
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

Formal Specification and Analysis of
a Redundancy Management System

with TLA+

Jan Täubrich

September 21, 2006

Institute of Computer Science and Applied Mathematics
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Prof. Reinhard v. Hanxleden

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Preface

I want to thank Claus Traulsen for his admirable patience, his helpful comments and for
his thoroughness reviewing my thesis. I also want to thank Hagen Peters, who pointed
out a lot of linguistic shortcomings in my writings.

v

vi

Contents

1. Introduction 1

2. A short tour through TLA+ 5
2.1. TLA+ by example . 5
2.2. Model checking with TLC . 8

3. Redundancy Management Concept 11
3.1. AFDX . 11
3.2. Redundancy Management Concept . 13
3.3. Evolution of Redundancy Management Algorithms 15

4. Specification 25
4.1. What to specify? . 25
4.2. Specification of the environment . 27
4.3. Requirements . 38
4.4. Specification of redundancy management 45

4.4.1. RMA1, RMA2 and RMA3 . 47
4.4.2. RMA4, RMA5 and RMA6 . 50
4.4.3. RMA7 . 53
4.4.4. RMA8 . 55
4.4.5. RMA9 . 58
4.4.6. RMA11 and RMA12 . 58
4.4.7. RMA13 . 59

5. Results 61
5.1. Examining the algorithms . 61
5.2. Experiences with TLA+ and TLC . 62
5.3. Outlook . 66

A. TLA+ specifications 67

vii

Contents

viii

List of Figures

3.1. AFDX schematic . 12
3.2. Concept of redundant networks . 13
3.3. Receiving End System . 13
3.4. AFDX frame format . 14
3.5. Silent Network Scenario - Using RMA1 16
3.6. ES reset - Using RMA2 . 17
3.7. ES reset and networks silence - Using RMA3 18
3.8. Operation with single network - Using RMA4 19
3.9. ES reset - Using RMA5 . 19
3.10. ES reset and low PASN - Using RMA6 20
3.11. ES reset - Using RMA7 . 20
3.12. ES reset - Using RMA8 . 21
3.13. Fast and slow network - Using RMA9 . 22
3.14. Loss of order - Using RMA11 . 23

4.1. First abstraction of the environment . 25
4.2. Final Model of the System under Development 26
4.3. Frame structure in model . 26
4.4. First part of environment’s specification 27
4.5. Send frame action of environment . 28
4.6. Set of deliverable frames . 29
4.7. Reception specified in TLA+ . 30
4.8. Definition of a redundancy mangement’s step 30
4.9. Sequence number reset . 31
4.10. Disable a single network . 31
4.11. Specification of wait action . 32
4.12. Step definition of environment without redundancy management 32
4.13. Defining initial values of variables . 32
4.14. Specification formula for the environment 33
4.15. Final frame model . 34
4.16. Marking algorithm in pseudocode . 35
4.17. Transition Diagram for marking algorithm 36
4.18. Model checking results . 46
4.19. Declaration of constants and variables . 47
4.20. Definition of set of initial states . 47
4.21. SNS, SNO and subtraction on sequence numbers 48

ix

List of Figures

4.22. Specification of accept and reject action 49
4.23. Composed specification formula . 49
4.24. Counterexample for property avail5 checking RMA3 (beginning) 51
4.25. Counterexample for property avail5 checking RMA3 (end) 52
4.26. Additional constant SNSMIN . 53
4.27. Accept und reject steps defined for RMA6. 53
4.28. Accept and reject action of RMA7 . 55
4.29. Specification of wait step for RMA8 . 56
4.30. Adapted specifications of accept and reject actions 56
4.31. Defintion of extWait for RMA8 . 57
4.32. New fairness specification for the environment 57
4.33. Function that checks if sequence number is in the PASN set 58
4.34. Adapted accept action for RMA11 . 58
4.35. Main part of RMA13’s specification . 59

5.1. Referring to a records field . 63
5.2. TLC reveals an error while checking the type invariance 63
5.3. Module A . 65
5.4. Module B . 66

x

List of Abbreviations
AFDX Avionics Full Duplex Switched Ethernet
BAG Bandwidth Allocation Gap
ES End System
MCFL Maximum Consecutive Frame Loss
MTF Maximum Transient Frames
QoS Quality of Service
RMA Redundancy Management Algorithm
SNS Sequence Number Skew
SNO Sequence Number Offset
TLA Temporal Logic of Actions
TLC TLC Model Checker
VL Virtual Link

xi

List of Figures

xii

1. Introduction

Every day our lives become more dependent on embedded systems, technology that is
included in our environment. Most of these embedded systems cannot be recognized as
computers in the ordinary sense. Nevertheless, they do not only include safety critical
applications for automotive, railway, aircraft or medical devices. More and more mobile
communication and also less observable parts of the everyday environment, ranging
from intelligent fridges to smart clothes, include multiple embedded systems. About 99
percent of processors applied today are part of an embedded system [10].

The enormous growth of complexity of embedded systems forced the industry to ex-
plore new development techniques and tools to handle this complexity and to allow
formal reasoning about the operation of these systems. Invented in the early eighties,
Synchronous Languages like Esterel [8], Signal [20] and Lustre [16] were built on a solid
mathematical framework combining perfect synchrony, determinism and concurrency.
The synchronous approach divides time in discrete steps, which allows modeling of be-
havior as a series of states. This approach is suitable for discrete-time dynamical systems
and synchronous logic, too, and hence is a good and abstract choice for a wide class of
systems. This class includes most systems that occur in engineering disciplines, because
it can be assumed that, even though as the system is generally continuous, a reaction
to an input from environment can be computed faster than a new input occurs. Ideally
a zero reaction delay is assumed. This hypothesis is called the Synchrony Hypothesis,
first postulated by Berry [14].

While Lustre is declarative and well suited for specifying data-flow, Esterel is imper-
ative and focuses on describing control-flow. The clean underlying mathematics even
allows to develop systems partly written in Esterel and partly in Lustre, without loosing
their soundness. From the early beginning verification was considered central aspect of
synchronous languages and several model checking methods for Esterel and Lustre were
developed [5]. Strong industrial support from Airbus, Schneider Electric and others led
to multiple tools like SCADE [12] and Esterel Studio [12], which do not solely allow
to design complex models, but to simulate and verify in an early design cycle. These
models can commonly be translated into software (e.g. C, C++ , Java) [7], hardware
(via VHDL, Verilog) [6] and software/hardware co-design [4]. Following recent research
results, Esterel programs can also be executed on reactive processors [21].

Esterel Studio provides a graphical formalism called SyncCharts to model the sys-
tem’s behavior. Though looking quite similar to Harel Statecharts [17], its semantics
more consequently realizes true synchrony and can be translated directly into Esterel [1].
To design a system with SyncCharts is similar to describing the system’s behavior as
a series of state changes modeled by an automaton. Moreover each SynchChart and
each Esterel program can be translated into an equivalent Mealy Machine. Designated

1

1. Introduction

properties of a synchronous program can be specified through synchronous observers
[24, 22]. Such a synchronous observer itself is a SyncChart observing the input and
output variables to detect unwanted traces. Formally, an observer is a Büchi automa-
ton, which accepts a certain language, more precisely this language describes a set of
unwanted system traces. The observer is executed in parallel with the designed system.
Nevertheless this kind of verification has its limitations. The model checker included in
Esterel Studio can only check one property at a time1 and the expressiveness of the Sync-
Charts limits the range of properties, the model checker can handle to safety properties.
Though most properties that an embedded system should satisfy are safety properties,
there are problems where liveness and more general temporal properties are necessary
to reason about certain system designs. Therefore, new ways must be found that allow
specification and verification of system design on a higher level, which on the one hand
allow to specify a wider range of properties than the synchronous observer approach
does and on the other hand do not require a completely different design approach.

Specifying a system is describing its allowed behaviors, but how can a behavior be
formally described? Lamport answers this question in his Specifying Systems [18] book:

For centuries, they [the scientists] have described a system with equations
that determine how its state evolves with time, where the state consists of
the values of variables. For example, the state of the system comprising the
earth and the moon might be described by the values of the four variables e
pos, m pos, e vel, and m vel, representing the positions and velocities of the
two bodies. These values are elements in a 3-dimensional space. The earth-
moon system is described by equations expressing the variables’ values as
functions of time and of certain constants – namely, their masses and initial
positions and velocities. A behavior of the earth-moon system consists of a
function F from time to states, F (t) representing the state of the system at
time t . A computer system differs from the systems traditionally studied by
scientists because we can pretend that its state changes in discrete steps. So,
we represent the execution of a system as a sequence of states. Formally, we
define a behavior to be a sequence of states, where a state is an assignment
of values to variables.

In which way can behaviors, represented as a series of state changes, be formally de-
scribed? Temporal logic was first introduced in computer science by Amir Pnueli [26]
in 1977 to describe system behaviors. In principle, a system’s behavior could be de-
fined with a single formula using Pnueli’s formalism. In Pnueli’s logic, however, it can
be hard to define certain properties of systems. TLA, the Temporal Logic of Actions,
was invented by Leslie Lamport in the late 1980’s and is a variant of Pnueli’s originally
proposed logic. TLA provides a clean mathematical foundation to describe systems in a
single formula. Most specifications consist of ordinary mathematics, however, temporal
logic is important for describing system properties. The system properties define what

1Of course, more than one property can be specified in a single observer, but if a violation occurs,
some effort is required to catch the reason for the violation.

2

a system is supposed to do and the specified automaton describes its real behavior.
If the specified behavior implies the conjunction of the properties, the system behaves
correctly with regard to the defined properties. Usually, formulas a computer scientist
deals with are not longer than 20 lines, however, most system specifications will be far
longer. Therefore, TLA and, even more so, TLA+ provide compact notations and styles
for writing long formulas.

TLA+ specifies a system as a state transition system containing initial states, guarded
state transitions and correctness formulas. Therefore, to write a specification in TLA+

is close to the automaton representation of a synchronous program. This thesis inves-
tigates the applicability of TLA+ to a classical safety critical problem: redundancy
management. Several redundancy management algorithms are specified in TLA+ and a
set of properties is checked using the model checker TLC.

The algorithms that are specified and formally analyzed take two possibly finite
streams of messages as input and deliver a single stream to a consuming application. The
incoming streams contain redundant copies of messages. The resulting stream should
be infinite if at least one input stream is infinite, it should contain no redundant frames,
as well as preserve the order of sending. The safety properties are clear, however, an
algorithm that satisfies these properties would be quite complicated, which corrupts
performance and complicates verification and certification. Thus simple redundancy
management algorithms that solve relaxed safety properties are examined in a technical
report from Airbus [27]. This, however, was done informally, and this thesis redoes the
examination in a formal way.

Chapter 2 gives a short introduction to TLA+. Chapter 3 provides information about
AFDX, the concept of redundancy management and the redundancy management algo-
rithms that are specified in TLA+. Chapter 4 describes the specification of a proper en-
vironment for the redundancy management algorithms, specifies the set of requirements,
and finally gives specifications of the redundancy management algorithms. Chapter 5
concludes results about the redundancy management algorithms and the applicability
of TLA+ and TLC.

3

1. Introduction

4

2. A short tour through TLA+

This chapter gives a short overview of TLA+. This is neither a detailed description of
the statement’s semantics nor a complete description of existing statements. I want to
provide information about TLA+ that an unfamiliar reader needs to comprehend the
specifications written in this work. A complete description of TLA+ and TLC can be
found in Specifying Systems [18] and a good introduction to TLA+ is presented in the
Wildfire Challenge specification [19].

2.1. TLA+ by example

A specification is a mathematical description of a system, more precisely the system’s
behavior is given as a single formula. Most specification will therefore comprise of a long
formula that may occupy multiple pages. TLA+ provides a mathematical foundation
and compact notations for writing such long formulas while maintaining the readability.
Moreover TLA+ is a complete language that allows the specification of complex systems.
To specify a system is to say what the system is supposed to do, more precisely to describe
its behavior. The behavior of a computer system is most commonly given as a sequence
of states, where a state is just an assignment from the domain of variables to a range
of values. Taking this intuitive definition, a specification shall define the set of possible
sequences of states, i. e., the set of possible behaviors. Subsequently a short step by step
introduction to TLA+ will be given.

Each specification written in TLA+ starts with the definition of a module.
module RMA1

Operators on natural numbers as well as some basic constructs like sets and sequences
are not built into TLA+. They are, however, defined in TLA+ modules themselves and
can be incorporated into a specification. For example, operators on natural numbers
and sequences become available with

extends Naturals , Sequences

TLA+ distinguishes constants and variables. Constants are not given a certain value in
a specification. They will be set when the specification should be model checked with
TLC and else left unknown. Variables must have a specific value in each state and
changing a variable’s value produces a new state during model checking with TLC.1
Because TLA+ is not typed, one does not have to care about types at declaration time.
An example for defining constants and variables would be the following:

1See Lamport [18] page 243 for a possibility to exclude variables from state generation.

5

2. A short tour through TLA+

constants

networks , set of networks

SN CNT , SN MAX , SN HALF , maximum sequence number

variables

rm Redundancy Management

A good style is now to define a type invariant. As already mentioned, TLA+ is untyped
and therefore you may assign a natural number in one step to a variable x and in the next
step you may assign a string to it. To maintain control over variables and their structure
one can define a formula, say TypeInvariant, that expresses which form your variables
should have in each state. How this formula can be used to check type invariance of the
specification variables will be explained below.

TypeInvRM
∆

= rm ∈ [rsn : (0 . . SN CNT),

ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]]

The example above reveals that the variable rm should be a record with two fields named
rsn and ptn, where rsn is a natural number in range from zero to SN CNT and ptn
itself is another record. Note that this definition does not ensure a certain structure of
variables, so a syntactically and semantically correct assignment of another action could
be rm

∆
= ”hello”.

The next topic to consider is instantiation. Lamport mentions instantiation very
rarely and only in the context of variable hiding. To me, instantiation is a smart way to
keep specifications modular. Instantiation in TLA+ is substitution, and a module can
be instanced like this:

instance RMA1

This instantiates the module RMA1 and allows referring to formulas specified in module
RMA1. If more than one instance of a module shall be created, each instance must be
renamed. Furthermore each constant specified in an instanced module must be mapped
to a value. This can be done in two ways: either explicitely like in the example below,
or implicitly if a constant with the same name exists in the module that contains the
instantiation.

instance RMA4 with SNS MIN ← MTF

Behaviors in TLA+ are defined by actions, where each action describes a guarded
state transition. To enable this approach, initial states must be defined. Hence a new
formula Init gets defined, which assigns a certain value to each variable.

InitRM
∆

= rm = [rsn 7→ noVal ,

ptn 7→ [A 7→ noVal , B 7→ noVal]]

6

2.1. TLA+ by example

In this case we just assign a value to the variable rm. Again the assigned value may be
of arbitrary type. With this definition of initial values, the behavior of the system can
be specified. A system may perform different actions, depending on the actual state.
Therefore each action should have the following form:

action
∆

= ∧ guard

∧ assignment

Each clause could either refer to the actual value of a variable or set a variable’s value for
the next state using the Prime operator. A state function is an expression that contains
no primed variables and if a state function is boolean valued it is called a state predicate.
The guard consists of all clauses that are state predicates. All other clauses may contain
primed variables, where a primed variable denotes the value a variable gets in the next
state. TLA+ also allows to write boolean valued functions that contain primed variables
and hence guard a transition by the shape of the new state. It is assumed that the user
knows what he or she does and uses such expressions with care. A variable that should
not change must be explicitly declared UNCHANGED. For the assignment of values to
complex variables TLA+ provides some nice syntactic sugar that maintains good style
and readability. A good example, containing the most important simplifications, is given
below.

∧ rm ′
= [rm except !.rsn = sn,

!.ptn[id] = sn]

Following the intuition the assignment above defines the new value of rm to equal the
actual value of rm except that the field rsn equals sn and the record field with name id
of record ptn equals sn, too. It may seem to be superfluous to assign the actual value
of rm to the next state and afterwards explicitely give almost all fields new values. I
prefer this style, because it maintains readability and allows easily to extend variables
without taking care of every appearance of this variable. The meaning of !.rsn is an
abbreviation for rm.rsn. A further expression to shorten specifications is to use the @-
statement together with the EXCEPT notation for variables. The @ is a substitution
for the left side of an assignment. The example below shows the rm variable extended
with a simple integer valued variable, which alternates between zero and one. Switching
this value can be specified by

switch
∆

= ∧ rm ′
= [rm except !.bool = 1−@]

Equivalently this could have been specified as

switch
∆

= ∧ rm ′
= [rm except !.bool = 1− rm.bool]

Finally a system’s specification in TLA+ is a single formula. Hence the so far specified
formulas must be assembled together. For a complete system specification, we must
specify the set of initial states, a formula that describes the next state relation, and
optional formulas to specify fairness and real time.

7

2. A short tour through TLA+

Spec
∆

= Init ∧2[Next]〈var〉 ∧ Fairness ∧ RealTime

Init specifies the system’s initial states and from these states we require every step to be a
Next step or a stuttering step2. The Next formula is most commonly a simple disjunction
of all specified actions, but could be more complicated, too. The Fairness and RealTime
formulas have the obvious meaning and need not necessarily to be specified.

Revisit the type invariance formula specified above. It states that the specified vari-
ables shall have a certain type. 2TypeInvRM asserts that this formula is always true,
thus for every behavior satisfying Spec. These kinds of temporal formulas are called
theorems. Theorems can be machine checked with TLC. It is a good idea to formulate
a type invariance formula and to check it with TLC, because it helps catching a lot of
subtle specification gaps made during the specification of actions. To point out that type
invariance is claimed, the last line often contains a formula stating that type invariance
follows logically from the definitions in this module.

theorem Spec ⇒ TypeInvRM

Each module must end with a further delimiter line.
Most of the TLA+ statements and operators have an equivalent mathematical repre-

sentative with the same meaning. Only simple predicate logics and mathematical sets
are needed to understand the specifications written in this thesis.

2.2. Model checking with TLC

The formal foundation of TLA+ allows other tools to work on TLA+ specifications,
like TLC, TLASANY and TLATEX. The most interesting one is TLC, as it enables
machine verification of systems specified with TLA+. TLC properties should be defined
completely independent from a TLA+ specification, because a specification should be
the same, whether it serves as a formal description or gets used for machine verifica-
tion. Therfore, all subsequently discussed TLC statements should reside in a special
specification file that extends the real specification.

module ENV TLC

extends ENV , TLC

For a complete description of TLC and its optimization potentials see Lamport [18]
pages 221 ff. Two possibilities to reduce state space will be introduced. First of all,
systems specified with TLA+ may observe infinite behaviors, which cannot be handled
with model checkers. Such infinite behaviors can be obtained if a specification uses for
example sequences, which are theoretically unbounded. To limit infinite models, TLC
provides the possibility to postulate constraints that, for example, bound the length of
a sequence to a finite number.

2A stuttering step leaves all variables unchanged.

8

2.2. Model checking with TLC

constant maxLen

constraint
∆

= Len(queue) ≤ maxLen

The second possibility and probably the more fragile one is to take a different view than
the standard view, which contains all specified variables. This should, however, only be
done if the discarded variables have just debugging purpose. Unfortunately variables
that were discarded from the actually used view are not displayed in counter examples
and no variable names get displayed at all.

myView
∆

= 〈rm, env , out〉

TLC needs a separate configuration file that assigns values to all constants defined in
the modules, includes constraints and views, declares the specification formula and fi-
nally declares which properties TLC shall check. Thereby TLC distinguishes between
invariants that must be state predicates and temporal properties that may contain more
general formulas. Once the configuration file provides all information TLC needs to
check a specification against a certain property, model checking can be started. Every-
thing you can do from that point on is waiting for a result. Especially checking temporal
properties, which are not of the form 2P with state predicate P , may take a long time,
depending on the complexity of the checked property and the performance of the model
checking hardware up to a few days. Therefore properties and specification should be
developed with care.

CONSTANTS
networks = {"A", "B"}
SN_CNT = 6 SN_MAX = 5 SN_HALF = 3

VIEW
myView

CONSTRAINT
constraint

SPECIFICATION
Spec

INVARIANT
TypeInv

Auflistung 2.1: TLC configuration example

9

2. A short tour through TLA+

10

3. Redundancy Management
Concept

3.1. AFDX

Reliable communication between avionic subsystems has always been essential, espe-
cially as in 1988 with the Airbus A320 the all-electronic fly-by-wire technology attained
commercial airline service. Since that time it gained such a popularity that currently
built airliners only use this technology for avionic subsystem communication.
As the complexity of avionics subsystems has grown since 1988, so has the demand
for more bandwidth and reliability. Former avionic data communication protocols like
ARINC 429 and MIL-STD-1553 did not seem to be able to compete with upcoming
demands. A new communication bus-system shall as well serve for subsystem commu-
nication as for passenger entertainment. The desire for such a new fast and cheap com-
munication bus forced the industry to explore off-the-shelf-technologies such as IEEE
803.2 Ethernet. Tanenbaum [28] gives a basic introduction about computer networks
in general. Advanced topics on ATM and switched Ethernet are considered in Goralski
[15] and Breyer [9]. Ethernet specification, however, guarantees no maximum latency,
as the package collisions are resolved through a back off strategy that may lead to an
infinite latency in worst case. That is why the next-generation avionics data bus shall on
the one hand allow usage of as much cost-efficient, IEEE 803.2 compliant hardware as
possible and on the other hand shall guarantee a certain bandwidth and Quality of Ser-
vice, which includes specifying maximal transmission latency. This research resulted in
Avionics Full Duplex Switched Ethernet based upon IEEE 803.2 Ethernet technology
[3]. See Figure 3.1 for a simple AFDX schematic.

