, i. e., individual ticks during which external influences like kernel
interrupts, etc. artificially increase the measured execution time. Furthermore, this allows for a closer
examination of the distribution of tick times.

All models were compiled using the netlist-based synthesis using the C back-end, as it is currently
the only one that supports MCS. Unless otherwise specified, GCC was configured with the -O3

optimization level2 and all tests were conducted on an Intel® Xeon® E5540 CPU with a base clock
frequency of 2.53 GHz.

Outlier detection, where applied, was conducted as described by the following pseudocode:

for each trace and approach:

for each tick:

calculate lower and upper quartiles LQ, UQ of tick times across all runs

for each tick and run:

if time > UQ + 3 * (UQ-LQ):

remove the measurement

2https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html, accessed 3 September 2021

27

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

4. Evaluation

This is a version of Interquartile Range (IQR) based outlier detection as described in [RH18], applied
across runs, but only to one tick at a time.

4.3.2 Evaluated Models

Suitable SCCharts models were extracted from the Real-Time and Embedded Systems Group's model
repository and semantically equivalent MCS versions were created by substituting each module
expansion reference with an appropriate module call reference. Suitability, in this context, is determined
by:

(i) usage of referenced SCCharts;

(ii) applicability to real-world tasks; and

(iii) schedulability of the model after module call reference substitution.

Most models in the repository are either structural tests and are therefore not complex enough to
represent models that solve real-world tasks or otherwise do not use referenced SCCharts. Many of
those that do were not designed with MCS in mind and would require a total refactoring in order to be
schedulable.

However, two archived student homework submissions fulfill all three requirements. These models
are Backhoe (Figure 4.4), a hypothetical excavator controller, and Barcode (Figure 4.5), a model that
reads and validates simplified EAN-style bar codes [SMS+19]. These are not pictured here because
no declaration of consent regarding publication could be obtained from the authors. In their stead,
diagrams of their relevant structural elements have been created. Furthermore, no real-world execution
traces for these models exist. It is, however, not difficult to infer their intended use and synthesize
plausible traces.

Additionally, three synthetic highly modular models were created in order to provide a best case
scenario for MCS. They are designed to feature multiple references to the same SCCharts model as well
as a deep reference hierarchy in order to achieve optimal code size and caching behavior for MCS over
MES. It would, of course, be preferable to use existing real-world models for this analysis. However,
because of the communication restriction described in Section 4.2, most existing larger models cannot
be scheduled using MCS. It is conjectured that many of these could be modified in such a way that they
could be scheduled without making them significantly more computationally expensive, but doing so
is outside the scope of this thesis.

Summary of all models. Table 4.1 summarizes the number of unique and overall references for each
model. Multiple orders of magnitude, both of absolute number and of ratio between overall and
unique references3 are represented.

Table 4.1. References and unique references.

Model Barcode Backhoe Counter (half width) Counter (full frequency) Counter

#References 1 2 19 32 35
#Unique 1 2 6 5 6

3References to different models; if a model has two references to one and the same model, it is interpreted to have two
references and one unique reference.

28

4.3. Performance Analysis

The Backhoe model features two mutually exclusive references, each of which does not itself contain
any references. During run-time, control flow cycles between the two, such that in almost every tick,
one of the two will be active.

In a real-world scenario, operation generally follows this pattern: first, a button is pushed in order
to initiate a process, e. g., extending the stick, boom and bucket assembly. The model then sets the
actuator for extending the stick and awaits a signal from the relevant endstop sensor. This process is
repeated for the boom and the stick. Each phase involves setting an actuator and awaiting feedback
from a sensor, indicating the end of the phase; a common pattern in embedded systems.

Therefore, the model can operate either periodically, computing its reaction once per fixed time
interval, or dynamically, reacting only whenever any input changes. In order to account for both use
cases, as well as investigate whether one approach significantly benefits from one of these modes of
operation, two separate traces were created: the dense trace, representing dynamic operation by varying
inputs between each tick, and the sparse trace, which represents periodical operation by interspersing
each pair of ticks from the dense trace with 100 ticks during which the inputs do not change.

Abstract Structure of Backhoe
bool b1, b2, b3

R1 @ Ref1 ()
+

R2 @ Ref2 ()
+

S1 S2
S3

b1 b2

b3

-

Figure 4.4. An abstract structural diagram of the Backhoe model

The Barcode model features only one reference that contains the vast majority of its model elements.
It serves to investigate the overhead that MCS introduce in a worst-case scenario. The use case for this
model is to feed it the segments of a bar code in a boolean format—light or dark—in successive ticks.
The encoded number is calculated and validated against a checksum digit.

