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Abstract

Pitch tracking of human speech is one dimension of hearing and provides important information
for our everyday live. While this is no effort for humans, an algorithm can hardly imitate human
perception. Numerous algorithms for pitch estimation were developed, first improving on accuracy
and then on robustness against background noise. At this point there exist pitch trackers for multiple
voices at a time estimating and assigning the pitch accurately.

This work implements several pitch tracking algorithms to set up a versatile real-time system.
Additionally, an algorithm combining the estimations from different pitch trackers based on properties
of the human speech to further improve their estimations is presented. A qualitative evaluation shows
the applicability of each algorithm and performance tests show that they are suited for real-time
applications.

Visualizations of programs provide an intuitive and deeper understanding as an important property
of software development. To provide a visual representation even for non-visual languages, such as C,
a suitable representation has to be found. Led by the example of pitch tracking algorithms, different
representation types along with a new diagram type called rainbow rails are discussed. Listed elements
focus on either a holistic view or partial representations, which constitute a pseudo-holistic view if
combined with interactivity.
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Chapter 1

Introduction

Pitch is the “auditory perception of tone” [Tal95], for example in human speech. Pitch tracking has a
wide range of applications in different areas, such as speech communication, phonetics and linguistics,
education, and medicine [Hes12].

Audio data processing, transmission, analysis and synthesis of speech as well as semantics and
speaker recognition in speech communication rely on a determination of the pitch. Besides speech and
speaker recognition also the recognition of emotions and affect uses pitch tacking [SBS+11].

Phonetics and linguistics use pitch tracking for the “investigation of prosodic and phonetic features”
[Hes12]. Prosody is concerned with properties of syllables including rhythm, intonation, and tone.
For some languages, such as Chinese, the semantics of pronounced phonemes differ with intonation.
Therefore, pitch tracking in these cases is required for speech recognition. In other languages the
accentuation of words influences the semantics of single words, which supports differentiating the
meaning of homonyms, which are equally spelled words with different meanings, or even the meaning
of a complete sentence by the use of sarcasm and irony.

A common difficulty for everyone when learning a foreign language are different pronunciations,
language specific prosody, and new phonemes. The range and modulation of pitch is speaker depen-
dant. Therefore, pitch tracking can be used for speaker recognition. In the field of education, learning
how to pronounce words correctly in various contexts is a very difficult task for deaf people. Compar-
ing the course of their pitch to a course with correct intonation can support their understanding of
speech pronunciation.

When hearing impaired regain auditory perception by cochlear implants, hearing and pitch
estimation sometimes needs to be (re-)learned, which is especially difficult for pre-lingually deafened
children. One specific use case of pitch estimation is, therefore, Mobile Games with Auditory Training
(MOGAT) [ZST+12] providing a playful approach to support their auditory training and intonation. It
contains three musical games and is extendible by auditory therapists to design individual training
setups. The pitch estimation is implemented with an algorithm called YIN, which also has been
implemented for this work.

Considering a system for pitch tracking, just like any other implementation of sufficient size,
understanding each line of code is a prerequisite to understanding the system completely. However,
the number of lines of code easily exceeds a limit for easy understanding. In fact, the human brain is
only capable of processing up to 7˘ 2 independent pieces of information at a time [Mil56], which is
exceeded by (almost) every computer program. Exploiting these characteristics of the human brain by
graphical structuring of information is just one motivation for a diagram extraction from code.

Understanding the existing code is necessary for refactoring and extending it. Documentation
can make the process of understanding legacy code easier, though textual descriptions are often not
sufficient. When a system is developed using diagrams for modelling, these also offer an opportunity
for additional documentation. However, there is a vast amount of legacy code, which was not developed
and modelled using a graphical representation. Programmers documenting their just finished module
or programmers maintaining an old code base might both profit from an automatic diagram generation
from a code base. Visual representation of the interactions on specific data can aid in debugging.

1



1. Introduction

1.1 Related Work

This section discusses related work and is followed by a section about the problem statement. Using
this order, the implemented algorithms get introduced in the context of related work.

There are numerous pitch trackers and a full coverage of approaches goes beyond the scope of
this work. However, the Subsection 1.1.1 gives an overview for some of the more relevant approaches.
Related work regarding code visualization is discussed in Subsection 1.1.2.

1.1.1 Pitch Tracking

As already mentioned, pitch trackers are ten a penny. There even exists a pitch tracker named Yet
Another Algorithm for Pitch Tracking (YAAPT) [KZ02]. This subsection focuses on naming relevant
pitch trackers with respect to a brief historical development of the research focus. Details on the
functionality are held back since the required fundamentals are to be discussed in the next chapter.

The first popular method for pitch tracking was Cepstrum. The method was developed in 1963
[BHT63] and applied to pitch tracking in 1967 [Nol67]. Cepstrum already works well on an audio
signal of pure speech, but real-world applications with this condition are rare. The definition of
pitch relies on human perception. Most pitch trackers, including Cepstrum, actually measure the
Fundamental Frequency (F0), a quality of periodic signals, which correlates well with the actually
perceived pitch and is easier to compute than the perceived pitch.

Precision of pitch determination generally degrades as the intensity of background noises increases.
Yet, efforts for noise robustness were mainly the focus of research in the pitch tracking domain until
around the 2000s. One algorithm clearly focussing on maximum robustness is RAPT [Tal95]. RAPT and
another algorithm called YIN were considered best performing in the 2000s [PWP+11b]. The already
mentioned YAAPT is based on RAPT. Similar to this, there are many pitch tracking algorithms with
rather small differences. Some modify an existing algorithm to suite the needs of a specific use case:
YIN-Bird, for example, improves YIN for the pitch tracking of bird vocalizations. Another example is
the Simplified Inverse Filter Tracking (SIFT) [Mar72] algorithm, which is based on Cepstrum and a
foundation also used by RAPT.

The approaches to pitch tracking reach from algorithms evaluating specific functions, such as RAPT

and YIN, to statistical models, such as for example described by Tokuda et al. [TMM+99]. TAPS [HL13]
and PEFAC [GB14] both take advantage of certain characteristics of the human voice. Additionally,
pitch estimation based on TAPS can be done with reconstructing the estimation from a given data set
of sufficient size. Slaney and Lyon present a pitch estimator actually estimating the human perception
instead of F0 [SL90], which is based on the Duplex theory of pitch perception from Licklider [Lic51].

More recently the research also investigated on estimating multiple pitches at a time [CJ09; CSM93;
KT99; AJC15]. Additionally to the problem of estimating each pitch, multi-pitch tracking also requires
tracing of which estimation belongs to which speaker and estimating the number of speakers.

1.1.2 Visualization

There are several implementations for extracting a diagram from a code base. This section lists and
explains some of the models.

Visual Paradigm1, which is maintained by Visual Paradigm International, is mainly used for
modelling in the Unified Modelling Languages (UML) including code generation from UML models.
The tool also includes a generation of UML diagrams from source code.

1https://www.visual-paradigm.com/
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1.2. Problem Statement

ExplorViz2, which is developed by the Software Engineering research group at Kiel University, is a
monitoring system providing a live communication trace visualization of software landscapes. Objects
of the visualization are packages, classes, and functions without details on the functionality.

NDepend3 is a Visual Studio extension for the static analysis of .NET managed code. It supports
several code analysis features, such as dependency visualization, heat maps, and hot spots visualizing
data points evaluated by various metrics, and trend graphs visualizing the temporal development of
the code by again different adjustable metrics.

Flow4 is an IntelliJ plugin developed by Yiquan Zhou and Yoann Buch. It contains two parallel
graphical views of the code base. The call graph shows dependencies between packages, classes, and
functions and the flame chart visualises the execution paths of the program at a function level.

Sourcetrail5, published by the Coati Software KG, is an offline cross-platform source explorer. Call
graphs and abstracted data flow are visualized in an interactive environment. Filtering the desired
information from the code base by any symbols is supported by fuzzy code search.

Code maps6, which is available at the Visual Studio Marketplace, is a visualization tool for
dependencies displayed as a hierarchical map. The representation is generated once without an
interactive updating function.

A detailed visualization developed for legacy C code was presented by Smyth, Lenga, and
von Hanxleden [SLH16]. The model extraction is implemented in the framework Kiel Integrated
Environment for Layout Eclipse RichClient (KIELER), which is a research project developed by the
Real-Time and Embedded Systems Group at Kiel University, using the representation of Sequentially
Constructive Charts (SCCharts) [HDM+14]. The information contained in the C code represents all
details, while utilizing the hierarchy of SCCharts structuring by functions and control statements to
maintain readability.

While most of the related work focuses on generating a representation of fixed predefined structure,
this work discusses different approaches on how to visualize which information. Although, there are
several tools for model extraction, these often represent the code on an abstracted level. Insight into the
functionality of specific methods is not contained in the representation but is especially important for
the use case of understanding someone else’s code. To combine this issue with the scalability needed
for the problem size in real-world applications, interactivity is discussed on different levels in this
work.

1.2 Problem Statement

The goal of this thesis is to set up a versatile system for real-time pitch tracking. In this context
strategies for the visualization of C code have to be developed.

To build a versatile pitch tracking system, algorithms with different approaches and reportedly
good estimation quality have to be implemented. The general classification of pitch tracking algorithms
distinguishes between time and frequency domain algorithms. RAPT [Tal95] and YIN [DK02] are
considered especially robust and well working algorithms in the time domain [PWP+11b]. TAPS [HL13]
and PEFAC [GB14] operate in the time domain and utilize different characteristics of human speech. The
algorithms are expected to complement each other well due their versatile approaches and reportedly
good estimation quality [HL13; GB11]. To utilize the advantages of implementing multiple pitch

2https://www.explorviz.net/
3https://www.ndepend.com/
4http://findtheflow.io/
5https://www.sourcetrail.com/
6https://docs.microsoft.com/en-us/visualstudio/modeling/map-dependencies-across-your-solutions?view=vs-2019
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1. Introduction

trackers, an algorithm, which combines multiple estimations, has to be implemented. The estimation
quality and the performance in regard to the real-time suitability has to be evaluated.

For solving the problem of code visualization, general approaches have to be developed and
discussed with respect to usage scenarios. The question of whether to represent all of the information
or only parts depends on the intention behind the creation of the diagram. Therefore, holistic and
partial representations both have to be further discussed. In larger diagrams readability can be restraint.
Interactivity is an approach, which can support the understanding of details in a larger diagram. These
details are important because all information contained in a diagram cannot be grasped at first view,
but rather is obtained by setting up a mental map puzzling pieces towards an understanding of the
whole system.

1.3 Outline

Part I describes and evaluates the pitch tracking algorithms RAPT, YIN, TAPS, and PEFAC together with
a combining algorithm that is based on candidates estimated by other algorithms, such as those
presented. To achieve a deeper understanding of the pitch tracking problem, Chapter 2 provides
fundamentals of speech production, digital signal processing, and a method for estimation refinement.
The algorithms are then presented grouped by the domain they operate in. Chapter 3 describes the
time domain algorithms RAPT and YIN. Then Chapter 4 describes the frequency domain algorithms
TAPS and PEFAC. The composed system, which adds a combining algorithm evaluating the candidates
of other pitch trackers, is presented in Chapter 5. The estimation quality and performance of each
algorithm and the combining algorithm are then evaluated in Chapter 6.

Part II focuses on the visualization of C code, applying approaches on pitch tracking algorithms
presented in Part I. For comparability most variants of the visualization are presented using the code
example of RAPT. Chapter 7 presents three diagram types as a basis for the visualization components.
Then Chapter 8 and Chapter 9 divide the visualization task into holistic and partial representations,
respectively.

Finally Chapter 10 concludes on both parts with a summary and an outlook towards future work.

4
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Chapter 2

Fundamentals for Pitch Tracking

Before pitch can be estimated some basics that hold for most of the following algorithms are described
in this chapter.

Pitch is defined as the “auditory percept of tone” [Tal95]. Most pitch trackers estimate the Fun-
damental Frequency (F0), a local property of the speech signal, instead of the exact pitch since they
are similar most of the time. Despite this difference, the terms pitch and F0 will be used as synonyms.
Section 2.1 will go into more detail on human speech production.

Pitch tracking algorithms process the speech wave as a digital signal. Therefore, some knowledge
about digital signal processing is provided by Section 2.2. A part thereof describes the representation
of a continuous signal—such as the speech wave—in a suitable form in Subsection 2.2.1. Obtaining
the frequency spectrum, which is a prerequisite for frequency domain algorithms, is touched upon in
Subsection 2.2.2. Subsection 2.2.3 defines some of the correlation functions that are commonly used in
the time domain.

Pitch estimations are to some extend limited in precision due to digital signal processing constraints.
Often parabolic interpolation can be used to refine the estimation. Section 2.3 gives a short theoretical
introduction to polynomial interpolation from which a formula for estimation refinement using
parabolic interpolation is derived.

2.1 Speech Production

In normal speech there are many different ways of producing a sound. The exact ways that occur
in normal speech is vary from language to language. Although different sounds are produced in
independent regions of the vocal tract, we are capable of precisely adjusting muscles in a way that up
to ten to twelve [Lev99] different phonemes can be produced within a second during normal speech. In
spite of this speed of pronunciation, a very high precision of approximately one occurring error in 900
words is achieved [GSB+81], be it a wrong phoneme or even an unintended word. This section intends
to give a rough idea of how sounds in normal speech are produced.

Several models of speech production exist. Most theories are based on the following structure.
Before speech is produced, the message to express has to be chosen. Its semantics are mapped
on conceptually fitting words. The context of those words and their syntactical properties, such as
grammatical order, decide the time of utterance. Phonological properties are retrieved to prepare
prosody. Before a sound is produced, articulatory gestures are planned for each phoneme [Lev99].

The sound production is located in the vocal tract, which is delimited by the vocal cords and the
mouth opening [RS+07]. The biological composition of the vocal tract is shown in Figure 2.1. Sounds
are produced either by pulses generated from the opening by the vocal cords (glottis) and manipulated
by the vocal tract or by constrictions in the vocal tract that created turbulent airflow when air is forced
trough [RS+07]. For the first case the sound is called voiced and for the second case it is called unvoiced.
Since F0 is a property of periodic signals, F0 estimation is only reasonable for speech induced by glottal
pulses. A simple visualization of the two signal stages for voiced speech is shown in Figure 2.2. In
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2. Fundamentals for Pitch Tracking

Figure 2.1. Larynx and nearby structures [Hoo03]

Figure 2.2. A simple model of speech production from the glottis to the final speech wave.

the strict sense, the voiced-unvoiced-domain is not as restricted to these two extremes as it may seem
now, but is much rather a continuous spectrum. However, the simplification to the voiced or unvoiced
categories offers considerable utility [Tal95]. An example is the decision of whether pitch estimation is
reasonable in the first place. This is an considerably more difficult question for a continuous voiced
spectrum.

The common theory of voice generation is called the myoelastic/aerodynamic theory of phonation.
Voiced sounds are produced by the oscillation of the vocal cords. The theory states that the oscillation is
a “forced oscillation of elastic material” [RS+07]. In contrast to this, the now disproven theory of Husson
[Hus57] stated that each vibration cycle would be individually controlled by a neurophysiological
process.

When muscles decrease the volume of the lungs, the pressure inside is lower then the pressure
outside of the body. Pressure compensation generates an airflow from the lungs through the vocal
tract and the mouth or nose outside of the body.

When the airflow passes the vocal tract, it is then manipulated to produce the versatile palette of
different sounds. Some examples are given here. For sounds like /N/ or /M/, the mouth is blocked
and the airflow is redirected through the nose creating nasal sounds [RS+07]. When the lips and the
passage through the nose are closed, pressure builds up and is abruptly released creating a /P/ or
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/B/ sound. Voiced sound production with different shapes of the opened mouth and angles of the
jaw produce sounds such as /A/, /O/, /U/, and /I/. Fizzy sounds such as /S/, /SCH/, or /Z/
are produced by a constriction between the tongue and the palate. The differences in the sound are
generated by minor adjustments of the tongue position and shape.

The glottal excitation has the most important role in the production of voiced sounds. Vibration of
vocal cords are forced by the airflow through the glottis [Hes12]. Each vibration cycle is structured in
two phases. In the closed-glottis phase no air can pass the vocal cords. Subglottal pressure builds up by
pressure compensation from the lungs. This pressure builds up a force to the vocal cords to move apart.
As the glottis opens the (aptly named) open-glottis phase begins. With this opened passage pressure can
compensate upwards the vocal tract. The constriction by the glottis creates a particle velocity which
leads to closing vocal cords according to the Bernoulli force [VZD57]. During the open-glottis phase
passing airflow excites a pulse of sound pressure. This pulse is manipulated through the vocal tract to
form an outgoing speech wave. The open-glottis and closed-glottis phases are rapidly repeated during
voiced speech. The time between two subsequent pulses is called the Fundamental Period (T0) and
the reciprocal of T0 defines the Fundamental Frequency (F0). For normal speech, F0 is mostly between
50 Hz and 500 Hz [Tal95].

An important property of voiced speech for pitch estimation is the occurrence of harmonics of
the F0. The n-th harmonic of the F0 is at frequency n F0 Hz. Therefore, the first harmonic refers to the
fundamental frequency, the second to F0 doubled and so on. Harmonics can be either produced by the
collision of the vocal folds or by energy that is reflected from the vocal tract and fed back to the glottis,
which then affects the glottal flow [Tit09]. Since higher harmonics are a product of lower harmonics,
the amplitude of harmonics decreases with increasing frequency.

The quality of voiced sounds can vary. Although the voice quality range is continuous, some
intervals share the same characteristics. Breathy voice speech is an alternation of normal speech with
either less pressure from the lungs or a widening of the glottal opening [Tal95]. The glottis then
closes more softly or does not close at all. This causes breathy voice speech to have a more aperiodic
component and to be dominated by the first few harmonics [FL88]. In contrast during pressed voice
speech the vocal cords are more forcefully pressed together. This extends the closed-glottis phase and
the folds open more abruptly [Tal95]. Therefore, pressed voice speech tends to have lower amplitude
for the first harmonics and a higher amplitude for higher harmonics. Creaky voice speech, which is the
common voiced form for screaming, has a comparatively low airflow with respect to the subglottal
pressure. Higher harmonics have, again, a higher amplitude comparing with the amplitude of F0.
These differences in quality is one difficulty in pitch estimation. This especially holds for the aperiodic
components of breathy voice speech. Also, extremely breathy voice speech can be quite similar to
unvoiced speech in a continuous voiced state domain.