Overview of AFDX

AFDX addresses the shortcomings of Ethernet using concepts of Asynchronous Transfer
Mode (ATM). Major aspects of AFDX are:

• AFDX is a profiled network, configuration tables are loaded into switches at start-
up.

• It is organized in a star topology with a maximum of 24 End Systems (ES) per
switch. Larger systems can be realized through cascading.

• AFDX is full duplex. Standard Ethernet suffers the possibility of an infinite chain
of frame collisions and hence unpredictable delay of messages. Therefore every

11

3. Redundancy Management Concept

AFDX Switch

AFDX Switch

Subsystem System
EndAvionics

Avionics Computer System

Subsystem System
EndAvionics

Avionics Computer System

Figure 3.1.: AFDX schematic

End System is connected to a switch with two twisted pair cable, one pair for
sending and the other for receiving frames. Each switch has the capability to buffer
multiple packages for each ES in each communication direction. Consequently
buffer-overflows and message delays due to congestion at the switch may cause
erroneous behaviors.

• AFDX emulates a deterministic point-to-point network through the use of Virtual
Links (VLs). Each VL builds a unidirectional path from a unique ES to one or
maybe more ESs. A certain predefined bandwidth is allocated for each VL, ensur-
ing that the sum of allocations does not exceed the maximum available bandwidth
of the whole network.

• AFDX guarantees bandwidth and a maximum latency for end-to-end transmission.
Bandwidth is provided through Bandwidth Allocation Gap (BAG), which defines
the minimum time between the sending of two successive frames. It is given that
BAG = 2k with k ∈ N{0,...,7}, which implies a maximum of 128 VLs per ES.

• AFDX provides a highly reliable network scheme. Each frame is transmitted
in parallel over two redundant networks and afterwards filtered by redundancy
management at the receiving ES.

• AFDX is fast, either 10 Mbps or 100 Mbps.

This short description above shall provide the information needed to comprehend the
following. It is meant as background as we almost need no knowledge about how AFDX
works to write the specifications for the redundancy management algorithms.

12

3.2. Redundancy Management Concept

3.2. Redundancy Management Concept

Redundancy is desired to increase reliability of systems by duplicating parts of it. This
is often done if the reliability of the duplicated part itself cannot be increased. In case of
the AFDX protocol, the weak point is the network. Messages can get lost, or even worse
a network can fail completely, therefore a second network is introduced (Figure 3.2) to
reduce the probability of loosing frames and enable further operation even in presence of
one faulty network. Nevertheless the question arises what to do with redundant frames?

Transmit Receive

Network B

Network A

End System End System

Figure 3.2.: Concept of redundant networks

Shall the receiving application handle them? The redundancy management shall be
considered as a part of the receiving End System and it shall forward valid frames
to the application and discard all others. Hence redundancy shall be transparent to
the application beyond the ES. Figure 3.3 shows the principle function of an receiving
ES. Each frame has first to pass integrity checking. This integrity checking can be
defined in many different ways. A weak one can just checks if a frame is well-formed
and another one may check if the received frame was expected to be delivered next.
Integrity checking, however, is not considered in this work. It is assumed that integrity
checking filters frames in a way that all frames reaching the redundancy management
are well-formed. No further assumptions about integrity checking are made. Consider
two frames with equal content. What is needed to decide whether one frame is the

Redundancy
Management

Eliminate
redundant frames

Netw. Mgmt

Application

Network B

Integrity Checking

Detect and eliminate
invalid frames

Integrity Checking

Detect and eliminate
invalid frames

Network A

End System

Figure 3.3.: Receiving End System

13

3. Redundancy Management Concept

redundant copy of the other? First we need to know about which network a frame
was delivered. Two frames delivered by the same network cannot be redundant copies of
each other. Furthermore an order of frames received from a network must be established.
Thus every frame contains a “unique” sequence number. Figure 3.4 shows the complete
AFDX frame format.

17 to 1471
7 bytes 1 byte 6 bytes 6 bytes 2 bytes 20 bytes 8 bytes Bytes 1 byte 4 bytes 12 bytes
Preamble Start Frame Destination Source IP UDP AFDX Payload Seq Frame

Delimiter Address Address Structure Structure Number Check Gap
Seq

Type Ipv4 Interframe

Figure 3.4.: AFDX frame format

Sequence Numbers

Subsequently all definitions, corollaries and algorithm definitions are taken from the
technical report of von Hanxleden and Gambardella [27]. So if not stated otherwise
consider this paper as reference. Sequence numbers are not really unique. Since we
may have an arbitrary number of frames and limited resources for sequence numbers,
they eventually must wrap around. Figure 3.4 already shows that 8 bits are used for
sequential counting. A range of 28 bits was proposed, which increases the range where
sequence numbers can be ordered correctly. Finally, for mainly economic reasons, the
8-bit range was chosen. Subsequently some key properties about sequence numbers will
be given, which show how sequence numbers can be used to determine redundancy.
The number of sequence numbers is SN CNT =def 28. Thus the maximum sequence
number is SN MAX =def SN CNT − 1. The mid-point sequence number is denoted
as SN HALF =def SN CNT/2. Consecutive frames have a sequence SN (fi+1) =def

SN (fi) + 1 mod SN CNT . The subtraction on sequence number is defined as follows:

Definition 1. (Sequence Number Subtraction) The subtraction operator −sn is:

s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

For example, with the above defined operators we have that:

124−SN 134 = −10

19−SN 254 = 21

238−SN 78 = −96

It can be seen that subtraction of sequence numbers for sequence numbers within a
certain bound is equal to common subtraction on natural numbers module SN CNT .
Definition 1 can be used to define the following comparison operators.

Definition 2. (Comparison Operators)

s1 <SN s2 ⇔def (s1 −SN s2) < 0

s1 =SN s2 ⇔def (s1 −SN s2) = 0

s1 >SN s2 ⇔def (s1 −SN s2) > 0

14

3.3. Evolution of Redundancy Management Algorithms

Finally, the unwrapped sequence number USN (f) is needed to reason about sequence
number operations. This number USN (f) is a theoretical number for each frame f ,
which does not wrap around and thus is unbounded. Therefore a correct ordering of
frames using sequence numbers can be established if the unwrapped sequence numbers
differ at most by SN HALF . Formally von Hanxleden and Gambardella [27] state:

Corollary 1. Let frames f1 and f2 be generated without intermediate sequence number
reset, and let s1 and s2 be their respective sequence numbers. If | USN (f1)− USN (f2) <
SN HALF , then it is s1 −SN s2 = USN (f1)− USN (f2)

Subsequently the concept of sequence numbers will be used to postulate algorithms
that should determine and discard redundant frames.

3.3. Evolution of Redundancy Management
Algorithms

This section introduces and explains the proposed redundancy management algorithms
and gives some examples for which they might show faulty behavior. Obviously redun-
dancy management algorithms should hide the redundancy of message transmission to
the application beyond the ES. There are, however, constraints that might not allow to
perfectly filter redundant frames under all circumstances. For example, the redundancy
management may only cause a very small additional message delay, therefore complex
buffering strategies could possibly violate these constraints. Moreover the environment
may observe strange behaviour that causes difficulties to filter redundant frames. Fi-
nally the environment may send arbitrary frames, but only a well defined stream of
frames with specific characteristics will reach the redundancy management. The two
most important properties of the delivered frames are:

1. The number of frames traveling through a network at a time is bounded by the
Maximum number of Transient Frames (MTF), which bounds the maximum dif-
ference of received sequence numbers from different networks.

2. The maximum number of consecutive frames lost is bounded by the constant
MCFL, which defines the maximum difference of received sequence numbers on
the same network.

Both properties are essential for the correct operation of the proposed algorithms.
What are the requirements for the design of redundancy management algorithms? In

general they just should be simple. To be more concrete, they should allow

• easy understanding

• certification

• verification

• cost effective implementation.

15

3. Redundancy Management Concept

Since the redundancy management shall cause as few delay as possible, buffering of
frames is considered harmful. Moreover the algorithm shall follow the guideline first
valid wins, which means that the logically first frame, from a pair of redundant twin
frames, that reaches the redundancy management will be submitted. All together this
implies that for each frame the redundancy management receives, it decides to accept
or reject this frame before it receives the next one. Thirteen algorithms were proposed
as a series of refinements from a first simple algorithm. Coming up they will be shortly
described together with their acknowledged shortcomings.

RMA1: Accept if Sequence Number Skew is positive

The Sequence Number (SN) of frame f is SN (f) ∈ {0 . . . SNMAX}. The Received Se-
quence Number of frame f is denoted as RSN (f) and it may be SN (f) 6= RSN (f).
However we assume those frames with SN (f) 6= RSN (f) are not well formed and thus
discarded by the integrity checking. The Previous Twin Network Frame PTN (f) for a
frame f received on network N1 denotes the last frame received on the other network
N2. This enables a definition of the Sequence Number Skew as follows:

Definition 3. (Sequence Number Skew) The Sequence Number Skew of frame f is

SNS (f) =def RSN (f)−SN RSN (PTN (f)).

Thus the first proposed algorithm is:

RMA 1. Accept frame f iff SNS (f) > 0

A13 A14

3 3

B10 B11 B12 B13

A13 A14

A140 A141 A142 A143

A139 A140

A139

t

t

t

126 127 −128 −127 −126SNS(f)

SNS(f) −1−2? −2

rejected!

Network B faults!

Frames A141...

RMA1

Figure 3.5.: Silent Network Scenario - Using RMA1

Obviously the correct operation of this algorithm assumes operation of both networks.
If one network fails, the Sequence Number Skew will increase. However, Corollary 1
implies that this may cause erroneous behaviors as the unwrapped sequence differs by
values greater than SN HALF . Figure 3.5 displays a scenario where one network is
down and the other in normal operation. It can be seen that valid frames are rejected
by RMA1 in this case.

16

3.3. Evolution of Redundancy Management Algorithms

RMA2: Accept if Sequence Number Offset is positive

This algorithm addresses the shortcoming of RMA1 and is based on the observation
that under normal operation of the remaining network, the difference (−SN) between
two successive sequence numbers is always positive1. For a given RMA, the Previously
Accepted Frame (PAF) denotes the last frame accepted by that RMA. The Previous
Accepted Sequence Number(PASN) for frame f can be defined as:

Definition 4. (Previously Accepted Sequence Number) Let f be a frame with SN (f) ∈
{0 . . . SN MAX }. Then

PASN (f) =def RSN (PAF (f)).

With the previously accepted frame defined as above, the Sequence Number Offset is
given by

Definition 5. (Sequence Number Offset)

SNO(f) =def RSN (f)−SN PASN (f)

Hence the new redundancy management algorithm is:

RMA 2. Accept frame f iff SNO(f) > 0

A13 A14

3 3

B10 B11 B12 B13

A13 A14

t

t

t

SNS(f)

−1−2? −2

RMA2

A4

B1B0 B2

A0 A1 A2 A3SN Reset!

SN Reset!

RMA2 rejects frames after SN Reset!

SNS(f)

2

−2 −2 −1
−1

SNO(f)

SNO(f)

? 1
−13
−14

−12
−13 −12

2
−11

2
−10

? −14 −12
−1

−13
−1

Figure 3.6.: ES reset - Using RMA2

It is easy to see that this RMA has no problem with the scenario shown in Figure
3.5. RMA2, however, fails in case of sequence number resets. Figure 3.6 shows the
problematic scenario. It is not that problematic that a sequence number reset leads to
rejection of some valid frames, but we can imagine a scenario where the reset occurs
periodically whenever the sequence number is close to SN HALF . This would imply
that never again a frame will be accepted. This is problematic for SN HALF = 27

where the required period of consecutive resets is quite small, but it would be absolutely
unacceptable with SN HALF = 227 as proposed before.

1This follows from the knowledge that we have a Maximum Consecutive Frame Loss (MCFL) less than
SN HALF

17

3. Redundancy Management Concept

RMA3: Accept if Sequence Number Delta is positive

The next idea is to combine RMA1 and RMA2. Therefore we define

Definition 6. The Sequence Number Delta of frame f is given by

SND(f) =def max (SNS (f), SNO(f)).

Based on that definition we have:

RMA 3. Accept iff SND > 0

Obviously this approach corrects the problem of the algorithms above. Figure 3.7
shows that still both networks are needed to handle sequence number resets right. So

A13 A14

3 3

B10 B11 B12 B13

A13 A14

t

t

t

SNS(f)

−1−2? −2

RMA3

A4A0 A1 A2 A3SN Reset!

SN Reset!

SNS(f)
−2 −2 −1

SNO(f)

SNO(f)

? 1
−13
−14

−12
−13 −12 −11 −10

?

−11 −10 −9

RMA3 rejects A0, A1, ..., A13!

Network B faults!

Figure 3.7.: ES reset and networks silence - Using RMA3

far all algorithms defined conditions when to accept frames. This concept proved to be
too restrictive in frame acceptance. Often valid frames were rejected. Conversely the
next algorithms will ask when to reject a frame. Of course the negation of the afore
defined acceptance conditions are as well conditions for rejection of a frame. It is more
precise to say that the point of view changes from which frames must be accepted to
which frames must be rejected. Leaving the conservative way, however, may lead to
acceptance of redundant or outdated frames. In fact, this is tolerable as it must be
ensured that under all circumstances the redundancy management algorithm does not
stop forwarding frames as it may happen with the first algorithms.

RMA4: Reject if Sequence Number Skew is redundant

Similar to RMA1, RMA4 is based on the Sequence Number Skew, with Corollary 24,
which gives the definition of SNS MIN [27] it can be deduced that

Without sequence number reset, it is SNS MIN 6 SNS (f) 6 0 iff the twin frame has
already arrived on the other network.

That provides the next RMA:

RMA 4. Reject frame f iff SNS MIN 6 SNS (f) 6 0

18

3.3. Evolution of Redundancy Management Algorithms

Nevertheless both networks are still needed as, similar to RMA1, continously frames
are lost if one network dies, and the other works alone (Figure 3.8 with assumed
SNS MIN = − 5). Nevertheless RMA4 causes not that much frame loss.

A13 A14

3 3

−1
−1

B13

A8

−6
1

A8

−6
1

A15

1
1

A15

1
1

A13 A14

t

t

t

SNS(f)

−2? −2

RMA4

A9 A14

SNS(f)
−2 −2

SNO(f)

SNO(f)

? 1
−5

?

Network B faults!B10 B11 B12 B14

0
0

1
0
1

RMA4 rejects A9 ... A14!

Figure 3.8.: Operation with single network - Using RMA4

RMA5 Reject if Sequence Number Offset is redundant

Analogously to the step from RMA1 to RMA2, now the concept of Sequence Number
Offset, defined as above, is used to decide about rejection of frames. Obviously the
insight from RMA4 can be extended to the following observation

Without sequence number reset, it is SNS MIN 6 SNS (f) 6 SNO(f)) 6 0 iff the twin
frame has already arrived on the other network.

Therfore we define:

RMA 5. Reject frame f iff SNS MIN 6 SNO(f) 6 0

B2

−2
−2

B1

−3
−2

B0

−1
−4

A5

t

t

t

SNS(f)

−1−2? −2

RMA5

SNS(f)
−2 −2 −1

SNO(f)

SNO(f)

? 1

?

3 3

B0 B1 B2 B3

A4A3 A0 A1 A2 A3

−3
−4

−2
−2
−1

−3 −1
3
1

A4

3
0

SN Reset!

SN Reset!

RMA5 rejects A0 ... A4!A3 A4

A5

3

Figure 3.9.: ES reset - Using RMA5

Considering the behavior shown in Figure 3.8, it is clear that this algorithm han-
dles this situation correctly. Nevertheless, Figure 3.9 shows a behavior which is still
unacceptable.

19

3. Redundancy Management Concept

RMA6 Reject if SNS and SNO are redundant

Like RMA3, RMA6 combines strategies of both afore mentioned algorithms.

RMA 6. Reject frame if iff SNS MIN 6 SNS (f) 6 0 and SNS MIN 6 SNO(f) 6 0

A5

t

t

t

SNS(f)

−1−2? −2

RMA6

SNS(f)
−2 −2 −1

SNO(f)

SNO(f)

? 1

?

3 3

B0 B1 B2 B3

A4A3 A0 A1 A2 A3

−3
−4

−2
−2
−1

−3 −1
2
1

A4

1
0

SN Reset!

SN Reset!

A3 A4

A5

0

Network B faults!

A4RMA6 rejects A0 ... A3!

Figure 3.10.: ES reset and low PASN - Using RMA6

This excludes the behaviors that we already considered bad and which lead to frame
rejection. It is not that perfect, however; again problematic scenarios with one silent
network can occur. See Figure 3.10 for such a behavior.

RMA7 Reject if SNO is redundant and SNI is positive

Close to the definition of Sequence Number Skew used before, the Sequence Number
Increment is defined:

Definition 7. (Sequence Number Increment) For consecutively received frames f1, f2, the
Sequence Number Increment is

SNI (f2) =def RSN (f2)−SN RSN (f1).

A5

tSNS(f)
SNO(f) ? 1

3 3

A4A3 A0

−3
−4

SN Reset!

tRMA6

A3 A4 A4

t−1−2? −2SNS(f)
−2 −2 −1SNO(f) ?

B0 B1 B2 B3 SN Reset!

SNI(f)

SNI(f) ? 1 1 1

? 1 −4

B0 B1 B2

−1 −2
−2

−2
−2
11

−4
−3

A1

−2
1
1

A2

−1
−2
1

A1 A2 B0 A3A0

A3

0
1
1

A4

1
1
1

2
1

A5

1

Figure 3.11.: ES reset - Using RMA7

With this definition it is possible to detect reset of an ES and to handle the behavior
shown by Figure 3.10 correctly. Thus we define the next algorithm to be:

20

3.3. Evolution of Redundancy Management Algorithms

RMA 7. Reject frame f iff SNI (f) > 0 and SNS MIN 6 SNO(f) 6 0

Nevertheless this leads to the situation that more redundant frames may get accepted
and this seems to be an unacceptable trade off. See Figure 3.11 for such a situation.

RMA8 Reject if SNO is redundant and no time-out

All afore described algorithms only use knowledge about recently received and accepted
frames. The specification of the environment contains more information usable to design
redundancy management algorithms. Under normal network operation, which means
that no frames are lost, redundant frame copies arrive at most Skew Max time apart.
Hence it can be deduced that frames which arrive with a time difference greater than
Skew Max cannot be redundant. This knowledge combined with the already used concept
of redundant Sequence Number Offset yields

RMA 8. Reject frame f iff SNS MIN 6 SNO(f) 6 0 and tRecv(f)− tRecv(PAF (f)) 6
SkewMax

A15

2

A19

1

A18

1

A17

0

A16

0

B18

0

B17

1

B16

1

A13 A14

t

t

tRMA8

A13

B10 B11 B12 B13

SNO(f) 1

A14 lost!

−2 −1 0SNO(f) ?

B14

−1

B15

0

A15 B16 B17 A18 A19B14 rejected

Figure 3.12.: ES reset - Using RMA8

Still problematic are sequence number resets while the last accepted sequence number
is lower than SN HALF . Non redundant frames will be rejected if such a behavior
occurs, see Figure 3.12.

RMA9 Accept if successive frame or after time-out

The next proposal is very rigorous in accepting frames. Only successive frames are
accepted if no time out occurs. This ensures that even after reset of sequence number no
redundant frame will be submitted, but at least after Skew Max time elapsed the next
frame will pass.

RMA 9. Accept frame f iff SNO(f) = 1 or tRecv(f)− tRecv(PAF (f)) > SkewMax

The algorithm of choice, however, should follow a first valid wins-strategy and Fig-
ure 3.13 shows that RMA9 does not.

21

3. Redundancy Management Concept

B14 B15

A16

2

B14 B15A13

t

t

tRMA9

A13

B10 B11 B12 B13

SNO(f) 1

A14 lost!

−2 −1 0SNO(f) ?

A18 A19

A17 A18 A19A15

2 12 3

1

B17

A16, A17 and B17
rejected

B18

1 2 0

B16 lost!