Because each tick corresponds to exactly one segment of the bar code, only a dense trace consisting
of the model reading a bar code representing the number 42 was created for this model.

Abstract Structure of Barcode
bool b

Init

I F
<multiple transitions>

- R @ Ref ()
+

b

-

Figure 4.5. An abstract structural diagram of the Barcode model

The Counter model (Figure 4.6) is an 8-bit binary counter that counts every eighth tick. It is made
up of two 4-bit binary counters, the overflow of the first of which, as detected by a negative edge
detector, serves as a clock for the second. Each binary counter, in turn, uses clocked RS latches that

29

4. Evaluation

RSCounter
output bool c0, c1, c2, c3, c4, c5, c6, c7
bool clk
bool bc0_overflow

BC0 @ BinaryCounter (clk, c0, c1, c2, c3)
+

-

BC1 @ BinaryCounter (bc0_overflow, c4, c5, c6, c7)
+

-

NE @ NegEdgeDetect (c3, bc0_overflow)
+

-

CLK @ DividedClock (clk)
+

-

(a) The main model

BinaryCounter
input bool clk
output bool c0, c1, c2, c3
bool nc0, nc1, nc2, rc0, rc1, rc2, rc3
immediate during / rc0 = pre(c0);

rc1 = pre(c1) && nc0;
rc2 = pre(c2) && nc1;
rc3 = pre(c3) && nc2

C0 @ ClockedRSLatch (clk, rc0, clk, c0)
+

-

C1 @ ClockedRSLatch (nc0, rc1, clk, c1)
+

-

C2 @ ClockedRSLatch (nc1, rc2, clk, c2)
+

-

C3 @ ClockedRSLatch (nc2, rc3, clk, c3)
+

-

NC0 @ NegEdgeDetect (c0, nc0)
+

-

NC1 @ NegEdgeDetect (c1, nc1)
+

-

NC2 @ NegEdgeDetect (c2, nc2)
+

-

(b) The half width binary counter module

Figure 4.6. The Counter model and its sub-modules

are themselves made up of positive edge detection and an RS latch. As Figure 4.7 shows, the model,
despite consisting of very simple modules, is quite large and complex after module expansion.

The Counter (full frequency) model. The clock divider was originally intended only as a means to
add complexity to the model, but it gives an additional opportunity to analyze whether internal
state changes have a significant computational cost by also testing a variant without a clock divider.
Figure 4.8a shows that modified model. It is slightly smaller due to the missing clock divider, but its
internal state changes in every tick.

30

4.3. Performance Analysis

ClockedRSLatch
input bool s, r, clk
bool s_clk, r_clk, clk_edge
output bool q
immediate during / s_clk = s && clk_edge;

r_clk = r && clk_edge

RS @ RSLatch (s_clk, r_clk, q)

RSLatch
input bool s
input bool r
output bool q

R
entry / q = false

S
entry / q = true

s && !r

r

-

-

-

ED @ PosEdgeDetect (clk, clk_edge)
+

-

(c) The clocked RS latch module

PosEdgeDetect
input bool b
bool b_neg
output bool q
immediate during / b_neg = !b

S @ NegEdgeDetect (b_neg, q)

NegEdgeDetect
input bool b
output bool q

I

low
entry / q = true
during / q = false

high
entry / q = false

2:

1: b
b

!b

-

-

-

(d) Edge detection modules

DividedClock
output bool clk
bool clk0

S @ SimpleClock (clk0)

SimpleClock
output bool clk
during / clk = !clk

-

-

D @ ClockDivider4 (clk0, clk)

ClockDivider4
input bool clk_in
bool edge
output bool clk_out

I

S

edge / clk_out = !clk_out

2 edge / clk_out = !clk_out

-

E @ PosEdgeDetect (clk_in, edge)
+

-

-

-

(e) The divided clock module

Figure 4.6. The Counter model and its sub-modules (cont.)