2.2 Digital Signal Processing

This section aims to establish the fundamentals of digital signal processing that are suited for pitch
tracking. Section 2.2.1 explains how a continuous signal can be represented and gives an overview on
terminology. For frequency domain algorithms it is necessary to obtain the frequency spectrum. This is
covered in Section 2.2.2. Pitch trackers are often based on a function that measures the correlation of
signals. Section 2.2.3 thus helpfully explains some of these functions that will be used in presented
algorithms.
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2.2.1 Signal Representation and Terminology

The speech wave is a continuous function of sound pressure. Processing a continuous signal in the digital
domain is not possible due to the following technical limitations. Firstly there is no technology to
record and forward such a continuous signal to a digital signal processing system. Second, even if
we were able to hand a continuous signal over to the system, it would not be able to compute an
estimation continuously. Every interval of time contains infinitely many points, but during a finite
amount of time only a finite amount of values can be calculated. Since the system is required to
terminate, it only has a finite amount of time to calculate the estimations and thus cannot calculate the
estimation continuously.

The same problem of representing continuous behaviour appears with films. A film that seems to
show continuously moving objects is indistinguishable from showing many pictures in very quick
succession. This can also be done for speech signal processing. If new information is produced fast
enough, the difference to the continuous signal will stay unnoticed. There is still a difference, but it
does not have a serious impact on the outcome.

Extracting discrete data points from a continuous signal is called sampling. The sample rate is a
quantity for how many samples there are for each time interval of a specific size, often one second. For
a continuous signal s(t) with t P R and a sample rate fs, the signal s (n/ fs) with n P N is discrete.
Often the discrete signal s (n/ fs) is written as a sequence sn.

The rate in which new samples are acquired from a signal is often much higher than the rate in
which a real time audio system wants to process samples. Therefore, multiple samples are grouped
and processed together. The group size is then called the frameshift. For every estimation cycle of the
algorithm then frameshift many input values are handed over to the algorithm.

Since this is often not enough information for estimating F0, algorithms keep track of past input.
The number of samples with which an algorithm, then, computes the estimation is called the analysis
window length.

The sample rate has a lower bound depending on the maximum frequency that the signal contains.
It is given by the sampling theorem which was proposed by Nyquist in 1928 [Nyq28] and proven by
Shannon in 1949 [Sha49].

Theorem 2.1 (Sampling Theorem [Sha49]). If a function f (t) contains no frequencies higher than fmax
Hertz, it is completely determined by giving its ordinates at a series of points spaced 1

2 fmax
seconds apart.

The other way around for a given sample rate fs, functions containing a frequency of up to the
Nyquist frequency fs

2 can be completely determined [Nyq28]. Not following this can lead to aliasing.
Figure 2.3 shows this effect. For a sampling rate of fs = 8 Hz the samples for a sine with frequency
f1 = 2 Hz and a sine with frequency f2 = 10 Hz are equal. This is because f2 is greater than the
Nyquist frequency for that sample rate fs

2 = 4 Hz. Therefore, the signal can not be determined
completely.

As explained in Section 2.1, for pitch tracking requires determining frequencies up to 500 Hz. The
sample rate should be at least fs = 1000 Hz to estimate the pitch correctly. Since human voice also
contains higher harmonical frequencies, the sample rate should be chosen higher.

2.2.2 Obtaining the Frequency Spectrum

For frequency domain algorithms it is a prerequisite that information about the frequencies a signal is
composed of can be obtained from the speech signal. To obtain the frequencies and their amplitudes
from a discrete time signal, the Discrete Fourier Transform (DFT) can be used [LG88].
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Figure 2.3. The alias effect. Different signals have the same value at data points with a too low sample rate.

For a sampled input speech signal s0, . . . , sN´1 it is defined as [OS75]

Xm =
N´1

∑
k=0

ske´
2πi
N mk.

There Xm represents the frequency m fs
N for the sample rate fs and m P {0, . . . , N ´ 1}. These

frequencies and their amplitudes are, just like the input signal, discrete and are referred to as
frequency bins.

In general a formula eix, with x P R, is a short term for expressing a circle. The term e2πix then
needs a change of x by exactly one to complete a circle. With e2πix m

N , then m circles are completed and
within N samples, which defines the frequency of completed circles. The sum is a measurement of
how well the frequency of the circles correlate with the input signal, thus this indicates whether the
frequency occurs in the input signal.

The computational complexity of the DFT is in O(N2). Since e´
2πi
N mk is periodic and symmetric, the

computational cost can be reduced to O(N log(N)) by the Fast Fourier Transform (FFT) using a divide
and conquer strategy [OS75].

2.2.3 Correlation Functions

Many pitch estimation algorithms are based on a correlation function. In general, such a function
somehow measures the similarity between signals. Often this is used with the speech signal and a
delayed version of it. Some correlation functions are introduced in this subsection.

Before these functions can be defined, the delayed version needs to be formalized. The amount
of delay is called lag. The value of a signal s at time k delayed by a lag τ is simply sk+τ . If a periodic
signal s is delayed by its period τ0, it has the same value sk = sk+τ0 again for every k P N that the
signal is defined for.

Figure 2.4 shows a signal that is delayed by different lags. A delay of 0.05 s is displaced by one
fourth of the period compared to the non delayed signal. The signals do not completely correlate, but
there are time intervals where the sign is equal or the values are equal at a specific point in time. The
delay of 0.1 s is displaces the signal by half of the period. It does pretty much the opposite of the
undelayed signal. It does not correlate. In this example, the lags of 0 s, 0.2 s, and 0.4 s correlate best.
This is caused by the periodicity of the wave function. It has a fundamental frequency of F0= 5 Hz or
equally a fundamental period of T0 = 0.2 s and, therefore, repeats five times per second. Often the
repeated correlation for more than one period displacement causes octave errors in algorithms that
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Figure 2.4. A signal with F0 = 5 Hz and one harmonic at frequency 15 Hz.

rely on a correlation function. Values of these are for some measurement optimal for lags τ = nT0= n
F0 ,

with n P N. Therefore, secondary candidates produced by an algorithm that uses such a function are
often subharmonics. This will be important again in Section 5.2.

Let n P N be the length of the speech signal and for k P {0, . . . , n´ 1} let sk be the speech signal.
Let K ă n be the summation size of the correlation function and τ the lag.

Average Magnitude Difference Function (AMDF) [Moo74]

The AMDF calculates the difference as a measure for aberration between the input signal and the input
signal delayed by a lag.
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The AMDF is defined as follows

AMDF : {0, . . . , n´ K}Ñ Rě0, AMDF(τ) =
K´1

∑
k=0

|sk ´ sk+τ|.

If the aberration is small then the signals correlate well. Therefore, minima of this function might
refer to T0 and multiples of it. These minima are zero for periodic signals. Since the speech wave form
is not perfectly periodic but rather pseudo periodic these minima are in reality not exactly zero since
it is unlikely that subsequent periods match perfectly. Also local minima can be produced from the
harmonics of F0 and the global minimum is probably also not T0 but a multiple of it.

Autocorrelation Function (ACF) [Rab77]

The ACF is the dot product of the signal and its delayed version. The summation size is smaller for
bigger values of τ to favour T0 over multiples of it. For periodic functions the local maxima refer to T0

and multiples of it.
The ACF is defined as follows

ACF : {0, . . . , n´ 1}Ñ R, ACF(τ) =
K´τ´1

∑
k=0

sksk+τ .

Although the ACF performs well and is robust to noise, it needs a relatively big analysis window
size to compute reasonable values even for longer lags. Therefore, fast changes of F0 might pass
unnoticed by the ACF.

Cross Correlation Function (CCF) [Tal95]

The CCF only differs from the ACF in its summation size, which is independent from the lag. Similar to
the AMDF it is possible that the global maximum does not refer to T0 but to a multiple of it instead.

The CCF is defined as follows

CCF : {0, . . . , n´ K}Ñ R, CCF(τ) =
K´1

∑
k=0

sksk+τ .

Since the summation size of the CCF is the same for every lag it does not have the disadvantages
mentioned for the ACF. However, the ACF tends to decrease in value for a decreasing lag. Every multiple
of T0 correlates well with the original signal. The decrease in value favours T0 from multiples of it. This
is an advantage that the CCF does not have.

Normalized Cross Correlation Function (NCCF) [Ata68]

While the CCF has no theoretical bounds, the NCCF normalises the value by its energy. The advantage of
NCCF(τ) P [´1, 1] is that the value serves as a quantitative, signal-independent indicator of correlation.

The NCCF is defined as follows

NCCF : {0, . . . , n´ K}Ñ [´1, 1], NCCF(τ) =
K´1

∑
k=0

sksk+τ√
e0ek

and the energy value ei is defined as
ei =

i+K´1

∑
k=i

s2
k .
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Figure 2.5. Estimations of PEFAC (a) without and (b) with using parabolic interpolation.

The normalization of the CCF helps to deal with several high values for every multiple of T0, which
would otherwise make the decision of the estimation choice more difficult.

2.3 Estimation Refinement

The estimation produced by a pitch-tracking algorithm depends on the information it is based on.
Often this is the index of the maximum or minimum of a function depending on the input. As stated
above, these inputs are discrete. Therefore, the index of the turning point for an evaluating function that
depends on discrete data points can only take discrete values, too. Subfigure 2.5a shows estimations
made by PEFAC. F0 can take any value in the range between 50 Hz and 500 Hz and changes of the glottal
period are either small or exactly one octave. Although the F0 of a human voice is, therefore, to some
degree continuous, the estimations made by PEFAC only take discrete values. Parabolic interpolation can
be used to refine the estimation. As the name suggests, a parabola approximates the behaviour of the
function with continuous input in the vicinity of the turning point of the function with discrete input.
The turning point of the parabola is then taken as the refined estimation. This refinement might take
any value on the continuous frequency spectrum and is expected to be a better approximation of the
F0. Subfigure 2.5b shows estimations of PEFAC combined with parabolic interpolation for the same
input as for Subfigure 2.5a. The estimations with parabolic interpolation are continuous and state the
course of the perceived pitch more precisely. The following will give a short theoretical introduction to
polynomial interpolation, of which parabolic interpolation is a special case, before giving a formula for
the refined estimation.

Let Πm := span{x Ñ ∑m
k=0 akxk : ak P R^ k P 0, . . . , m} for m P N be the vector space of polynomial

functions of degree less or equal m. Then Πm has dimension m + 1, meaning every element of Πm is
uniquely defined by a basis and a set of m + 1 known values.
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Theorem 2.2. For mutually distinct data points x0, . . . , xm P R and values f0, . . . , fm P R there exists exactly
one polynomial p with degree less or equal to m and p(xi) = fi for every i P {0, . . . , m}.

This is proven by many introductory books on numerical mathematics (see for example Schwarz
and Köckler [SK13]). The vector space of interest here is Π2 for linear or parabolic functions. For
identifying a parabola it is, therefore, sufficient to know the values of three mutually exclusive data
points.

At this point we know that there exists exactly one parabola that meets three given data points
with according values. Since parabolic functions have exactly one turning point, also the turning point
for any parabolic function that meets the condition is uniquely defined as well. Otherwise it would
not be clear which turning point estimates F0.

Since the purpose of parabolic interpolation is to obtain a more precise estimation, the quality of
the interpolation is of interest.

Theorem 2.3. For a, b P R and m P N let f : [a, b] Ñ R be a function of which the first m derivatives exist
and are continuous. For x0, . . . , xm P [a, b] mutually distinct and yi := f (xi) for every i P {0, . . . , m} let
p : [a, b]Ñ R be the polynomial interpolation.
Then for every x̃ P [a, b] there exists ξ P (a, b) with

f (x̃)´ p(x̃) =
f (m+1)(ξ)

(m + 1)!

m

∏
i=0

(x̃´ xi). (2.1)

This again is fundamental fact of numerical mathematics and many proofs exist (again, see for
example Schwarz and Köckler [SK13]).

Even though the functions for the discrete estimations are not differentiable since they are defined
on discrete values instead of an open set, there exist reasonable extensions for those functions on
continuous inputs and, since the function is fixed, so is the value of the derivative. From Equation (2.1)
it follows that the error of interpolation also depends on the degree of the interpolation polynomial
and, more importantly, of the distance between the data points and the evaluated point. The degree
is fixed to two using parabolic interpolation, so this factor can not be improved to lower the error.
However, the distance of the turning point to the data points can be minimized. To obtain the best
possible approximation of the turning point, the index of the minimum or maximum of the discrete
function and its two neighbours are chosen for the three data points. From the definition of the
parabolic interpolation it is clear that there is no approximation error if the turning point is exactly
one of the three data points. From the choice of data points it also follows that the approximation of
the turning point is somewhere between the data points, which is especially reasonable since parabolic
interpolation is only used as a refinement and the minimum or maximum of the discrete function
should already be be in the vicinity of the F0.

For the calculation of the turning point, first the parabola for three data points and according
values is derived from the Lagrange polynomials and then a formula for the turning point is derived
from that parabola.

Definition 2.4 (Lagrange polynomials). For mutually exclusive data points x0, . . . , xm P R the Lagrange
polynomial li P Πm is defined as

li(x) =
m

∏
k=0
k‰i

x´ xk
xi ´ xk

for x P R and i P {0, . . . , m}.

For i P {0, . . . , m} li(xi) = 1, and for any data point xj, i ‰ j and j P {0, . . . , m}, it holds that
li(xj) = 0 yields. Let f0, . . . fm be the values of the function at the given data points. Then it follows
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that

pm(x) =
m

∑
i=0

fili(x) (2.2)

fulfils the equations p(xi) = fi for i P {0, . . . , m}.

Theorem 2.5. Let x0, x1, x2, f0, f1, f2 P R. Then for

p(x) :=
2

∑
i=0

fi

2

∏
k=0
k‰i

x´ xk
xi ´ xk

it is true that p(x0) = f0, p(x1) = f1, p(x2) = f2 and

xp :=
f0(x2

1 ´ x2
2) + f1(x2

2 ´ x2
0) + f2(x2

0 ´ x2
1)

2( f0(x1 ´ x2) + f1(x2 ´ x0) + f2(x0 ´ x1))

is the turning point of p.

Proof. For m = 2, data points x0, x1, x2 P R and values f0, f1, f2 P R then p as defined in the theorem is
equal to pm in (2.2). The equalities are fulfilled with the same reasoning.

The turning point can be obtained by setting the derivative to zero. The derivative of the function is

p1(x) = f0
2x´ x1 ´ x2

(x0 ´ x1)(x0 ´ x2)
+ f1

2x´ x2 ´ x0

(x1 ´ x2)(x1 ´ x0)
+ f2

2x´ x0 ´ x1

(x2 ´ x0)(x2 ´ x1)
. (2.3)

The turning point of this functions is then obtained by

0 = p1(x)

= f0
2x´ x1 ´ x2

(x0 ´ x1)(x0 ´ x2)
+ f1

2x´ x2 ´ x0

(x1 ´ x2)(x1 ´ x0)
+ f2

2x´ x0 ´ x1

(x2 ´ x0)(x2 ´ x1)

ô 0 = f0(2x´ x1 ´ x2)(x1 ´ x´ 2) + f1(2x´ x2 ´ x0)(x2 ´ x0) + f2(2x´ x0 ´ x1)(x0 ´ x1)

ô x =
f0(x2

1 ´ x2
2) + f1(x2

2 ´ x2
0) + f2(x2

0 ´ x2
1)

2( f0(x1 ´ x2) + f1(x2 ´ x0) + f2(x0 ´ x1))
. (2.4)

For the use case of pitch tracking the data points for the parabolic interpolation will often differ
exactly by one. Therefore, the equation for obtaining the turning point can be simplified to

xp :=
4 f1x1 ´ f0(2x1 + 1)´ f2(2x1 ´ 1)

2(2 f1 ´ f0 ´ f2)
.
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Chapter 3

Time Domain Algorithms

As mentioned in 2.2 the inputs for a time domain pitch tracking algorithm are frameshift samples of
the speech signal, which is not enough information to estimate a pitch. On the other hand, keeping
track of the complete input speech is not a good idea either since the real-time system can run for an
arbitrary amount of time and, since pitch is a time dependant property, most of the old information
is not helpful. Therefore, a buffer of fixed size is needed to keep track of the newest input values. A
ring buffer can manage the input with few instructions. New input is saved at the position behind
the most recent input. Hereby the position behind the last buffer position is the first buffer position
again, which motivates the buffer name. Therefore, one must keep track of the actual position for new
input. However, during buffer management and buffer access from the algorithm the modulo operator,
which has a relatively high computational cost, is needed quite often. To reduce overall computation
time for buffer interactions the buffer is instead organized as follows. For every input cycle the values
inside of the buffer are shifted to a frameshift higher position, thus dropping the oldest values. Then
the new input can be written to the first frameshift positions of the buffer. This needs more operations
for buffer management, but for buffer usage the i-th index now always refers to the i-th oldest input
sample, which reduces the access time of input values for the algorithm.

This chapter describes two very common time domain pitch tracking algorithms, RAPT and YIN, in
Sections 3.1 and 3.2 respectively. In both sections first the general algorithm is described followed by
my modifications.

3.1 Robust Algorithm for Pitch Tracking (RAPT)

This section describes the RAPT algorithm as presented by Talkin [Tal95]. As the algorithm’s name
might suggest, RAPT is all about the robustness of the estimation. Although a low computational
complexity is not the main focus, some optimizations that do not influence the estimation quality are
included.

3.1.1 The Algorithm

In a nutshell, the algorithm is composed of the NCCF (as defined in Subsection 2.2.3) and a post
processing stage. The NCCF is calculated in two stages for computational cost reduction. In the post
processing stage, dynamic programming is used to select the best candidate.

As stated in Section 2.1 the F0 is between 50 Hz and 500 Hz. The pitch candidates are those lags
for which the NCCF has a value near to one. Therefore, the NCCF has to be calculated for lags from
1/500 s = 2 ms to 1/55 s = 20 ms. The number of input samples during this interval determines the
number of lags the NCCF is calculated for and is determined by the sample rate fs. Each calculation
of the NCCF has a summation size of K. The size K also depends on the sample rate fs, since the
summation size must include samples of at least one glottal period. Therefore, the computation time
depends on f 2

s .
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The sampling theorem states that for a periodic signal containing only frequencies up to a maximum
frequency fmax, a sampling rate of 2 fmax is sufficient. Since the voiced speech wave is quasi-periodic
rather than exactly periodic and also contains higher harmonics, the estimation’s precision increases
with the sample rate.

A compromise between computational cost and precision of the estimation is achieved by the
two-pass NCCF. First the NCCF is computed for a downsampled version of the signal. The lower sample
rate is defined by Talkin as

fds :=
fs

round
(

fs
4 fmax

) ą 1
2 fmax

.