Figure 3.13.: Fast and slow network - Using RMA9

RMA10 Accept if successive frame, buffer non-redundant frames

This algorithm is special as we break with our premise that buffering is harmful, as
it may introduce too much additional delay of message delivery. Moreover not every
frame is now rejected or accepted at delivery time. Generally all frames that are not
considered redundant will be buffered. To decide if a frame is redundant or not, the
Queued Sequence Number Offset is used, which can be given as follows:

Definition 8. (Queued Sequence Number) For frame f and buffer b the Queued Sequence
Number Offset is

QSNO(f) =def if b = 〈〉
then RSN (f)−SN SN (Head(b)) else RSN (f)−SN PASN (f)

In case the buffer is not empty, in parallel it is checked whether the first element of
the buffer has a sequence number offset equal to 1 or the time since reception of first
element has exceeded a certain value, from which it can be deduced that the preceding
frame cannot be delivered anymore. Putting it all together we get:

RMA 10.
if SNO(f) = 1 then accept f
else if QSNO 6∈ (−SNS MIN . . . 0) then enqueue(f)

par
while b 6= 〈〉 and (SNO(fq) = 1 or t > tRECV (fq) + Skew Max - BAG) do

dequeue(f);accept(f)

The algorithm turns out to have a minimal per-frame loss and preserves ordering of
frames. Nevertheless it is not considered to be a good choice as it introduces further
delay and with buffers a new potential source of failure.

RMA11 Reject recently received SNs

The last three redundancy management algorithms already incorporated further ideas
to support decisions based upon sequence numbers. This one is based on the idea that

22

3.3. Evolution of Redundancy Management Algorithms

a frame is likely to be redundant if its sequence number was already seen shortly before.
This buffer and hence the set of sequence numbers that must be buffered is limited, as
we know that each frame must be delivered after a certain time has been elapsed and
the capacity of networks bounds number of deliveries of the twin network. Given such
a set PASNn of n recently received sequence numbers the new approach is:

RMA 11. Reject frame f iff RSN (f) ∈ PASNSNL MAX (f).

A13 A17A16

B15B14

t

A15

A

PASN(f)

A14 lost!

{9,10,11,12,13} {10,11,12,13,15} {12,13,15,14,16} {13,15,14,16,17}{11,12,13,15,14}

t

tRMA11

B10 B11 B12 B13

B

A15 B14 A16 A17A13

Figure 3.14.: Loss of order - Using RMA11

Obviously this algorithm does not preserve the order of sending. A fast but unreliable
network and a slower but more dependable one could lead to the situation shown in
Figure 3.14. Even worse things can happen if there is a recurring reset of sequence
numbers close to SN HALF , which may lead to rejection of all subsequent frames.

RMA12 Reject recently received SNs if no time-out

The above described algorithm RMA11 causes trouble with reordering and unjustified,
continuous rejection of frames. The latter is absolutely unacceptable, and therefore it is
extended to guarantee resynchronization after a reset of sequence numbers.

RMA 12. Reject frame f iff tRecv(f) − tRecv(PAF (f)) 6 SkewMax and RSN (f) ∈
PASNSNL MAX (f).

RMA13 Accept frame from same network as last frame, or after
time-out

The last approach may seem to be the most trivial, but is interesting nonetheless. Ini-
tially the redundancy management algorithm just listens on both networks and synchro-
nize to the faster one. Obviously this is not “first valid wins” anymore and the overall
availability is not optimal, as many non-redundant frames of the “loosing” network are
rejected.

23

3. Redundancy Management Concept

RMA 13. Accept frame f iff N (f) = N (PAF (f)) or tRecv(f)−tRecv(PAF (f)) > SkewMax .2

However this simple approach is very robust against critical sequence number resets
with low previously accepted sequence number. Even in the worst case if, after such
a critical reset, the preferred network dies, after time-out the redundancy management
algorithm switches to the remaining network.

2This is contrary to the technical report proposing the algorithms [27] but reflects the description and
intuition.

24

4. Specification

4.1. What to specify?

This chapter gives a detailed explanation of the written specifications as well as for
presenting first results of model checking. Nevertheless some major aspects of the built
model will be explained to understand the specifications written in TLA+.

1. The first thing to choose is the grain of atomicity for the specification of the
receiving ES. Figure 3.3 shows the way each frame has to pass from delivery till
submission to application. Each frame must pass an integrity checking, which
shall discard mal-formed frames. To specify properties that a frame must satisfy
to be considered well formed is not in the scope of this work. For the redundancy
management algorithm, however, it is undetectable whether a frame got lost during
network transmission or failed integrity checking. Hence our model needs not to
consider integrity checking. Only the networks together with a fictive sender form
the influencing components before the redundancy management algorithm and are
therefore included in a first model shown by Figure 4.1. To distinguish frames by

ApplicationManagement
Redundancy

End System

Network A

Network B

Figure 4.1.: First abstraction of the environment

their delivering network, two different buffers for each network could have been
used. Though this is closer to reality, I decided to take frames directly from the
network queues to save variables and hence ease model checking. Each accepted
frame is delivered to the application set beyond the redundancy management. The
model, however, should not contain another pair of producer and consumer, and
it is impossible to let the redundancy management forward each frame to buffer
without a consuming application, as this would lead to an infinite model. In
Section 4.2, an approach how this aspect can be solved will be explained in detail.
Finally the complete model just contains a single environment, which includes the

25

4. Specification

redundant networks, the redundancy management and an output device where
submitted frames can get stored in a way.

Management

End System

Network B

Network A
Redundancy Output

Environment

Figure 4.2.: Final Model of the System under Development

2. How does the redundancy management gets knowledge about the delivering net-
work of each frame? Figure 3.4 implies that it cannot obtain any information
from a frame itself. Thus each network seems to deliver its frames to a different
buffer. There is no information provided in the report [27] about how the redun-
dancy management algorithm detects the source of a frame. Subsequently I will
assume that information about the delivering network is attached to each frame
as it reaches the stage of redundancy management where decision for acceptance
or rejection takes place. Furthermore, we abstract away all parts of a frame that
is not needed to detect redundancy. Hence the frames used in our model contain
only a sequence number and a network identifier (see Figure 4.3). This model will
be slightly extended in the next section with some status information.

1 byte 1 byte

Seq Network

Number ID

Figure 4.3.: Frame structure in model

3. The next step is to think about a good structure of the specifications that

• supports reading and understanding,

• allows extensions if necessary,

• follows the “write things once” principle and

• is modular.

26

4.2. Specification of the environment

TLA+ offers several ways to build up modular specifications. The solution of
choice is to write one module for the environment and another for the redundancy
management which can then be instantiated in the environment module. This en-
ables a single specification of the environment wherein each version of redundancy
management algorithm can be instantiated and model checked.

4.2. Specification of the environment

This section serves the purpose to describe and formally specify an appropriate envi-
ronment to each of the tested redundancy management algorithms. Such an environ-
ment should feed the redundancy management with a well-formed stream of frames and
provide information to reason about the correctness of the redundancy management’s
decisions. Figure 4.2 shows the major parts the environment contains and which can be
easily found in the specification. These parts are

• two networks that deliver frames to the redundancy management algorithm,

• the redundancy management that submits non-redundant frames and

• an outgoing connection to the application consuming frames.

At a first glance it might look strange that the redundancy management is explicitly
considered part of the environment. We want, however, to instantiate specifications of
redundancy management algorithms, and instantiation in TLA+ [18] is substitution.
Furthermore steps of the redundancy management may have an effect on variables of
environment and hence must be specified. The information gathered so far can be
realized in a first specification of needed constants and variables shown in Figure 4.4.
Furthermore, standard modules for natural numbers and sequences get extended to
include their operators and functions. The TLC module is optional, but it allows some
more debugging.

extends Naturals , Sequences , TLC

constants

networks , set of networks

SN CNT , SN MAX , SN HALF , maximum sequence number

MCFL, maximum number of consecutive frame loss

MTF , maximumb number of transient frames

A, B , SN , TAG just for convenience

variables

rm, Redundancy Management

env , Environment including the redundant networks

out , forwarded “frames”

status debugging

Figure 4.4.: First part of environment’s specification

27

4. Specification

Actions of the Environment

The first step to do is to define the actions the environment can perform. The set of
possible actions can be given as follows:

Send a frame :

The environment sends frames to all connected, operating networks with a fre-
quency bounded by the Bandwidth Allocation Gap shortly explained in Section 3.1.
A certain BAG value tells us about the maximum difference of sequence numbers
between deliverance of two twin frames. In detail the maximum Sequence Number
Skew is defined to be:

SNS Max =def 1 +

⌊
SkewMax

BAG

⌋
However, I tried to avoid the usage of the BAG as it would have forced me to
introduce further variables and I in any case must use bounded sequences to model
the networks, as infinite sequences would cause an infinite and not checkable model
with TLC. Hence I could just use these bounds to restrict maximum Sequence
Number Skew. The drift of frames is bounded through finite capacity of networks,
since feeding the faster network with frames requires consumption of frames from
both networks, once the slower network reached its capacity. Actually the only
thing to do is to choose a suitable capacity for the sequences. Intuitively, from

sendFrame
∆

=

∧ Len(env .frames .A) < MTF

∧ Len(env .frames .B) < MTF

∧ ∃ id ∈ networks : isAlive[id] = true

∧ env ′
= [env except

!.frames = [

A 7→ if isAlive[A]

then Append(@.A, [sn 7→ env .sn, tag 7→ “n”])

else 〈〉,

B 7→ if isAlive[B]

then Append(@.B , [sn 7→ env .sn, tag 7→ “n”])

else 〈〉],

!.sn = (@ + 1)%SN CNT]

∧ unchanged 〈rm, out〉

∧ status ′
= “send”

Figure 4.5.: Send frame action of environment

Corollary 1 it can be deduced that the maximum Sequence Number Skew and
therfore the capacity of each sequence that represents a network must be less or
equal to SN HALF . This is the maximum difference where two sequence number
still can be ordered correctly. Figure 4.5 shows how this action is specified in
TLA+.

28

4.2. Specification of the environment

The first two lines of this action check whether both sequences of frames that
model the networks still have a length less than the specified maximum MTF.
It might be arguable that in the general specification, each network is allowed to
buffer infinitely many frames, and that the length of each sequence should only
be bounded for model checking. This could be done with a constraint formula
defined in the TLC configuration file. I decided, however, to restrict the sequences
directly in the specification and give arguments for this decision together with
a small example in Chapter 5.2. Naturally a frame is sent only if at least one
network is still operating. If these three guards are fulfilled, a frame can be sent
and variables are updated accordingly.

Loose a frame:

Unfortunately the networks need not to be completely reliable, and thus it has
to be taken into account that each network may loose frames. It is, however,
specified that the number of consecutively lost frames is bounded, regardless of
how this fact is ensured. At least it can be assumed that frames that violate this
boundary, were discarded by integrity checking. Nevertheless, as this boundary is
known it is possible to set the capacity of each network larger than the Maximum
Consecutive Frame Loss which allows the removal of this action. This is easily
done by specifying a set of recently deliverable frames (see Figure 4.6), which are
all frames of a network that ensure a maximum consecutive frame loss less or
equal to the specified constant MCFL. Taking such a set of deliverable frames the

deliverable
∆

= {〈id , pos〉 ∈ networks × (1 . . (1 + MCFL)) :

∧ env .frames [id] 6= 〈〉

∧ pos ≤ Len(env .frames [id])}

Figure 4.6.: Set of deliverable frames

actually received frame can be chosen from it.

Receive a frame:

This action is actually the disjunction of two steps, namely the accept- and reject-
step, where the instantiated actions of the redundancy management get called.
Therefore an accept- or reject-step of the environment is just a corresponding
step of redundancy management plus updating environment’s variables. These
actions take a frame from the set of deliverables as parameter. All frames ahead
of the chosen one, in that sequence, are considered lost and get removed from
the sequence. Updating the networks looks somewhat complicated, but it will
be explained in the next section. Both actions specified in TLA+ can be seen in
Figure 4.7. Part of the next state specification is therefore a step of the redundancy
management, which is existential quantification over the set of deliverable frames
and a disjunction of either an accept-step or a reject-step. It can be seen in Figure
4.8.

29

4. Specification

accept frame:

extAcceptFrame(id , sn, pos)
∆

=

∧ acceptFrame(id , sn)

∧ env ′
= [env except

!.frames [id] = SubSeq(@, pos + 1, Len(@)),

!.frames [TNid [id]] =

if Len(@) ≥ Len(SubSeq(env .frames [id], pos , Len(env .frames [id])))

then tag [env .frames [TNid [id]],

SubSeq(env .frames [id], pos , Len(env .frames [id])),

env .frames [id][pos][SN], id]

else @]

∧ out ′
= out ∪ {env .frames [id][pos]}

∧ status ′
= “accept”

reject frame:

extRejectFrame(id , sn, pos)
∆

=

∧ rejectFrame(id , sn)

∧ env ′
= [env except

!.frames [id] = SubSeq(@, pos + 1, Len(@)),

!.frames [TNid [id]] =

if Len(@) ≥ Len(SubSeq(env .frames [id], pos , Len(env .frames [id])))

then tag [env .frames [TNid [id]],

SubSeq(env .frames [id], pos , Len(env .frames [id])),

env .frames [id][pos][SN], id]

else @]

∧ unchanged 〈out〉

∧ status ′
= “reject”

Figure 4.7.: Reception specified in TLA+

SysNext
∆

= ∃ 〈id , pos〉 ∈ deliverable :

∨ extAcceptFrame(id , env .frames [id][pos][SN], pos)

∨ extRejectFrame(id , env .frames [id][pos][SN], pos)

∨ extWait

Figure 4.8.: Definition of a redundancy mangement’s step

30

4.2. Specification of the environment

Reset sequence number:

In case of a failure of the sending ES, it may recover and start sending frames with
sequence numbers starting from zero again. This situation is modeled by simply
setting the sequence number to zero again. Figure 4.9 shows that everything else
is left unchanged. Unfortunately, the technical report of von Hanxleden and Gam-

reset of sequence number

reset
∆

= ∧ ∃ id ∈ networks : isAlive[id] = true

∧ env ′
= [env except !.sn = 0]

∧ unchanged 〈rm, out〉

∧ status ′
= “reset”

Figure 4.9.: Sequence number reset

bardella [27] does not specify how often such a reset of sequence numbers may
occur. Obviously, in the worst case frames with sequence number zero are sent
continuously.

Die:

Specification of the protocol AFDX [3]allows a single network connection to per-
manently fail or send mal-formed frames, though both exceptions are the same
to the redundancy management because it will not receive further frames from
the faulty network. The redundancy management should then operate with the
remaining network. Taking this action (Figure 4.10) disables a single network for
good and deletes all messages, which remain on that network.

if network is alive then network goes down

die(id)
∆

=

∧ isAlive[id] = true

∧ env ′
= [env except !.alive[id] = false, !.frames [id] = 〈〉]

∧ unchanged 〈rm, out〉

∧ status ′
= “die”

Figure 4.10.: Disable a single network

Pause:

Certainly the environment is allowed to do just nothing, more precisely it is as-
sumed that the environment cannot send infinitely many frames in finite time.
This progress in time can be used to decide about frames. Figure 4.11 shows the
specification of this step that is enabled if both sequences have the same length,
which models that delivery of twin frames consumes a negligible amount of time.
It leaves the environment unchanged, but “calls” the specified reaction of the re-
dundancy management.

31

4. Specification

time exceeds:

extWait
∆

=

∧ Len(env .frames [A]) = Len(env .frames [B])

∧ wait

∧ unchanged 〈env , out〉

∧ status ′
= “wait”

Figure 4.11.: Specification of wait action

Figure 4.8 gives a definition of a redundancy management’s step. To complete the
specification of possible actions, the behavior of the environment without the redundancy
management part must be defined and put together like in Figure 4.12. A not less

EnvNext
∆

= ∃ id ∈ networks : sendFrame ∨ die(id) ∨ reset

SysNext
∆

= ∃ 〈id , pos〉 ∈ deliverable :

∨ extAcceptFrame(id , env .frames [id][pos][SN], pos)

∨ extRejectFrame(id , env .frames [id][pos][SN], pos)

∨ extWait

A system-step is a step either of environment or of Redundancy Management

Next
∆

= SysNext ∨ EnvNext

Figure 4.12.: Step definition of environment without redundancy management

important task is to think about certain fairness conditions needed to reach a proper
working model. There are two premises that should be ensured:

1. The environment shall send infinitely many frames.

2. The redundancy management shall decide about every frame.

The above given specification of sending and receiving frames shows that weak fairness
is all that is needed. To send a frame there must be remaining capacity in both networks
and thus it must be ensured that eventually all frames are taken out of their sequences.
Obviously this can be reached with weak fairness, too, as at least one of the receiving
steps is enabled if at any of the networks contains a frame. Finally there must be a
defined set of initial states, from which the state graph is calculated with help of the

InitEnv
∆

= env ∈ [

sn : {0},

frames : [A : {〈〉}, B : {〈〉}],

alive : [A : boolean , B : {true}]

]

Figure 4.13.: Defining initial values of variables

32

4.2. Specification of the environment

next-state function and the specified fairness formula. Specification of initial states can
be seen in Figure 4.13 and the final specification formula for the environment is given
in Figure 4.14. Remember that the clause InitRM is the incorporation of redundancy
management’s initialization. If one is only interested in the pure specification, one could

Fairness
∆

= ∧WF〈rm, out , env , status〉(sendFrame)

∧WF〈rm, out , env , status〉(SysNext)

∧ SF〈rm, out , env〉(extWait)

Spec
∆

= Init ∧2[Next]〈rm, out , env , status〉 ∧ Fairness

Figure 4.14.: Specification formula for the environment

however, stop at this point or may jump to Section 4.3 for the specification of require-
ments. In order to enable machine verification of the later on specified requirements,
the given specification will be extended by some further information.

Enable Verification

As already stated, we have to face the fact that the proposed algorithms may fail some
properties under certain circumstances. To recognize such faulty behaviors, a system
must be introduced that, independently of the actual program state, marks pending
frames correctly, corresponding to their status as either “normal”, “redundant” or “old”,
with the following denotations:

• A frame is considered to be “normal” iff

– no frame sent later to any network has yet been received and

– its twin frame has not yet been received.

• A frame is considered to be “redundant” iff

– its twin frame has already been delivered to the redundancy management.

• A frames is considered to be “old” iff

– it is not redundant and

– another frame, later sent to the networks, has already been delivered to the
redundancy management.

Therefore each frame gets another tag with initial tag “normal” resulting in a final frame
model shown in Figure 4.15. The next step is to find an easy algorithm to mark all
frames correctly with a minimum effort.

33

4. Specification

1 byte 1 byte 1 byte

Seq Network Status

Number ID Tag

Figure 4.15.: Final frame model

Description

For better comprehension of the explanation of the algorithm, some facts about the
representation of the networks are informally introduced. Each network is modeled as a
sequence of frames.

Definition 9. (Sequence Operations) For each sequence s it is:

1. Len(s) the number of elements in s

2. Tail(s) the sequence s without its first element

3. Head(s) the first value of sequence s, if s is not empty,

4. SubSeq(s , n,m) the sequence that contains all elements of s from position n to m

5. For sequences s1, s2, it is s1 ◦ s2 the concatenated sequence

The status of a frame, is one of the above described values “normal”, “redundant” or
“old”.The environment sends its frames to both networks in parallel and only if both
networks still have capacity to buffer another frame. Thus for a given frame f from
network N1 it is

1. decidable whether f ’s twin frame is still transient on N2, and

2. possible to find the position of f ’s twin frame in the sequence where it is located.

Let N1 be a non-empty network and f a frame in N1, located at n ∈ {1, . . . ,Len(N1)}.
It can be deduced that the twin frame of f is still pending on the second network N2 if
and only if

Len(SubSeq(N1, n,Len(N1))) 6 Len(N2). (4.1)

More precisely, given networks N1 and N2 with Len(N1) 6 Len(N2), we know that,
selecting frame at position 0 < k 6 Len(N1) from network N1, its twin frame on network
N2 is located at position l for which holds:

Len(SubSeq(N1, k ,Len(N1))) = Len(SubSeq(N2, l ,Len(N2))) (4.2)

Recall the definition of redundancy management’s steps, seen in Figure 4.8. Every frame
is given as a tuple of its network descriptor and the position in the network’s sequence.
That is all one needs to mark frames correctly, which means that all frames sent logically
before the actually received frames get marked as “old” and its twin frames, if it is still
transient, gets marked as “redundant”. Subsequently Figure 4.16 adheres to a TLA+-like
syntax and gives the marking algorithm in pseudocode.

34

4.2. Specification of the environment

procedure tag(s1, s2 : Sequence)
IF Len(s1) 6 Len(s2)
THEN

IF status(Head(s2)) = r THEN tag(s1,Tail(s2))
ELSE status(Head(s2)) ← o;

tag(s1,Tail(s2))
ELSE status(Head(s2)) ← r

Figure 4.16.: Marking algorithm in pseudocode

Correctness Proof

Proof. I will give a proof of the described algorithm above using assertional reasoning.
Foundations and methods for proving sequential and concurrent programs can be found
in books from de Roever [11] and Apt [2].