31

4. Evaluation

RSCounter
output bool c0, c1, c2, c3, c4, c5, c6, c7
bool clk
bool bc0_overflow

BC0
bool nc0, nc1, nc2, rc0, rc1, rc2, rc3
immediate during / rc0 = pre(c0);

rc1 = pre(c1) && nc0;
rc2 = pre(c2) && nc1;
rc3 = pre(c3) && nc2

C0
bool s_clk, r_clk, clk_edge
immediate during / s_clk = clk && clk_edge;

r_clk = rc0 && clk_edge

RS

R
entry / c0 = false

S
entry / c0 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !clk

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C1
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc0 && clk_edge;

r_clk = rc1 && clk_edge

RS

R
entry / c1 = false

S
entry / c1 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !clk

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C2
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc1 && clk_edge;

r_clk = rc2 && clk_edge

RS

R
entry / c2 = false

S
entry / c2 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !clk

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C3
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc2 && clk_edge;

r_clk = rc3 && clk_edge

RS

R
entry / c3 = false

S
entry / c3 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !clk

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

NC0

I

low
entry / nc0 = true
during / nc0 = false

high
entry / nc0 = false

2:1: c0

c0 !c0

-

-

NC1

I

low
entry / nc1 = true
during / nc1 = false

high
entry / nc1 = false

2:1: c1

c1 !c1

-

-

NC2

I

low
entry / nc2 = true
during / nc2 = false

high
entry / nc2 = false

2:1: c2

c2 !c2

-

-

-

BC1
bool nc0, nc1, nc2, rc0, rc1, rc2, rc3
immediate during / rc0 = pre(c4);

rc1 = pre(c5) && nc0;
rc2 = pre(c6) && nc1;
rc3 = pre(c7) && nc2

C0
bool s_clk, r_clk, clk_edge
immediate during / s_clk = bc0_overflow && clk_edge;

r_clk = rc0 && clk_edge

RS

R
entry / c4 = false

S
entry / c4 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !bc0_overflow

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C1
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc0 && clk_edge;

r_clk = rc1 && clk_edge

RS

R
entry / c5 = false

S
entry / c5 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !bc0_overflow

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C2
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc1 && clk_edge;

r_clk = rc2 && clk_edge

RS

R
entry / c6 = false

S
entry / c6 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !bc0_overflow

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

C3
bool s_clk, r_clk, clk_edge
immediate during / s_clk = nc2 && clk_edge;

r_clk = rc3 && clk_edge

RS

R
entry / c7 = false

S
entry / c7 = true

s_clk && !r_clk

r_clk

-

-

ED
bool b_neg
immediate during / b_neg = !bc0_overflow

S

I

low
entry / clk_edge = true
during / clk_edge = false

high
entry / clk_edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

NC0

I

low
entry / nc0 = true
during / nc0 = false

high
entry / nc0 = false

2:1: c4

c4 !c4

-

-

NC1

I

low
entry / nc1 = true
during / nc1 = false

high
entry / nc1 = false

2:1: c5

c5 !c5

-

-

NC2

I

low
entry / nc2 = true
during / nc2 = false

high
entry / nc2 = false

2:1: c6

c6 !c6

-

-

-

NE

I

low
entry / bc0_overflow = true
during / bc0_overflow = false

high
entry / bc0_overflow = false

2:

1: c3
c3

!c3

-

-

CLK
bool clk0

S
during / clk0 = !clk0

-

D
bool edge

I

S

edge / clk = !clk

2 edge / clk = !clk

-

E
bool b_neg
immediate during / b_neg = !clk0

S

I

low
entry / edge = true
during / edge = false

high
entry / edge = false

2:1: b_neg

b_neg !b_neg

-

-

-

-

-

Figure 4.7. The Counter model after module expansion

The Counter (half width) model. The Counter model also enables a controlled test for code size and
performance behavior in cases where additional references to already referenced models are introduced.
The half width variant (cf. Figure 4.8b) was constructed for this purpose. It uses only one 4-bit binary
counter and is thus about half the size of the original model after module expansion, but has the same
unique references.

32

4.3. Performance Analysis

RSCounterFullFrequency
output bool c0, c1, c2, c3, c4, c5, c6, c7
bool clk
bool bc0_overflow

BC0 @ BinaryCounter (clk, c0, c1, c2, c3)
+

-

BC1 @ BinaryCounter (bc0_overflow, c4, c5, c6, c7)
+

-

NE @ NegEdgeDetect (c3, bc0_overflow)
+

-

CLK @ SimpleClock (clk)
+

-

(a) The Counter (full frequency) model

RSCounter4Bit
output bool c0, c1, c2, c3
bool clk

BC0 @ BinaryCounter (clk, c0, c1, c2, c3)
+

-

CLK @ DividedClock (clk)
+

-

(b) The Counter (half width) model

Figure 4.8. Counter variations

4.3.3 Analysis

Figure 4.9 shows the mean and standard deviation of the tick time for each trace and approach after
removing outliers. Models are ordered from left to right by ascending number of references. It is
immediately apparent that the overhead introduced by MCS does not impact mean performance by a
large amount. The opposite seems to be true: in most cases, MCS is significantly faster than MES.