This sample rate is significantly lower than a sample rate for precise estimations had to be, but since it
satisfies the sampling theorem for the purposes of pitch estimation, F0 will still be in the vicinity of
one of the local maxima of this function.

To refine the estimation, the second step is to compute the NCCF for lags in the vicinity of those
maxima. For a vicinity size of Kvicinity and a number of considered maxima Kmaxima, the computational
cost depends on f 2

ds + KmaximaKvicinity fs. Since fds and KmaximaKvicinity are significantly smaller than
fs, the two-pass NCCF has a lower computational cost than the direct computation of the NCCF on the
original sample rate fs.

The lowest lag with an NCCF value greater than a threshold is then taken as the T0 estimation. One
does not simply take the highest peak since for higher frequencies, also 2T0, 3T0, and even 4T0 can be
in the range of calculated lags and these possibly have a higher NCCF value than the T0.

Figure 3.1 shows the NCCF functions for high sample rate fs, the low sample rate fds and the
high sample rate in the vicinity of maxima of the low sample rate NCCF. Maxima of the high sample
rate version are also maxima in the low sample rate version. The highest maxima above an absolute
threshold of the downsampled version are refined with vicinity NCCF computation. The resulting
highest maxima is approximately at the same position as the highest maxima of the NCCF directly
computed on the higher sample rate. Figure 3.2 shows the same information but for a female speaker.
The possibility of a multiple of the T0 having a higher NCCF value than the T0 is represented by the
second and fourth maxima. They correspond to T0 and 2T0, respectively, and the fourth local maximum
has a slightly higher value than the second. For lags smaller than 2 ms the values of the NCCF are
not calculated since they correspond to a frequency higher than the maximum frequency for voiced
speech.

Figure 3.3 shows similar information for an unvoiced sound produced by a male speaker. The
values of the NCCF are significantly lower than 1 for unvoiced speech due to missing periodicity. While
in the voiced example in Figure 3.2 the global maximum has an NCCF value ą 0.9, the global maximum
in the unvoiced example shown in Figure 3.3 does not exceed 0.4. This can be used for voiced state
estimation by using a threshold.

Based on the local NCCF calculation and contextual evidence, such as past estimations, dynamic
programming selects the best T0 candidate to obtain a pitch estimation. Hereby, backtracking on up to
the full set of known data is done. This goes beyond the acceptable delay scope for real-time pitch
tracking and is therefore not further described here. The interested reader is referred to the original
paper by Talkin [Tal95].

After the best lag is chosen by dynamic programming, the estimation is refined by parabolic
interpolation. This is reasonable, since the selected lag most likely corresponds to a local maximum of
the NCCF.
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Figure 3.1. NCCF functions for the voiced part of year pronounced by a male speaker. From top to bottom the
NCCF is calculated with the high sample rate, the low sample rate and the high sample rate in the vicinity of
maxima of the low sample rate NCCF.

3.1.2 Modifications

Besides the fact that the post processing of RAPT is not implemented and, therefore, a more suitable
name for the implementation would rather be two-pass NCCF than RAPT, the implementation only differs
by the calculation of energy values and adds a threshold-based voiced decision.

The energy value for the NCCF could, if implemented naively, double the computational cost of
the NCCF compared to the CCF due to the additional energy calculations. The solution explained by
Talkin is to incrementally modify the last energy value to obtain the next value. This can be described
as follows with the terminology from Subsection 2.2.3:

ei+1 =
i+K

∑
k=i+1

s2
k =

(
i+K´1

∑
k=i

s2
k

)
+ s2

i+K ´ s2
i = ei + s2

i+K ´ s2
i .

To avoid high accumulated errors due to the digital representation of numbers, the usage of double
precision floating point numbers is necessary for the incremental calculation.

Most real-time audio systems work with single precision instead of double precision. This also
applies to the framework this algorithm is implemented in. Since the accumulated error on single
precision floating point numbers could influence the result, another approach is taken. Since the same
energy values are needed multiple times, they are calculated once and saved in an energy buffer,
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Figure 3.2. NCCF functions for the voiced part of year pronounced by a female speaker. From top to bottom the
NCCF is calculated with the high sample rate, the low sample rate and the high sample rate in the vicinity of
maxima of the low sample rate NCCF.

which is organized just like the input buffer as described at the beginning of this chapter.
The voiced decision in the algorithms is done during post processing. The implemented voiced

decision is based on a threshold for the maximum NCCF value. If the correlation for a lag is high
enough, then it is likely that it is voiced. Accordingly, if no lag has a good correlation then it is likely
to be unvoiced.

3.2 YIN

This section describes the YIN algorithm as presented by Cheveigné and Kawahara [DK02]. The name
YIN is derived from Yin and Yang from oriental philosophy. It is derived from the ACF and is related to
the idea of the AMDF as mentioned in Subsection 2.2.3. Several independent steps then improve the
results to obtain an even better estimation.

3.2.1 The Algorithm

The description by Cheveigné and Kawahara consists of six steps. The first step explains the ACF,
which is replaced by the difference function described in step two. Therefore, only five of these steps
actually contribute to the final estimation.
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Figure 3.3. NCCF functions for the unvoiced sound /S/ of greasy pronounced by a male speaker. From top to
bottom the NCCF is calculated with the high sample rate, the low sample rate and the high sample rate in the
vicinity of maxima of the low sample rate NCCF.

The Squared Average Magnitude Difference Function (SAMDF)

For a periodic signal sk with period t it holds that sk = sk+nt, which is equal to sk ´ sk+nt = 0, for
every k, n P N. This is also true for the squared value (sk ´ sk+nt)

2 = 0. For an analysis window size
W P N it yields W´1

∑
k=0

(sk ´ sk+nt)
2 = 0

for periodic signals. A voiced speech signal is at least quasi-periodic. Therefore, the Squared Average
Magnitude Difference Function, defined by

SAMDF : {0, . . . , n´ K´ 1}Ñ Rě0, SAMDF(τ) =
K´1

∑
k=0

(sk ´ sk+τ)
2

with the terminology from Subsection 2.2.3, takes on values close to zero for lags that are multiples of
T0.

The SAMDF is connected to the ACF and CCF by SAMDF(τ) = CCF(0) + CCF(τ)´ 2ACF(τ). There-
fore, the results are to some extend similar to RAPT because RAPT is based on the NCCF, which is in
turn based on the ACF.
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Figure 3.4. SAMDF and CMNSAMDF for the voiced part of year pronounced by a female speaker, shown in the
upper and lower graphic, respectively.

The Cumulative Mean Normalized Squared Average Magnitude Difference Function (CMNSAMDF)

The SAMDF is close to zero for lags that are multiples of T0. Since the function is zero for a zero delay,
taking the lowest valued lag is not a good choice since this might just be the zero lag or the first bin
that is in T0 range.

The CMNSAMDF adds a normalization that is based on the mean of lower lag SAMDF values. It is
defined as follows:

CMNSAMDF : {0, . . . , n´ K´ 1}Ñ Rě0, CMNSAMDF(τ) =

{
1 , if τ = 0
SAMDF(τ)
CMNF(τ) , otherwise

with the Cumulative Mean Normalization Function (CMNF) defined as

CMNF : {0, . . . , n´ K´ 1}Ñ Rě0, CMNF(τ) =
1
τ

τ

∑
k=1

SAMDF(k).

Figure 3.4 shows the SAMDF and CMNSAMDF of a voiced speech segment. In this example the global
minimum of the SAMDF is at zero lag and there are near-zero local minima at the lag bins 140, 277,
and 417 corresponding to T0, 2T0, and 3T0 respectively. There are also local minima between those
minima close to zero. These refer to harmonics of the F0. Also the minimum for 2T0 is smaller than the
minimum for T0. The global minimum is zero at lag zero.

The CMNSAMDF shown in the bottom plot in Figure 3.4 has the global minimum for 2 T0, not at lag
zero. Due to the normalization the values of the CMNSAMDF for lags greater than T0 are in [0, 2]. For
lags before the first local maximum, the values are greater than or equal to one. Therefore, the problem
of distinguishing between a minimum that is simply close to the zero lag and a lag that corresponds
to a multiple of T0 is solved.
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Figure 3.5. SAMDF and CMNSAMDF for the unvoiced /SH/ of washwater pronounced by a female speaker, shown
in the upper and lower graphic, respectively.

Absolute Threshold

Usually the global minimum of the CMNSAMDF does not correspond to T0 as the example in Figure 3.4
shows. However, all of the lags close to zero correspond to multiples of T0. An absolute threshold
is used to choose a first candidate. The first lag for which the CMNSAMDF is below that threshold is
chosen as the candidate. This most likely is not a local minimum itself, but in the vicinity of the local
minimum corresponding to T0.

For the example, any threshold less than or equal to 0.64 would be sufficient for estimating the
lag corresponding to the right local minimum using the next step, since the lowest lag with a smaller
value of the CMNSAMDF corresponds to the local minimum of T0. The authors suggest a threshold
of 0.1, which is small enough that local minima referring to a harmonic does not reach this value,
but large enough to still include the local minimum corresponding to T0. However, if there is no lag
satisfying this threshold, then the global minimum is chosen to be the candidate.

Figure 3.5 shows the SAMDF and CMNSAMDF for an unvoiced speech segment pronounced by a
female speaker. While the SAMDF values theoretically are not absolutely bounded, the CMNSAMDF

values are all greater than 0.5 since the signal does not contain sufficient periodicity for the correlation
function to result in a lower value. Hereby, a possible voicing state estimation can be derived.

Local Estimation Refinement

As mentioned before, the candidate obtained by the threshold does not necessarily have to be a local
minimum for the CMNSAMDF. Imagine a threshold of 0.4 at Figure 3.4. Then the lag 129 would be
chosen as the candidate. However, the local minimum is at lag 140. The refinement from the lowest lag
fulfilling the threshold to the actual local minimum is done in this step.

To further improve the estimation quality, this steps takes time and lag neighbouring to the
candidate, which was obtained by the threshold, into account. Time is considered by recalculating
CMNSAMDF on an input buffer, which is slightly shifted in time to contain either some previous or
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3. Time Domain Algorithms

subsequent samples. The lowest CMNSAMDF value in the range of ˘20% lag of the candidate and
˘Tmax/2, with Tmax = 25 ms, in time determines the refined candidate. For a sample rate fs = 48 Hz,
CMNSAMDF is recalculated on an input buffer shifted by up to Tmax fs = 1 200 samples to consider time
in the local refinement.

Parabolic Interpolation

Since the lag always refers to a multiple of the sample rate fs, also the estimated T0 is restricted to take
a value n/ fs, or similar F0 to take a value fs/n, with n P N.

Consider the local minima at lags 140 and 277 in Figure 3.4. While for lag 277 the minimum is
significantly lower than its neighbours, for lag 140 and lag 141 the values are really close. In those cases
it is likely that the actual T0 is between those discrete values given by the lag. Parabolic interpolation
provides the opportunity to estimate T0 as any value in the interval [50, 500] Hz, which is the range of
human voice.

Therefore, parabolic interpolation is used to refine the estimation. Parabolic interpolation is
applicable since the previously selected lag is a local minimum for the CMNSAMDF. Since lags are
equally spaced, this is one case where the simplified formula from Subsection 2.3 can be used.

3.2.2 Modifications

With consideration towards the real-time implementation, the step of local estimation refinement does
not minimize the CMNSAMDF values over a time interval but only searches the local minimum in the
vicinity of the estimation candidate lag obtained from the threshold. The consideration of other time
intervals has the following main disadvantage. First the computation of the CMNSAMDF in the vicinity
of the candidate requires the computation of all SAMDF values for lags smaller than the candidate lag
or in its vicinity. For frames in the past this is done, but the proposed evaluation evaluates this within
an interval requiring a calculation of the CMNSAMDF for every sample. This leads to a computational
complexity not realizable in real-time.

Similar to the voice of the local minimum, an estimation of the voicing state is derived from an
absolute threshold as mentioned there. The lower the global minimum is, the better is the correlation.
If the global minimum of the CMNSAMDF is smaller than the threshold, then the frame is considered
voiced and in the other case it is considered unvoiced.
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Chapter 4

Frequency Domain Algorithms

While for time domain algorithms the organisation of the input buffer was a prerequisite for pitch
estimation, for frequency domain algorithms the conversion from the time signal into a frequency
spectrum is necessary to perform the algorithm. As mentioned in Subsection 2.2.2 the frequency
spectrum of a periodic time signal can be obtained by FFT. Just as the time domain algorithms need
more samples than the input frame provides to compute an estimation, so does FFT. Therefore, a
similar input buffer organises the time domain input and with each time frame the buffer is updated
with the new input samples. On this buffer containing multiple frames of input data FFT is computed
on. This procedure is called Short-Time Fourier Transform (STFT).

In this chapter two pitch tracking algorithms operating in the frequency domain are presented.
They each take advantage of different characteristics of human pitch and are, therefore, expected
to complement each other. The first algorithm described in Section 4.1 is based on Temporally
Accumulated Peak Spectrum (TAPS), which takes advantage of the fact that the frequency spectrum of
speech changes more slowly than the frequency spectrum of noise. The PEFAC algorithm described in
Section 4.2 utilises the appearance of harmonics in the logarithmic frequency spectrum and uses the
Long-Term Average Spectrum of Speech (LTASS).

4.1 Temporally Accumulated Peak Spectrum (TAPS)

This section describes the ACF-based TAPS algorithm as presented by Huang and Lee [HL13]. Two other
algorithms based on TAPS are also described in the paper; they are based on sparse reconstruction
requiring a data set to be trained on. The variant of TAPS described here utilises the ACF in the frequency
domain instead of the time domain to obtain an estimation.

4.1.1 The Algorithm

As the name might already hint at, TAPS accumulates the peaks of the frequency spectra of consecutive
input frames. The evaluation using ACF then produces relatively high values for F0 and its multiples
due to the fixed distance between harmonics.

Unlike RAPT, YIN, and PEFAC, TAPS relies on inputs of subsequent points in time. To distinguish the
frequency spectra of different points in time, input frames are indexed by l in this section.

The input for TAPS is a frequency spectrum s(l) with n P N frequency bins at time index l P N.
Based on this, the peak spectrum p is then calculated as follows:

p(l)i =

{
s(l)i , if 0 ă i ă n´ 1, s(l)i´1 ă s(l)i and s(l)i+1 ă s(l)i
0, otherwise

.

So the peak spectrum takes the local maxima and sets any other value to zero. The first and the last
value do not have two neighbours to compare with and are therefore also set to zero.
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4. Frequency Domain Algorithms

For an accumulation size K P N the accumulated peak spectrum y(l) is then defined by

y(l)i =
K´1

∑
k=0

p(l´bK/2c+k)
i

for every i P {0, . . . , n´ 1}. The peak spectrum reduces the information of the frequency spectrum to
local maxima. Adding up consecutive peak spectra then emphasises bins containing local maxima in
multiple of these peak spectra.

The frequency spectrum of voiced speech changes much more slowly than the noise spectrum since
voiced speech is quasi-stationary. For subsequent peak spectra of voiced speech, therefore, is it expected
that peaks corresponding to multiples of F0 in neighbouring time frames are also in neighbouring
frequency bins or even the same frequency bin. When F0 causes local maxima in the same frequency bin
in time-neighbouring peak spectra, then the accumulated peak spectrum has a peak of approximately
doubled amplitude at this frequency bin. The frequency spectrum for most kinds of noise changes
more rapidly. Therefore, the peaks in neighbouring points in time are expected not to correlate and,
therefore, not to accumulate to peaks of high amplitude.

The accumulation size K determines the number of peak spectra to accumulate. If K is too small,
the effect of accumulated harmonic peaks does not show. If, on the other hand, this size is too big,
the F0 might change too quickly for the algorithm to react, or voiced intervals, which are too short,
might pass unnoticed by the algorithm. Also the delay between voiced input and the pitch estimation
increases with this constant K, but the real-time requirement wants to minimize the delay. Huang and
Lee come to the conclusion that TAPS performs best for an accumulation size of K = 4, which could be
reproduced on a small set of data for this implementation.

The ACF is calculated on the accumulated peak spectrum for a frequency of up to 1 000 Hz. This is
expected to have high values for the F0 corresponding bin and multiples of it since their peaks, which
are expected to have a high amplitude due to the accumulation, are separated by F0. The size of ACF

is chosen such that it includes at least one harmonic for every possible F0 in the range of the human
pitch.

Since the accumulated peaks for F0 and multiples of it might not hit exactly the same bin, the ACF

of the peak spectrum might have multiple local maxima in close proximity that correspond to the
same harmonic. However, it is easier to handle only one local maximum for each harmonic of F0. The
smoothed ACF for a lag j P {2, . . . , n´ 3} reduces the number of local maxima by averaging over five
neighbouring values of the smoothed ACF and is defined by

SACF(j) =
1
5

2

∑
q=´2

ACF(j + q).

The algorithm as described by Huang and Lee takes the bin numbers of the highest L P N maxima,
j1, . . . , jL, where j1 ă . . . ă jL, of the smoothed ACF and calculates the estimation f 10 on the assumption
that these are the first L harmonics using

f 10 =
1
L

L

∑
k=1

1
k

jk.

Since the n-th harmonic has a frequency of n times F0, the bin containing the n-th harmonic is divided
by n in this formula to normalize to F0. These approximations of the estimated F0 are averaged to
obtain a more precise estimation.

The the number of local maxima, which are considered here, is critical for estimation quality.
If there are too few, then the F0 might happen to be the L + 1 highest maximum. In this case the
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4.1. Temporally Accumulated Peak Spectrum (TAPS)
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Figure 4.1. Calculation steps for TAPS. (a) the accumulated peak spectrum and (b) smoothed ACF thereof.

calculation fails, since the harmonics are divided by wrong values that do not normalize the harmonics
to F0, but rather a multiple of it. Also without averaging, which is the case for L = 1, the precision
of an estimation is limited to the bin resolution of the frequency spectrum. If otherwise too many
maxima are considered, then there might not be enough harmonics present in the evaluation range
of the ACF to produce fitting local maxima. In both cases the averaging is corrupted with one or
more misleading values. Huang and Lee set L = 2 based on empirical data. Regarding the number of
harmonics contained in the ACF range, this seems to be a reasonable choice. For every F0 in the range
of human pitch there are at least F0 and the first harmonic in the range of considered frequencies in
ACF, and for very high values of F0 such as for example 450 Hz, any higher harmonic is not considered
by ACF, since 1 350 ą 1 000 Hz (the biggest frequency considered in the smoothed ACF).