I will follow Floyd’s Inductive Assertion Method for Transition Diagrams [13][25], in
detail described by de Roever [11]. A transition diagram is a tuple (L,T , s , t), where L
denotes the finite set of locations, T is the finite set of transitions, represented by tuples
(l , c → f , l ′) with l , l ′ ∈ L, c : Σ → Bool , f : Σ → Σ and s , t ∈ L as entry- and exit

location. Subsequently (l
c/f−−→ l ′) will be used as an abbreviation for (l , c → f , l ′). Let

P be the marking algorithm and build a transition diagram that holds

P ≡ ({s , l , t}, {(s c0/f0−−−→ l0), (s
c1/f1−−−→ l0), (s

c3/f3−−−→ t), (l0
c2/f2−−−→ s), (l0

c3/f3−−−→ t)}, s , t), (4.3)

where

• c0(σ) = true iff (s1 < s2) ∧ (status(Head(s1)) = n),

• c1(σ) = true iff (s1 < s2) ∧ (status(Head(s1)) 6= n),

• c2(σ) = true iff s1 > s2,

• c3(σ) = true iff s1 = s2,

• f0(σ) = (σ : s2, s3, s4 7→ Tail(σ(s2)), σ(s2),Append(σ(s4), (sn(Head(σ(s2)))), o)),

• f1(σ) = (σ : s2, s3, s4 7→ Tail(σ(s2)), σ(s2),Append(σ(s4),Head(σ(s2)))),

• f2(σ) = (σ),

• f3(σ) = (σ : s2 7→ 〈(sn(Head(σ(s2))), r)〉 ◦ Tail(σ(s2))).

I use s1 > s2 for sequences s1, s2 as an abbreviation for Len(s1) > Len(s2) and so on.
Figure 4.17 shows the graphical transition diagram that is much better to understand.

35

4. Specification

s

t

l0s1 < s2

→ s2 := 〈(sn(Head(σ(s2))), r)〉 ◦ Tail(σ(s2))

s1 = s2s1 = s2
→ s2 := 〈(sn(Head(σ(s2))), r)〉 ◦ Tail(σ(s2))

status(Head(s1)) 6= n ∧ s1 < s2

→ s3 := σ(s2);

status(Head(s1)) = n ∧ s1 < s2
→ s3 := σ(s2);

s4 := Append(σ(s4), (sn(Head(σ(s2))));
s2 := Tail(σ(s2));

s4 := Append(σ(s4), (sn(Head(σ(s2)))), o));
s2 := Tail(σ(s2));

Figure 4.17.: Transition Diagram for marking algorithm

A specification for program P is given by a pair of logical predicates 〈φ, ψ〉, where
φ denotes the precondition and ψ the postcondition. Correctness of P is checked with
regard to a this tuple 〈φ, ψ〉. The next steps are:

1. find suitable pre- and postconditions,

2. define assertions for every location l ∈ L,

3. show inductiveness of the chosen assertions and

4. finally prove success and convergence.

It is possible to decide whether the twin frame of the actually received frame is still
transient on the other network. This decision is straightforward. With the argumenta-
tion above the twin frame of a frame f at position k from a non-empty network N1 is
still not delivered yet if and only if Equation 4.1 is satisfied. Moreover, no frame has to
be marked as “old” if Equation 4.1 is not true. Thus we define our precondition as

φ = {s1 6 s2} (4.4)

The postcondition shall state the correctness condition. It is designated that all frames
sent before the actually received frame and not already marked must get a new tag.
Let us again consider non-empty networks N1 and N2. Assume a frame f at position
k < Len(N1) 6 Len(N2)) to be from network N1. The frames sent before f are all frames
ahead of f in network N1 plus all frames ahead of f ’s twin frame in N2. Since all frames

36

4.2. Specification of the environment

ahead of f are considered lost, one has to take care of frames in N2. The number of
frames to be marked can be given by

n = Len(SubSeq(N2, l ,Len(N2)))− Len(SubSeq(N1, k ,Len(N1))), (4.5)

where l is the position of f ’s twin frame in N2. Hence the marking algorithm shall tag n
frames. None of these frames should be tagged as “normal”. Additionally the algorithm
must tag the twin frame as “redundant”. In summary, ψ is given by

ψ ={s1 = s2

∧ status(Head(s2)) = r

∧ s4 = Subseq(N2, 1, l − 1)

∧ ∀ frame ∈ s4 : status(frame) ∈ {o, r}},

(4.6)

where we may assume that if l − 1 is less than one, the SubSeq operator returns an
empty sequence.

In the following I will give assertions for all locations l ∈ L and show their inductive-
ness.

Qs = s1 6 s2

Ql0 = s1 6 s2

Qt = (s1 = s2) ∧ (status(Head(s2)) = r)

(4.7)

To ease the correctness proof I want to give an invariant about elements of the s4, which
contains the marked frames. The invariant is

inv = ∀ frame ∈ s4 : status(frame) ∈ {o, r}, (4.8)

and its proof is trivial, because there are only two transitions that append frames to s4.
The first transition is f0 guarded by c0, so the status of first frame from s2 is “normal”
and function f0 appends this frame to s4 with setting its status to “old”. The second way
is f1 guarded by c1. Since c1 ensures that first frame already has a status tag equal to o
or r , the invariant holds.

According to our prove steps I will subsequently show inductiveness of the assertions,
that is for two assertion Ql0 ,Ql1 one has to prove that

|= Ql0 ∧ c → Ql1 ◦ f (4.9)

is valid. Applying this approach to the pair (Qs ,Ql0) we see that

|= Qs ∧ c0 → Ql0 ◦ f0

≡ |= (s1 6 s2) ∧ (s1 < s2) ∧ (status(Head(s1)) = n)

→ (s1 6 s2)

(4.10)

is obviously correct, since c1 trivially implies s1 < s2. The second transition from s to l0
preserves inductiveness as well. Similarly

|= Qs ∧ c3 → Qt ◦ f3

≡ |= (s1 6 s2) ∧ (s1 = s2)

→ (s1 = s2) ∧ (status(Head(s2)) = r)

(4.11)

37

4. Specification

is straightforward. Since trivially Ql0 ⇒ Qs holds and the transition function does
nothing to the variables, there is nothing to do for this step. Finally it must be shown
that

|= Ql0 ∧ c3 → Qt ◦ f3 (4.12)

holds. As Ql0 equals Qs it can be concluded from equation (4.11) that equation (4.12)
is valid too.

To complete the proof it must be shown that φ→ Qs , which is actually true as φ = Qs ,
and that Qt → ψ holds.

(s1 = s2) ∧ (status(Head(s2)) = r)

→ (s1 = s2)

∧ status(Head(s2)) = r

∧ s4 = Subseq(N2, 1, l − 1)

∧ ∀ frame ∈ s4 : status(frame) ∈ {o, r}

(4.13)

To prove Equation 4.13 only the last two clauses must be considered, because the first
two are equal to Qt . Furthermore the invariant defined in Equation 4.8 ensures that
the last clause holds and hence I just have to show that all frames located before f ’s
twin frame in sequence s2 were appended to s4. However this is quite obvious, since at
the time when each of these frame is considered in the algorithm, we have that s1 < s2

holds. This implies that s is entered and left again through one of its enabled outgoing
transitions (s

c0/f0−−−→ l0), (s
c1/f1−−−→ l0). Justified by the definitions of f0 and f1 each element

of sequence s2 located before f ’s twin frame will be appended to sequence s4.
Convergence in turn is proved straightforwardly, as (N, <) is known to be a well-

founded set and thus no infinitely descending sequence . . . < w2 < w1 < w0 wi ∈ N exists.
Consequently the sequence s2 cannot get shortened infinitely often by one, without
getting equal to s1. This though leads to the termination node. To be completely
consistent with Floyd’s Inductive Assertion Method, ranking functions could have been
defined for each location and it could have been shown that they decrease in every step,
but this is technical only and does not improve comprehension.

4.3. Requirements

So far a specification was built to check nearly every redundancy management algorithm
that can be specified in TLA+. The properties that the algorithms should satisfy will
be defined and expressed in TLA+, such that it can be checked afterwards if the im-
plication spec ⇒ prop holds for every specification spec of a redundancy management
algorithm and each property prop it should satisfy. First of all, a set of properties must
be defined. In a first approach, the informally given requirements from the technical
report [27] should be formalized and expressed in TLA+. It gives a large set of require-
ments concerning all parts of the End System. Of course, only the requirements on the

38

4.3. Requirements

redundancy management and the High Level Requirements are of interest. However, it
turned out that most of these properties were much too imprecise to be formulated in
TLA+. For example requirement 5 states:

The redundancy shall increase the macroscopic availability of the
avionics network.

This is much too coarse and would not help to distinguish the candidates, and moreover
it is quite challenging to reformulate this requirement in any formalism. Therefore, we
decided to build up a set of properties from scratch. The gist of the original require-
ments shall be preserved but refined enough to enable differentiation of the redundancy
management algorithms. This results in a set of 18 properties grouped into 3 parts.
Subsequently they are explained informally and formally – written in TLA+.

Safety

Traditionally an algorithm is examined to satisfy safety and liveness properties, stating
that it behaves correctly and does not block. This is not appropriate in our situation
as we do not expect any of the redundancy management algorithms to be completely
safe. That is why in our case safety properties were formulated relative to the behavior
of the environment. Subsequently the intention of each property is given textually and
afterwards formally in TLA+.
What does safety mean for a redundancy management? First of all, the redundancy
management shall not submit any redundant frames to the application layer. Secondly
the redundancy management shall preserve the order of frames and hence shall not sub-
mit old frames to the application layer. Each of these tasks can be weakened accordingly
to the benignancy of the environment.

1. Redundancy 1 : No redundant frame shall ever be submitted to the
application layer.

Redundancy1
∆

= ∀ frame ∈ out : frame[TAG] 6= “r”

This formula just checks that no frame in the set of submitted frame has a tag
that marks it as a redundant frame. It can be checked by TLC very efficiently
because it is a state predicate. This is a very strong requirement and it is doubtful
whether one algorithm will never submit a redundant frame.

2. Redundancy 2 : If the environment does not reset anymore, the redun-
dancy management stabilizes and works properly from that time on.

Redundancy2
∆

= 32¬[reset]v

⇒ 32(∀ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v

⇒ env .frames [id][pos][TAG] 6= “r”)

39

4. Specification

The premise of the TLA+-formula expresses that from some state σi on, all con-
secutive states σn → σm are neither a reset nor a stuttering step. If this holds the
redundancy management algorithm shall, after a finite time, only accept frames
which are not marked as redundant. This property and all other properties that
allow a certain time of bad functional behaviour show that the concept of a set of
submitted frames is not strong enough for all properties.

3. Redundancy 3 : If the environment does not reset anymore, the redun-
dancy management stabilizes and works properly, except for a finite
sequence of tolerated failures.

Redundancy3
∆

= 32¬[reset]v

⇒ 23(∀ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v

⇒ env .frames [id][pos][TAG] 6= “r”)

The premise equals the one above, but the implication is weakened. It is now
only expected that from time to time frames are accepted correctly. It is a known
and intuitive result from logic that 32p ⇒ 23p holds for every state predicate p.
See [23] for a detailed proof system which enables a straightforward argumentation.

Analogously to the above defined properties concerning redundancy we define the
properties concerning order as follows.

4. Order 1 : No old frame shall ever be submitted to the application layer.

Ordering1
∆

= ∀ frame ∈ out : frame[TAG] 6= “o”

5. Order 2 : If the environment does not reset anymore, the redundancy
management stabilizes and preserves order from that time on.

Ordering2
∆

= 32¬[reset]v

⇒ 32(∀ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v

⇒ env .frames [id][pos][TAG] 6= “o”)

6. Order 3 : If the environment does not reset anymore, the redundancy
management stabilizes and preserves order excepting for a finite se-
quence of frames.

Ordering3
∆

= 32¬[reset]v

⇒ 23(∀ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v

⇒ env .frames [id][pos][TAG] 6= “o”)

40

4.3. Requirements

Though it seems that the number of temporal formulas would dramatically increase the
time needed for model checking, it is still possible. Properties Redundancy 1 and Order
1 are state predicates and hence they can be checked while exploring the state space. It
is known that Redundancy 2 implies Redundancy 3 as well as Order 2 implies Order 3.
With these relations, depending on an initial guess either the one or the other property
could be checked first, hoping that the known implications will make a second check
superfluous. The last properties about redundancy and ordering can be checked quite
fast since behavior of the environment is limited to non-reset-step, which clearly reduces
the state space.

Liveness

Of course the redundancy management algorithms shall not deadlock as long as it re-
ceives frames from its environment. More specifically:

1. Liveness: Each frame that is delivered to the redundancy management
will be either accepted or rejected.

Liveness
∆

= ∀ 〈id , pos〉 ∈ deliverable :

∨ enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v

∨ enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v

It is expected that all algorithms will satisfy this property as they are all of type:
if condition = true then accept else reject, which implies that there exists a
unique decision for each frame. That is why we do not mind that our formula is
stronger than needed as this formula reasons about all frames and not only the set
of received frames. It is enough to know that the Liveness-formula implies absence
of deadlocks.

Quality

Requirement 4 from von Hanxleden and Gambardella [27] states:

The redundancy shall not increase the availability of a single net-
work, but it shall maintain it. In other words, it shall not increase
the number of frames lost that would be obtained with one of two
networks normally running and alone.

This is a difficult, but important demand. Assume a fast but unreliable, hence lossy
network a and a slower, completely reliable network b. It follows that an algorithm needs
to use buffering to solve this problem. Buffering is considered harmful since it produces
too large delays. So the upcoming gradation shall be a more realistic estimation for the
performance of the algorithms.

1. Quality 0 : If only one network is connected to the redundancy manage-
ment, all received frames are forwarded

41

4. Specification

Quality0
∆

= 2(∀ id1, id2 ∈ networks : isAlive[id1] ∧ ¬isAlive[id2])

⇒ 2(∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v
)

This is an obvious requirement if there should be a chance to satisfy the require-
ment from the original paper. If the redundancy management receives only frames
from one network, the whole ES shall behave as with only one network running
alone.

2. Quality 1 : If both networks are alive and at least one member of a
Twin Frame reaches the redundancy management, one member gets
submitted.

Quality1
∆

= ∀ id ∈ networks , pos ∈ (1 . . MCFL) :

∧ isAlive[id]

∧ isAlive[TNid [id]]

∧ 〈id , pos〉 ∈ deliverable

∧ enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v

⇒ ∃ frame ∈ out : frame[SN] = env .frames [id][pos][SN]

Quality 1 is equivalent expression to the original requirement. It is easier to
formalize the equivalent expression, that if a frame gets rejected, its twin frame
has already successfully passed the redundancy management algorithm.

3. Quality 2 : If both networks are alive, at least one member of a Twin
Frame reaches the redundancy management and this frame is neither
redundant nor old, it gets submitted.

Quality2
∆

= ∀ id ∈ networks , pos ∈ (1 . . MCFL) :

∧ isAlive[id]

∧ isAlive[TNid [id]]

∧ 〈id , pos〉 ∈ deliverable

∧ enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v

∧ env .frames [id][pos][TAG] = “n”

⇒ ∃ frame ∈ out : frame[SN] = env .frames [id][pos][SN]

This weakened version claims that frames that are neither redundant nor old must
be accepted. This is the minimal attribute a good algorithm should have.

4. Quality 3 : If the environment does not reset anymore, Quality 2 holds.

Quality3
∆

= 32¬[reset]v ⇒ Quality2

This property should be satisfied by each algorithm, as we restrict the possible
behaviors of the environment such that eventually forever no further reset-steps
occur.

42

4.3. Requirements

5. Reset : The redundancy management algorithm is expected to stabilize
after a reset of sequence numbers.

Reset1
∆

= 32(¬[reset]v ∧ ∀ id ∈ networks : isAlive[id])

⇒ 23(∃ 〈id , pos〉 ∈ deliverable :

〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v
)

We want the redundancy management to work properly after a reset of sequence
numbers. Since both networks may be operating, we cannot check for more than
acceptance of frames. This does not guarantee that the reset leads not to additional
unwanted rejections.

Availability

The goal of redundancy is to raise the availability of a system by duplicating parts of
a system. In our case communication is done over multiple networks, since one single
network is not reliable enough. The Quality requirements state about availability of the
system in case of both networks operating. Now the case is considered that one network
dies. This is by far the most important part of the properties. Redundancy is used to
remain operating in presence of partial failures. These properties tell us how good an
algorithm serves this task and finally enables a final decision whether this algorithm is
a feasible choice.

1. Avail 1 : If one network fails, all consecutive frames of the remaining
network are accepted.

Avail1
∆

= ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])

⇒ (∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v
)

An algorithm that satisfies this property would be a real good choice (unless it
fails all other requirements). But it seems very likely that to satisfy this formula
the redundancy management must be able to detect whether a network is down.
This task, however, was explicitely moved to the Network Management.

2. Avail 2 : If one network fails and no reset-steps occur from that time
on, all consecutive frames of the remaining network are accepted.

Avail2
∆

= 2(∧2(status 6= “reject”)

∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])

⇒ (∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v
))

The situation is now less complicated due to the restriction of the environment’s
behavior, but the problem from above remains.

43

4. Specification

3. Avail 3 : If one network fails, after some time the redundancy manage-
ment stabilizes and all consecutive frames of the remaining network are
accepted.

Avail3
∆

= 32(∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))

⇒ 32(∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v
)

This property is much more likely to be fulfilled. Imagine the faster network dies
and the slower network delivers the messages. The first frames will be rejected
assuming that the faster one has already delivered them. Nevertheless once the
slower network delivers a frame with a sequence number higher than the last deliv-
ered by the fast network, all consecutive frames can be accepted if the redundancy
management works properly.

4. Avail 4 : If one network fails and no reset-steps occur from that time
on, Avail 3 holds.

Avail4
∆

= 32(¬[reset]v ∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))

⇒ 32(∀ 〈id , pos〉 ∈ deliverable :

¬enabled 〈extRejectFrame(id , env .frames [id][pos][SN], pos)〉
v
)

Just a simplification of Avail 3 as it can now be assured that eventually the
remaining network sends frames with sequence number equal or higher to the
last delivered by the faster network.

5. Avail 5 : If one network fails, forever frames of the remaining network
gets accepted.

Avail5
∆

= 32(∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))

⇒ 23(∃ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v
)

Avail5 allows the redundancy management to reject up to SN CNT − 2 or 2n − 2
consecutive frames, assuming that sequence numbers are in {0..2n − 1} and n ∈
{0, . . . , 8}. Algorithms that fail avail5 may observe a behaviour where, from a
certain point on, no frame will be accepted.

6. Avail 6 : If one network fails and no reset-steps occur from that time
on, Avail 5 holds.

Avail6
∆

= 32(¬[reset]v ∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))

⇒ 23(∃ 〈id , pos〉 ∈ deliverable :

enabled 〈extAcceptFrame(id , env .frames [id][pos][SN], pos)〉
v
)

44

4.4. Specification of redundancy management

This is again just a relaxation of Avail 5.

There are many more properties of the given system specification that could be checked
with TLC. To find an optimal set of properties – if such a set exists – is beyond this
work.

4.4. Specification of redundancy management

This section gives the specifications of the proposed algorithms and compares the results
of model checking. Prior to a first specification, a general description of the redundancy
management will be given.

The redundancy management receives continuously frames from two networks after
each frame passed integrity checking. This is modeled by extending each frame with a
marker for its transmitting network. Figure 3.4 shows a complete frame, and Figure 4.3
shows a reduced version containing all information needed for the redundancy manage-
ment. Additionally a status tag explained in Section 4.2 is needed for model checking.
The resulting model of a frame is shown in Figure 4.15.

The specification of actions is trivial, because all the redundancy management can
do is to receive a frame and decide whether it should submit or discard it. Further
actions of the redundancy management will be introduced later, as it will be necessary
to incorporate behaviours that depend on time.

Some advice concerning model checking

Of course, it is a design goal to write specifications that can be model checked directly.
This is, however, sometimes difficult or even impossible. TLA+ provides more than one
way to improve model checking by reducing the state space. It is effective to define a
different view of the model, which is basically defining a new set of variables. Obviously,
less variables imply less states. Debugging variables, however, provide often the only way
to figure out what is happening. Moreover, using such a user defined view causes TLC
to generally omit variable names in counter examples. Second best effective method to
reduce the state space is to take advantage of the symmetry, and symmetry encounters in
the redundancy management algorithm’s specification, since it does not have any effect
to change networks A and B with each other. Unfortunately, in TLA+ a symmetry
function must have model values in domain and range and this is not suitable for various
reasons. To make up for the disadvantages I specified constraints to ensure that, e. g.,
network B is always alive. Of course, this does not save as many states as a complete
symmetry specification would, because as long as both networks are alive the model
checker permutes the networks for each possible interleaving. Last but not least, though
some algorithms differ only a little, I removed unneeded fields in records to reduce the
state space.

Next I had to choose concrete values for the specified constants. It turned out that
this is maybe the most awkward task. Even a single change could cause additional hours
for model checking. Three choices influence the model checking process the most. First

45

4. Specification

the choice of the set of sequence numbers. Experimental results on a dual Opteron PC
with a 64-bit Java Virtual Machine found SN CNT = 6 to be the maximum applicable.
Corollary 1 implies SNS MIN − 1 to be the maximum difference between sequence
numbers that still allows correct ordering. Therefore the remaining important constants
for MTF, which determines the length of the network sequences, and for MCFL, which
specifies the maximum consecutive frame loss, must be chosen in a way that:

• two frames f1, f2 both deliverable to the redundancy management from a sequence
N have sequence numbers that differ at most by SN HALF − 1, and

• two frames f1, f2, where f1 is from N1 and f2 from N2, have sequence numbers that
have a difference less than SN HALF .