Barcode. The only model that does not significantly benefit from the approach is Barcode. This is
easily explained by the fact that it features only one reference that is active for most of the trace.
Figure 4.10a plots the distribution of the central 50 percent of time for each tick and shows that while
MCS is at least four times faster in the initial and final few ticks, during which the reference is not
active, the mid section is both on average faster when using MES as well as having much less variance.

For convenient comparison, this interval (all ticks but the first and last six) is also plotted in
Figure 4.9. The difference between the whole trace and its mid section is evidence that MCS can profit
from references that are inactive for large intervals of time, but that the additional overhead that occurs
when it is active must not be overlooked.

Figure 4.10b is a histogram of the measured tick times plotted against their frequency of occurrence
over all ticks and all runs; it paints a similar picture by illustrating the distribution of tick times. There
is a clearly visible cluster of sub-millisecond ticks for MCS representing the ticks during which the
reference is inactive.

33

4. Evaluation

Figure 4.9. Mean aggregated tick times and tick time standard deviation for all traces. Models are ordered from
left to right by ascending number of references.

Backhoe. The Backhoe model significantly benefits from MCS, improving the mean tick time by 35%
and 26% in the dense and sparse cases, respectively. The distribution of these numbers seems to
suggest that MCS can profit more from denser traces, i. e., models that get called dynamically and only
when inputs change.

However, this distribution can be partially explained by the effect of the (computationally expensive)
initial tick on the mean. While the first tick makes up 1

15 of the dense trace and thus can significantly
influence the mean, it only makes up less than 1

1000 of the sparse trace and thus the mean is entirely
dominated by the statistical weight of the other ticks. In contrast, MCS has an initial tick for each
reference, so its initial tick penalty is spread out over multiple ticks.

Figure 4.11 shows the tick time quartiles for both traces. Two effects become immediately apparent,
especially in the sparse trace (Figure 4.11b):

(i) While the upper quartile and median are always close together, the lower quartile is significantly
lower, especially for MES.

(ii) Between ticks 500 and 700 (resp. ticks 9 and 10 in the dense trace), MCS is substantially less
computationally expensive.

While (ii) is easily explained by the fact that for exactly two transitions, no reference is active
(cf. Figure 4.4) and thus their tick functions aren't called, (i) is more puzzling. In an ideal execution
environment, the time taken to compute one and the same tick should be identical across runs.
However, even when accounting for occasional long interruptions by the operating system, one would
expect the upper quartile to diverge from the median, not the lower quartile.

There are at least two possible explanations for this phenomenon: either the low tick times of the
first quartile are a product of fortunate, non-deterministic processor-level effects, e. g., speculative
execution, favorable caching, etc., or the operating system interrupts execution for a duration of 200 to

34

4.3. Performance Analysis

(a) Median and upper and lower quartiles for each tick

(b) Histogram of aggregated distribution

Figure 4.10. Tick times of the Barcode model

300 microseconds in more than half (but less than a three quarters) of all ticks. The latter hypothesis
may also explain why MCS is less affected by this phenomenon: if interruptions occur somewhat
periodically, then a faster tick function is less likely to be interrupted. Naturally, the two explanations
are not mutually exclusive; they may both contribute to the phenomenon.

Furthermore, Figure 4.11b shows that even MES's tick time is influenced by internal state: for

35

4. Evaluation

(a) Quartiles for the dense trace

(b) Quartiles for the sparse trace

Figure 4.11. Tick times of the Backhoe model

instance, median tick time is significantly higher between ticks 700 and 800 than in the subsequent
100 ticks. This is an at least somewhat surprising result for the netlist-based synthesis because of its
usually high tick-by-tick execution time stability discussed in Section 2.1.1.

Figure 4.12 illustrates that MCS and MES produce a similar distribution of tick times with clearly
distinguishable clusters in the low end and a high concentration around the median. The clusters

36

4.3. Performance Analysis

produced by MCS are more centered, though, with visible spikes in the histogram.

Figure 4.12. Histogram of Backhoe sparse trace aggregated tick time distribution

Figure 4.13. Scatterplot of all Backhoe sparse trace tick times before outlier removal (log scale)

A look at the scatterplot of all tick times (before outlier removal; Figure 4.13) reveals that these
clusters are not concentrated in time, as one might suspect, but rather spread out over time in layers
hundreds of ticks in width.

Furthermore, there are two distinguishable bands of tick times between 2.5 and 3.5 milliseconds,
most of which, but not all, from executions of MCS. These fall just outside of the 3 ¨ IQR radius that is

37

4. Evaluation

used to detect outliers, which is why they do not appear in the histogram nor do they influence the
calculated mean tick time. While fewer MES ticks fall into these exact bands, many occur between 1
and 2 milliseconds, a zone almost free of MCS ticks. This leads to the conjecture that if an MCS tick is
interrupted or takes, for any reason, at least a millisecond to compute, it is much more likely to be
interrupted for long enough to take at least 2.5 milliseconds.