Figure 4.1 shows the accumulated peak spectrum and the smoothed ACF thereof for a voiced sound
with F0 = 83 Hz pronounced by a male speaker. In Subfigure 4.1a not the highest peak but rather the
first corresponds to F0. Each peak is equally spaced by F0 for harmonics up to a frequency of 900 Hz, the
peak of these harmonics hit the same frequency bins in every peak spectrum. Therefore, the intensity
of the accumulated peaks is higher for these. Also there is no peak in this accumulated peak spectrum
not corresponding to a multiple of F0. The local maxima of the smoothed ACF in Subfigure 4.1b are
monotonically decreasing since the peaks in the accumulated peak spectrum have similar values and
the summation size of the smoothed ACF decreases with an increasing lag. Therefore, the highest
L P {1, . . . , 11} local maxima also correspond to the first L harmonics.

4.1.2 Different Evaluation Strategies

Figure 4.1 shows the optimal case for TAPS—every harmonic has corresponding peaks in the accu-
mulated peak spectrum and there are no other peaks that could degrade the results. However, the
optimal case is not the usual case. An example for this is shown in Figure 4.2. While the F0 = 194 Hz
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Figure 4.2. Calculation steps for TAPS. (a) the accumulated peak spectrum and (b) smoothed ACF thereof.

in Subfigure 4.2a has the highest peak in the accumulated peak spectrum, the corresponding local
maximum in the smoothed ACF of 4.2b is only the fourth highest. The first and second highest peak are
at 592 Hz and 698 Hz respectively. The estimation of TAPS is 1

2 (592/1 + 698/2) = 470.5 Hz. Although
the estimation is in the range of human pitch, the first considered maximum, which should correspond
to F0, is not. In general there are multiple scenarios for which the assumption of the highest local
maxima corresponding to the first harmonics does not hold. This section presents some evaluation
approaches, which I developed based on observed error types, to improve on these weaknesses.

Curtail of Considered Local Maxima to Possible Harmonics

One source of erroneous pitch estimation by TAPS are not monotonically decreasing or not harmonics-
related local maxima, which makes it more difficult for TAPS to match local maxima and harmonics. For
L = 2, as proposed by the authors, a third or fourth harmonic causing a higher local maximum than
the second harmonic is sufficient to mislead the algorithm. Also, a local maximum not corresponding
to a harmonic might have a high value. A consideration of such a frequency bin again leads to wrong
estimations.

Again the bin numbers of the highest L P N maxima, j1, . . . , jL, where j1 ă . . . ă jL, of the smoothed
ACF are required. Additionally, each local maximum needs to pass a threshold, which is relative to the
highest value of the smoothed ACF. Using this, a higher value of L can be chosen while still considering
only reasonable local maxima. Then jk, with k P {1, . . . , L}, is interpreted as ik-th harmonic, where
ik = round(jk/j1). Hereby every local maximum is assigned the harmonic number that seems most
reasonable due to the relation to the first local maximum. The pitch estimation f 10 is then calculated by

f 10 =
1
L

L

∑
l=1

1
ik

jl .
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4.2. Pitch Estimation Filter with Amplitude Compression (PEFAC)

Although this does not rely on every jk to be the k-th harmonic, it heavily relies on j1 corresponding
to F0 since otherwise the harmonic number calculation is wrong.

Using this formula, local maxima that do not correspond to any harmonic might still influence
the result. To cope with this, considered local maxima can be restricted to those in the vicinity of a
multiple of j1.

Robust F0 Bin Estimation

The approach above fails if j1 refers to anything but F0. This approach tries to estimate the F0 bin more
robustly. The F0 bin estimation is bounded in precision to the frequency bin resolution. To obtain a
higher resolution this approach can be combined with the previous one.

Every harmonic of the F0 has a corresponding local maximum in the smoothed ACF. Although
these might alone not be the highest, the sum will most likely stand out. For every frequency bin f the
summed up harmonic value (SHV) with summation size K P N is calculated as follows

SHV( f ) =
K

∑
k=1

SACF(k f ).

The frequency bin, which scores highest, is then estimated as the bin corresponding to F0.

Averaging Peak Strategy

A very simple approach takes a step back and estimates the pitch on the accumulated peak spectrum
rather than the smoothed autocorrelation. This was motivated by observing many peaks, which
nothing to do with the pitch, at high frequencies producing local maxima in the smoothed ACF.

Before the peak spectrum is calculated, in this approach frequency smoothing is applied on the
frequency spectrum to reduce the number of peaks not corresponding to F0 or a multiple thereof. Then
the lowest indexed peak above a relative threshold is interpreted as corresponding to F0. Averaging
with peak in the vicinity of multiples the F0 bin divided by that multiple then refines the estimation.

4.2 Pitch Estimation Filter with Amplitude Compression (PEFAC)

This section describes the PEFAC algorithm presented by Gonzalez and Brookes [GB14]. A second
description of probably an earlier version of PEFAC is given by Gonzales and Brookes [GB11]. PEFAC

benefits from characteristics of the harmonics in the logarithmic frequency spectrum representation
and utilises the LTASS to obtain a higher robustness. The (supposedly) earlier version of the algorithm
consists of the following four computational steps [GB11]:

1. Transform the time domain signal to the frequency domain as described in Subsection 2.2.2.

2. Transform the frequency spectrum to a logarithmic scale.

3. Compute the LTASS normalized spectrum.

4. Apply the analysis filter for harmonic peaks to the normalized spectrum and select the highest
peak in the range of F0 as the estimation.
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Figure 4.3. LTASS as determined by Byrne et al. [BDT+94].

4.2.1 Long-Term Average Spectrum of Speech (LTASS)

The LTASS measures the average amplitude of frequencies contained in human speech. This includes
voiced and unvoiced speech. Byrne et al. determined LTASS for 12 languages including German and
several dialects of English [BDT+94]. Figure 4.3 visualises LTASS over all examined languages taken
from Table 2 of their work for frequencies up to 4 000 Hz. Although F0 is not larger than 500 Hz, the
original LTASS contains frequencies up to 16 000 Hz because of the higher harmonics of F0.

When the input frequency spectrum is weighted by LTASS, then frequencies are weighted by their
occurrence in normal speech. Further evaluations will then favour frequencies produced by human
speech over noise.

Since LTASS is only given for a few points on the frequency spectrum and not for the whole
frequency axis, piecewise linear interpolation is used to approximate its values on the continuous
frequency spectrum. Note that this is already visualized by the solid line in Figure 4.3. For n P N

monotonically increasing data points x0, . . . , xn´1 with corresponding values LTASS0, . . . , LTASSn´1
the value for a frequency f P [xi, xi+1], with i P {0, . . . , n´ 2}, can be approximated by

LTASS( f ) = LTASSi +
f ´ xi

xi+1 ´ xi
(LTASSi+1 ´ LTASSi) .

This can be derived from the Lagrange polynomials, which were defined in 2.3. However, verifying
this formula can be done without further knowledge. The function is obviously linear and for f = xi,
with i P {0, . . . , n´ 1}, it holds that LTASS( f ) = LTASSi.

log(F0) log(2 F0) log(3 F0) log(4 F0) . . .

log(2)

log(3)

log(4)

Log frequency axis

Figure 4.4. Equidistant points, such as the harmonics, on a logarithmic axis.
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4.2. Pitch Estimation Filter with Amplitude Compression (PEFAC)

4.2.2 Advantages of Using the Log-Frequency Axis

While the occurrence of harmonics can degrade the estimation accuracy of many pitch tracking
algorithms like RAPT or YIN, PEFAC takes advantage of their relation to F0.

The frequency of the n-th harmonic of F0 is nF0 as stated in Section 2.1. Due to logarithm laws it
holds that for every n P N log(nF0) = log(F0) + log(n).

Therefore, the distance between F0 and its multiples does not depend on the actual value of F0.
Figure 4.4 shows this property of the logarithmic axis. An algorithm operating on the logarithmic
frequency domain can, therefore, search for this pattern of absolute peaks with fixed predefined
distances in the range of F0. The frequency, which fits this pattern best, then becomes the estimation
for F0.

4.2.3 Obtaining the Log-Frequency Axis

The input for PEFAC is a frequency spectrum containing discrete frequencies and their amplitudes. The
following roughly describes one possibility for obtaining the logarithmic frequency spectrum from
the given (linear) frequency spectrum using a filterbank. Overlapping triangular filter are applied on
grouped frequency bins with a logarithmically increasing group size [Nie13]. The amplitude of each
triangular is chosen such that the area is the same for every triangle. Since the group size increases
with frequency, the height of the triangular filters decreases. An example for these overlapping filters
of adjusted amplitude is shown in Figure 4.5. One degree of freedom is the choice of the logarithmic
function determining the groups size of (linear) frequencies merged to one frequency on logarithmic
scale.

For speech processing with regard to speech recognition the mel-scale is widely used. It was
developed to describe the human perception of pitch, which happens to be kind of logarithmic, on a
linear scale [Nie13]. Therefore, the mel-scale could be a reasonable choice for the logarithmic frequency
axis. A conversion from a frequency fHz in Hertz to a frequency fmel in mels is given by [Fan68]

fmel =
1000

log(2)
log
(

1 +
fHz

1 000

)
.

However, adding 1 inside of the logarithm is suboptimal, since then logarithm laws as needed in the
previous subsection do not hold.

An alternative is the cent-scale that is suited for comparing the size of intervals [Loy11]. For a
reference frequency fref the frequency in cent fcent for a frequency in Hertz fHz can be calculated by
[Loy11]

fcent =
1 200

log10(2)
log10

(
fHz

fref

)
.

4.2.4 The Algorithm

First the input frequency spectrum s with n P N frequency bins is transformed to any logarithmic
frequency spectrum Y containing ñ P N frequency bins.

This is then smoothed in time and frequency obtaining the smoothed spectrum Ȳ. Then it is
normalized by the LTASS using

Y1(q) = Y(q)
LTASS(q)

Ȳ(q)
(4.1)

The resulting spectrum Y1 is expected to improve the estimation. Short noise utterances are reduced in
amplitude due to the time smoothing and noises outside of the the frequency range of normal speech
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Figure 4.5. Overlapping triangular filters with adjusted amplitudes.
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4.2. Pitch Estimation Filter with Amplitude Compression (PEFAC)
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Figure 4.6. Filter design according to Equation 4.2 with γ = 1.8 and 6 peaks for harmonic maxima on 256 bins on
the logarithmic axis. Values for bins greater than 90 equal zero and are, therefore, omitted.

are degraded in amplitude by the LTASS normalization.
In theory for a periodic signal the pattern visualized in Figure 4.4 would be sufficient for deter-

mining F0. Instead a pattern with widened peaks is used since the signal of voiced speech is quasi
periodic and arithmetical errors can occur determining a logarithmic frequency bin exactly. Therefore,
the filter h used by Gonzales and Brookes is defined by

h(q) =
1

γ´ cos(2πeq)
´ β (4.2)

with γ ą 1 controlling the peak width and β P Rě0 chosen such that
∫

h(q)dq = 0. For the discrete
case this means that the sum over the discrete values is zero, which is fulfilled by choosing β as the
mean. A possible filter design according to Equation 4.2 is shown in Figure 4.6.

The filter is then convolved with the smoothed logarithmic frequency spectrum by

Y1(q) ˚ h(q) =
M´1

∑
k=0

Y1(q´ k)h(k).

The location of the global maximum of this function is then chosen as the estimated pitch according
to the first version of the algorithm. The (supposedly) new version of the algorithm [GB14] then
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´1,000
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1,000

2,000
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Figure 4.7. Example values of the convolution.
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4. Frequency Domain Algorithms

adds a post processing step that chooses the estimation out of the three highest peaks using dynamic
programming. Hereby, the relative amplitude of the peaks, the rate of change from the last estimations,
and the deviation from the median of expected pitches are considered in the minimal cost function.

4.2.5 Implementation

The implementation desists from the dynamical programming in the post processing described in the
(supposedly) new version for the algorithm to be applicable in real-time.

Figure 4.7 shows the convolution for a voiced speech signal. The maximum, which determines the
estimated pitch, is at bin 33. Since bin 32 has a higher value than bin 34, the actual pitch is probably
between the frequencies that the 32nd and 33rd bin refer to.

The accuracy of the estimation is limited to the bin precision. In the logarithmic domain the
distance between two bins increases with increasing frequency. Since again a maximum of a function
determines the estimation, parabolic interpolation as described in Subsection 2.3 was added in this
implementation.
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Chapter 5

Proposed System

The previous Chapters 3 and 4 describe four different algorithms for pitch tracking in the time and
frequency domains. In this chapter the results of these algorithms are used as an input for a combining
estimation. Section 5.1 describes the connection of submodules as needed for further handling. This
includes the data flow from the input signal to each of the algorithms and the output of the combining
pitch estimation algorithm, which is then described in Section 5.2.

5.1 Composition of the Pitch Tracking Module

This section first describes the framework of the implementation and the structure of the composite
pitch tracking module. Then details regarding the output of every algorithm implementation for the
candidate evaluation are described.

Figure 5.1. User interface.
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Figure 5.2. Block diagram of the composed pitch tracking module.

The implementation is in C and YAML with unit tests in C++. For each algorithm a processing
function for one frame is implemented. Modules for sample rate conversion and the STFT already
existed in the framework and could, therefore, be used. A filterbank using the mel-scale was slightly
modified to use the cent-scale (see Subsection 4.2.3) to fit the needs of PEFAC. A graphical environment
for plugging modules together combined with automatically generated code including memory
management facilitated the connection of the submodules. For visual verification of (partial) results,
real-time plotting of variables used by an algorithm is also supported by the framework. The previously
presented algorithms as well as the CE module described in the next section are configurable by many
parameters such as the voicing thresholds. For a complete listing of all parameters see Appendix A.
With the possibility of adjusting these parameters in real-time during the execution it was easier to find
a well-working set of parameter values. Figure 5.1 shows the user interface to configure parameters
and a real-time plot.

Figure 5.2 shows a block diagram of the composed module for pitch tracking. The input, which
can be a microphone signal or an audio file, was chosen to have a sample rate of 48 kHz, which is
common for audio applications. The signal is downsampled by a rate of two, resulting in a signal
with a sample rate of 24 kHz, to lower the computation cost. This does not degrade the estimation
quality, since F0 is lower than 12 kHz and every algorithm has a refining component, such as parabolic
interpolation. Additionally, RAPT needs another version of the signal at an even lower sample rate,
since it calculates the NCCF on two sample rates. This is provided by downsampling the input signal
by a rate of 16 to a sample rate of 3 kHz. RAPT and YIN, since they operate in the time domain, then
compute their estimations on these downsampled time signals. For TAPS and PEFAC the input is a
frequency spectrum. This is provided by an STFT based on the 24 kHz signal. The outputs of the four
algorithms are then used by CE to obtain a combined estimation and voiced decision. The algorithms
have different delays from the input to the according estimation, which was considered using delay
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5.2. Candidates Evaluation (CE)

buffers of the size of the individual delay for each of the algorithms.
Every algorithm is implemented such that a main pitch candidate, a voiced decision, and a set of

secondary candidates are calculated to provide more information for CE.
For every algorithm a maximum number of secondary candidates restricts the choice of secondary

candidates to the most reasonable ones and also prevents one algorithm from falsifying the estimation
by producing too many secondary candidates. The following describes how each algorithm obtains its
secondary candidates and what kind of information they might provide that is useful for the candidate
evaluation.

For RAPT and YIN the smallest lag satisfying a threshold was chosen to define the main candidate.
Therefore, it seems reasonable that frequencies corresponding to lags satisfying the threshold are
chosen as secondary candidates. Since there is a maximum number of secondary candidates, the
smallest lags satisfying this condition are chosen. A different approach could take the lags with
the largest (for RAPT) and smallest (for YIN) value. This choice has a rather small impact, since the
number of lags satisfying the threshold does not often exceed the maximum number of secondary
candidates (see Figure 3.2 with a maximum number of secondary candidates of five for an example).
The smallest lag meeting the threshold often corresponds to F0 and due to the periodicity of the used
correlation functions, the secondary candidates obtained by RAPT and YIN most likely refer to lags that
are multiples of T0. Therefore, these secondary candidates are interpreted as subharmonics of F0.

The implementation of TAPS consists of different strategies for which the choice of secondary
candidates differ. For the averaging peak approach, the first peaks satisfying a threshold are taken
as secondary candidates. For the other strategies, which involve the smoothed ACF, the highest local
maxima of the smoothed ACF are taken as secondary candidates. While in both cases the secondary
candidates are again obtained by multiples of the original candidate, in the case of TAPS they are
multiples in the frequency domain instead of the time domain. Therefore, they are interpreted as
harmonics.

The main candidate of PEFAC is the frequency corresponding to the bin with the highest convolution
value on the logarithmic axis. Therefore, the frequencies corresponding to the highest convolution
values seem to be a reasonable choice for the secondary candidates. Due to the matched filter
convolution on the logarithmic frequency axis, the classification of these secondary candidates as
harmonics or subharmonics is not as easy. Comparing a set of thereby generated candidates to F0

indicates that these often refer to subharmonics. This might be caused by the second or third filter
peak scoring well on F0.

5.2 Candidates Evaluation (CE)

The algorithms RAPT, YIN, TAPS, and PEFAC are chosen based on their relevance and their different ap-
proaches using specific characteristics of the pitch. RAPT and YIN represent the time domain algorithms
both considered to be the “best performing” pitch tracking algorithms [PWP+11b]. Both algorithms are
based on a correlation function and, therefore, both follow the idea of measuring the similarity of the
signal with and without delay, different approaches optimize the estimation quality. TAPS utilises the
temporal aspects differing for human pitch and noise. Last, but definitely not least, PEFAC combines the
LTASS and a matched filter on the logarithmic frequency axis to obtain an estimation, which is robust
to noise. If an algorithm fails to estimate the pitch correctly, then, due to the different approaches, it is
expected that other algorithms might produce a correct estimate. It might also be contained in the
secondary candidates or at least information about the correct estimation is contained in the form of
harmonics or subharmonics, which can be used to then obtain the correct estimation.
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50 Hz 500 Hz

without offset

with offset

Figure 5.3. Distribution of frequency bins with K = 37.5: top without and bottom with offset. The dashed lines
indicate a possible candidate input. For the bin distribution without an offset a maximum of three dashed lines
are contained in one bin. However, if the bins are arranged with an offset, the third bin contains four candidates.