Finally I chose to reduce the value for MCFL to one, which allows a consecutive frame
loss of one frame. However it makes no difference as even a consecutive frame loss of
two would still guarantee the closeness of sequence numbers that is assumed. Similarly
I set the value of MTF to 2, which allows to buffer two frames per network sequence
and results in a maximum sequence number skew of 2, less than SN Half = 3. Larger
values would cause longer model checking periods or even force me to enlarge the set of
sequence numbers, which I experienced to be very difficult.

To slightly automatize the model checking process, I wrote a TLC configuration file for
each property to check, regardless of mathematical relations among several properties
that might help to reduce the number of model checking processes. Of course, this
approach costs much more time than a standard approach of checking several properties
together. Nevertheless the standard approach can hardly be automated and requires
more human effort as is explained in Section 5.2.

Results of formal analysis
RMA1 RMA2 RMA3 RMA4 RMA5 RMA6 RMA7 RMA7* RMA8 RMA9 RMA11 RMA12 RMA13

Availability1 X X X X X X √ X X X X X X
Availability2 X X X X X X √ X X X X X X
Availability3 X X X X X X √ √ X X X X √
Availability4 X √ √ X √ √ √ √ √ X X √ √
Availability5 X X X X X X √ √ √ √ √ X √
Availability6 √ √ √ √ √ √ √ √ √ √ √ √ √
Liveness √ √ √ √ √ √ √ √ √ √ √ √ √
Order1 X X X X X X X X X X X X √
Order2 √ √ √ √ √ √ (X) √ √ X X X √
Order3 √ √ √ √ √ √ (X) √ √ X √ √ √
Quality0 √ X X √ X √ √ √ X X X X √
Quality1 X X X X X X √ X X X √ √ X
Quality2 X X X X X X √ X X X √ √ X
Quality3 √ √ √ √ √ √ √ √ √ X √ √ X

Redundancy1 X X X X X X X X X X √ √ √
Redundancy2 √ √ √ √ √ √ X √ √ √ √ √ √
Redundancy3 √ √ √ √ √ √ X √ √ √ √ √ √

Reset √ √ √ √ √ √ √ √ √ √ √ √ √

Figure 4.18.: Model checking results

Subsequently I will give specifications of the redundancy management algorithms as
far as possible ordered group wise, since the evolutionary development resulted in al-

46

4.4. Specification of redundancy management

gorithms, which often do not differ much in their specification. Figure 4.18 gives an
abridgement of the model checking results.

4.4.1. RMA1, RMA2 and RMA3

Section 3.3 gives a description for redundancy management algorithms RMA1, RMA2
and RMA3. It is obvious that these three approaches just differ in application of differ-
ent functions. Therefore, it definitely makes sense to give their specification as a group
and to compare their model checking results. As for the environment, I define necessary
constants, variables and standard modules that must be extended. Figure 4.19 shows
these definitions in TLA+. This first part is almost the same for all subsequent algo-
rithms and therefore I will mention the essential differences without giving the whole
specification again. Initially all variables have a special value denoted as noVal. This is

constants

networks , set of networks

SN CNT , SN MAX , SN HALF , maximum sequence number

A, B , SN , TAG just for convenience

variables

rm Redundancy Management

Figure 4.19.: Declaration of constants and variables

necessary as with initial values equal to zero for integer values, some properties cannot
be satisfied. The design of the proposed algorithms just demands initialization to special
values. Hence initialization for RMA1, RMA2 and RMA3 looks like in Figure 4.20.
The next step is to define adequate functions that allow the redundancy management

Initially:

noVal
∆

= SN CNT

The redundancy management:

- has not received any frame

- each ptn-value equals special value noVal

InitRM
∆

= rm = [

rsn 7→ noVal ,

paf 7→ noVal ,

ptn 7→ [A 7→ noVal , B 7→ noVal]]

Figure 4.20.: Definition of set of initial states

to decide about rejection or acceptance. The first three algorithms just use two differ-
ent functions for their decisions, namely the Sequence Number Skew and the Sequence
Number Offset. Both functions use subtraction, as defined for sequence numbers. So I
made subtraction on sequence numbers a function itself to follow the write things once

47

4. Specification

principle. Definitions of these functions can be found in Definitions 1, 3 and 5 and
their specification in TLA+ is shown in Figure 4.21. There is another auxiliary function

Some functions:

return the other twin-newtork-id

TNid [id ∈ networks]
∆

= if id = A then B else A

subtract SN

s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT) − SN HALF

subSN [s1, s2, noval , sn cnt , sn half ∈ Nat]
∆

=

if s2 = noval then 1

else ((s1− s2 + (sn half))%sn cnt)− (sn half)

Sequence Number Skew

SNS (f) =def RSN (f) −SN RSN (PTN (f))

snSkew [id ∈ networks , rsn ∈ Nat]
∆

=

subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

Sequence Number Offset

SNO(f) =def RSN (f) −sn PASN (f)

snOffset [rsn ∈ Nat]
∆

=

if rm.paf = noVal then SN CNT

else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

Figure 4.21.: SNS, SNO and subtraction on sequence numbers

named TNid, standing for Twin Network identifier. It just returns for a given network
identifier its twin network identifier.

Next the specifications of the accept and reject action will be given. Each of these
actions takes the sequence number field and the network tag of a frame as parameter.
The guards of each action are specified to equal a decision condition, which ensures
that only one action is enabled at the time, but also at least one is enabled. Finally
the TLA+-specification of both actions exemplarily for RMA3 is shown in Figure 4.22.
Finally I must define the allowed interleaving of action, the fairness formula and at
last give the specification formula. I decided to allow the redundancy management to
possibly receive a nearly arbitrary frame, which just has a known network identifier
and a sequence number from the possible range. Thus the specified algorithms may be
tested in a different environment than the specified one. That is a great advantage of
the modularized specification. It is designated that the redundancy management shall
decide about every frame it receives. Hence it is specified that if either the rejection or
the acceptance of a frames is enabled forever, it is eventually taken. This is equivalent to
specifying weak fairness for the RM NEXT formula. Figure 4.23 shows the specification
formula in context. It also includes the wait action, which the algorithms do not use to
decide about the frames. Hence it is continuously disabled.

Figure 4.18 reveals that these three approaches to resolve redundancy do not differ that

48

4.4. Specification of redundancy management

accept frame:

if frames are available AND (SNS (f) > 0 OR SNO(f) > 0)

then forward frame

acceptFrame(id , sn)
∆

=

∧ ∨ snSkew [id , sn] > 0

∨ snOffset [sn] > 0

∧ rm ′
= [rm except !.rsn = sn,

!.paf = sn,

!.ptn[id] = sn]

reject frame:

if frames are available SNS (f) < = 0 then reject frame

rejectFrame(id , sn)
∆

=

∧ snSkew [id , sn] ≤ 0

∧ snOffset [sn] ≤ 0

∧ rm ′
= [rm except !.rsn = sn,

!.ptn[id] = sn]

Figure 4.22.: Specification of accept and reject action

much. However at least there is a difference in property avail4, which exactly mirrors the
scenario described by Figure 3.5. Both improvements RMA2 and RMA3 overcome this
problem and guarantee that in case of a faulty network and no further reset of sequence
numbers, the redundancy management stabilizes and accepts all consecutively received
frames. Though RMA2 and RMA3 satisfy avail4 and therefor are an improvement
they both fail the property qual0. This concludes that if only one network is connected
to the ES the macroscopic availability with the redundancy management is worse than
without. The technical report from Hanxleden and Gambardella [27] considers this to
be unacceptable. Overall the first three algorithms suffer the same big problem. As
long as requirement avail5 is missed, there exists a worst case scenario, in which no
further frames get accepted by the redundancy management. Exemplary for all three
algorithms I want to explain the counterexample TLC gives for algorithm RMA3, as
this algorithm is supposed to be the best one of the first three proposals. TLC produces
a textual output that represents an infinite trace if the violated property is a temporal
formula and a finite trace to a specific state if the property is of the form 2P , where P
is state predicate.

Step of Redundancy Management

RM Next
∆

= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :

acceptFrame(id , sn) ∨ rejectFrame(id , sn)

The RM shall react on each frame

RM Fairness
∆

= ∧WF〈rm〉(RM Next)

RM Spec
∆

= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness

Figure 4.23.: Composed specification formula

49

4. Specification

The traces in Figures 4.24 and 4.25 give the following information:

• Lines 4 to 70 give a counterexample for the checked temporal property avail5.
Each counterexample is given as a set of states, where each state is specified as
complete definition of all variables.

• Lines 72 to 92 give the coverage statistics that shows the number of times each
action was taken. This can help debug a specification, because if an action is
never taken, this might indicate an error. In case of the redundancy management
this statistic also might give a hint of how many frames get accepted or rejected.
Nevertheless this information must be handled with care as the number of overall
reachable states may differ from algorithm to algorithm.

• The last line prints the number of generated states and states that are considered
to be different. Since TLC uses hash values to compare states, the situation might
occur that two states are considered equal, but they in fact are not. Though this
is very unlikely to happen if the checked properties are satisfied, TLC prints an
estimation of the likelihood that two different states were treated as equal. Finally,
if there are states left to check their number is printed.

The scenario shown by the counterexample is quite unlikely as it assumes infinitely
many consecutive resets of sequence numbers. Unfortunately, things can get even worse,
because if the reset occurs after an accepted sequence number closest to SNHALF a
reset at least every 214 milliseconds1 = 16, 384 seconds is enough to let the redundancy
management reject all subsequent frames. With the originally proposed value of 227 for
SNHALF , things would get dramatically worse, because in the worst case a reset step
every 37 hours may cause rejection of all frames. To summarize, the model checking
results for the first three algorithms, it can be concluded that

• their perception of redundant frames is good, since redundant frames are only
submitted to the application in presence of reset-steps,

• the preservation of order is as well as the perception of redundant frames,

• the per-frame loss is tolerable, because at least the first valid wins property is
satisfied, but

• the behaviour in presence of a single, faulted network is bad, as possibly no further
frames will be accepted in the worst case.

4.4.2. RMA4, RMA5 and RMA6

The next three algorithms are defined quite similarly to the first three algorithms. How-
ever each algorithm does not define when to accept a frame anymore, but when to reject
a frame. The justification for rejecting frames based on Sequence Number Skew and

1for BAG = 27 and SN HALF = 27

50

4.4. Specification of redundancy management

--Checking temporal properties for the current state space ...
Error: Temporal properties were violated. The following behaviour constitutes a counter -example:

STATE 1: <Initial predicate >
5 /\ out = {}

/\ rm = [rsn |-> 6, paf |-> 6, ptn |-> [A |-> 6, B |-> 6]]
/\ env = [sn |-> 0,

frames |-> [A |-> << >>, B |-> << >>],
alive |-> [A |-> TRUE , B |-> TRUE]]

10 /\ status = "initial"

STATE 2: <Action line 93, col 3 to line 106, col 65 of module ENV >
/\ out = {}
/\ rm = [rsn |-> 6, paf |-> 6, ptn |-> [A |-> 6, B |-> 6]]

15 /\ env = [sn |-> 1,
frames |->

[A |-> << [sn |-> 0, tag |-> "n"] >>,
B |-> << [sn |-> 0, tag |-> "n"] >>],

alive |-> [A |-> TRUE , B |-> TRUE]]
20 /\ status = "send"

STATE 3: <Action line 158, col 12 to line 161, col 64 of module ENV >
/\ out = {[sn |-> 0, tag |-> "n"]}
/\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 6]]

25 /\ env = [sn |-> 1,
frames |-> [A |-> << >>, B |-> << [sn |-> 0, tag |-> "r"] >>],
alive |-> [A |-> TRUE , B |-> TRUE]]

/\ status = "accept"

30 STATE 4: <Action line 84, col 6 to line 87, col 68 of module ENV >
/\ out = {[sn |-> 0, tag |-> "n"]}
/\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 6]]
/\ env = [sn |-> 1,

frames |-> [A |-> << >>, B |-> << [sn |-> 0, tag |-> "r"] >>],
35 alive |-> [A |-> FALSE , B |-> TRUE]]

/\ status = "die"

STATE 5: <Action line 75, col 10 to line 78, col 51 of module ENV >
/\ out = {[sn |-> 0, tag |-> "n"]}

40 /\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 6]]
/\ env = [sn |-> 0,

frames |-> [A |-> << >>, B |-> << [sn |-> 0, tag |-> "r"] >>],
alive |-> [A |-> FALSE , B |-> TRUE]]

/\ status = "reset"

Figure 4.24.: Counterexample for property avail5 checking RMA3 (beginning)

51

4. Specification

STATE 6: <Action line 158, col 12 to line 161, col 64 of module ENV >
/\ out = {[sn |-> 0, tag |-> "n"]}
/\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 0]]
/\ env = [sn |-> 0,

50 frames |-> [A |-> << >>, B |-> << >>],
alive |-> [A |-> FALSE , B |-> TRUE]]

/\ status = "reject"

STATE 7: <Action line 93, col 3 to line 106, col 65 of module ENV >
55 /\ out = {[sn |-> 0, tag |-> "n"]}

/\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 0]]
/\ env = [sn |-> 1,

frames |-> [A |-> << >>, B |-> << [sn |-> 0, tag |-> "n"] >>],
alive |-> [A |-> FALSE , B |-> TRUE]]

60 /\ status = "send"

STATE 8: <Action line 75, col 10 to line 78, col 51 of module ENV >
/\ out = {[sn |-> 0, tag |-> "n"]}
/\ rm = [rsn |-> 0, paf |-> 0, ptn |-> [A |-> 0, B |-> 0]]

65 /\ env = [sn |-> 0,
frames |-> [A |-> << >>, B |-> << [sn |-> 0, tag |-> "n"] >>],
alive |-> [A |-> FALSE , B |-> TRUE]]

/\ status = "reset"

70 STATE 9: Back to state 6.

The coverage stats:
line 105, col 17 to line 105, col 18 of module ENV: 622646
line 105, col 21 to line 105, col 23 of module ENV: 622646

75 line 106, col 6 to line 106, col 21 of module ENV: 622646
line 128, col 12 to line 135, col 83 of module ENV: 398036
line 136, col 12 to line 136, col 50 of module ENV: 398036
line 137, col 12 to line 137, col 29 of module ENV: 398036
line 143, col 12 to line 150, col 83 of module ENV: 457301

80 line 151, col 23 to line 151, col 25 of module ENV: 457301
line 152, col 12 to line 152, col 29 of module ENV: 457301
line 76, col 13 to line 76, col 39 of module ENV: 1262380
line 77, col 24 to line 77, col 25 of module ENV: 1262380
line 77, col 28 to line 77, col 30 of module ENV: 1262380

85 line 78, col 13 to line 78, col 29 of module ENV: 1262380
line 81, col 6 to line 83, col 38 of module RMAG1: 398036
line 85, col 9 to line 85, col 68 of module ENV: 631190
line 86, col 20 to line 86, col 21 of module ENV: 631190
line 86, col 24 to line 86, col 26 of module ENV: 631190

90 line 87, col 9 to line 87, col 23 of module ENV: 631190
line 91, col 6 to line 92, col 37 of module RMAG1: 457301
line 96, col 6 to line 104, col 65 of module ENV: 622646

3371555 states generated , 685162 distinct states found , 120816 states left on queue.

Figure 4.25.: Counterexample for property avail5 checking RMA3 (end)

52

4.4. Specification of redundancy management

Sequence Number Offset were given in Section 3.3. Subsequently I will give parts of the
new specifications that differ from the shown above specifications.

Frames get now rejected if the decision functions return values in a negative range.
The lower bound of this range depends on the maximum difference of sequence numbers
and according to Section 4.2 on the constant MTF. Moreover, the absolute value of the
lower Bound equals MTF, which suggests utilization of −MTF as boundary. Therefore
all three specifications contain a further constant SNS MIN . Almost all of the rest of

constants

networks , set of networks

SN CNT , SN MAX , SN HALF , maximum sequence number

SNS MIN , lower bound of saequence number skew

A, B , SN , TAG just for convenience

Figure 4.26.: Additional constant SNSMIN

the specification stays the same. Only the guards of the accept and reject step must be
changed accordingly. This is shown in Figure 4.27. Algorithms RMA4, RMA5 and

acceptFrame(id , sn)
∆

=

∧ ∨ snSkew [id , sn] /∈ (− SNS MIN . . 0)

∨ snOffset [sn] /∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.paf = sn,

!.ptn[id] = sn]

rejectFrame(id , sn)
∆

=

∧ snSkew [id , sn] ∈ (− SNS MIN . . 0)

∧ snOffset [sn] ∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.ptn[id] = sn]

Figure 4.27.: Accept und reject steps defined for RMA6.

RMA6 use the same functions to decide about frames, with the difference that they
take a less conservative approach and define premises for rejection instead for acceptance
of frames. So it is not a surprising result that, though each of these redundancy man-
agement algorithms handles more problematic scenarios than its counterpart of the first
three algorithms, the overall performance of these redundancy management algorithms
is almost the same as of RMA1, RMA2 and RMA3. The change from defining accep-
tance conditions to rejection conditions has a single effect on RMA6 with the property
qual0. It is now satisfied in contrast to RMA3 (see Figure 4.18 on page 46).

4.4.3. RMA7

This algorithm is quite special, because though it uses mainly known concepts for its
decisions, it is quite efficient. Figure 4.18 shows that it is model checked twice with

53

4. Specification

different results. Section 3.3, page 20 gives the definition of the Sequence Number Incre-
ment (Definition 7) that is for consecutively received frames f1, f2, the Sequence Number
Increment is

SNI (f2) =def RSN (f2)−SN RSN (f1).

Taking solely this definition, there is no information about the networks where f1 and f2
come from, and hence there is no reason to consider them in the definition. Following
this approach, once a frame gets accepted, we have that the Previously Accepted Frame
obviously equals the last received frame used for the Sequence Number Increment, which
implies that for the next delivered frame f , SNI (f) = PASN (f) holds . Consequently
the boolean formula

SNI (f) > 0 and SNS MIN 6 SNO(f) 6 0

is false and stays false for all consecutive frames. If one assumes that initially the first
frame gets accepted, it is obvious that no frame will ever be rejected. Of coursse such an
redundancy management algorithm is nonsense and Figure 3.11 shows an example ba-
haviour that justifies to assume the following slightly different definition of the Sequence
Number Increment :

Definition 10. (alternative Sequence Number Increment) For consecutively received
frames f1, f2 on the same network N , the Sequence Number Increment is

SNI (f2) =def RSN (f2)−SN RSN (f1).

Considering this definition, without writing an extra function for the alternative Se-
quence Number Increment, the accept and reject actions for RMA7 are specified below.
Figure 4.18 shows the results for both variants of RMA7, where RMA7* denotes the
algorithm with the SNI (f) defined as in Definition 10 on page 54. Two results for
the original algorithm are set in brackets, since TLC finds no error, but that is only
technical, because if all frames get accepted, then all twin frames will be marked as
“redundant” and no frame as “old”. If I would have given precedence to the “old” status,
both properties would be violated. The original algorithm definition is most probably
caused by an imprecise definition of the Sequence Number Increment, because the ex-
ample given for RMA7 uses the alternative definition given above, and this alternative
definition for the Sequence Number Increment makes RMA7* a very well performing
algorithm. Compared to the proposed algorithms RMA1 to RMA6, it satisfies the
same properties plus avail3 and avail5. Through satisfaction of avail5 it is guaranteed
that no behaviour of the environment exists such that the redundancy management re-
jects all subsequent frames, and avail3 even ensures that after a network failure the
redundancy management stabilizes and all consecutive frames of the remaining network
will be accepted. This seems to be the best possible result without compromising with
other properties. To satisfy avail1 or avail2 it needs buffering or violation of ordering
properties.

54

4.4. Specification of redundancy management

wait
∆

= ∧ false

∧ unchanged 〈rm〉

accept frame:

if frames are available AND SNS (f) > 0 then forward frame

acceptFrame(id , sn)
∆

=

∧ ∨ snIncrementAlt [sn, id] ≤ 0

∨ snOffset [sn] /∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.paf = sn,

!.ptn[id] = sn]

reject frame:

if frames are available SNS (f) < = 0 then reject frame

rejectFrame(id , sn)
∆

=

∧ snIncrementAlt [sn, id] > 0

∧ snOffset [sn] ∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.ptn[id] = sn]

Figure 4.28.: Accept and reject action of RMA7

4.4.4. RMA8

RMA8 is the first algorithm that introduces time as decision criteria. Justification for
that is the knowledge about the maximum delay of message delivery Skew Max. Using
this concept, RMA8 combines the aforementioned concept of Sequence Number Offset,
with the restriction that if more time than Skew Max has elapsed, the next frame gets
definitely submitted. An naïve approach would be to introduce a further action wait in
the environment, with the following consequences:

• Each frame must get another boolean tag that indicates whether it will be delivered
before or after Skew Max time expires.