Finally, after the first (resp. 200th) tick, MCS produces a curious amount of as of yet inexplicable
lower outliers.

Counter. Figure 4.14 shows the tick times for the Counter model. It is immediately apparent that the
tick times of MCS are consistently, almost strictly, smaller than those of MES. Additionally, MCS does not
display the same band of outliers as it does in the Backhoe model (cf. Figure 4.13).

Median times of the MES experiments oscillate around the 5.5 millisecond mark with an amplitude
of approximately 500 microseconds and a period of exactly 8 ticks, as can be seen in Figure 4.14a.
The period is remarkable because once every 8 ticks is also the frequency of the output of the divided
clock module (cf. Figure 4.6e); the output is false for four ticks, then true for the next four. In other
words: the binary counter module counts every 8th tick. The exact cause of this oscillation is not
known, however. Remarkably, MCS seems less affected by the phenomenon; while some periodicity is
undeniably observable in its tick times, it is often not significant enough to be visible above the noise
of random tick time fluctuations.

Furthermore, MES displays two clearly visible tick time minima: the first one in tick 121, the second
one in tick 249. The trace reveals that these are the ticks in which the first four (resp. five) registers
overflow, going from 1 to 0. Clearly, and contrary to intuition, the counter overflow causes execution
time to experience a downward spike. The effect is weak, though, and it cannot be said with certainty
whether or not MCS is affected as well.

The scatterplot in Figure 4.14b shows that the Counter model displays the same phenomenon of
lower outliers as the Backhoe model, though it seems to affect MCS with a larger magnitude; while
outliers have a similar (logarithmic) distance from the median as those produced by MES, there are
visibly more of them and they form an almost continuous band.

Counter variations. The two variations on the Counter model (Figure 4.15) exhibit the same phe-
nomena as the original, albeit adjusted to the models'individual characteristics. The period of the
Counter (full frequency) model's low tick time spikes, for instance, is 64, although less distinguished
spikes often appear exactly at the half way point between two more visible ones. As this model's
internal clock ticks with a frequency four times that of the original, the natural assumption is that
its minima should occur every 32nd tick, yet this assumption is only partially true. Additionally,
the model's clock period of two ticks does not provide the resolution necessary to visually confirm
whether or not the low-level oscillation observed in the original model exists here.

The Counter (half width) model displays more erratic tick time behavior along the tick axis, although
MES's per-tick variance is visibly smaller across runs when compared to the full-size model, even when
measured in relation to the mean. MCS does not share this phenomenon. Overall, MES's tick times
increase approximately linearly with model size between the smaller and the two larger models, while
MCS's increase only slightly.

Code and executable size. Arguably more important for embedded systems than performance is,
from an economic perspective, the issue of size, specifically the size of the compiled executable.
Because embedded systems use a large variety of different microcontroller and CPU architectures and
compilers, the size of a binary executable compiled for any one system is not necessarily representative

38

4.3. Performance Analysis

(a) Tick time quartiles

(b) Scatterplot of all tick times

Figure 4.14. Tick times of the Counter model

for all systems.

It is therefore advisable to consider a size metric common to all systems: the number of lines of the
generated C code, as shown in Figure 4.16. The numbers displayed in the figure are determined by
counting all lines of code that are neither empty nor comments. While the size overhead introduced
by its proxy states puts MCS at a clear disadvantage for the two smaller models, it seems that MCS's

39

4. Evaluation

(a) Tick times of the Counter (full freq.) model

(b) Tick times of the Counter (half width) model

Figure 4.15. Tick time quartiles of the Counter variations

generated code size grows more slowly than MES's does. Even the relatively small Counter (half width)
model is significantly smaller when using MCS. This is no doubt because of its heavy re-use of
references. The most striking difference between the two approaches'size implications is visible when
comparing the above-mentioned model with Counter (full frequency): instead of nearly doubling in size,
as the version using MES does, it decreases in size. Reminding oneself of the structure of the larger

40

4.3. Performance Analysis

Figure 4.16. Number of lines of generated code, excl. empty lines or comments, by model and approach

model, the reason for this disparity is clear; the larger model does not contain any more unique
references than the smaller one, in fact it has one less. The overhead introduced by the additional
non-unique references, it follows, is relatively insignificant.