There are numerous possibilities regarding what to base the combined estimation on. Somehow
a measurement of continuity and the question of whether a candidate refers to a (sub-)harmonic or
not needs to to be answered for some set of values this is tested for. One possibility is to bind these
to input candidates. Thereby, one could evaluate which of the input candidates most likely refers to
F0 and this candidate is then chosen to be the final estimation. Using this approach it is necessary to
identify candidates of different algorithms that refer to a similar estimation since this is an indicator for
the relevance of that candidate. However, this is not an easy task since relative or absolute thresholds
for this might fail for a set of nearby candidates. Also the choice of estimation is limited to the input
candidates. If, for example, 200 Hz, 300 Hz, 400 Hz, 500 Hz, and 600 Hz are input candidates and it is
known that the candidates are likely to be harmonics of F0, then 200 Hz would be the most reasonable
choice from the input candidates. However, the appearance of 300 Hz and 500 Hz rather indicate that
a better estimation would be 100 Hz.

To separate the concerns of given candidates and the estimation made by the combining algorithm,
instead the following approach is taken. The range of F0 comprising 50 Hz to 500 Hz is partitioned into
relatively large frequency bins of equal size K P R+. Two versions of these frequency bins are used,
one starting directly at 50 Hz and one starting with an offset of half the bin size at 50 + K/2 Hz. The
second version is intended to handle border cases where F0 is near to 50 + nK Hz for n P N. For the
bin distribution without an offset, the candidates might then favour both neighbouring bins equally,
resulting in a bin unrelated to F0 containing most candidates, as shown in Figure 5.3. In the following,
“frequencies” and “frequency bins” with and without offset are used as synonyms. The conversion is
determined by the bin size.

The estimation is then based on a reward system for these frequency bins, which gain or lose
points based on different information retrieved from the input candidates and the past estimation.
The final score for each bin is the sum of points obtained by the scoring steps considering continuity,
secondary candidates, and the main candidate. The mean of candidates in the highest scoring bin then
serves as the final estimation.

F0 can change with every glottal period. The difference of F0 for two neighbouring glottal periods
is either small or exactly one octave [Tal95]. Since most estimation errors are octave errors and octave
jumps rarely occur, only the first case of F0 being to some extend continuous is considered by the
algorithm. The continuity of the estimation is supported by adding a constant to bins in the vicinity of
the estimation from the last frame. The actual meaning of vicinity depends of the choice of frequency
bin size. For a bin size of 10 Hz a vicinity of two bins performed well with regard to fast F0 changes
and exclusion of octave errors.

While for TAPS the secondary candidates contain harmonics of F0, for RAPT, YIN, and PEFAC these
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Figure 5.4. Secondary candidates scoring example for a candidate at 216 Hz interpreted as a subharmonic in the
upper bins and interpreted as a harmonic in the bottom bins. Each plus indicates a bin gaining points and each
minus indicates a bin losing points.

often contain subharmonics of F0. Although it is not known which (sub-)harmonic the secondary
candidate refers to, this can still be utilised as a rewarding factor. For a subharmonic fsub there exists
n P N with n fsub = F0. The other way around, for a harmonic fhar there exists n P N with fhar = nF0.
Bins fulfilling the first equation for a secondary candidate, which is interpreted as a subharmonic,
gain points in the scoring system. Similarly this is done for bins fulfilling the second equation for a
secondary candidate, which is interpreted as a harmonic. This direction utilises secondary candidates
as indicators for bins corresponding to F0. In the other direction, secondary candidates can also indicate
which bins are less likely to correspond to F0. If an algorithm is expected to produce subharmonics,
then bins corresponding to subharmonics of these candidates might also have to some extent good
values since they are also subharmonics of F0. Since the candidate is already a subharmonic of F0, its
bins containing the subharmonic of this subharmonic lose points, since they are not containing F0 but
rather a subharmonic of it. The same holds for harmonics of secondary candidates expected to refer to
harmonics. An example for the scoring by one candidate for the bins without offset is shown in 5.4.

The final piece of the rewarding system are the main candidates. Harmonics and subharmonics of
these are not considered since the main candidate often has an non-refined equivalent in the secondary
candidates. Each input main candidate adds a constant reward value to the bins it is contained in. If
algorithms differ in reliability, this can be considered in the choice of the constant.

For one speaker the deviation from the mean F0 is often small. Therefore, mean-based rewarding of
bins would be an option. Since pitch-tracking is not restricted to one speaker, this implementation
desists from taking the mean value into account. One example of the mean being harmful could be a
conversation between two people, one with a mean F0 of 70 Hz and one with 210 Hz. The pitch of the
second person might then be interpreted as a harmonic of the first person and, therefore, the mean
might falsify the estimation.

Besides voiced decisions of the individual algorithms, the combined voiced decision also takes the
old voiced decision and the estimation continuity into account. From this information a voicing score is
determined. If a threshold is passed, then the frame is considered voiced and otherwise it is considered
unvoiced. Taking the previous voiced decision into account reduces fluctuations of the voiced state. For
this implementation each input voiced estimation and the previous estimation being voiced increase
the voicing score by one. For unvoiced speech or silence, the estimations of neighboured frames are
unrelated and thus the continuity is an indicator for the voiced state. Therefore, if the estimation does
not behave continuously despite of the continuity reward, the voicing score is reduced. For this a
reduction by one or even a reset to zero, which leads to an unvoiced decision, are reasonable. For
this implementation a threshold of 3 voiced decisions decides on the combined voiced decision. Also
TAPS’s voice decision was excluded from the combined voiced decision because the accumulation of
subsequent frames lowered the reaction time for the voiced decision, which falsified the results.
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5. Proposed System

The general structure of this strategy of CE has many degrees of freedom. Firstly, the impact of
different algorithms and rewarding systems can be regulated by the constants. Then new reward
strategies can be added or strategies not helpful in a context can be removed. The frequency bin size
influences the accepted deviation from estimations still considered to refer to the same value. Also
algorithms can be added or removed to suite the contextual needs best. For example TAPS has the
highest delay, so in a scenario where reaction time is critical, one would probably not include TAPS.
In contexts, where TAPS performs best in the sense of estimation quality, the system benefits from
including TAPS in the combination algorithm. Adding more well working approaches as inputs would
probably increase the stability even more. Also CE works with only one input algorithm. Whenever an
algorithm is added constants for its weight need to be added and whenever changing the number
of input algorithms the voicing threshold has to be adjusted. The latter could be avoided by using
a threshold relative to the number of algorithms used. However, this implementation sticks to the
absolute threshold, since the nature of different voiced state estimations, such as TAPS reacting too
slowly, has to be taken into account, too. An automatic computation of parameters for an arbitrary
combination of algorithms could be added. Again due to algorithms performing individually different
and since the the algorithmic setup has only to be done once, this algorithm sticks to a manual
configuration. Since the different approaches are computed independently, the computation could be
performed concurrently to reduce computation time.

42



Chapter 6

Evaluation

This chapter evaluates the implemented algorithms with regards to the estimation quality and
execution time per frame. In Section 6.1 a speech database with reference pitch and voiced decision
is used to evaluate the estimation quality. The average execution time for each algorithm and the
combined estimation is evaluated in Section 6.2.

6.1 Estimation Quality

This section aims to evaluate the estimation quality of the different algorithms based on a database of
clean speech and noise corrupted speech. For noise corrupted speech the Signal to Noise Ratio (SNR) is
the ratio between the power of the speech signal and the power of the unwanted background noise and
often this quantity is denoted in decibels. The SNR in dB of a signal s0, . . . , sN´1 and noise n0, . . . , nN´1
is defined as [PTG+14]

SNR = 10 log10

√
1
N ∑N´1

k=0 s2
k√

1
N ∑N´1

k=0 n2
k

.

Besides SNR also the noise type influences the estimation quality for a noisy speech signal. For
example white noise has equal intensities for all frequencies. The name refers to white light, due to the
similarity that white light has equal quantities for all colours [Man03].

This evaluation aims to test the robustness of the algorithms against noise. Although there are
methods to reduce the noise in speech signals, these are not applied here to really evaluate the
algorithms estimation quality. However, when estimating pitch in a noisy environment, applying
modules for noise reduction is a reasonable preprocessing step.

Subsection 6.1.1 first describes the experimental method. Then 6.1.2 presents the results, which are
further discussed in 6.1.3.

6.1.1 Experimental Method

A common reference for the evaluation of speech related work is the Texas Instruments/Massachusetts
Institute of Technology (TIMIT) [LKS89] database. It was designed for acoustic phonetic studies and
contains 2342 different sentences from three categories. The first category contains two sentences,
which were designed to differ in pronunciation by dialects. The phonetically compact sentences set was
designed to, as far as possible, contain each pair of phonemes. This set consists of 450 sentences. The
third set, which contains 1890 sentences, were randomly collected for contextual coverage.

For the evaluation of pitch estimation quality the Pitch Tracking Database from Graz University
of Technology (PTDB-TUG) [PWP+11b; PWP+11a] is used. The database consists of 4720 recordings
from 10 female and 10 male native English speakers pronouncing the 2342 sentences from the TIMIT

corpus. Two of these sentences are pronounced by each speaker and the other 2340 each by one
female and one male speaker, hence leading to the total number of 4720 recordings. The speech signal,
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Figure 6.1. Broken reference. The reference pitch is shown in blue and the estimated pitch is shown in green.

the laryngograph signal, which measures the contact of vibrating vocal folds, and a reference pitch
determined by RAPT on the laryngograph signal are provided for each utterance. The calculation on
the laryngograph is expected to be more precise than for clean speech since the glottal excitation is
not manipulated by the vocal tract.

For the speech signals of sample rate 48 kHz the estimations by each of the four implemented
algorithms and the combining algorithm were recorded and evaluated. Additionally, estimations of
the four different approaches on TAPS strategies were recorded and evaluated.

Since the estimation rate of the reference differs from the estimations made by the algorithms, the
reference pitch was interpolated linearly and then resampled to the estimation rate of the implementa-
tions. Since unvoiced frames are denoted with an estimation of zero by the reference, interpolation
calculates unreasonable estimations for frames between an unvoiced and a voiced reference. To reduce
the hereby caused pitch estimation error, the reference for such frames is set to zero. An estimation
was considered correct if it fell within 5% of the reference pitch, which is similar to the error definition
by PEFAC [GB11].

To evaluate the robustness against noise, white noise and car noise have been added, respectively,
for each SNR in {´20 dB, ´ 15 dB, ´ 10 dB, ´ 5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB}. For the energy
calculation of the speech signal only active speech parts are considered as suggested by the ETSI

technical specification [ETS17]. Therefore, each file was partitioned in frames of 30 ms length. For each
frame the energy value was calculated and frames with less then 10% energy of the maximum energy
frame are considered silent and were omitted for the speech energy calculation. Thereby, the noise’ and
the speech signal’s size for the energy calculation differ. To compensate this, the noise energy was then
scaled, such that both energy values refer to the same signal length. From these energy values a factor
for the desired SNR is applied to the noise signal. White noise was modelled by randomly generated
numbers and car noise was represented by in-car recordings of a Smart on a country road without the
occurrence of irregular noises, such as produced by the windscreen wiper and the indicator.

During the first evaluation phase single files with an error of 100% between the reference pitch and
the estimated pitch stood out. The examination of these files yielded that some of the laryngographs
were incorrect, which led to false reference pitches. One example for this is shown in Figure 6.1. The
voiced decision and the pitch estimation are displayed together by setting the estimation to zero for
unvoiced frames. The reference pitch shown in blue stays at approximately 100 Hz for every voiced
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Figure 6.2. Half broken reference. The reference pitch is shown in blue and the estimated pitch is shown in green.

estimated frame in the file. However, the perceived pitch from the speech signal conforms to the
estimation made by this implementation, shown in green. Since the corrupted reference pitches would
falsify the evaluation result, such files were excluded from the evaluation.

However, this is not an exhaustive solution, since reference pitches, which are not completely, but in
most instances, incorrect, still influence the results. A single file error of above 50% is still conspicuous
compared to an overall error of below 10%. For Figure 6.2 the estimation by the implementation,
denoted in green, again matches the auditory perception. During the voiced part the estimation
and the reference pitch coincide. However, there are equally spaced reference estimations again at
approximately 100 Hz occurring at silent intervals. To avoid the need of manual reference verification
for each file, random files with an error rate above a threshold were inspected to define a reasonable
error rate threshold for which files with an error above that threshold are likely to contain corrupted
references and files with a lower error rate are likely not to contain corrupted references. Files with an
error above 15% regarding the whole file or an error rate above 30% regarding voiced frames only
were excluded from further evaluation. This affects 290 of the 4720 files.

Determined quantities for each algorithm are the error combining the voiced decision and pitch
estimation, the error only regarding pitch estimation, and the voiced estimation error. The combined
error is defined by the number of frames with an estimation not within 5% of the reference, with
unvoiced frames set to zero in the estimation and reference, divided by the total number of frames.
The pitch error only considers the frames labelled voiced by the reference. Additionally, for the pitch
estimation error the rates of too high and too low estimations were calculated and for the voiced
estimation error there is a distinction of errors occurring because the estimation is voiced, but the
reference is unvoiced, and because the estimation is unvoiced, but the reference is voiced.

6.1.2 Data Analysis

This section presents the evaluation results. The different TAPS strategies are referred to as TAPS-r for the
strategy as described by Huang and Lee [HL13], TAPS-h for the harmonics based approach, TAPS-f for
the F0 bin determination, and TAPS-p for the averaging peak strategy. This chapter presents a fraction
of the evaluation results. A table with complete coverage is given in Appendix B.

For clean speech the percentage of incorrectly estimated pitch for frames considered voiced by the
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reference is shown in Figure 6.3. With 7.96% PEFAC has the lowest error rate. While TAPS-p improves the
error of TAPS-r by approximately 5% from 17.09% to 12.26%, TAPS-h and TAPS-f estimate incorrectly for
more than a third of the voiced frames. Due to these results, further evaluations of TAPS will use the
averaged peak strategy. YIN estimates incorrectly in 15.20% of the voiced frames and RAPT in 12.56%.
For CE, PEFAC, and TAPS-p most pitch estimation errors estimate the pitch higher than the reference
pitch. For RAPT and YIN there are about equal too high and too low estimation errors.

Subfigure 6.4a shows the voiced decision error. CE has the lowest error rate of 5.58%. RAPT and
YIN have an voiced error rate of 6.00% and 6.42%, respectively. With an error rate of 7.38% PEFAC has
a slightly higher error rate. The highest error rate of 10.9% belongs to TAPS. Note that the different
strategies of TAPS do not influence the voiced state decision and, therefore, there is no further distinction
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Figure 6.3. Pitch estimation error for the different algorithms.
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Figure 6.4. Error rates for a) the voiced decision and b) combining the voiced decision and pitch estimation.
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Figure 6.5. Error rates for pitch estimation corrupted by white noise.

needed for TAPS in this error category.
Subfigure 6.4b shows the error for combining pitch estimation and voiced decision. CE performs

best with 6.74% incorrectly estimated frames. The error of RAPT is slightly higher with 7.42%. YIN

and PEFAC have similar results with 8.19% and 8.07% error, respectively. Clearly the most incorrect
estimations are produced by TAPS with an error rate of 12.11%.

Figure 6.5 shows the pitch estimation results for noise corrupted speech. For every algorithm the
error rate decreases for an increasing SNR. For SNRs of at least 10 dB every algorithm estimates less
than 20% of the voiced frames incorrectly. PEFAC performs best with less then 15% incorrect estimated
voiced frames for an SNR of at least ´5 dB. For this SNR one third of the pitch estimations of RAPT, YIN,
and TAPS are incorrect. The error rate of CE is similar to the error rate of PEFAC, but slightly higher for
lower SNRs.

Figure 6.6 shows the pitch estimation error rates for car noise corrupted speech. Best performing for
lower SNRs (ď 10 dB) is TAPS. For ´10 dB SNR it has an 20% lower error rate than the other algorithms.
Without considerint CE (CE benefits from TAPS’ performance), the error rate is even 25% lower. The
most errors by CE, RAPT, YIN, and PEFAC are caused by estimating the pitch lower than the reference
pitch.
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Figure 6.6. Error rates for pitch estimation corrupted by car noise.

The voiced state estimation error for a white noise corrupted speech signal is shown in Figure 6.7.
Again the error rate decreases for an increasing SNR. The limiting factor for every algorithm at very low
SNRs is that every frame is estimated unvoiced. Since the database contains about 22.47% voiced speech,
towards ´20 dB every algorithms voiced decision error rate approaches this value. An exception to
this is RAPT. Although every voiced frame is estimated unvoiced, there are a few unvoiced frames
estimated voiced by RAPT, which enlarges the error by 0.13% at ´20 dB SNR. For 0 dB approximately
every second voiced frame, which is considered voiced by the algorithm for clean speech, is then
estimated unvoiced.

Figure 6.8 finally shows the results for the voiced decision for car noise corrupted speech. Already
at 20 dB the error rate is higher than 12% for every algorithm. For YIN and PEFAC it is about 15% higher
than for clean speech. For CE, YIN, and PEFAC the error rate increases comparing ´20 dB to ´15 dB
SNR.

6.1.3 Discussion

For clean speech and white noise the pitch estimation by CE does not improve the estimation by PEFAC,
which might be caused by the lower performance of TAPS, YIN, and RAPT. Although the pitch estimation
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Figure 6.7. Error rates for voiced state estimation corrupted by white noise.

by TAPS is more precise then for RAPT and YIN, it has the highest error rate in the overall estimation
due to the higher error rate for the voiced decision. The consideration of multiple frequency spectra
might have a negative impact on the precision of onset and offset of voiced segments, which could be
a reason for the higher error rate for the voice decision.

In general car noise corrupted speech leads to higher error rates than white noise corrupted speech.
This might be caused by the periodicity of car noise. Although the period often changes in adjacent
frames, it is reasonable that correlation functions have good values for the period of the car. White
noise has no period and, therefore, has a smaller impact on the set of local turning points of correlation
functions, which define the estimation made by YIN and RAPT. Car noise also contains harmonics,
which influences PEFAC to estimate the frequency of the car noise than F0 of human pitch for lower
SNRs.

Since most of the voiced decisions measure the periodicity of the signal, it seems reasonable that
algorithms are more likely to consider the signal as unvoiced for lower SNRs of white noise, which has
no period due to the equal distribution of intensities over the entire frequency axis. There are also
voiced state estimators, which are less related to the periodicity of the signal. In such an use case, it is,
therefore, recommendable to configure CE to rely on input by those algorithms instead.
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Figure 6.8. Error rates for voiced state corrupted by car noise.

CE does improve the voiced estimation in most scenarios of noise type and SNR. Pitch estimation
on clean speech is more precisely estimated by PEFAC and for lower SNRs for white noise PEFAC and
for car noise TAPS perform at least slightly better than CE based on all four algorithms. This might be
caused by the other algorithms performing worse than PEFAC, which degrades the quality of input
estimations giving CE a hard time. Therefore, the configuration of base algorithms producing input for
CE has to be designed to suit the application. The flexibility of CE allows such an arbitrary composition
of input algorithms even restricting the input to be reduced to a single algorithm, if needed.