• The definition of the set of deliverables will be more complicated, because a frame
that shall be delivered with an expired time stamp followed by a frame with positive
time stamp may cause problems if the second frame gets delivered and the frame
afore is considered lost. To handle this the set of deliverables could either give
priority to frame with exceeded time stamps or could manipulate frames with
positive time stamp if due to their delivery frames with exceeded time stamp get
discarded. Nevertheless this seems to be an ugly solution.

• The accept and reject actions must be updated to reset the timer variable each
time they process a frame.

• The resulting new environment is no longer compatible with the already available
specifications of RMA1-7.

55

4. Specification

These changes would be neither trivial nor would the complexity be approximately the
same.
A much better way is to adopt an approach that allows to still obtain a single environ-
ment, with some minor restrictions, for all redundancy management algorithms. A wait
action is added to the specification of RMA8 and the accept and reject specifications
are adapted accordingly. The new wait step can be seen in Figure 4.29, and respectively
the changed accept and reject steps are shown by Figure 4.30. The wait actions must

wait
∆

=

∧ rm.time = true

∧ rm ′
= [rm except !.time = false]

Figure 4.29.: Specification of wait step for RMA8

acceptFrame(id , sn)
∆

=

∧ ∨ rm.time = false

∨ snOffset [sn] /∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.paf = sn,

!.time = true]

rejectFrame(id , sn)
∆

=

∧ rm.time = true

∧ snOffset [sn] ∈ (− SNS MIN . . 0)

∧ rm ′
= [rm except !.rsn = sn,

!.time = true]

Figure 4.30.: Adapted specifications of accept and reject actions

finally be added to the environment specification as well as to the next state definition
of the redundancy management algorithm.

RM Next
∆

= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :

acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

An action extWait is added to the environment specification that just contains the
specified wait formula of the redundancy management algorithm’s specification and the
update information for the environment. But there is still another gap in the specifica-
tion of the wait action. Up to now a wait step may occur at every time even in between
the delivery of two twin frames. That would imply the acceptance of redundant frames,
but we know that two twin frames must be delivered to the redundancy management
within Skew Max time has been elapsed. Therfore this action must be guarded by the
check that both sequences contain an equal number of frames, which implies that only
complete twin pairs remain on the networks. The fairness formula actually guarantees
that if frames are deliverable, they eventually will be delivered. Nevertheless we want

56

4.4. Specification of redundancy management

extWait
∆

=

∧ Len(env .frames [A]) = Len(env .frames [B])

∧ wait

∧ status ′
= “wait”

∧ unchanged 〈env , out〉

Figure 4.31.: Defintion of extWait for RMA8

each decision to represent some advance in time. This implies that there cannot be
an infinite chain of rejections, because tRECV (f) − tRECV (PAF (f)) will eventually ex-
ceed Skew Max. In our specification we equivalently want eventually to take the wait
action, which implies acceptance of the next frame. For the extWait action actually
strong fairness is required, because it will not be enabled continuously, while for the
wait action specified for the redundancy management weak fairness is sufficient. The

Fairness
∆

= ∧WF〈rm, out , env , status〉(sendFrame)

∧WF〈rm, out , env , status〉(SysNext)

∧ SF〈rm, out , env〉(extWait)

Figure 4.32.: New fairness specification for the environment

changes made to the environment specification at a first glance destroy compatibility
with redundancy management algorithms RMA1 to RMA7. There are three ways to
handle this problem.

1. The easiest but dirty solution is to comment extWait out from the next step formula
and the fairness formula. This should work properly, however, there is no longer a
unique environment for all redundancy management algorithms. This approach has
its advantage though, as it does not increment the complexity of model checking
for algorithms that do not use time for their decisions.

2. The second possibility is to extend all redundancy management algorithm’s speci-
fications with a wait action and an accordant record field in the rm variable. These
changes will not influence any model checking results, however, they will increase
the time model checking needs because of more interleaving.

3. A third approach mixes both afore mentioned solutions. Define for all redundancy
management algorithms a wait action and a new single variable time. Furthermore
define a new view that excludes the time variable from model checking. This
modified view could be used if necessary. This approach is more complex, but
combines advantages of solutions one and two.

It is a matter of taste which way one prefers.

57

4. Specification

4.4.5. RMA9

RMA9 defines even more rigorous acceptance conditions. Since RMA9 accepts frames
only if they a sequence number incremented by one or after time out, RMA9 does not
follow the first valid wins strategy. That is, however, not the only shortcoming, because
with only one network alive there exists a trace where RMA9 accepts only one frame
every Skew Max time. Therefor it is definitely no good choice. The only difference in
the specification are the slightly different guards for the accept and reject steps.

4.4.6. RMA11 and RMA12

RMA11 and RMA12 introduce the concept of the Previously Accepted Sequence Num-
ber Set2 based on the observation that a maximum difference between the delivery of
both twin frames is bounded, and hence the maximum difference of received sequence
numbers is bounded. The new specification therefore just defines the set of previously
accepted frames. The actual specification of the acceptance step then appends the
currently received sequence number to the PASN sequence and deletes its head if the
sequence length reached its desired maximum. Figure 4.33 shows a function that checks
if a certain sequence number is equal to a sequence number in the PASN set and Fig-
ure 4.34 shows the accordant specification of the accept and reject action. RMA12

inside[sn ∈ Nat , queue ∈ Seq(Nat)]
∆

=

if queue = 〈〉 then false

else

if Head(queue) = sn then true

else inside[sn, Tail(queue)]

Figure 4.33.: Function that checks if sequence number is in the PASN set

acceptFrame(id , sn)
∆

=

∧ inside[sn, rm.pasn] = false

∧ rm ′
= [rm except !.pasn = if Len(rm.pasn) < SNS MIN

then Append(rm.pasn, sn)

else Append(Tail(rm.pasn), sn)

]

rejectFrame(id , sn)
∆

=

∧ inside[sn, rm.pasn] = true

∧ unchanged 〈rm〉

Figure 4.34.: Adapted accept action for RMA11

just uses the improvement first introduced by RMA8 that after Skew Max time has
2Actually it is a bounded FIFO queue, but I will stick to the notation used by von Hanxleden and

Gambardella [27]

58

4.4. Specification of redundancy management

passed, a received frame can neither be the redundant copy of the last accepted frame
nor a frame that was sent before the last accepted one. There is no need to give any
part of this specification as it would not reveal new insights.

4.4.7. RMA13

In Section 3.3 when the redundancy management algorithms were introduced, RMA13
was already considered to be a good algorithm, although it is very simple. Maybe the
only weakness of RMA13 is the per-frame availability. Consider an unreliable network
that is chosen first and a reliable second network. The algorithm will continuously
discard all frames from the second network and keeps accepting the few frames from
the first network. Beside this, RMA13 is the only algorithm that perfectly handles
redundancy and order, and it has a good availability in case of a single faulted network.
Its specification is quite simple, too. Figure 4.35 shows this specification.

ACTIONS:

exceed time bound:

wait
∆

= ∧ rm.time = true

∧ rm ′
= [rm except !.time = false]

accept frame:

if frames are available AND SNS (f) > 0 then forward frame

acceptFrame(id , sn)
∆

=

∧ ∨ rm.pan = “all”

∨ id = rm.pan

∨ rm.time = false

∧ rm ′
= [rm except !.pan = id ,

!.time = true

]

reject frame:

if frames are available SNS (f) < = 0 then reject frame

rejectFrame(id , sn)
∆

=

∧ rm.pan 6= “all”

∧ id 6= rm.pan

∧ rm.time = true

∧ rm ′
= [rm except !.time = true]

Figure 4.35.: Main part of RMA13’s specification

59

4. Specification

60

5. Results

This chapter provides the most essential results and conclusions about supporting evolu-
tionary development of algorithms by formal analysis and formal reasoning. Conclusions
about specifying systems with TLA+ and about usage of TLC to check a quite large
set of properties are provided as well.

5.1. Examining the algorithms

Of course, model checking a large set of algorithms and properties has its limitations.
There is no way to give reliable conclusions of how many frames one algorithm accepts
and rejects. The algorithms RMA2 and RMA3 both satisfy and miss the same prop-
erties, however, many scenarios can be thought of where one accepts more frames than
the other (see Figure 3.6 on page 17). Each model may exhibit a different number of
states and thus the coverage statistics cannot be taken for argumentation. Nevertheless,
I tried to give a wide range of property classes, which incorporate many critical behav-
iors and allow reasonable statements about the quality of the redundancy management
algorithms.

The algorithms RMA1 to RMA6 differ only little. Each of them, however, is able
to treat a certain scenario correctly that the afore mentioned algorithms would fail.
Although each of these algorithms is a minor improvement for several scenarios, the big
picture is still the same. It seems that solving definite situations is no good approach
to solve general problems. If any redundancy management algorithm fails property
avail5 for example, a behaviour of the environment exists that permits acceptance of
any further frame. Such a situation would be catastrophic, as the application beyond the
redundancy management would not receive any more frames. Scenarios like this must be
avoided under all circumstances. Figures 3.5 to 3.10 on pages 16 to 20 show behaviors,
where each algorithm reveals an unacceptable behavior, however, none of these bad
traces describes an infinite trace that violates avail5. Using formal methods and writing
a formal specification supports the developer to clearly express what an algorithm must
and what it must not do. Nevertheless, checking an redundancy management algorithm
manually against a certain property, expressed as a TLA+ formula, is cumbersome. It
may be manageable if the property is failed. At least such a proof cannot be established
by exhaustive testing like model checkers do.

The first algorithms show perfectly that without formal analysis, algorithms that
should be an improvement are in fact not. Though already unacceptable, we can even
observe that algorithms were spuriously considered to behave worse or at least not
better than others. Take for instance algorithm RMA7*, which uses the alternative

61

5. Results

definition of the Sequence Number Increment (Definition 10), and is considered not
acceptable as it may submit redundant frames. Having a look at Figure 4.18 obtains
that though RMA7* maybe accepts more redundant frames than RMA1-6, none of
these algorithms satisfies a property, concerning redundancy and ordering, that RMA7*
does not. Therefore based on these properties, it cannot be concluded that RMA7*
deals worse with redundant and outdated frames than RMA1-6. As another example
take the evolution from RMA1 to RMA2 and RMA3. Both improved algorithms
only solve certain scenarios correctly that RMA1 does not. But both fail the property
qual0, which is satisfied by RMA1, and therefore it is not clear whether they are really
improvements of the first proposal.

Moreover formal specification and model checking simplifies recognition of an algo-
rithm’s weak point. RMA7* is considered to accept too many redundant frames.
Though this weak point cannot be affirmed by the so far defined properties from RMA11
and RMA12, it can be obtained that the concept of rejecting frames, with a sequence
number that was seen a short time before, discards redundant frames properly and does
not seem to lead to unwanted rejections. Hence RMA7* could be extended in a way
that a frame gets rejected if and only if the SNI is positive while the SNO is redundant
and the actual sequence number is in the set of previously accepted sequence numbers.

Finally, the question arises whether the specification of the algorithms and the model
checking with TLC allows us to choose a certain algorithm. Obviously the best can-
didates are RMA7* and RMA13. Both increase the macroscopic availability to an
acceptable level while not failing too many other properties. RMA13 has the advan-
tage that it never submits redundant or outdated frames. It suffers, however, a poor
per frame availability. RMA7* instead has an acceptable per frame loss, but does not
handle redundancy and order correctly under all circumstances. I tend to take RMA7*
as the final choice, because it does not relay on an explicit time bound as a fall back
criteria and has a much better per frame availability. The properties RMA7* fails are
not critical, which means that an algorithm need not satisfy these properties to avoid
catastrophic behaviors.

5.2. Experiences with TLA+ and TLC

TLA+ is very suitable to specify the redundancy management algorithms. Though the
compact notations of TLA+ might be a little bit confusing at a first glance, they are very
practical and maintain a good readability. Moreover the concept of untyped variables
turned out to be not error-prone as expected and is very flexible. It is desirable to have
a little more flexibility in utilization of strings. Figure 5.1 shows an example where the
parameter of a function is used to refer to a field of a record. Hence this parameter must
be string, as there is no way to convert any other value into a string. Unfortunately,
TLC considers strings as non model values, even if they are assigned to constants. This
is annoying, because if symmetry functions cannot be used with string valued constants,
which leads to an increased complexity for model checking. Beside this, my experiences
with TLA+ were very good.

62

5.2. Experiences with TLA+ and TLC

module module1

extends Naturals

variables

sums

init
∆

= sums ∈ [sum1 7→ 0, sum2 7→ 0]

add(target)
∆

= sums ′
= [sums except ![target] = 1 + @]

spec
∆

= init ∧2[∃ target ∈ {“sum1”, “sum2”} : add(target)]〈sums〉

Figure 5.1.: Referring to a records field

In contrast, working with TLC was partly more complicated. Subsequently some
strange or even faulty aspects is explained.

1. TLC allows to check a wide range of expressible TLA+ properties, but not ar-
bitrary formulas. Temporal formulas that shall be checked with TLC and which
contain actions must be of the form 23A or 32A, where A denotes the action.
Lamport does not explain this decision in his book [18] and I do not have an idea
for this choice. The easiest work around for this problem is to introduce another
variable that records the actually taken action and to use this variable instead of
actions in the formulas. This should be easy to implement in TLC, too.

module constraint

extends Naturals , TLC

constant MAX

variable x

Constraint
∆

= x ≤ MAX

TypeInv
∆

= x ∈ (0 . . MAX)

Init
∆

= x = 0

Step
∆

= ∧ x ′
= x + 1

Spec
∆

= Init ∧2[Step]〈x〉

theorem Spec ⇒ TypeInv

Figure 5.2.: TLC reveals an error while checking the type invariance

63

5. Results

2. Several times in this work, the possibility of constraining infinite models was men-
tioned. Therfore, in Section 4.2 I could, or even should, specify the sending of
frames without bounding the capacity1 of the networks, and use a constraint to
restrict the actual length:

SeqConstraint
∆
= ∧ Len(env .frames .A) 6 MTF

∧ Len(env .frames .B) 6 MTF

This looks equivalent, but it turns out to be not. Each time TLC computes a
new state, it checks all formulas 2P , when P is a state predicate and afterwards
checks if the new state satisfies all constraint formulas. Hence a state that is
considered not reachable, because it violates a constraint formula, may lead to a
violation of an invariant. Figure 5.2 shows a small example where a single variable
is continuously incremented by one. The constraint should limit the value of x to
a certain maximum and the invariant shall check whether this maximum is not
exceeded. Checking this example with TLC yields an error, because the invariant
is violated in a state where x has a value larger than specified by the constraint
formula. Lamport explained in personal communication why this decision was
made:

We decided that TLC should do this because, if it has already computed
the state, it might as well check that state. [. . .] Constraints are a
method of preventing TLC from running too long on large or infinite-
state specifications; they are not part of the specifications.

I totally agree with this opinion, however, recognize some theoretical and practical
problems. Theoretically the problem arises that for a state predicate P

2P ⇔ (true ⇒ 2P)

is no longer valid. The left hand side is considered as an invariant and hence is
checked before the reachability of a state is determined. Complementary the right
side is considered as a temporal formula, which are only evaluated on reachable
states. Practically constraints may cause further complexity in model checking.
The specification of the redundancy management allows each sequence to buffer at
most MTF frames and this value must be less than SN HALF . Using constraints,
however, TLC would generate states where each sequence buffers MTF+1 frames,
maybe equal to SN HALF , which causes trouble with some invariants. Conse-
quently the minimal applicable value of SN HALF increases by one and accord-
ingly the value for SN CNT by two. Obviously this leads to a significant increment
of states and hence model checking time. I suggest to solve this problem by making
the order of checking invariants and constraints adjustable.

3. The next problem I encountered seems to be a minor bug of TLC. Figures 5.3 and
5.4 show a first module that defines two simple variables x and y , which get updated

1the action is only enabled if both sequences of frames have a length less than MTF

64

5.2. Experiences with TLA+ and TLC

module moduleA

extends Naturals , TLC

constants FACTOR

variables x , y

initA
∆

= ∧ x = 0

∧ y = 1

function1[n, m ∈ Nat]
∆

= n + (m ∗ FACTOR)

stepA
∆

= ∧ x ′
= function1[x , y]

∧ y ′
= y + 1

∧ Print(FACTOR, true)

spec
∆

= initA ∧2[stepA]〈x , y〉

Figure 5.3.: Module A

by action stepA. Thereby the value of x changes to the value of function1, which
contains a reference to the constant FACTOR. A second specification moduleB
instantiates moduleA and in its only action “executes” the action of moduleA. A
first try to check this with TLC returns the following error message:

Error: The identifier FACTOR is either undefined or not an operator.

Removing all references to FACTOR from function1 yields a checkable specifica-
tion, though FACTOR is still referenced by the Print statement, which correctly
prints the value of FACTOR each time it is evaluated. This is at least inconsis-
tent and seems to be a minor bug, which I worked around by passing all relevant
constants to the functions as additional parameters.

4. TLC allows to define a subset of variables, called a view, that is used to explore
the state graph. Typically only debugging values are excluded with a manually
defined view, to reduce the state space. Nevertheless, it is desirable that excluded
values are though evaluated and printed in counter examples, because that is what
debugging values are for. Furthermore, if a user defined view is used, TLC omits
all names of variables in counter examples. This forces the user to determine, from
existing field names or actual values, which value belongs to which variable.

5. Last but not least, it is inconvenient to check more than one temporal property
at the same time if it is likely that at least one of them will fail. TLC builds
a conjunction of all temporal formulas that shall be checked and if it gets false,
it returns a counterexample without any information, which property caused the
failure. Taking this approach, the user has to detect the formula, which was
violated, delete it from the TLC configuration file and restart TLC at the last

65

5. Results

module moduleB

extends Naturals

constants FACTOR

variables x , y , z

instance moduleA with FACTOR ← FACTOR

constraint
∆

= z < 100

initB
∆

= ∧ z = 0

∧ initA

stepB
∆

= ∧ z ′
= z + 1

∧ stepA

specFinal
∆

= initB ∧2[stepB]〈x , y〉

Figure 5.4.: Module B

checkpoint. This is not applicable for large sets of properties and a significant
probability for several properties to fail.

I experienced models where TLC produce more than one billion states, however, accept-
able performance is reached for few hundred million states. The probability of a state
collisions, i. e., the probability that two different states have the same hash value and
are mistakenly considered equal, lies between 10−6 and 10−4 for all checked properties.

5.3. Outlook

Behaviors of systems can be represented as a sequence of states. TLA+ specifications
describe what a system is supposed to do and each TLA+ specification can be translated
in a straightforward manner to an equivalent Mealy Machine. It is therefore possible
to translate such a Mealy Machine into an equivalent SyncChart. For deterministic
automaton this would directly allow us to simulate its behavior and to generate either
software or hardware to get a first implementation. The challenge of this transformation
would be the non determinism of TLA+ specifications and translating expressions of
quantified boolean logic. Translating a SyncChart into an equivalent TLA+ formula
could be even more worthwhile. This step would allow the developer to specify a wide
class of system properties, including temporal properties. A SyncChart can then be
translated into a TLA+ formula and checked against the specified properties. Such an
approach combines the flexibility in system design from SyncCharts with the ability
of TLA+ to specify temporal formulas and machine check them with TLC. I think,
however, that to enable this approach, TLC must be optimized to be able to check
systems with more than a billion states efficiently.

66

A. TLA+ specifications

The appendix contains all specifications written in TLA+.