Figure 4.17. Net compiled executable size by model and approach

As a single line of code can, however, amount to any number of processor instructions after
compilation, it would be careless not to examine exemplary binary executables. SCCharts do not

41

4. Evaluation

generally run as a standalone application; they are instead called from within a host environment.
Therefore, it is difficult to obtain accurate size information from generated code alone. The solution
chosen here is to evaluate the size of the executables used in the performance benchmark as detailed
above. Because a significant number of instructions are used to gather internal model information, an
empty SCCharts model was first compiled for simulation and its size, 46.6 kilobytes, subtracted from
all measured executable sizes in order to arrive at the net size, i. e., the size of only the model, shown
in Figure 4.17. As the netlist synthesis does not rely on external libraries, the size obtained this way
can be regarded as an accurate approximation of the actual compiled model size. However, this does
not imply that the results presented here hold for other architectures, compilers, or even optimization
flags.

The space saving potential of MCS is very promising regardless: the resulting executable is smaller
for every tested model. Especially the Counter models demonstrate MCS's advantage for models
featuring heavy code re-use.

Alternative compiler configurations. As mentioned above, model performance relies heavily on
compile time optimization. While the optimization level -O3 has been chosen in order to achieve
best-case performance for both reference resolution approaches, different configurations may be used
in practice. In order to reflect this circumstance, an alternative benchmark using -O0 optimization was
conducted, the results of which are summarized in Figures 4.18-4.22 below.

Figure 4.18. Mean aggregated tick times and tick time standard deviation for all traces when compiled with -O0

42

4.3. Performance Analysis

Figure 4.19. Tick time quartiles for the Backhoe model (sparse trace) when compiled with -O0

Figure 4.20. Tick time quartiles for the Barcode model when compiled with -O0

43

4. Evaluation

Figure 4.21. Tick time quartiles for the Counter model when compiled with -O0

Figure 4.22. Net executable sizes for all models when compiled with -O0

44

4.4. Discussion

4.4 Discussion

The comparative benchmark, though limited in scope, has shown that MCS has a significant performance
advantage over MES for models that heavily re-use references. Surprisingly, even for models that do
not re-use references at all, MCS produces much smaller executables. Though both approaches exhibit
somewhat unpredictable execution time behavior in various situations, there is good indication that
MCS is at least as reliable w.r.t. execution time as MES. Due to its call-by-value design, MCS has the
disadvantage that back-and-forth communication between caller and callee cause the model to be
rejected as discussed in Section 4.2. Solving this problem requires a more sophisticated caller-callee
interface. Overall, using MCS—provided the scheduling constraints allow for it—is recommended if a
model:

(i) references the same model in multiple places;

(ii) references a complex model that is inactive in a significant proportion of ticks;

(iii) is required to use pre-compiled models; or

(iv) otherwise produces too large executables.

Recall that MCS and MES are not mutually exclusive. Conceptually, the same model can use both
types of reference. Therefore, the choice between MCS and MES can be made on the reference level.
Nevertheless, MCS could become the default choice.

45

Chapter 5

Conclusion

In this chapter, the thesis is summarized and further work is pointed out. Section 5.1 recapitulates the
results of this theses. Section 5.2 discusses possible avenues for future research.

5.1 Summary

MCS is a promising alternative to MES. It enables modular code generation for SCCharts using black-box
scheduling. Modules can be separately compiled and later included in any model. This is accomplished
by generating a separate tick and reset function for each module. The caller is then transformed by
introducing a proxy class for each unique callee module and a proxy state, which communicates
control-flow between caller and callee, for each instance.

An implementation into KIELER has been developed for this thesis. It allows generation of C code
using the netlist-based synthesis. The transformation uses a two-pronged approach, introducing the
proxy class and states in the first transformation and adapting the syntax to the target language in the
second. Most data types and SCCharts model elements are supported. Although MCS is syntactically a
drop-in replacement for MES, not all models that can be compiled using MES can be compiled with
MCS. In particular, instantaneous back-and-forth communication between modules is prohibited by the
black-box approach.

Nevertheless, MCS has proven to be advantageous for run-time performance and executable size. All
but the very smallest models benefit from significantly improved median execution times. Furthermore,
every tested MCS model produces a smaller executable than its respective MES counterpart. These
advantages make MCS a good choice as the default approach for referenced SCCharts.

5.2 Future Work

Sections 4.1 and 4.2 of this thesis have already pointed out a number of open questions, as well as
directions in which MCS could develop. This section expands upon these questions and suggestions
and gives solution approaches where possible.