Results presented here are not set in stone due to corrupted files and the source of the reference
values. On the one hand, the exclusion of corrupted files might not be complete and false references
due to recording errors of the laryngograph might still falsify parts of the results. On the other hand,
also non corrupted files for which the algorithms fail to estimate correctly might have been ignored.
This might have misleadingly improved the results. The second threat to validity is the source of the
reference pitch, which is obtained by RAPT. In contrast to the present implementation of RAPT the
reference pitch is obtained by RAPT with post processing, which is calculated on the laryngograph
instead of the actual speech signal. These differences also explain the estimation differences between
the estimations of those two versions of RAPT. Since the reference is also obtained by an algorithm, it
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Figure 6.9. Average execution time per algorithm.

is for sure not completely correct. For car noise the evaluation is based on the same segment of 15 s
length for every file. This was done for comparability, but limits the generalizability of the evaluation.

6.2 Performance

Regarding the real-time requirement the runtime of the algorithms is of interest. This section presents
an experiment evaluating the performance of each algorithm. It is structured similar to the previous
section.

6.2.1 Experimental Method

Each algorithm is executed 105 times on a signal frame containing zeros. Since the implementation
does the complete computation irrespective of the input, the average execution time for such a frame
does not differ from the execution time for frames filled with actual speech data. For each call of the
process method the execution time (per frame) is measured. Since the first frames might have a higher
execution time due to set up operations, the average instead of the maximum execution time per frame
is measured. The algorithms are executed on a BeagleBoard-X15 on a single core.

To determine the execution time per frame for each algorithm separately, the system is configured
for each algorithm to execute only required modules. Therefore, the minimum module configuration
for which the algorithm works correctly, is executed to represent the algorithm.

The input is sampled by a sampling rate of 48 kHz, as already mentioned in Chapter 5, with a
frameshift of 256 samples. Therefore, the calculation time an algorithm must not exceed for real-time
applicability is frameshift

sample rate
=

256
48kHz

= 5333.3µs per frame.

6.2.2 Data Analysis

The results are shown in Section 6.2. CE has the largest average execution time with 1574 µs per frame.
YIN and PEFAC have similar performance, since both need about 650 µs per frame. TAPS executing in
223 µs per frame on average needs only one third of the time needed by YIN and PEFAC. Fastest is RAPT

with an average execution time of 85 µs per frame.
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6.2.3 Discussion

Since CE depends on the estimations of the other four algorithms as inputs to work correctly, the
whole system is executed. Therefore, the execution time of CE adds up the execution times of the other
algorithms with its actual execution time.

RAPT performs best due to the two-pass calculation of NCCF. Without two-pass the execution time
would probably be similar to that of YIN, since the computational complexity of underlying correlation
functions are similar.

The higher execution time of PEFAC compared to TAPS might be caused by the very high FFT order
needed by PEFAC for obtaining a well resolved logarithmic frequency axis.

Every algorithm, even CE, finishes on average within less then a third of the theoretical maximum
time per frame. Therefore, they are all suitable for real-time applications performed on a BeagleBoard-
X15. The average execution time indicates that the real-time applicability can be extended to various
computers.

The experiment only considers the execution time on one embedded board, which is a threat to
validity. Some relations of the results might not be universally valid for an arbitrary system.
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Visualization





Chapter 7

Diagram Types

Every visualization must follow a clear syntax and semantics to provide understandability. This
chapter briefly describes three different diagram types to build up fundamentals for a discussion of the
prospects of code visualization by the following chapters. Two of the types are well known and widely
used, namely data flow diagrams described in Section 7.1 and control flow diagrams described in
Section 7.2. The third diagram type is called rainbow rails and is developed in this thesis in Section 7.3.

7.1 Data flow

Data flow diagrams represent a “sequencing of a parallel computation by a finite directed graph”
and were introduced by Karp and Miller [KM66]. Edges are first-in first-out data queues and each
operation is represented by nodes, which can be formalized by a single-valued function [KM66]. They
are used for the description and analysis of parallel computations, especially in the digital signal
processing domain [LM87].

Figure 7.1 shows an example of a data flow diagram modelling the following rules of ABRO, which
is the Hello world! of synchronous languages. Whenever the reset input R is present, the system restarts.
If the inputs A and B both were present at least once since the last (re-)start then the output O is true,
otherwise it is false. This representation uses Java syntax for the operations, with input and output
data queues adjoined at the left and right side, respectively. The pre operation obtains the previous
value of the input data.

Figure 7.1. Example dataflow diagram representing ABRO modelled using KIELER
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int sum = 0;
for (int i = 0; i<10; i++) {
    sum += i;
}

i<10

int i = 0

sum += i

i++

true

false

int sum = 0

Figure 7.2. Example control flow graph of a for loop.

7.2 Control flow

Control flow graphs were established by Allen [All70], though earlier considered by Prosser [Pro59].
The “flow relationships” [All70] of a program are represented by a directed graph which denotes
possible paths to take in the program. In contrast to data flow diagrams, control flow diagrams focus
on the program structure and less on the interaction with data. An example of a control flow graph is
shown in Figure 7.2.

7.3 Rainbow Rails

Rainbow rails is a new diagram type introduced in this thesis. It is derived from visual representations
of the voter migration based on Sankey diagrams [HWE+18] and displays control and data flow
elements each in one dimension: control flow is listed vertically and data horizontally. Although
several aspects deviate from traditional Sankey diagrams, the idea of single lanes for each unit of data
constitutes rainbow rails. The main difference to Sankey diagrams is that not the starting and endpoint
are carriers of information, but rather their interaction with blocks representing code indicate the
semantics. The lanes are directed vertically and a colour scheme (which motivates the diagram name)
serves as a distinction aid in larger diagrams.

The basic blocks for rainbow rails diagrams are shown in Figure 7.3. To visualize operations,
semantically associated lines of code are grouped to blocks. The default abstraction level groups blocks
of code such as shown in Figure 7.3a into three categories:

Method calls are represented by their name.

Control flow statements are represented by their defining line of code.
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(a) (b) (c) (d)

Figure 7.3. Building blocks of a rainbow rails diagram. (a) Computational block types, (b) input and output
interaction with a computational block, (c) output interaction directly followed by input interaction, and (d)
conditional input/output interaction.

Code abstraction visualizes code not intended to be further specified, such as single instructions.

On an interactive level these blocks can be expanded to visualize more details or collapsed to obtain a
higher abstraction level or a more compact representation. The order of blocks from top to bottom is
the sequential order of the blocks of code.

A data lane is visualized as a blue vertical line. The corresponding data name can be visualized
in each interaction rectangle since the name is most relevant there. Alternatively, it can be displayed
on-the-fly next to the lane, which ensures that even when displaying only parts of the diagram each
data lane’s label is still visible in the viewport. The colour saturation is low to indicate the data
interaction state, which is distinguished into active and inactive. An active lane, visualized by a higher
colour intensity, indicates that data has been used or changed before and will be used or changed
below. An inactive lane, visualized by a lower colour saturation, indicates that the data lane has not
yet interacted with a code block or does not interact with a code further below. This can be observed
in Subfigure 7.3b. Above the first computational block the data lane is inactive since there was no
block interaction yet. Similar the lane is inactive below the third block. Between the first and the third
block the lane is active due to the input interaction and the output interaction. A lane coloured rectangle
adjoined to a computational block indicates an interaction of the computational block with the unit of
data. If the interaction rectangle adjoins to the upper border of the computational block, then it is used
as input, i.e. the value of the data lane is read and influences the calculation of the computational block.
If, on the other hand, the interaction rectangle adjoins to the bottom border of the computational block,
then the computational block changes the value of the data lane. The interaction rectangle for input
and output interactions of adjacent computational blocks are combined to one interaction rectangle as
shown in Subfigure 7.3c.

In the usual case, the actual value of a data lane is given by the previous output interaction
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rectangle. However, it can happen that it is not directly known whether a block changes a data value
as it is the case for assignments in conditional blocks. As visualized in Subfigure 7.3d, the following
input rectangle is equipped with input possibilities, visualized as triangles. Each input possibility
refers to an output produced by a previous output rectangle denoted by an outgoing triangle at the
same horizontal position adjoined to the output rectangle.
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Chapter 8

Holistic Views

Starting on the problem of code visualization, this chapter copes with visualizing the code of an
entity holistically. One question which directly comes up is what kind of code entity is reasonable
to visualize. While for the documentation of one module it is not necessary to represent the whole
framework that the module is implemented in, a complete framework representation could be useful
for new employee to get started. An entity could also be just one method for example to present an
algorithmic idea to colleagues.

Given a code example from the implementation of the first part, this chapter discusses possible
approaches to holistic views. While discussing the applicability for different code base scenarios, visual
examples stick to representing one specific example code base.

Parts of the implementation of RAPT are visualized in this section to illustrate some of the concepts
of code visualization. An excerpt of the main code parts is shown in Figure 8.1. The function computes
the first-pass NCCF with the candidates for the second-pass NCCF as output. The module can be used
for pitch estimation only using NCCF. In order to restrict the example regarding the code base and the
visualizations to a displayable size, functions starting with sonoNccf, which are part of the module, are
omitted in the code representation.

As already mentioned, representing the whole code always depends on what is considered the
whole code. In particular, when using a commonly referenced function such as printf, it is very
likely that the implementation of printf is not reasonable to represent, since it is (most likely) not
the main part of the module. The same holds for common functions of a specific framework. The
implementations of SONO_TIC and SONO_TOC, which are used for profiling, have nothing to do with the
functionality of the two-pass NCCF, but are used in the implementation. Additionally, functions are
often not only used once. Displaying the same information multiple times produces a higher work
load than necessary in the process of understanding. On a higher level, RAPT is only one module of
the pitch tracking system presented in Part I. Representing the entire system is another possibility of a
holistic view. This chapter sticks to representing on a module level since the modules of the system
operate independently.

The main distinction between different representations in this work is the extend of interactivity
of the diagram. In terms of scalability, readability, and level of abstraction, interactivity has to be
considered.

Static representations as described in Section 8.1 require to be unambiguous and complete in the
sense of what the purpose of the diagram is. Although it is not likely to find one representation to fit
every use case, this section argues about elements of the static representations which might support
understanding.

Section 8.2 analyses the aspect of interactivity. Subsection 8.2.1 describes possibilities to interact
with the diagram to show desired information or structure the diagram to fit individual needs. In
the usual case the amount of information displayed, exceeds the capacity of working memory of the
human brain, which is generally approximated as 7˘ 2 [Mil56]. Therefore, interactivity can support
condensing information contained at different locations of the diagram. Some possibilities for this are
listed in Subsection 8.2.2.
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1 void __sonoNccfProcess(struct SonoNccf *self, const tfloat *in, tint *cands)

2 {

3 if(!self->active) {

4 sonoMatSetIntToZero(cands, self->numCands);

5 return;

6 }

7
8 SONO_TIC(self->resman);

9
10 // Needed for time smoothing

11 tfloat oldFrequencyEstimation = self->candidate;

12
13 // Setup of input and energy buffers

14 sonoNccfPrepare(self, in);

15
16 // Actual energy value

17 self->energy = self->energyBuffer[0];

18
19 self->maxVal = 0;

20 // NCCF calcuations for lags kMin to kMax corresponding to maximum and minimum frequency.

21 for(tint k = self->kMin; k < self->kMax; k++) {

22 sonoNccfCalcNccf(self, k);

23 self->maxVal = self->nccfVals[k] > self->maxVal ? self->nccfVals[k] : self->maxVal;

24 }

25
26 // Setup of candidates buffer.

27 tint candBufferPos = 0;

28 for(tint k = self->kMin + 1; k < self->kMax - 1; k++) {

29 sonoNccfCheckCand(self, k, &candBufferPos);

30 }

31 for(tint i = candBufferPos; i < self->numCands; i++) {

32 self->cands[i] = 0;

33 }

34
35 // Maximum candidate exraction and candidate output set.

36 self->maxCand = self->kMax - 1;

37 for(tint i = 0; i < candBufferPos; i++) {

38 self->maxCand = self->nccfVals[self->cands[i]] > self->maxVal*self->maxValAcceptanceRange

39 && self->cands[i] < self->maxCand

40 ? self->cands[i] : self->maxCand;

41
42 cands[i] = self->cands[i];

43 }

44
45 // Voiced state decision.

46 self->isVoiced = self->nccfVals[self->maxCand] > self->thresholdVoiced;

Figure 8.1. Main code base.
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47 // Estimation refinement using parabolic interpolation.

48 sonoNccfParabolicInterpolation(self);

49
50 // Candidate conversion from lag to frequency domain.

51 if(self->candidate > 0) {

52 self->candidate = self->sampleRate / self->candidate;

53 }

54
55 // Combining voiced state and estimation.

56 if(!self->isVoiced) {

57 self->candidate = 0.0;

58 }

59
60 // Time smoothing

61 tbool isValidSmoothing = self->candidate >= self->fMin && self->candidate <= self->fMax

62 && oldFrequencyEstimation >= self->fMin

63 && oldFrequencyEstimation <= self->fMax;

64 if(isValidSmoothing) {

65 self->candidate = self->candidate * (1 - self->smoothingConstant) +

66 oldFrequencyEstimation * self->smoothingConstant;

67 }

68
69 SONO_TOC(self->resman);

70 }

Figure 8.1. Main code base (continued).

8.1 Static Representations

For the graphical representation to be usable it needs to be understandable and the interpretation
needs to be equivalent to the code representation. The usefulness of a graphical representation scales
with an easy the information retrieval is easier and the amount of retrievable information. Therefore,
the goal is to create a view to make information easier accessible.

To represent every information needed to understand the functionality of the code, a certain
amount of text in the diagram inevitable. Consider line 19 of the example code. The number zero has
to be somehow contained in the diagram to represent the meaning. Additionally, names of variables
might be reasonable to display since they should hint at their purpose and help trace their usage.
Therefore, a reasonable question is what kind of text supports understanding and which graphical
representations are interpreted equally.

Although a holistic static representation can not influence the amount of information shown at
a time, the term units of information is worth considering. In a sentence not every letter represents a
full unit of information. More likely the meaning of words or even the entire sentence has a work
load of one unit of information. What is considered an independent piece of information in this
case depends on the individual, but assuming the person has some experience in programming
this previous knowledge can be utilized. Consider the control flow representation of a for loop in
Figure 7.2. The functionality of a for loop is visualized in detail, although this should be clear to every
programmer. The representation consists of six additional arrows, although the one word for in a
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Singleton

- singleton : Singleton

- Singleton()
+ getInstance() : Singleton

(a)

Singleton
 Implentented using the

Singleton pattern. 

(b)

Figure 8.2. Visualization examples of a Singleton pattern. (a) the singleton pattern in UML [Tra06] and (b) a
representation abstracting from details of the singleton pattern.

suitable connection with A, B, C, and D would be sufficient for understanding. An adequate choice for
the unit of information, which determines the right level of abstraction in a holistic sense, can lead to
a diagram which is easier to understand.

In the previous example of the usage of unit of information, the displayed amount of information
is reduced. However, not only the reduction of information might help in the process of understanding
but also how the information is arranged. On the one hand the diagram should respect common graph
aesthetics such as edge crossings or edge lengths. On the other hand, grouping elements can reduce
the number of units of information needed for understanding. Multiple iterations in the process of
understanding are necessary since the complete interpretation will likely exceed the capacity of the
working memory of the brain. Grouping information can make is easier to choose a suitable subset of
information to process at a time.

If, for example, a specific programming pattern is used in a represented system, then a box around
the modules concerned with the pattern saying “This is pattern X for a functionality called Y.” might
be easier to understand than processing the meaning of each module separately, especially if the used
pattern is known. An example for the singleton pattern is shown in Figure 8.2.

A concrete view for a holistic representation of the example code is shown in Figure 8.3, with a
readable extract shown in Figure 8.4. The representation is a combination of aspects from control and
data flow diagrams. The name of the represented method and its parameters are shown in the top row.
Although the fields of the centric struct self are not further specified in the code snippet, it might be
useful information and is therefore partly shown in the diagram. The list of fields is not complete since
there are many of them and a complete listing is not the main purpose of the example diagram. In an
interactive scenario this information toggles between hidden and shown whenever the user clicks the
+/- symbol. This symbol is greyed out for the other parameters since these are pointers to floats and
have no named fields to show, although in a different approach, information such as the size of the
allocated memory could be shown.

Blocks in the centric column refer to the control flow from top to bottom, while the lateral blocks of
self, cands, and in refer to data. Arrows between control flow blocks and data blocks indicate the data
flow. Changes of the self struct are indicated by a new self block with new information by incoming
arrows with the changed components annotated. Unchanged components are taken from the previous
self block denoted by a plain arrow. The method might return if the content of the first if-statement is
executed, which is denoted by a double rectangle.

The structure of the control flow equals the code structure. Therefore, conditionals and loops
add a new hierarchy level containing their code in an additional block. Following the previously
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self->maxVal = self->nccfVals[k] > self->maxVal ? self->nccfVals[k] 
: self->maxVal;

tint candBufferPos = 0;

self->cands[i] = 0;

self->maxCand = self->kMax - 1;

   self->maxCand = self->nccfVals[self->cands[i]] 
           > self->maxVal*self->maxValAcceptanceRange  
         && self->cands[i] < self->maxCand
          ? self->cands[i] : self->maxCand;
   cands[i] = self->cands[i];

self->isVoiced = self->nccfVals[self->maxCand] > self->thresholdVoiced;

self->candidate = self->sampleRate / self->candidate;

self->candidate = 0.0;

tbool isValidSmoothing = self->candidate >= self->fMin 
   && self->candidate <= self->fMax 

  && oldFrequencyEstimation >= self->fMin 
   && oldFrequencyEstimation <= self->fMax;

self->candidate = self->candidate * (1 - self->smoothingConstant)
+ oldFrequencyEstimation * self->smoothingConstant;

Figure 8.3. A holistic representation for the example code base.
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Figure 8.4. Top part of holistic representation.

described units of information for loops, the functionality of loops and conditionals are not visualized.
Additionally, method calls are represented in a separate block to visualize their data flow separately.
The representation does not differentiate methods defined in the same module from others, although
the previous knowledge of imported methods often exceeds the previous knowledge for methods
defined in the same module, which could be used for a concept for units of information. Consecutive
statements of a form not listed above are grouped and represented in a collecting block.