67

1 module ENV

3 extends Naturals, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 MCFL, maximum number of consecutive frame loss

9 MTF , maximumb number of transient frames

10 A, B , SN , TAG just for convenience

12 variables
13 rm, Redundancy Management

14 env , Environment including the redundant networks

15 out , forwarded “frames”

16 status debugging

18 instance RMA11 with SNS MIN ← MTF load instance of RMA

20

21 TypeInvEnv ∆= env ∈ [
22 sn : (0 . . SN MAX),
23 frames : [A : Seq([sn : (0 . . SN MAX), tag : {“n”, “r”, “o”}]),
24 B : Seq([sn : (0 . . SN MAX), tag : {“n”, “r”, “o”}])],
25 alive : [A : boolean , B : boolean]
26]

28 TypeInvOut ∆= out ⊆ ([sn : (0 . . SN MAX), tag : {“n”, “r”, “o”}])

30 TypeInv ∆= TypeInvEnv ∧ TypeInvOut ∧ TypeInvRM

32

33 Initially:

35 The environment has:

36 - sequence numbers equal to zero

37 - empty frame queues

38 - two networks that can be alive or dead

40 InitEnv ∆= env ∈ [
41 sn : {0},
42 frames : [A : {〈〉}, B : {〈〉}],
43 alive : [A : boolean , B : {true}]
44]

46 Init ∆= InitEnv ∧ out = {} ∧ InitRM ∧ status = “initial”

48

49 ENVIRONMENT STATEMENTS

1

51 The set of frames that could be delivered to the RM

52 deliverable ∆= {〈id , pos〉 ∈ networks × (1 . . (1 + MCFL)) :
53 ∧ env .frames[id] 6= 〈〉
54 ∧ pos ≤ Len(env .frames[id])}

56 isAlive(id):

57 yields true iff network with identifier ’id’ is alive

59 isAlive[id ∈ networks] ∆= if env .alive[id] then true else false

61 reset:

62 reset of sequence number

64 reset ∆= ∧ ∃ id ∈ networks : isAlive[id] = true
65 ∧ env ′ = [env except !.sn = 0]
66 ∧ unchanged 〈rm, out〉
67 ∧ status ′ = “reset”

69 die(id):

70 if network is alive then network goes down

72 die(id) ∆=
73 ∧ isAlive[id] = true
74 ∧ env ′ = [env except !.alive[id] = false, !.frames[id] = 〈〉]
75 ∧ unchanged 〈rm, out〉
76 ∧ status ′ = “die”

78 sendFrame:

79 delivers a frame to each operating network

81 sendFrame ∆=
82 ∧ Len(env .frames.A) < MTF
83 ∧ Len(env .frames.B) < MTF
84 ∧ ∃ id ∈ networks : isAlive[id] = true
85 ∧ env ′ = [env except
86 !.frames = [
87 A 7→ if isAlive[A]
88 then Append(@.A, [sn 7→ env .sn, tag 7→ “n”])
89 else 〈〉,
90 B 7→ if isAlive[B]
91 then Append(@.B , [sn 7→ env .sn, tag 7→ “n”])
92 else 〈〉],
93 !.sn = (@ + 1)%SN CNT]
94 ∧ unchanged 〈rm, out〉
95 ∧ status ′ = “send”

97

98 Marks redundant and old frames

2

100 tag [seq1 ∈ Seq([sn : (0 . . SN MAX), tag : {“n”, “r”, “o”}]),
101 seq2 ∈ Seq([sn : (0 . . SN MAX), tag : {“n”, “r”, “o”}]),
102 val ∈ (0 . . SN CNT), id ∈ networks] ∆=
103 if Len(seq1) > Len(seq2)
104 then
105 if Head(seq1)[TAG] = “r” then 〈Head(seq1)〉 ◦ tag [Tail(seq1), seq2, val , id]
106 else 〈[sn 7→ Head(seq1)[SN], tag 7→ “o”]〉 ◦ tag [Tail(seq1), seq2, val , id]
107 else 〈[sn 7→ Head(seq1)[SN], tag 7→ “r”]〉 ◦ Tail(seq1)

110 extending instanced actions

112 ACTIONS:

113 time exceeds:

115 extWait ∆=
116 ∧ Len(env .frames[A]) = Len(env .frames[B])
117 ∧ wait
118 ∧ status ′ = “wait”
119 ∧ unchanged 〈env , out〉

121 accept frame:

123 extAcceptFrame(id , sn, pos) ∆=
124 ∧ acceptFrame(id , sn)
125 ∧ env ′ = [env except
126 !.frames[id] = SubSeq(@, pos + 1, Len(@)),
127 !.frames[TNid [id]] =
128 if Len(@) ≥ Len(SubSeq(env .frames[id], pos, Len(env .frames[id])))
129 then tag [env .frames[TNid [id]],
130 SubSeq(env .frames[id], pos, Len(env .frames[id])),
131 env .frames[id][pos][SN], id]
132 else @]
133 ∧ out ′ = out ∪ {env .frames[id][pos]}
134 ∧ status ′ = “accept”

136 reject frame:

138 extRejectFrame(id , sn, pos) ∆=
139 ∧ rejectFrame(id , sn)
140 ∧ env ′ = [env except
141 !.frames[id] = SubSeq(@, pos + 1, Len(@)),
142 !.frames[TNid [id]] =
143 if Len(@) ≥ Len(SubSeq(env .frames[id], pos, Len(env .frames[id])))
144 then tag [env .frames[TNid [id]],
145 SubSeq(env .frames[id], pos, Len(env .frames[id])),
146 env .frames[id][pos][SN], id]

3

147 else @]
148 ∧ unchanged 〈out〉
149 ∧ status ′ = “reject”

151

152 Step of Environment

153 EnvNext ∆= ∃ id ∈ networks : sendFrame ∨ die(id) ∨ reset

155 SysNext ∆= ∃ 〈id , pos〉 ∈ deliverable :
156 ∨ extAcceptFrame(id , env .frames[id][pos][SN], pos)
157 ∨ extRejectFrame(id , env .frames[id][pos][SN], pos)
158 ∨ extWait

160 A system-step is a step either of environment or of Redundancy Management

162 Next ∆= SysNext ∨ EnvNext

164 We want the environment to send infinitely many frames

165 and the RM to react on each frame

167 Fairness ∆= ∧WF〈rm, out, env , status〉(sendFrame)
168 ∧WF〈rm, out, env , status〉(SysNext)
169 ∧ SF〈rm, out, env〉(extWait)

171 Spec ∆= Init ∧2[Next]〈rm, out, env , status〉 ∧ Fairness
172

4

1 module ENV TLC

3 extends Naturals, Sequences, TLC , ENV

5 Use symmetry to reduce number of states

6 Constraint ∆= env .alive[B] = true

8 exclude variable ’status’ for model checking

9 NoDebug ∆= 〈rm, env , out〉

12 CORRECTNESS SPECIFICATION

13 to shorten the writing

15 v ∆= 〈rm, env , out〉

17 Requirements Part 1:

18 The RM hides the redundancy to all applications beyond/above the RM

19 and preserves the order of sending

22 No redundant frames are submitted to application layer

24 Redundancy1 ∆= ∀ frame ∈ out : frame[TAG] 6= “r”

26 Redundancy2 ∆= 32¬[reset]v
27 ⇒ 32(∀ 〈id , pos〉 ∈ deliverable :
28 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v
29 ⇒ env .frames[id][pos][TAG] 6= “r”)

31 Redundancy3 ∆= 32¬[reset]v
32 ⇒ 23(∀ 〈id , pos〉 ∈ deliverable :
33 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v
34 ⇒ env .frames[id][pos][TAG] 6= “r”)

36 No old frames w .r .t its sequence numbers are submitted to application layer

38 Ordering1 ∆= ∀ frame ∈ out : frame[TAG] 6= “o”

40 Ordering2 ∆= 32¬[reset]v
41 ⇒ 32(∀ 〈id , pos〉 ∈ deliverable :
42 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v
43 ⇒ env .frames[id][pos][TAG] 6= “o”)

45 Ordering3 ∆= 32¬[reset]v
46 ⇒ 23(∀ 〈id , pos〉 ∈ deliverable :
47 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v
48 ⇒ env .frames[id][pos][TAG] 6= “o”)

50 As long as the RM receives frames, each is either accepted or rejected

1

52 Liveness ∆= ∀ 〈id , pos〉 ∈ deliverable :
53 ∨ enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v
54 ∨ enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v
56 The RM shall handle resets of sending ES .

58 if eventually forever no reset or stuttering step occurs then

59 forever eventually frames are accepted

61 Reset1 ∆= 32(¬[reset]v ∧ ∀ id ∈ networks : isAlive[id])
62 ⇒ 23(∃ 〈id , pos〉 ∈ deliverable :
63 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v)

66 Requirement Part 2:

67 The redundancy shall increase the availability of the network

69 Subbpart 1:

70 The RM does no worse job than a single network would do in

71 fault-free operation

73 if only one network is connected to the RM no frame is ever rejected

75 Quality0 ∆= 2(∃ id1, id2 ∈ networks : isAlive[id1] ∧ ¬isAlive[id2])
76 ⇒ 2(∀ 〈id , pos〉 ∈ deliverable :
77 ¬enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v)

80 If both networks are alive the RM should satisfy:

82 if at least one member of a Twin Frame reaches the RM

83 at least one member is submitted to application layer

85 Quality1 ∆= ∀ id ∈ networks, pos ∈ (1 . . (1 + MCFL)) :
86 ∧ isAlive[id]
87 ∧ isAlive[TNid [id]]
88 ∧ 〈id , pos〉 ∈ deliverable
89 ∧ enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v
90 ⇒ ∃ frame ∈ out : frame[SN] = env .frames[id][pos][SN]

92 if at least one member of a Twin Frame reaches the RM and is new

93 w .r .t its sequence number at least one member is submitted to application layer

95 Quality2 ∆= ∀ id ∈ networks, pos ∈ (1 . . (1 + MCFL)) :
96 ∧ isAlive[id]
97 ∧ isAlive[TNid [id]]
98 ∧ 〈id , pos〉 ∈ deliverable
99 ∧ enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v

100 ∧ env .frames[id][pos][TAG] = “n”

2

101 ⇒ ∃ frame ∈ out : frame[SN] = env .frames[id][pos][SN]

103 Quality3 ∆= 3(2¬[reset]v ⇒ 2Quality2)

106 Subpart 2:

107 The redundancy shall increase availability of the network

108 three grades:

110 first grade – no more frames are rejected:

112 Avail1 ∆= ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])
113 ⇒ (∀ 〈id , pos〉 ∈ deliverable :
114 ¬enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v)

117 Avail2 ∆= 2(∧2(status 6= “reject”)
118 ∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2])
119 ⇒ (∀ 〈id , pos〉 ∈ deliverable :
120 ¬enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v))

122 second grade – eventually all successive frames are accepted

124 Avail3 ∆= 32(∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))
125 ⇒ 32(∀ 〈id , pos〉 ∈ deliverable :
126 ¬enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v)

128 Avail4 ∆= 32(¬[reset]v ∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))
129 ⇒ 32(∀ 〈id , pos〉 ∈ deliverable :
130 ¬enabled 〈extRejectFrame(id , env .frames[id][pos][SN], pos)〉v)

132 third grade – continuously frames are accepted

134 Avail5 ∆= 32(∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))
135 ⇒ 23(∃ 〈id , pos〉 ∈ deliverable :
136 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v)

138 Avail6 ∆= 32(¬[reset]v ∧ ∃ id1, id2 ∈ networks : (isAlive[id1] ∧ ¬isAlive[id2]))
139 ⇒ 23(∃ 〈id , pos〉 ∈ deliverable :
140 enabled 〈extAcceptFrame(id , env .frames[id][pos][SN], pos)〉v)

142

3

1 module RMA1

3 extends Naturals, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 A, B , SN , TAG just for convenience

10 variables
11 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [rsn : (0 . . SN CNT),
15 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)],
16 time : boolean
17]

19

20 Initially:

22 noVal ∆= SN CNT

24 The redundancy management:

25 - has not received any frame

26 - each ptn-value equals special value noVal

28 InitRM ∆= rm = [rsn 7→ noVal ,
29 ptn 7→ [A 7→ noVal , B 7→ noVal],
30 time 7→ true
31]

33

34 REDUNDANCY MANAGEMENT STATEMENTS

36 Some functions:

38 return the other twin-newtork-id

40 TNid [id ∈ networks] ∆= if id = A then B else A

42 subtract SN

43 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

45 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
46 if s2 = noval then 1
47 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

49 Sequence Number Skew

50 SNS(f) =def RSN (f)−SN RSN (PTN (f))

1

52 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]],
53 noVal , SN CNT , SN HALF]

55 ACTIONS:

56 dummy action to obtain single environment

58 wait ∆= ∧ false
59 ∧ unchanged 〈rm〉

61 accept frame:

62 if frames are available AND (SNS(f) > 0 OR SNO(f) > 0)

63 then forward frame

65 acceptFrame(id , sn) ∆=
66 ∧ snSkew [id , sn] > 0
67 ∧ rm ′ = [rm except !.rsn = sn,
68 !.ptn[id] = sn]

70 reject frame:

71 if frames are available SNS(f) < = 0 then reject frame

73 rejectFrame(id , sn) ∆=
74 ∧ snSkew [id , sn] ≤ 0
75 ∧ rm ′ = [rm except !.rsn = sn,
76 !.ptn[id] = sn]

78

79 Step of Redundancy Management

80 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
81 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

83 The RM shall react on each frame

84 RM Fairness ∆= ∧WF〈rm〉(RM Next)
85 ∧WF〈rm〉(wait)

87 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness

89

90 theorem RM Spec ⇒ TypeInvRM

92

2

1 module RMA2

3 extends Naturals, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 A, B , SN , TAG just for convenience

10 variables
11 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [
15 rsn : (0 . . SN CNT),
16 paf : (0 . . SN CNT)
17]

19

20 Initially:

22 noVal ∆= SN CNT

24 The redundancy management:

25 - has not received any frame

26 - each ptn-value equals special value noVal

28 InitRM ∆= rm = [
29 rsn 7→ noVal ,
30 paf 7→ noVal
31]

33

34 REDUNDANCY MANAGEMENT STATEMENTS

36 Some functions:

38 return the other twin-newtork-id

40 TNid [id ∈ networks] ∆= if id = A then B else A

42 subtract SN

43 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

45 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
46 if s2 = noval then 1
47 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

49 Sequence Number Offset

50 SNO(f) =def RSN (f)−sn PASN (f)

1

52 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then SN CNT
53 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

55 ACTIONS:

56 dummy action to obtain single environment

58 wait ∆= ∧ false
59 ∧ unchanged 〈rm〉

61 accept frame:

62 if frames are available AND (SNS(f) > 0 OR SNO(f) > 0)

63 then forward frame

65 acceptFrame(id , sn) ∆=
66 ∧ snOffset [sn] > 0
67 ∧ rm ′ = [rm except !.rsn = sn,
68 !.paf = sn]

70 reject frame:

71 if frames are available SNS(f) < = 0 then reject frame

73 rejectFrame(id , sn) ∆=
74 ∧ snOffset [sn] ≤ 0
75 ∧ rm ′ = [rm except !.rsn = sn]

77

78 Step of Redundancy Management

79 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
80 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

82 The RM shall react on each frame

83 RM Fairness ∆= ∧WF〈rm〉(RM Next)
84 ∧WF〈rm〉(wait)

86 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
87

88 theorem RM Spec ⇒ TypeInvRM

90

2

1 module RMA3

3 extends Naturals, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 A, B , SN , TAG just for convenience

10 variables
11 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [
15 rsn : (0 . . SN CNT),
16 paf : (0 . . SN CNT),
17 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]]

19

20 Initially:

22 noVal ∆= SN CNT

24 InitRM ∆= rm = [
25 rsn 7→ noVal ,
26 paf 7→ noVal ,
27 ptn 7→ [A 7→ noVal , B 7→ noVal]]

29

30 REDUNDANCY MANAGEMENT STATEMENTS

32 Some functions:

34 return the other twin-newtork-id

36 TNid [id ∈ networks] ∆= if id = A then B else A

38 subtract SN

39 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

41 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
42 if s2 = noval then 1
43 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

45 Sequence Number Skew

46 SNS(f) =def RSN (f)−SN RSN (PTN (f))

48 snSkew [id ∈ networks, rsn ∈ Nat] ∆=
49 subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

1

51 Sequence Number Offset

52 SNO(f) =def RSN (f)−sn PASN (f)

54 snOffset [rsn ∈ Nat] ∆=
55 if rm.paf = noVal then SN CNT
56 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

58 ACTIONS:

59 dummy action to obtain single environment

61 wait ∆= ∧ false
62 ∧ unchanged 〈rm〉

64 accept frame:

65 if frames are available AND (SNS(f) > 0 OR SNO(f) > 0)

66 then forward frame

68 acceptFrame(id , sn) ∆=
69 ∧ ∨ snSkew [id , sn] > 0
70 ∨ snOffset [sn] > 0
71 ∧ rm ′ = [rm except !.rsn = sn,
72 !.paf = sn,
73 !.ptn[id] = sn]

75 reject frame:

76 if frames are available SNS(f) < = 0 then reject frame

78 rejectFrame(id , sn) ∆=
79 ∧ snSkew [id , sn] ≤ 0
80 ∧ snOffset [sn] ≤ 0
81 ∧ rm ′ = [rm except !.rsn = sn,
82 !.ptn[id] = sn]

84

85 Step of Redundancy Management

86 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
87 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

89 The RM shall react on each frame

90 RM Fairness ∆= ∧WF〈rm〉(RM Next)
91 ∧WF〈rm〉(wait)

93 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
94

95 theorem RM Spec ⇒ TypeInvRM
96

2

1 module RMA4

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 rsn : (0 . . SN CNT),
17 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]
18]

20

21 Initially:

23 noVal ∆= SN CNT

25 The redundancy management:

26 - has not received any frame

27 - each ptn-value equals special value noVal

29 InitRM ∆= rm = [
30 rsn 7→ noVal ,
31 ptn 7→ [A 7→ noVal , B 7→ noVal]
32]

34

35 REDUNDANCY MANAGEMENT STATEMENTS

37 Some functions:

39 return the other twin-newtork-id

41 TNid [id ∈ networks] ∆= if id = A then B else A

43 subtract SN

44 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

46 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
47 if s2 = noval then 1
48 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

50 Sequence Number Skew

1

51 SNS(f) =def RSN (f)−SN RSN (PTN (f))

53 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

55 ACTIONS:

56 dummy action to obtain single environment

58 wait ∆= ∧ false
59 ∧ unchanged 〈rm〉

61 accept frame:

62 if frames are available AND SNS(f) > 0 then forward frame

64 acceptFrame(id , sn) ∆=
65 ∧ snSkew [id , sn] /∈ (− SNS MIN . . 0)
66 ∧ rm ′ = [rm except !.rsn = sn,
67 !.ptn[id] = sn]

69 reject frame:

70 if frames are available SNS(f) < = 0 then reject frame

72 rejectFrame(id , sn) ∆=
73 ∧ snSkew [id , sn] ∈ (− SNS MIN . . 0)
74 ∧ rm ′ = [rm except !.rsn = sn,
75 !.ptn[id] = sn]

77

78 Step of Redundancy Management

79 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
80 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

82 The RM shall react on each frame

83 RM Fairness ∆= ∧WF〈rm〉(RM Next)
84 ∧WF〈rm〉(wait)

86 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
87

88 theorem RM Spec ⇒ TypeInvRM

90

2

1 module RMA5

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 rsn : (0 . . SN CNT),
17 paf : (0 . . SN CNT)]

19

20 Initially:

22 noVal ∆= SN CNT

24 InitRM ∆= rm = [
25 rsn 7→ noVal ,
26 paf 7→ noVal]

28

29 REDUNDANCY MANAGEMENT STATEMENTS

31 Some functions:

33 return the other twin-newtork-id

35 TNid [id ∈ networks] ∆= if id = A then B else A

37 subtract SN

38 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

40 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
41 if s2 = noval then 1
42 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

44 Sequence Number Offset

45 SNO(f) =def RSN (f)−sn PASN (f)

47 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then SN CNT
48 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

50 ACTIONS:

1

51 dummy action to obtain single environment

53 wait ∆= ∧ false
54 ∧ unchanged 〈rm〉

56 accept frame:

57 if frames are available AND SNS(f) > 0 then forward frame

59 acceptFrame(id , sn) ∆=
60 ∧ snOffset [sn] /∈ (− SNS MIN . . 0)
61 ∧ rm ′ = [rm except !.rsn = sn,
62 !.paf = sn
63]

65 reject frame:

66 if frames are available SNS(f) < = 0 then reject frame

68 rejectFrame(id , sn) ∆=
69 ∧ snOffset [sn] ∈ (− SNS MIN . . 0)
70 ∧ rm ′ = [rm except !.rsn = sn]

72

73 Step of Redundancy Management

74 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
75 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

77 The RM shall react on each frame

78 RM Fairness ∆= ∧WF〈rm〉(RM Next)

80 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
81

82 theorem RM Spec ⇒ TypeInvRM

84

2

1 module RMA6

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 rsn : (0 . . SN CNT),
17 paf : (0 . . SN CNT),
18 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]]

20

21 Initially:

23 noVal ∆= SN CNT

25 InitRM ∆= rm = [
26 rsn 7→ noVal ,
27 paf 7→ noVal ,
28 ptn 7→ [A 7→ noVal , B 7→ noVal]]

30

31 REDUNDANCY MANAGEMENT STATEMENTS

33 Some functions:

35 return the other twin-newtork-id

37 TNid [id ∈ networks] ∆= if id = A then B else A

39 subtract SN

40 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

42 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
43 if s2 = noval then 1
44 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

46 Sequence Number Skew

47 SNS(f) =def RSN (f)−SN RSN (PTN (f))

49 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

1

51 Sequence Number Offset

52 SNO(f) =def RSN (f)−sn PASN (f)

54 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then SN CNT
55 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

57 ACTIONS:

58 dummy action to obtain single environment

60 wait ∆= ∧ false
61 ∧ unchanged 〈rm〉

63 accept frame:

64 if frames are available AND SNS(f) > 0 then forward frame

66 acceptFrame(id , sn) ∆=
67 ∧ ∨ snSkew [id , sn] /∈ (− SNS MIN . . 0)
68 ∨ snOffset [sn] /∈ (− SNS MIN . . 0)
69 ∧ rm ′ = [rm except !.rsn = sn,
70 !.paf = sn,
71 !.ptn[id] = sn]

73 reject frame:

74 if frames are available SNS(f) < = 0 then reject frame

76 rejectFrame(id , sn) ∆=
77 ∧ snSkew [id , sn] ∈ (− SNS MIN . . 0)
78 ∧ snOffset [sn] ∈ (− SNS MIN . . 0)
79 ∧ rm ′ = [rm except !.rsn = sn,
80 !.ptn[id] = sn]