5.2.1 Instantaneous Bidirectional Communication

As discussed in Section 4.2, MCS precludes instantaneous bidirectional communication. Simply stated,
a callee cannot ask for input and receive an answer within the same tick. It would be worthwhile to
investigate how essential design patterns that requires instantaneous bidirectional communication are
for large real-world SC models.

This could be accomplished by re-designing the existing model railway controller [SMS+15]—or
even building a new one from scratch—using only MCS wherever possible. Doing so would also
certainly provide a model for benchmarking MCS that is orders of magnitude larger than all models
tested thus far.

47

5. Conclusion

5.2.2 Array Passing

Arrays and other arbitrary-size data structures present a problem for MCS. Passing arrays to and from
callees by copying all values would be consistent with the existing call-by-value design philosophy.
However, doing so could waste an inordinate amount of processor cycles copying unchanged—and
unneeded—array values. Passing arrays by reference is also problematic. This approach would require
explicit scheduling directives in order to ensure that all array values are written before a callee's tick
function is called—and that array values are only read after the callee has finished its work.

Arguably, both approaches are insufficient. The call-by-value approach, however, is much more
consistent with the rest of MCS. It is the author's opinion that it should be applied to arrays as well,
mitigating performance penalties wherever possible. Perhaps it is feasible to statically determine
array accesses and copy only values that may have changed. Such scheduling information could be
distributed alongside pre-compiled modules in their respective header files. A more primitive solution
would be the transformation of arrays into separate variables. Unused array fields could then be
eliminated from a module's interface.

5.2.3 Synthesis and Target Language Support

The current implementation, which is described in Chapter 3, only supports the netlist-based synthesis
and C code generation. This is not a conceptual limitation of MCS. On the contrary: MCS is compatible
with a range of other synthesis approaches and target languages.

The generation of Java code from models using MCS could be accomplished by implementing
a variant of the ReferenceCallProcessor that transforms SCG nodes such that Java syntax is used
instead of C syntax. The priority-based synthesis could be made to support MCS by modifying its SCG

transformations and code generation processor such that multiple SCGs are processed independently
from one another. The lean state-based synthesis, which does not use SCGs as an intermediate format,
would require the methods introduced in the MCS SCCharts transformation to be implemented. This
could be accomplished within the scope of the library functions that the lean state-based synthesis
uses.

5.2.4 Gray-box Scheduling

While MCS is conceptually a black-box approach, it uses techniques that could be considered gray-
boxing. For instance, the optional @isDelayed and @nonFinal annotations give the compiler information
about the inner behavior of a callee. Introducing further gray-box techniques could allow for some
interleaving of control flow between caller and callee. This could enable instantaneous bidirectional
communication in a limited capacity.

48

Bibliography

[And03] Charles André. Semantics of SyncCharts. Tech. rep. ISRN I3S/RR–2003–24–FR. Sophia-
Antipolis, France: I3S Laboratory, Apr. 2003.

[Ber00] Gérard Berry. “The Foundations of Esterel”. In: Proof, Language, and Interaction: Essays
in Honour of Robin Milner. Cambridge, MA, USA: MIT Press, 2000, pp. 425–454. isbn:
0-262-16188-5.

[CPH+87] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. “LUSTRE: a declarative language for
programming synchronous systems”. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL’87). Munich, Germany: ACM,
1987, pp. 178–188.

[Est08] Esterel-Technologies. In: The Esterel v7 Reference Manual Version v7.60 (Nov. 2008).

[GG18] Friedrich Gretz and Franz-Josef Grosch. “Blech, Imperative Synchronous Programming!”
In: Proc. Forum on Specification Design Languages (FDL’ 18). Sept. 2018, pp. 5–16. doi:
10.1109/FDL.2018.8524036.

[GGM+20] F. Gretz, F-J. Grosch, M. Mendler, and S. Scheele. “Synchronized Shared Memory and
Procedural Abstraction: Towards a Formal Semantics of Blech”. In: 2020 Forum for
Specification and Design Languages (FDL). 2020, pp. 1–8. doi: 10.1109/FDL50818.2020.9232942.

[Har87] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In: Science of
Computer Programming 8.3 (June 1987), pp. 231–274.

[HDM+13] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCharts: Sequentially
Constructive Statecharts for Safety-Critical Applications. Technical Report 1311. ISSN 2192-
6247. Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Dec.
2013.

[HMA+14] Reinhard Von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa
Fuhrmann, Christian Motika, Stephen Mercer, Owen O’brien, and Partha Roop. “Sequen-
tially Constructive Concurrency—A Conservative Extension of the Synchronous Model
of Computation”. In: ACM Trans. Embed. Comput. Syst. 13.4s (July 2014). issn: 1539-9087.
doi: 10.1145/2627350. url: https://doi.org/10.1145/2627350.