The size of the diagram exceeds the size of the code if scaled to the same font size. This is not
very surprising since not only every piece of information of the textual form is represented, but also
boxes and arrows are added for an easier traceability of connected information. Although a retrieval
of used variables at a time seems easy due to the input and output lists annotating arrows, retracing
the usages of a specific variable requires searching in the column the variable is used.

Components of the self struct are represented with a “self.” prefix. Since most concerned arrows
connect a “self” labelled box with a control flow block this reference is already clear and this additional
notion not mandatory. Still name clashes can occur on the hierarchy level inside of conditionals and
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Figure 8.5. A holistic representation using rainbow rails.

loops. Therefore, this representation sticks to the prefix to provide unique naming in any case.

The grey blocks with dashed lines could be extracted from additional code annotations structuring
the code in three phases: preparation, calculation, and evaluation. These additional hierarchical level
can support the structuring of the diagram, such that one level in the optimal case does not contain
more than 7 units of information.

A second representation in Figure 8.5, with a readable abstract shown in Figure 8.6, uses the
structure of rainbow rails with a similar heading row as before. There are two differences to the
description in Section 7.3: loop, conditional, and single instruction blocks additionally contain detailed
information about the actual code since the diagram is required to preserve a holistic view.

On a horizontal level, the actual data influencing or influenced by a control flow block are listed by
adjoining the block. This leads to a similar readability of the interaction between data and control flow
as in the first representation. Additionally the development of one data line can be trailed in a vertical
view.
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Figure 8.6. Top left part of the holistic representation using rainbow rails. Note how thick rails indicate that a
variable is going to be used again in the future, even if the exact point of use is not currently visible.

8.2 Interactive Representations

Although the amount of shown information is to some degree predefined for holistic views, still there
are possibilities for the interactivity. Subsection 8.2.1 discusses possibilities of the level of interactivity,
ranging from highlighting to modifying. Representations of sufficient size can be supported by
navigation interactions, which are discussed in the second subsection. For each interaction a scenario
of usability is given as a motivation.

On the one hand, some possibilities of interactivity might not be reasonable for every diagram
type. On the other hand, the applicability of listed interactions is not restricted to one specific diagram
type. Therefore, a concrete implementation first needs to choose a diagram layout before reasonable
methods of interactivity can be chosen.

8.2.1 Levels of Interactivity

The diagram could be used for debugging. If, for example, the input buffer contains values differing
from expectations, the user might want restrict the area of search to the code influencing the buffer. In
a different scenario, the user might want to look up every usage of the buffer to understand what it
is used for. In both cases highlighting every occurrence of the buffer in the diagram can support the
efforts of the user.

To understand the role of a method for the module it might be of interest where the method is
used. Therefore, highlighting of every occurrence of the method in the diagram can support the users
efforts.

Due to the highlighting of the code, the user in the debugging scenario might have at this point
located the bug in the diagram. The user might then search for the according code in the text or click
on the diagram element to be redirected to the according code equivalent. An interactive possibility to
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redirect in both directions between code and diagram can preserve the user from tiresome searching
in a multitude of scenarios.

Regarding an increasing size of the diagram, the diagram will not always fit the screen or paper in
a readable manner. Therefore, zooming and focussing on parts of the diagram is necessary for larger
diagrams. To aid the overview of the diagram when focussing on a specific element, a possibility is to
enlarge elements in context to the specific element.

While the represented information in terms of code must not be changed in a holistic view, there
might be additional information in the form of comments to display on demand. These might explain
bounds of a for-loop or be the Javadoc for a method. In the framework for the implementations of Part I
an explanation for each component of the self struct as it is used in the example code might be given
in the corresponding YAML. Instead of searching or inferring such information the user could just
hover over an element and get such additional information, if present.

Similar to displaying comments in the diagram, also adding additional comments through the
diagram might support the user’s efforts in understanding or documenting. This could find a practical
usage for poorly documented legacy code.

Additional structuring of the code can also improve the understanding of a diagram. In Figure 8.3
dashed boxes indicate three phases: the method mainly consists of a preparation, a calculation and
an evaluation phase. Every pitch tracker of Part I can be partitioned in these three phases for the
estimation. A documentation of these could benefit from such a classification for every pitch tracker
since new information is easier to understand if it is presented in a known form or structure.

At a very high level of interactivity the user could modify the code through the diagram for
example by adding blocks of loops or conditionals. Although manual editing of larger diagrams tends
to be a tedious task, a sophisticated system might be a helpful tool.

8.2.2 Navigating Through the Diagram

In larger diagrams one might easily lose track of element placement. A functionality for searching
elements by name, type, or connection to another element can be useful. Additionally, overviews
listing whatever seems to be interesting—such as all buffers with their YAML description—can help
the user by finding the desired information. A searched element could then get a focus in the diagram
by highlighting or enlarging to support the navigation.

The connections to other modules used by or using the module can sometimes require to display
their functionality for a complete understanding. Displaying those information per se could lead to
much superfluous information, which would complicate the understanding and information retrieval.

A focus and zoom depending on the element of current interest can support navigation. For example
when clicking on a block the block could be centred and the zoom level adapted for readability of
the contained text or when the element of interest is an arrow for data flow then again centring and
zooming to show connected blocks seems reasonable.

In the case of live code editing, the diagram could automatically zoom or focus on the concerned
elements to serve as a cross reference for whether the changes do what they are expected to.
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Chapter 9

Focussing on Details

In contrast to the previous chapter, which discussed holistic representations from which the exact
code base could be reproduced, this chapter sets the focus on a subset of the code to represent. This
can reduce the units of information needed to understand since there exist situations where the
understanding does not require all information. Thus a reduction of available information prevents
from processing unrelated information. The importance of reducing the amount of information needed
for understanding can again be explained by the limited capacity fo the human brain.

The freedom of displaying only a subset of the available information leads to the new question
about which subset of information is reasonable to represent. As usual, there likely is not one answer
optimal for every situation. However, Section 9.1 lists some reasonable sets of information for some
scenarios. Similar to the previous chapter, Section 9.2 and Section 9.3 discuss static and interactive
representations, respectively.

9.1 Relevant Information

Depending on the intention the subset of code considered relevant differs. There does not exist one
type of subset optimal for every use case and also there exist approximately as many approaches as
there are different scenarios for diagram usage. This section lists some partial views on the code base
given in Chapter 8 from different perspectives.

The first approach shown in Figure 9.1 is close to a holistic view but abstracts instructions which
are no method calls, loops, and conditionals. Additionally, code inside of loops or conditionals is not
shown. This preserves a basic overview of the represented code and interactive representations could
add a possibility to show the omitted information if the user wants to see them. The diagram visualises
which data is read or written in which part of the control flow and when it was previously used or
which parts of the control flow will use the written data. Data read by a control flow block connects
to the left border and data written connects to the right side of the block. If data was not modified
before in the shown part, then the connection comes from the left border of the global rectangle for
the whole diagram, which is compatible with multiple hierarchies. If written data is not further used
in the displayed diagram, then the connection goes to the right border of the global rectangle. For
the example code this is the case if the written data is necessary for the next iteration of the process
method when the next estimation has to be done.

A second approach shown in Figure 9.2 uses a user defined abstraction to provide a clear first
impression or a very abstracted view on the method. Therefore, control flow and data usage are
restricted to the three phases of preparation, calculation, and evaluation, which could be added
manually by the developer for documentation or it could be generated automatically from annotations
in the code base. In an interactive scenario this could be the starting point of exploration with a less
overwhelming size than the previous approaches, especially if this is transferred to larger code bases.
Additionally, used constants are listed as one input for which an interactive representation should
provide a possibility to show each constant as a separate input.
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Figure 9.1. A holistic view for the example code.

72



9.1. Relevant Information

for(tint k = self.kMin - 1; k < self.kMax - 1; k++)

+ / -

NCCF Process

Parameter/Argumente

self + / -
Pointer                     struct

frameshift,
sampleRate, 
bufferSize, 

...

in
Pointer                          float

if(!self.active)self.active

SONO_TICself.resman

sonoNccfPrepare

self.candidate

self.buffer

self.energyBuffer

self.frameshift

self.bufferSize

self.acfSizeInSamples

self.energyBuffer

for(tint k = self.kMin; k < self.kMax; k++)

self.meanBuffer

self.energyBuffer

self.acfSizeInSamples

self.kMin

self.kMax

self.energy

self.maxVal

self.kMin

self.kMax

self.nccfVals

self.maxVal

self.meanBuffer

self.energyBuffer

self.energy
self.maxVal

self.nccfVals

self.maxVal

self.cands

self.numCands

candBufferPos

candBufferPos

self.kMax

for(tint i = 0; i < candBufferPos; i++)

self.cands

self.cands

candBufferPos

candBufferPos

self.maxCand

self.maxCand

self.nccfVals

self.maxVal

self.maxValAcceptanceRange

cands

self.maxCand

self.nccfVals
self.maxCand

self.thresholdVoiced

sonoNccfParabolicInterpolation

self.nccfVals

self.maxCand

self.isVoiced

self.isVoiced

 if(self.candidate > 0)self.sampleRate

self.candidate

self.candidate

if(!self.isVoiced)

oldFrequencyCandidate

oldFrequencyCandidate

self.candidate

self.candidate

self.candidate

self.isVoiced

self.fMin
self.fMax

if(isValidSmoothing)

self.candidate

isValidSmoothing

isValidSmoothing

self.smoothingConstant

self.candidate

SONO_TOCself.resman

self.resman

self.buffer

in

+ / -cands
Pointer                             int

Figure 9.1. A holistic view for the example code (continued).
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A third possibility of an information subset is shown in Figure 9.3. In principle, the diagram is
similar to Figure 8.5 (the holistic rainbow rails view), but is restricted to three of the data lanes. The
control flow blocks list the complete control flow, although in this case it seems reasonable to abstract
from control flow not in contact with any of the displayed data lanes. This could be done through the
usage of the grey code abstraction blocks described in Section 7.3.

9.2 Static Representations

A static representation of a subset of information comes in handy for the documentation of a specific
view on a code segment. Whenever someone wants to document the usage of a method, a new
algorithmic idea, or the usage of a specific variable throughout the program, such a specific view can
be supportive.

However, this actually is not a new scenario of representing code. In each of the previously listed
use cases one could define a fitting subset of the code to represent a holistic view for. Therefore,
finding a static representation for a subset of code is not different from finding a holistic view for the
subset, then regarded as the whole code base. Any use case in this category is solvable in the two
steps: find a fitting subset of code and represent it holistically.

9.3 Interactive Representations

Readability and understandability of a diagram are enhanced if exactly the information, which the
user is searching for, is shown. Interactivity is a handy tool to achieve such a view since the user
probably knows best which information is useful and which would only irritate or deviate.

The methods of interactivity in this chapter are nothing but a more general case of the interactions
from the previous chapter. Therefore, all of the methods described there could also be used in a more
detailed view. Additionally to the possibilities of user interaction already described, this section lists
some interactions based on changing the amount of represented code.

9.3.1 Levels of Interactivity

Interactivity in the context of partial representations offers an opportunity of a pseudo-holistic view
without overwhelming the user with displaying every information directly at the start. The information
is theoretically fully accessible by interaction with the diagram but the first impression is restricted to
give an overview. Figure 9.2 already showed an abstracted overview of the example code. Holistic views
scale with the size of the reference code. In Chapter 8, I briefly argued why a holistic representation
of the complete pitch tracking system does not seem to be reasonable. However, this is different for
interactive partial representations. From this point of view, Figure 5.2 could already be a view on the
complete system with the opportunity to go into details for a module by clicking on the corresponding
rectangle.

Hierarchy is an important tool for structuring, which can be used in different ways for clear
representations. As described in Section 8.2.1 manually added structuring blocks can improve read-
ability and as it is done in Figure 9.2 these blocks can be used for hierarchical structuring of the
diagram. Another example for this are method calls, which were already abstracted to their name.
In an interactive mode adding and removing details, such as an equivalent diagram for the method
definition inside of the method call block, can be useful.
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9. Focussing on Details

+ / -+ / -

NCCF Process
self + / -

Pointer                     struct

frameshift,
sampleRate, 
bufferSize, 

...

in
Pointer                          float

cands
Pointer                             int

 if (!self->active) 
     sonoMatSetIntToZero(cands, self->numCands); 
     return; 

 SONO_TIC

 tfloat oldFrequencyEstimation = self->candidate;

 sonoNccfPrepare

 self->energy = self->energyBuffer[0];
 self->maxVal = 0;                               

for (tint k = self->kMin; k < self->kMax; k++)
    sonoNccfCalcNccf(self, k); 
    self->maxVal = self->nccfVals[k] > self->maxVal ? self->nccfVals[k] : self->maxVal; 

 for (tint k = self->kMin - 1; k < self->kMax - 1; k++)
     sonoNccfCheckCand(self, k, &candBufferPos); 

 for (tint i = 0; i < candBufferPos; i++)
     self->maxCand = self->nccfVals[self->cands[i]] > self->maxVal*self->maxValAcceptanceRange 
          && self->cands[i] < self->maxCand ? self->cands[i] : self->maxCand; 
     cands[i] = self->cands[i];

 self->isVoiced = self->nccfVals[self->maxCand] > self->thresholdVoiced;

 sonoNccfParabolicInterpolation

 if (self->candidate > 0)
     self->candidate = self->sampleRate / self->candidate; 

 if (!self->isVoiced)
     self->candidate = 0.0; 

 if (isValidSmoothing)
     self->candidate = self->candidate * (1 - self->smoothingConstant) 
        + oldFrequencyEstimation * self->smoothingConstant; 

 SONO_TOC

 tbool isValidSmoothing = self->candidate >= self->fMin && self->candidate <= self->fMax 
     && oldFrequencyEstimation >= self->fMin  && oldFrequencyEstimation <= self->fMax;

 self->maxCand = self->kMax - 1;

 tint candBufferPos = 0;

 for (tint i = candBufferPos; i < self->numCands; i++)
     self->cands[i] = 0; 

  nccfVals

self->nccfVals

  nccfVals

  nccfVals

  nccfVals

  nccfVals

  nccfVals

self->isVoiced

isVoiced

isVoiced

self->candidate

candidate

candidate

candidate

candidate

candidate

candidate

candidate

Figure 9.3. A rainbow rails representation for a subset of data lanes.
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9.3. Interactive Representations

+ / -

+ / -

NCCF Process

Parameter/Argumente

self + / -
Pointer                     struct

frameshift,
sampleRate, 
bufferSize, 

...

in
Pointer                          float

cands
Pointer                             int

 if (!self->active) 
     sonoMatSetIntToZero(cands, self->numCands); 
     return; 

 SONO_TIC

 tfloat oldFrequencyEstimation = self->candidate;

 sonoNccfPrepare

 self->energy = self->energyBuffer[0];
 self->maxVal = 0;                               

for (tint k = self->kMin; k < self->kMax; k++)
    sonoNccfCalcNccf(self, k); 
    self->maxVal = self->nccfVals[k] > self->maxVal ? self->nccfVals[k] : self->maxVal; 

 for (tint k = self->kMin - 1; k < self->kMax - 1; k++)
     sonoNccfCheckCand(self, k, &candBufferPos); 

 for (tint i = 0; i < candBufferPos; i++)
     self->maxCand = self->nccfVals[self->cands[i]] > self->maxVal*self->maxValAcceptanceRange 
          && self->cands[i] < self->maxCand ? self->cands[i] : self->maxCand; 
     cands[i] = self->cands[i];

 self->isVoiced = self->nccfVals[self->maxCand] > self->thresholdVoiced;

 sonoNccfParabolicInterpolation

 if (self->candidate > 0)
     self->candidate = self->sampleRate / self->candidate; 

 if (!self->isVoiced)
     self->candidate = 0.0; 

 if (isValidSmoothing)
     self->candidate = self->candidate * (1 - self->smoothingConstant) 
        + oldFrequencyEstimation * self->smoothingConstant; 

 SONO_TOC

 tbool isValidSmoothing = self->candidate >= self->fMin && self->candidate <= self->fMax 
     && oldFrequencyEstimation >= self->fMin  && oldFrequencyEstimation <= self->fMax;

 self->maxCand = self->kMax - 1;

 tint candBufferPos = 0;

 for (tint i = candBufferPos; i < self->numCands; i++)
     self->cands[i] = 0; 

  nccfVals

self->nccfVals

  nccfVals

  nccfVals

  nccfVals

  nccfVals

  nccfVals

self->isVoiced

isVoiced

isVoiced

self->candidate

candidate

candidate

candidate

candidate

candidate

candidate

candidate

Figure 9.3. A rainbow rails representation for a subset of data lanes (continued).

77



9. Focussing on Details

Not only the control flow can be hierarchically grouped to produce a clear first representation but
also the data. Though this seems more reasonable if more than one struct or object is used, components
of a hierarchical structure in the program can be grouped in the diagram and shown separately if
intended by the user.

Figure 9.3 showed the rainbow rails representations for only three of the data lanes. As already
mentioned in the corresponding section, it seems reasonable to abstract from the control flow not
influenced by or influencing the data lanes since they are not the main matter of interest. This is
similar to unmentioned data in Figure 9.2, which might be used inside of the preparation, calculation,
or evaluation but are not shown since they do not interact on the level of the three phases.

9.3.2 Navigating Through the Diagram

In the previous chapter about holistic views the equally named subsection is motivated by the holistic
diagrams tending to be large and the user might lose track in such a detailed diagram. The problem
of losing track in a diagram too large for a readable representation on the screen is reduced by
hierarchical structuring. The possibility of hiding unrelated information reduces the diagram size and
therefore the problem value. Still the user might get lost in the levels of hierarchy or if there are just
too many blocks opened showing their details. Therefore, a possibility to reset the diagram to the
default representation can support navigation.

We already discussed methods to compare the actual code to the diagram representation. In the
case of only partially represented code, the comparing code base could show the not represented
code in grey to make the comparison easier. This could help the user by the correlation between the
visual and textual representation, since in case further editing of the code is intended, the user has to
navigate through the code just as well as understanding the procedures.
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Chapter 10

Conclusion

As a conclusion to this thesis, this chapter first summarises the results in Section 10.1. Finally,
Section 10.2 discusses possible future work to enhance and evaluate the presented solution.

10.1 Summary

This work has the two emphases pitch tracking and code visualization. For the discussion of pitch
tracking first foundations of speech production, digital processing and estimation refinement are
provided.

The pitch tracking algorithms RAPT, YIN, TAPS, and PEFAC were described and implemented for this
work, chosen from a large pool of existing pitch trackers. An algorithm to combine the estimations
from different pitch trackers based on the continuity of the estimation, main and secondary candidates,
and on a scoring system also considering the harmonics and subharmonics of the estimation was
described for the four implemented algorithms.