82

83 Step of Redundancy Management

84 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
85 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

87 The RM shall react on each frame

88 RM Fairness ∆= ∧WF〈rm〉(RM Next)

90 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
91

92 theorem RM Spec ⇒ TypeInvRM

94

2

1 module RMA7

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 rsn : (0 . . SN CNT),
17 paf : (0 . . SN CNT),
18 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]]

20

21 Initially:

23 noVal ∆= SN CNT

25 InitRM ∆= rm = [
26 rsn 7→ noVal ,
27 paf 7→ noVal ,
28 ptn 7→ [A 7→ noVal , B 7→ noVal]]

30

31 REDUNDANCY MANAGEMENT STATEMENTS

33 Some functions:

35 return the other twin-newtork-id

37 TNid [id ∈ networks] ∆= if id = A then B else A

39 subtract SN

40 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

42 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
43 if s2 = noval then 1
44 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

47 Sequence Number Increment

48 SNI (f) =def RSN (f)−SN PSN (f)

50 snIncrement [sn ∈ Nat] ∆= subSN [sn, rm.rsn, noVal , SN CNT , SN HALF]

1

52 Sequence Number Skew

53 SNS(f) =def RSN (f)−SN RSN (PTN (f))

55 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

57 Sequence Number Offset

58 SNO(f) =def RSN (f)−sn PASN (f)

60 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then SN CNT
61 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

63 ACTIONS:

64 dummy action to obtain single environment

66 wait ∆= ∧ false
67 ∧ unchanged 〈rm〉

69 accept frame:

70 if frames are available AND SNS(f) > 0 then forward frame

72 acceptFrame(id , sn) ∆=
73 ∧ ∨ snIncrement [sn] ≤ 0
74 ∨ snOffset [sn] /∈ (− SNS MIN . . 0)
75 ∧ rm ′ = [rm except !.rsn = sn,
76 !.paf = sn,
77 !.ptn[id] = sn]

79 reject frame:

80 if frames are available SNS(f) < = 0 then reject frame

82 rejectFrame(id , sn) ∆=
83 ∧ snIncrement [sn] > 0
84 ∧ snOffset [sn] ∈ (− SNS MIN . . 0)
85 ∧ rm ′ = [rm except !.rsn = sn,
86 !.ptn[id] = sn]

88

89 Step of Redundancy Management

90 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
91 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

93 The RM shall react on each frame

94 RM Fairness ∆= ∧WF〈rm〉(RM Next)

96 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
97

98 theorem RM Spec ⇒ TypeInvRM

100

2

1 module RMA7 2

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [
15 rsn : (0 . . SN CNT),
16 paf : (0 . . SN CNT),
17 ptn : [A : (0 . . SN CNT), B : (0 . . SN CNT)]]
18

19 Initially:

21 noVal ∆= SN CNT

23 InitRM ∆= rm = [
24 rsn 7→ noVal ,
25 paf 7→ noVal ,
26 ptn 7→ [A 7→ noVal , B 7→ noVal]]
27

28 REDUNDANCY MANAGEMENT STATEMENTS

30 Some functions:

31 return the other twin-newtork-id

33 TNid [id ∈ networks] ∆= if id = A then B else A

35 subtract SN

36 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

38 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
39 if s2 = noval then 1
40 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

43 Sequence Number Increment

44 SNI (f) =def RSN (f)−SN PSN (f)

46 snIncrementAlt [sn ∈ Nat , id ∈ networks] ∆=
47 subSN [sn, rm.ptn[id], noVal , SN CNT , SN HALF]

49 Sequence Number Skew

1

50 SNS(f) =def RSN (f)−SN RSN (PTN (f))

52 snSkew [id ∈ networks, rsn ∈ Nat] ∆=
53 subSN [rsn, rm.ptn[TNid [id]], noVal , SN CNT , SN HALF]

55 Sequence Number Offset

56 SNO(f) =def RSN (f)−sn PASN (f)

58 snOffset [rsn ∈ Nat] ∆=
59 if rm.paf = noVal then SN CNT
60 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

62 ACTIONS:

63 dummy action to obtain single environment

65 wait ∆= ∧ false
66 ∧ unchanged 〈rm〉

68 accept frame:

69 if frames are available AND SNS(f) > 0 then forward frame

71 acceptFrame(id , sn) ∆=
72 ∧ ∨ snIncrementAlt [sn, id] ≤ 0
73 ∨ snOffset [sn] /∈ (− SNS MIN . . 0)
74 ∧ rm ′ = [rm except !.rsn = sn,
75 !.paf = sn,
76 !.ptn[id] = sn]

78 reject frame:

79 if frames are available SNS(f) < = 0 then reject frame

81 rejectFrame(id , sn) ∆=
82 ∧ snIncrementAlt [sn, id] > 0
83 ∧ snOffset [sn] ∈ (− SNS MIN . . 0)
84 ∧ rm ′ = [rm except !.rsn = sn,
85 !.ptn[id] = sn]
86

87 Step of Redundancy Management

88 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
89 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

91 The RM shall react on each frame

92 RM Fairness ∆= ∧WF〈rm〉(RM Next)

94 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
95

96 theorem RM Spec ⇒ TypeInvRM
97

2

1 module RMA8

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 rsn : (0 . . SN CNT),
17 paf : (0 . . SN CNT),
18 time : boolean]

20

21 Initially:

23 noVal ∆= SN CNT

25 InitRM ∆= rm = [
26 rsn 7→ noVal ,
27 paf 7→ noVal ,
28 time 7→ true]

30

31 REDUNDANCY MANAGEMENT STATEMENTS

33 Some functions:

35 return the other twin-newtork-id

37 TNid [id ∈ networks] ∆= if id = A then B else A

39 subtract SN

40 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

42 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
43 if s2 = noval then 1
44 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

46 Sequence Number Skew

47 SNS(f) =def RSN (f)−SN RSN (PTN (f))

49 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]],
50 noVal , SN CNT , SN HALF]

1

52 Sequence Number Offset

53 SNO(f) =def RSN (f)−sn PASN (f)

55 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then SN CNT
56 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

58 ACTIONS:

60 exceed time bound:

62 wait ∆= ∧ rm.time = true
63 ∧ rm ′ = [rm except !.time = false]

65 accept frame:

66 if frames are available AND SNS(f) > 0 then forward frame

68 acceptFrame(id , sn) ∆=
69 ∧ ∨ rm.time = false
70 ∨ snOffset [sn] /∈ (− SNS MIN . . 0)
71 ∧ rm ′ = [rm except !.rsn = sn,
72 !.paf = sn,
73 !.time = true]

75 reject frame:

76 if frames are available SNS(f) < = 0 then reject frame

78 rejectFrame(id , sn) ∆=
79 ∧ rm.time = true
80 ∧ snOffset [sn] ∈ (− SNS MIN . . 0)
81 ∧ rm ′ = [rm except !.rsn = sn,
82 !.time = true]

84

85 Step of Redundancy Management

86 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
87 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

89 The RM shall react on each frame

90 Rec Fairness ∆= ∧WF〈rm〉(RM Next)
91 Wait Fairness ∆= ∧WF〈rm〉(wait)

93 RM Fairness ∆= Rec Fairness ∧Wait Fairness

95 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
96

97 theorem RM Spec ⇒ TypeInvRM

99

2

1 module RMA9

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 A, B , SN , TAG just for convenience

10 variables
11 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [
15 rsn : (0 . . SN CNT),
16 paf : (0 . . SN CNT),
17 time : boolean
18]

20

21 Initially:

23 noVal ∆= SN CNT

25 InitRM ∆= rm = [
26 rsn 7→ noVal ,
27 paf 7→ noVal ,
28 time 7→ true
29]

31

32 REDUNDANCY MANAGEMENT STATEMENTS

34 Some functions:

36 return the other twin-newtork-id

38 TNid [id ∈ networks] ∆= if id = A then B else A

40 subtract SN

41 s1 −SN s2 =def ((s1 − s2 + SN HALF) mod SN CNT)− SN HALF

43 subSN [s1, s2, noval , sn cnt , sn half ∈ Nat] ∆=
44 if s2 = noval then 1
45 else ((s1− s2 + (sn half))%sn cnt)− (sn half)

47 Sequence Number Skew

48 SNS(f) =def RSN (f)−SN RSN (PTN (f))

50 snSkew [id ∈ networks, rsn ∈ Nat] ∆= subSN [rsn, rm.ptn[TNid [id]],

1

51 noVal , SN CNT , SN HALF]

53 Sequence Number Offset

54 SNO(f) =def RSN (f)−sn PASN (f)

56 snOffset [rsn ∈ Nat] ∆= if rm.paf = noVal then 1
57 else subSN [rsn, rm.paf , noVal , SN CNT , SN HALF]

59 ACTIONS:

61 exceed time bound:

63 wait ∆= ∧ rm.time = true
64 ∧ rm ′ = [rm except !.time = false]

66 accept frame:

67 if frames are available AND SNS(f) > 0 then forward frame

69 acceptFrame(id , sn) ∆=
70 ∧ ∨ rm.time = false
71 ∨ snOffset [sn] = 1
72 ∧ rm ′ = [rm except !.rsn = sn,
73 !.paf = sn,
74 !.time = true]

76 reject frame:

77 if frames are available SNS(f) < = 0 then reject frame

79 rejectFrame(id , sn) ∆=
80 ∧ rm.time = true
81 ∧ snOffset [sn] 6= 1
82 ∧ rm ′ = [rm except !.rsn = sn,
83 !.time = true]

85

86 Step of Redundancy Management

87 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
88 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

90 The RM shall react on each frame

91 RM Fairness ∆= ∧WF〈rm〉(RM Next)
92 ∧WF〈rm〉(wait)

94 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
95

96 theorem RM Spec ⇒ TypeInvRM

98

2

1 module RMA11

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 pasn : Seq((0 . . SN MAX))
17]

19

20 Initially:

22 noVal ∆= SN CNT

24 The redundancy management:

25 - has not received any frame

26 - each ptn-value equals special value noVal

28 InitRM ∆= rm = [
29 pasn 7→ 〈〉
30]

32

33 REDUNDANCY MANAGEMENT STATEMENTS

35 Some functions:

37 return the other twin-newtork-id

39 TNid [id ∈ networks] ∆= if id = A then B else A

41 Test wether a certain sequence number is in the queue

43 inside[sn ∈ Nat , queue ∈ Seq(Nat)] ∆=
44 if queue = 〈〉 then false
45 else
46 if Head(queue) = sn then true
47 else inside[sn, Tail(queue)]

49 ACTIONS:

50 dummy action to obtain single environment

1

52 wait ∆= ∧ false
53 ∧ unchanged 〈rm〉

55 accept frame:

56 if frames are available AND SNS(f) > 0 then forward frame

58 acceptFrame(id , sn) ∆=
59 ∧ inside[sn, rm.pasn] = false
60 ∧ rm ′ = [rm except !.pasn = if Len(rm.pasn) < SNS MIN
61 then Append(rm.pasn, sn)
62 else Append(Tail(rm.pasn), sn)
63]

65 reject frame:

66 if frames are available SNS(f) < = 0 then reject frame

68 rejectFrame(id , sn) ∆=
69 ∧ inside[sn, rm.pasn] = true
70 ∧ unchanged 〈rm〉

72

73 Step of Redundancy Management

74 RM Next ∆= ∃ 〈id , sn〉 ∈ networks × (0 . . SN MAX) :
75 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

77 The RM shall react on each frame

78 RM Fairness ∆= ∧WF〈rm〉(RM Next)

80 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
81

82 theorem RM Spec ⇒ TypeInvRM

84

2

1 module RMA12

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 SNS MIN , lower bound of saequence number skew

9 A, B , SN , TAG just for convenience

11 variables
12 rm Redundancy Management

14

15 TypeInvRM ∆= rm ∈ [
16 pasn : Seq((0 . . SN MAX)),
17 time : boolean]

19

20 Initially:

22 noVal ∆= SN CNT

24 InitRM ∆= rm = [
25 pasn 7→ 〈〉,
26 time 7→ true]

28

29 REDUNDANCY MANAGEMENT STATEMENTS

31 Some functions:

33 return the other twin-newtork-id

35 TNid [id ∈ networks] ∆= if id = A then B else A

37 Test wether a certain sequence number is in the queue

39 inside[sn ∈ Nat , queue ∈ Seq(Nat)] ∆=
40 if queue = 〈〉 then false
41 else
42 if Head(queue) = sn then true
43 else inside[sn, Tail(queue)]

45 ACTIONS:

46 exceed time bound:

48 wait ∆= ∧ rm.time = true
49 ∧ rm ′ = [rm except !.time = false]

1

51 accept frame:

52 if frames are available AND SNS(f) > 0 then forward frame

54 acceptFrame(id , sn) ∆=
55 ∧ ∨ inside[sn, rm.pasn] = false
56 ∨ rm.time = false
57 ∧ rm ′ = [rm except !.pasn = if Len(rm.pasn) < SNS MIN
58 then Append(rm.pasn, sn)
59 else Append(Tail(rm.pasn), sn),
60 !.time = true
61]

63 reject frame:

64 if frames are available SNS(f) < = 0 then reject frame

66 rejectFrame(id , sn) ∆=
67 ∧ inside[sn, rm.pasn] = true
68 ∧ rm.time = true
69 ∧ rm ′ = [rm except !.time = true]

71

72 Step of Redundancy Management

73 RM Next ∆= ∃ 〈id , sn, time〉 ∈ networks × (0 . . SN MAX) :
74 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

76 The RM shall react on each frame

77 RM Fairness ∆= ∧WF〈rm〉(RM Next)
78 ∧WF〈rm〉(wait)

80 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
81

82 theorem RM Spec ⇒ TypeInvRM

84

2

1 module RMA13

3 extends Integers, Sequences, TLC

5 constants
6 networks, set of networks

7 SN CNT , SN MAX , SN HALF , maximum sequence number

8 A, B , SN , TAG just for convenience

10 variables
11 rm Redundancy Management

13

14 TypeInvRM ∆= rm ∈ [
15 pan : {A, B , “all”},
16 time : boolean
17]

19

20 Initially:

22 noVal ∆= SN CNT

24 The redundancy management:

25 - has not received any frame

26 - each ptn-value equals special value noVal

28 InitRM ∆= rm = [
29 pan 7→ “all”,
30 time 7→ true
31]

33

34 REDUNDANCY MANAGEMENT STATEMENTS

36 Some functions:

37 return the other twin-newtork-id

39 TNid [id ∈ networks] ∆= if id = A then B else A

42 ACTIONS:

43 exceed time bound:

45 wait ∆= ∧ rm.time = true
46 ∧ rm ′ = [rm except !.time = false]

48 accept frame:

49 if frames are available AND SNS(f) > 0 then forward frame

1

51 acceptFrame(id , sn) ∆=
52 ∧ ∨ rm.pan = “all”
53 ∨ id = rm.pan
54 ∨ rm.time = false
55 ∧ rm ′ = [rm except !.pan = id ,
56 !.time = true
57]

59 reject frame:

60 if frames are available SNS(f) < = 0 then reject frame

62 rejectFrame(id , sn) ∆=
63 ∧ rm.pan 6= “all”
64 ∧ id 6= rm.pan
65 ∧ rm.time = true
66 ∧ rm ′ = [rm except !.time = true]

68

69 Step of Redundancy Management

70 RM Next ∆= ∃ 〈id , sn, time〉 ∈ networks × (0 . . SN MAX) :
71 acceptFrame(id , sn) ∨ rejectFrame(id , sn) ∨ wait

73 The RM shall react on each frame

74 RM Fairness ∆= ∧WF〈rm〉(RM Next)
75 ∧WF〈rm〉(wait)

77 RM Spec ∆= InitRM ∧2[RM Next]〈rm〉 ∧ RM Fairness
78

79 theorem RM Spec ⇒ TypeInvRM

81

2

Bibliography

[1] Charles André. SyncCharts: A Visual Representation of Reactive Behaviors. Tech-
nical Report RR 95–52, rev. RR (96–56), I3S, Sophia-Antipolis, France, Rev.
April 1996. Available from World Wide Web: http://www.i3s.unice.fr/~andre/
CAPublis/SYNCCHARTS/SyncCharts.pdf.

[2] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequential and Con-
current Programs. Springer Verlag, 1991.

[3] ARINC, Annapolis, Maryland, USA. ARINC 664, Aircraft Data Networks, Part 7
— Deterministic Networks. Available from World Wide Web: http://www.arinc.
com.

[4] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio Passerone, Ellen M. Sen-
tovich, Bassam Tabbara, Massimiliano Chiodo, Harry Hsieh, Luciono Lavagno,
Alberto Sangiovanni-Vincentelli, and Kei Suzuki. Hardware-Software Co-Design
of Embedded Systems, The POLIS Approach. Kluwer Academic Publishers, April
1997.

[5] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The Synchronous Languages Twelve Years Later.
In Proceedings of the IEEE, Special Issue on Embedded Systems, volume 91, pages
64–83, January 2003.

[6] Gerard Berry. Esterel on Hardware. Philosophical Transactions of the Royal Society
of London, 339:87–104, 1992.

[7] Gerard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999. Avail-
able from World Wide Web: ftp://ftp-sop.inria.fr/esterel/pub/papers/
constructiveness3.ps.

[8] Gerard Berry. The Foundations of Esterel. Proof, Language and Interaction: Essays
in Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

[9] Robert Breyer and Sean Riley. Switched, Fast and Gigabit Ethernet. MacMillan
Technical Publishing, third edition edition, 1999.

[10] Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages.
Addison Wesley, 1998.

101

http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.arinc.com
http://www.arinc.com
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps

Bibliography

[11] Willem Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification : Introduction to
Compositional and Noncompositional Methods. Cambridge University Press, 2001.

[12] Esterel Technologies. Company homepage. http://www.esterel-technologies.
com.

[13] Robert W. Floyd. Assigning meaning to programs. In Proceedings AMS Symposium
Applied Mathematics, pages 19–31, 1967.

[14] S. Moisan G. Berry and J-P. Rigault. Esterel: Towards a synchronous and seman-
tically sound high-level language for real-time applications. In IEEE Real- Time
Systems Symposium, volume IEEE Catalog 83CH1941-4, pages 30–40, 1983.

[15] W.J. Goralski. Introduction to ATM Networking. McGraw-Hill, 1995.

[16] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991. Available from World Wide Web: http:
//citeseer.nj.nec.com/halbwachs91synchronous.html.

[17] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[18] Leslie Lamport. Specifying Systems – The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

[19] Leslie Lamport, Mark Tuttle, and Yuan Yu. The wildfire verification
challenge problem. http://research.microsoft.com/users/lamport/tla/
wildfire-challenge.html.

[20] Paul le Guernic, Thierry Gautier, Michel le Borgne, and Claude le Maire. Program-
ming real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–
1335, September 1991. Available from World Wide Web: http://citeseer.nj.
nec.com/context/53115/0.

[21] Xin Li and Reinhard von Hanxleden. A concurrent reactive Esterel processor based
on multi-threading. In Proceedings of the 21st ACM Symposium on Applied Com-
puting (SAC’06), Special Track Embedded Systems: Applications, Solutions, and
Techniques, Dijon, France, April 23–27 2006. http://www.informatik.uni-kiel.
de/inf/von-Hanxleden/downloads/papers/sac06.pdf.

[22] LNCS. XEVE: An Esterel verification environment, volume 1427, 1998.

[23] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1992.

102

http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://research.microsoft.com/users/lamport/tla/wildfire-challenge.html
http://research.microsoft.com/users/lamport/tla/wildfire-challenge.html
http://citeseer.nj.nec.com/context/53115/0
http://citeseer.nj.nec.com/context/53115/0
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/downloads/papers/sac06.pdf
http://www.informatik.uni-kiel.de/inf/von-Hanxleden/downloads/papers/sac06.pdf

Bibliography

[24] M. Nivat, C. Rattray, and G. Scollo T. Rus, editors. Synchronous observers and
the verification of reactive systems., June 1993.

[25] P.Naur. Proof algorithms by general snapshots. In BIT, pages 310–316, 1966.

[26] Amir Pnueli. The temporal logic of programs. In In Proceedings of the 18th Sym-
posium on Foundations of Programming Semantics, pages 46–57, 1977.

[27] Reinhard von Hanxleden, Eddie Gambardella. AFDX Redundancy Management.
EADS Airbus Technical report, February 2001.

[28] Andrew S. Tanenbaum. Computernetzwerke. Prenctice Hall, 4th edition edition,
2003.

103

	Introduction
	A short tour through TLA+
	TLA+ by example
	Model checking with TLC

	Redundancy Management Concept
	AFDX
	Redundancy Management Concept
	Evolution of Redundancy Management Algorithms

	Specification
	What to specify?
	Specification of the environment
	Requirements
	Specification of redundancy management
	RMA1, RMA2 and RMA3
	RMA4, RMA5 and RMA6
	RMA7
	RMA8
	RMA9
	RMA11 and RMA12
	RMA13

	Results
	Examining the algorithms
	Experiences with TLA+ and TLC
	Outlook

	TLA+ specifications