[HPL+99] Olivier Hainque, Laurent Pautet, Yann Le Biannic, and Éric Nassor. “Cronos: a separate
compilation tool set for modular esterel applications”. In: FM’99 — Formal Methods. Ed. by
Jeannette M. Wing, Jim Woodcock, and Jim Davies. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 1836–1853. isbn: 978-3-540-48118-8.

[LST09] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. “Modular Code Gener-
ation from Synchronous Block Diagrams: Modularity vs. Code Size”. In: POPL ’09.
Savannah, GA, USA: Association for Computing Machinery, 2009, pp. 78–89. isbn:
9781605583792. doi: 10.1145/1480881.1480893. url: https://doi.org/10.1145/1480881.1480893.

[Mot17] Christian Motika. SCCharts – Language and Interactive Incremental Compilation. Kiel Com-
puter Science Series 2017/2. Dissertation, Faculty of Engineering, Kiel University, Ger-
many. Department of Computer Science, 2017. isbn: 9783746009391. doi: 10.21941/kcss/2017/02.

49

https://doi.org/10.1109/FDL.2018.8524036
https://doi.org/10.1109/FDL50818.2020.9232942
https://doi.org/10.1145/2627350
https://doi.org/10.1145/2627350
https://doi.org/10.1145/1480881.1480893
https://doi.org/10.1145/1480881.1480893
https://doi.org/10.21941/kcss/2017/02

Bibliography

[Pei17] Lars Peiler. “Priority-based Compilation of SCCharts”. https://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/lpe-mt.pdf. Master thesis. Kiel University, Department of Computer
Science, Oct. 2017.

[RH18] Peter J. Rousseeuw and Mia Hubert. “Anomaly detection by robust statistics”. In: WIREs
Data Mining and Knowledge Discovery 8.2 (2018), e1236. doi: https://doi.org/10.1002/widm.1236.
eprint: https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1236. url: https://wires.

onlinelibrary.wiley.com/doi/abs/10.1002/widm.1236.

[SMS+15] Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Nis Boerge Wechselberg,
Carsten Sprung, and Reinhard von Hanxleden. SCCharts: The Railway Project Report. Tech-
nical Report 1510. ISSN 2192-6247. Christian-Albrechts-Universität zu Kiel, Department
of Computer Science, Aug. 2015.

[SMS+19] Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Sören Domrös, Lena
Grimm, Andreas Stange, and Reinhard von Hanxleden. SCCharts: The Mindstorms Re-
port. Technical Report 1904. ISSN 2192-6247. Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, Dec. 2019.

[Smy21] Steven Smyth. Interactive Model -Based Compilation — A Modeller -Driven Development
Approach. Kiel Computer Science Series 2021/1. Dissertation , Faculty of Engineering ,
Kiel University. Department of Computer Science , CAU Kiel, 2021. doi: 10.21941/kcss/2021/1.

[SSH18] Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. “Towards
Interactive Compilation Models”. In: Proceedings of the 8th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2018). Vol. 11244.
LNCS. Limassol, Cyprus: Springer, Nov. 2018, pp. 246–260.

[SW87] Richard M Stallman and Zachary Weinberg. “The C preprocessor”. In: Free Software
Foundation (1987), p. 8.

50

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lpe-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lpe-mt.pdf
https://doi.org/https://doi.org/10.1002/widm.1236
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1236
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1236
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/widm.1236
https://doi.org/10.21941/kcss/2021/1

	Introduction
	Sequentially Constructive Statecharts
	Module Expansion Semantics

	Problem Statement
	Contributions
	Related Work
	Outline

	Modular Code Generation
	Preliminaries
	SCCharts Preliminaries
	Additional Terminology

	Module Call Semantics
	Transformation Rules
	The Module Call SCCharts Transformation
	The Module Call SCG Transformation

	Separate and Simultaneous Compilation
	Parallels to Argument Handling
	Code Size and Performance Implications

	Implementation
	Used Technologies
	Eclipse
	KIELER
	Xtend

	Implementation into KIELER
	The Reference Call Pre-processor
	The Reference Call Processor

	Evaluation
	Supported Model Elements
	Types
	Actions, Hierarchy and Concurrency
	Suspend and Complex Transitions
	Mixed References.

	Limitations
	Performance Analysis
	Methodology
	Evaluated Models
	Analysis

	Discussion

	Conclusion
	Summary
	Future Work
	Instantaneous Bidirectional Communication
	Array Passing
	Synthesis and Target Language Support
	Gray-box Scheduling

	Bibliography