Using the Pitch Tracking Database from Graz University of Technology the pitch tracking algorithms
were evaluated regarding accuracy, both with and without background noise. Overall PEFAC performed
best in the task of pitch estimation, although the combining algorithm could improve the results when
combing pitch estimation with a voicing state determination.

Rainbow rails are a new diagram type introduced for the purpose of code visualization. Together
with data flow and control flow graphs, representations using rainbow rails were discussed. While
holistic views have the advantage of delivering every piece of information at once, in a greater scale
they tend to overwhelm the user. In a more focussed and restricted approach grouped and abstracted
elements create a clear overview and with the use of interactive elements all information remain
available.

10.2 Future Work

Although the implemented algorithms were already chosen by best performance and most diversity in
the approaches, there exists such a great amount of pitch tracking approaches not yet used in the pitch
tracking system. Adding further approaches—such as statistical models and neural networks—could
further enhance the pitch estimation quality. Since pitch as the perception of tone is not a calculable
quantity, also an approach estimating the actual pitch instead of F0 could be implemented in order to
further improve the estimations.

LTASS normalization serves in the PEFAC algorithm for the reduction of noise or equally the
enhancement of pitch related frequencies. There seems to be no obvious reason for not applying this
method to an arbitrary frequency domain pitch tracking algorithm. Performing LTASS normalization
before the peak extraction would be an easy extension of the TAPS algorithm.

79



10. Conclusion

Another obvious combination of two algorithms works the other way around. The usage of a
temporally accumulated spectrum could also be used for PEFAC, though the advantages from the
accumulation are greater for peaks than for the complete spectra. The use of the accumulated peak
spectrum then transferred to the logarithmic frequency axis and filtered could be prone to small
changes in the peak choice and could therefore be less robust. In that case frequency smoothing on the
accumulated peak spectrum could improve stability of the filter. A possible order of executed methods
could be: convert to the logarithmic spectrum, then apply LTASS normalization on each spectrum,
select the peaks and accumulate the spectrum, apply frequency smoothing, apply the filter, and finally
choose the global maximum of the filtering result.

When it comes to code visualization this work only lists possible forms, but they have yet to
be implemented. Also a study to compare different approaches is important to evaluate them. In
an opinion poll with participants both with academical and economical background (to gain more
general opinions) the elements of visualization could be rated regarding their usefulness. With an
implementation also the qualitative advantages of the usefulness could be tested by giving the
participants the task to extract a specific piece of information from a diagram or adding a new
functionality to the program and measuring the time needed. Additionally, the participants could be
asked for one integral element of code visualization they think is indispensable.
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Appendix A

System Parameters

A full list of configurable parameters is given here. These are grouped by the algorithm they belong to.
For each parameter the name in the implementation, a short description, and the value used for the
evaluation are listed.

There are some parameters common to all modules. The enabled parameter determines whether or
not to fully initialize the module, while the active parameter determines whether to execute the full
process method or a fallback behaviour. Since every module is executing in the normal case, these are
true per default. fMin and fMax determine the estimation range of each algorithm.

Table A.1. System parameters.

Name Description Value

YIN

allowedSpikes Number of spikes in the passed
localEstimationRange estimations that are al-
lowed to still consider the previous estimations as
continuous.

2

continuityRange Used for time smoothing, this defines a range for
which the previous estimations are considered con-
tinuous.

0.3

continuitySpike Used for time smoothing, this defines a relative
threshold for the new estimation to be considered
continuous.

0.4

isOldEstimationActive Boolean whether to apply the Local Estimation Refine-
ment step of the algorithm.

true

localEstimationRange Number of old estimations considered in the deci-
sion whether to apply the forced continuity.

6

numCands Size of candidate buffer and therefore an upper limit
on the maximum number of secondary candidates.

5

smoothingConstant Time smoothing constant. This weights the impact
of the previous estimation and its value is between
0.0 and 1.0.

0.0

threshold Threshold for the Absolute Threshold step of YIN 0.3

thresholdVoiced Threshold for the voiced decision. The frame is esti-
mated voiced if, and only if, the global minimum is
lower than this threshold.

0.4
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A. System Parameters

Table A.1. System parameters (continued).

Name Description Value

TAPS

candidateSelection TAPS’ evaluation strategy to be used. peak

freqSmoothingConstant Amount of frequency smoothing applied in dB per
kHz.

280

harmonicsSearchRange Range for peak detection of harmonics for estimation
refinement in the peaks based approach.

3

numAveragedHarmonics Number of harmonics considered in the original
approach.

2

numCands Size of candidate buffer, and therefore an upper limit
on the maximum number of secondary candidates.

5

numHarmonics Number of considered harmonics for the F0 score in
the F0 bin based approach.

10

numHarmonicsSearched Number of considered harmonics in the estimation
refinement in the peaks based approach.

4

numMax Number of highest maxima of the ACF used for fur-
ther calculations.

10

peakThreshold A relative (to the maximum) threshold a peak must
pass in the peak based approach.

0.0001

thresholdCands Threshold for secondary candidates in all strategies
except for the peak based approach.

0.1

thresholdHarmonics Relative (to the maximum) threshold that a harmon-
ics has to pass to be taken into account in the har-
monics based approach.

0.2

voicedThreshold Relative (to the mean) threshold that the highest
maximum has to exceed for a frame to be estimated
as voiced.

8.5

RAPT

candMinVal Minimum NCCF value of the candidates of the first-
pass NCCF.

0.3

maxValAcceptanceRange Threshold for choosing the main candidate. The low-
est lag with a local NCCF maximum and an NCCF

value greater than this threshold times the global
maximum is chosen.

0.9

numCands Size of candidate buffer and therefore an upper limit
on the maximum number of secondary candidates.

10
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Table A.1. System parameters (continued).

Name Description Value

numTriesPerCand Vicinity size in lags per candidate in the estimation
refinement in the second-pass of NCCF.

9

smoothingConstant Time smoothing constant. Between 0.0 and 1.0
weights the consideration of the previous estima-
tion.

0.0

thresholdVoiced Threshold that the global NCCF maximum needs to
exceed for a frame to be estimated as voiced.

0.7

PEFAC

activeAC Whether or not to compute the amplitude compres-
sion.

true

analysisWindowLength Analysis window length size of FFT in ms. 90

fftOrderSec FFT size in seconds. 0.36

fMaxCent Maximum frequency of the logarithmic axis com-
puted by the centbank in Hz.

4000

freqSmoothingConstant Amount of frequency smoothing of the spectrum to
obtain the smoothed spectrum.

0.2

gamma Defines the peak width for the filter. 1.8

numCands Size of candidate buffer and therefore an upper limit
on the maximum number of secondary candidates.

5

numHarmonicalPeaks Number of peaks referring to harmonics in the filter. 6

regThreshold Relative (to the mean) threshold for the voiced deci-
sion.

25

timeSmoothingConstant Amount of time smoothing of the spectrum to obtain
the smoothed spectrum.

10

CE

binWidth The bin size named K in the according section. 10

continuityAcceptanceRange Vicinity size of the previous estimation for bins con-
sidered continuous to the previous estimation in
Hz.

20

continuityWeight Weight for continuous bins. 20

nccfCandsWeight Weight of secondary candidates for RAPT. 1.5

nccfEstimationCalculationWeight Consideration weight of the RAPT’s candidate for the
weighted mean based estimation calculation.

1

nccfMainCandWeight Weight of the main candidate for RAPT. 5
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A. System Parameters

Table A.1. System parameters (continued).

Name Description Value

numConsideredHarmonics Number of harmonics of which the secondary can-
didates influence the bin value.

4

pefacCandsWeight Weight of secondary candidates for PEFAC. 1

pefacEstimationCalculationWeight Consideration weight of the PEFAC’s candidate for
the weighted mean based estimation calculation.

1.5

pefacMainCandWeight Weight of the main candidate for PEFAC. 8

tapsCandsWeight Weight of secondary candidates for TAPS. Remember
that this is negative since TAPS’ secondary candidates
refer to harmonics and not similar the other algo-
rithms secondary candidates to subharmonics.

´1

tapsEstimationCalculationWeight Consideration weight of the TAPS’s candidate for the
weighted mean based estimation calculation.

0.5

tapsMainCandWeight Weight of the main candidate for TAPS. 5

voicedCountNeeded Number of voice counts needed for a decision to be
voiced.

1

yinCandsWeight Weight of secondary candidates for YIN. 1.5

yinEstimationCalculationWeight Consideration weight of the YIN’s candidate for the
weighted mean based estimation calculation.

1.2

yinMainCandWeight Weight of the main candidate for YIN. 5
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Appendix B

Results of the Estimation Quality Evaluation

Pitch Estimation Voiced Decision

Combined Total Too high Too low Total Voiced Unvoiced

CE 6.74 8.46 6.29 2.17 5.58 3.66 1.91

RAPT 7.43 12.56 6.20 6.35 6.00 3.52 2.47

YIN 8.19 15.20 7.37 7.83 6.42 4.10 2.32

PEFAC 8.07 7.96 5.45 2.51 7.38 2.08 5.30

TAPS-r 12.78 17.09 ´ ´ 10.95 4.99 4.95

TAPS-h 14.23 37.59 ´ ´ 10.95 4.99 4.95

TAPS-f 16.51 35.55 ´ ´ 10.95 4.99 4.95

TAPS-p 12.11 12.26 10.27 1.99 10.95 4.99 4.95

Table B.1. Error for clean speech

Pitch Estimation Voiced Decision

SNR in dB Combined Total Too high Too low Total Voiced Unvoiced

White Noise CE

´20 22.47 79.56 23.41 56.15 22.47 0.00 22.47

´15 22.47 48.52 16.62 31.90 22.47 0.00 22.47

´10 22.46 26.09 11.48 14.61 22.46 0.00 22.46

´5 20.76 15.37 8.79 6.57 20.73 0.04 20.69

0 13.53 11.08 7.55 3.52 13.32 0.29 13.02

5 8.19 9.53 7.05 2.47 7.67 0.89 6.78

10 6.40 8.90 6.72 2.18 5.61 1.58 4.03

15 5.97 8.62 6.51 2.10 5.00 2.19 2.80

20 6.02 8.51 6.38 2.12 4.95 2.67 2.27

Table B.2. Error for noise corrupted speech.
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B. Results of the Estimation Quality Evaluation

Pitch Estimation Voiced Decision

SNR in dB Combined Total Too high Too low Total Voiced Unvoiced

White Noise RAPT

´20 22.61 89.24 34.40 54.84 22.61 0.13 22.47

´15 22.60 73.46 27.63 45.83 22.60 0.13 22.47

´10 22.59 51.55 18.91 32.64 22.59 0.12 22.47

´5 21.77 32.36 12.93 19.43 21.75 0.11 21.64

0 16.38 21.61 10.15 11.45 16.19 0.25 15.93

5 10.37 16.59 8.62 7.96 9.89 0.72 9.16

10 7.68 14.22 7.62 6.60 6.91 1.37 5.53

15 6.89 13.20 7.04 6.16 5.88 2.00 3.87

20 6.77 12.82 6.72 6.09 5.58 2.50 3.08

White Noise YIN

´20 22.47 93.05 24.04 69.01 22.47 0.00 22.47

´15 22.47 81.50 19.79 61.71 22.47 0.00 22.47

´10 22.46 63.83 13.92 49.90 22.46 0.00 22.46

´5 21.03 46.25 9.85 36.40 20.77 0.04 20.73

0 14.88 30.69 8.20 22.49 14.04 0.31 13.72

5 9.50 20.73 7.94 12.79 8.46 0.89 7.56

10 7.44 17.05 7.88 9.17 6.20 1.51 4.68

15 6.88 15.96 7.91 8.05 5.39 2.04 3.35

20 6.83 15.57 7.86 7.71 5.20 2.44 2.75

White Noise TAPS

´20 22.47 87.68 8.47 79.21 22.47 0.00 22.47

´15 22.45 74.11 7.07 67.03 22.45 0.00 22.45

´10 21.92 58.25 6.59 51.65 21.91 0.01 21.90

´5 19.51 43.53 7.05 36.48 19.44 0.07 19.26

0 15.66 31.28 8.07 23.20 15.38 0.74 14.63

5 12.79 22.12 9.06 13.06 12.17 1.76 10.40

10 11.67 16.50 9.62 6.88 10.78 2.88 7.90

15 11.53 13.88 9.89 3.98 10.50 3.77 6.72

20 11.71 12.83 10.04 2.79 10.60 6.24 4.36

Table B.2. Error for noise corrupted speech.
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Pitch Estimation Voiced Decision

SNR in dB Combined Total Too high Too low Total Voiced Unvoiced

White Noise PEFAC

´20 22.47 81.70 15.12 66.58 22.47 0.00 22.47

´15 22.47 48.62 10.90 37.71 22.47 0.00 22.47

´10 22.44 24.87 8.01 16.85 22.44 0.00 22.44

´5 20.69 14.14 6.54 7.59 20.67 0.03 20.63

0 14.60 10.12 6.07 4.05 14.46 0.22 14.24

5 10.15 8.68 5.82 2.86 9.82 0.60 9.22

10 8.43 8.21 5.68 2.53 7.91 1.03 6.88

15 7.48 8.04 5.60 2.43 7.22 1.40 5.81

20 7.76 7.99 5.57 2.41 7.09 1.69 5.39

Car Noise CE

´20 36.35 98.40 3.65 94.74 32.79 13.88 18.90

´15 40.42 96.14 2.24 93.87 35.89 18.00 17.88

´10 39.87 87.49 3.42 84.06 35.97 17.90 18.06

´5 37.62 69.27 5.27 63.99 34.80 17.50 17.29

0 33.16 47.15 6.48 40.67 31.40 16.98 14.41

5 27.78 28.83 6.32 22.50 26.66 16.55 10.11

10 23.69 17.81 5.81 12.00 22.78 16.86 6.49

15 21.22 12.58 5.70 6.87 20.28 16.00 4.27

20 19.47 10.13 5.73 4.40 18.46 15.36 3.09

Car Noise RAPT

´20 30.00 97.59 14.02 83.57 27.85 19.58 7.60

´15 31.49 96.30 14.14 82.16 27.33 18.08 9.25

´10 31.36 92.13 22.78 69.34 26.36 16.78 9.57

´5 30.12 82.95 29.55 53.40 25.04 15.42 9.61

0 27.09 66.31 27.17 39.14 22.69 13.22 9.47

5 22.43 45.78 19.10 26.67 19.17 9.91 9.25

10 18.02 29.02 12.15 16.86 15.88 6.77 9.11

15 15.25 19.55 8.50 11.04 13.75 4.67 9.08

20 13.76 15.33 6.93 8.40 12.44 3.52 8.92

Table B.2. Error for noise corrupted speech.

87



B. Results of the Estimation Quality Evaluation

Pitch Estimation Voiced Decision

SNR in dB Combined Total Too high Too low Total Voiced Unvoiced

Car Noise YIN

´20 39.66 98.77 3.15 95.61 35.05 17.84 17.20

´15 42.63 98.58 1.09 97.49 36.94 16.75 20.19

´10 42.42 95.99 1.93 94.04 36.90 16.77 20.12

´5 41.32 88.56 3.71 84.85 36.00 16.18 19.81

0 38.15 72.81 4.87 67.94 33.15 13.80 19.34

5 32.64 50.34 5.30 45.03 28.84 9.96 18.87

10 27.53 31.54 5.66 25.88 25.09 6.57 18.52

15 24.54 21.77 6.02 15.75 22.74 4.43 18.31

20 23.10 17.82 6.41 11.40 21.42 3.29 18.12

Car Noise TAPS

´20 23.62 91.35 53.37 37.97 23.48 22.32 1.16

´15 23.72 80.32 63.63 16.30 23.49 22.22 1.26

´10 23.69 67.63 56.22 11.40 23.47 22.22 1.24

´5 23.34 54.81 47.13 7.68 23.22 21.98 1.24

0 21.67 41.71 35.95 5.76 21.58 20.24 1.33

5 18.59 29.14 24.31 4.82 18.40 16.62 1.77

10 15.68 21.04 15.16 5.88 15.29 12.68 2.61

15 13.95 17.38 10.56 6.81 13.33 9.75 3.58

20 13.04 14.56 9.17 5.38 12.21 7.81 4.40

Car Noise PEFAC

´20 32.65 99.34 1.59 97.74 31.50 21.32 10.18

´15 37.88 98.47 0.49 97.97 36.33 20.92 15.41

´10 37.95 92.46 0.55 91.90 37.12 21.60 15.51

´5 37.12 75.77 1.11 74.65 36.68 21.58 15.10

0 34.95 53.37 2.40 50.97 34.66 19.77 14.89

5 31.17 33.81 3.82 29.99 30.89 16.10 14.79

10 27.60 21.07 4.85 16.21 27.26 12.54 14.72

15 24.80 14.32 5.41 8.90 24.37 9.88 14.48

20 22.23 10.95 5.63 5.32 21.71 8.05 13.65

Table B.2. Error for noise corrupted speech.
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KIELER Kiel Integrated Environment for Layout Eclipse RichClient

UML Unified Modelling Languages

SCCharts Sequentially Constructive Charts

ACF Autocorrelation Function

F0 Fundamental Frequency

T0 Fundamental Period

NCCF Normalized Cross Correlation Function

CCF Cross Correlation Function

AMDF Average Magnitude Difference Function

SAMDF Squared Average Magnitude Difference Function

CMNSAMDF Cumulative Mean Normalized Squared Average Magnitude Difference Function

CMNF Cumulative Mean Normalization Function

PEFAC Pitch Estimation Filter with Amplitude Compression

RAPT Robust Algorithm for Pitch Tracking

TAPS Temporally Accumulated Peak Spectrum

TAPS-r TAPS reference strategy

TAPS-h TAPS harmonics strategy

TAPS-f TAPS F0 bin strategy

TAPS-p TAPS averaged peak strategy

YIN Yin and Yang

YAAPT Yet Another Algorithm for Pitch Tracking

SIFT Simplified Inverse Filter Tracking

CE Candidates Evaluation

LTASS Long-Term Average Spectrum of Speech

DFT Discrete Fourier Transform

FFT Fast Fourier Transform
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B. List of Abbreviations

STFT Short-Time Fourier Transform

SHV summed up harmonic value

PTDB-TUG Pitch Tracking Database from Graz University of Technology

SNR Signal to Noise Ratio

TIMIT Texas Instruments/Massachusetts Institute of Technology

ETSI European Telecommunications Standards Institute

MOGAT Mobile Games with Auditory Training
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