
A Textual
Domain Specific Language

for
System-Theoretic Process Analysis

Jette Petzold

Master Thesis
March 25, 2022

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M. Sc. Lena Grimm

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Risk analysis is an important part of system development in order to ensure safety. These
analyses can help to reduce the risk of all kind of losses. For example a train should not be
moving while the doors are open in order to prevent injury or loss of human life. Hazard
or risk analysis techniques help to find such hazards that lead to accidents. One of these
techniques is System-Theoretic Process Analysis (STPA), developed by Leveson. Usually, it
is applied manually on paper, which is very time consuming and tedious. This problem is
addressed by developing tools that systematize and partially automate the STPA process.

In this thesis the risk analysis topic is explored in more detail, including tools supporting
STPA. Furthermore, this thesis proposes a Domain Specific Language (DSL) for STPA with an
automatic visualization of the STPA components. The DSL is implemented as a Visual Studio
Code (VS Code) Extension using Langium and Sprotty. An evaluation of the DSL revealed
that the whole STPA process is supported. The DSL has potential to be a good alternative to
the other tools, because of the visualization, which is not offered by most of the tools. Still,
the DSL should be further improved by providing context tables introduced by Thomas. An
evaluation with analysts using the DSL in real use-cases should be done in order to validate
that the DSL is a good alternative.

v

Acknowledgements

First of all, I want to thank Prof. Dr. Reinhard von Hanxleden for the opportunity to write
this thesis and for the constructive and helpful feedback during its conception. Moreover, I
want to thank my advisor Lena Grimm for supervising my thesis and helping to organize the
different topics. I also want to thank Niklas Rentz for his help with the VS Code Extension and
Sprotty.

Thanks goes to the whole working group for the welcoming and friendly atmosphere and
providing feedback to the DSL. Last but not least, I want to thank my family for supporting
me through my course of studies.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Outline . 2

2 Foundations 3
2.1 STPA Process . 3

2.1.1 Define the Purpose of the Analysis . 4
2.1.2 Model the Control Structure . 4
2.1.3 Identify Unsafe Control Actions . 6
2.1.4 Identify Loss Scenarios . 6
2.1.5 STPA Outputs . 7

2.2 STPA Context Table . 7
2.3 Used Technologies . 11

2.3.1 VS Code Extension API . 12
2.3.2 ELK . 12
2.3.3 Sprotty . 13
2.3.4 Langium . 14

3 Related Work 17
3.1 A-STPA . 17
3.2 XSTAMPP . 19
3.3 RM Studio . 20
3.4 SAHRA . 20
3.5 STAMP Workbench . 22
3.6 Astah System Safety . 22
3.7 CAIRIS . 24
3.8 SafetyHAT . 24
3.9 An STPA Tool . 24
3.10 WebSTAMP . 26
3.11 Prototype . 27
3.12 Comparison . 27

4 Exploration of Risk Analysis 31
4.1 Causality/Accident Models . 31

4.1.1 Sequential Model . 31
4.1.2 Epidemiological Model . 32
4.1.3 Systemic Model . 34

vii

Contents

4.1.4 Comparison . 38
4.2 Analysis Techniques . 40

4.2.1 FTA . 41
4.2.2 FMEA . 42
4.2.3 CAST . 43
4.2.4 Other Techniques . 44
4.2.5 Combinations . 46
4.2.6 Comparison . 46

4.3 STPA Use Cases . 48
4.4 STPA Extensions . 50
4.5 STPA Improvements . 52
4.6 Leading Indicators . 55

5 Concept for the STPA DSL 59
5.1 DSL . 59
5.2 Visualization . 63

6 Implementation 69
6.1 Extension . 69
6.2 Language Server . 69

6.2.1 DSL . 70
6.2.2 Diagram Generation . 71
6.2.3 Layout . 72
6.2.4 STPA Options . 72

6.3 Visualization . 72
6.3.1 CSS . 73
6.3.2 Diagram . 74
6.3.3 Diagram Options . 74

7 Evaluation 75
7.1 Exemplary Development . 75
7.2 Comparison . 76

8 Conclusion 79
8.1 Summary . 79
8.2 Future Work . 80

8.2.1 DSL . 80
8.2.2 Visualization . 81

Bibliography 83

Abbreviations 91

viii

List of Figures

2.1 A generic control loop as shown in the STPA handbook [LT18]. 5
2.2 Traceability between the STPA aspects [LT18]. 7
2.3 Example of process model flaws [Tho13]. 11

3.3 An example diagram in SAHRA [KRS+16]. 21
3.5 The main menu in SafetyHAT [BVJ14]. 25
3.6 The interface for defining rules in An STPA Tool [ST14]. 26
3.7 An example context table in WebSTAMP [SPP+19]. 27

4.1 The Domino Model of Heinrich as illustrated by Leveson [Lev21]. 32
4.2 The Swiss cheese model of Reason as illustrated by Leveson [Lev21]. 34
4.3 A standard control loop for systemic models [Lev16]. 35
4.4 The graphical representation of a function in Functional Resonance Accident

Model (FRAM) [HHC14]. 37
4.5 Comparison of the accident models based on two axes as shown by Wienen

et al. [WBV+17]. 39
4.6 The graphical representations of events [RS15]. 41
4.7 The graphical representations of gates [RS15]. 42
4.8 The standard FMEA worksheet [Ono97] . 43
4.9 The human controller defined by France [Fra17]. 52
4.10 The location of the scenario types [Sum18]. 53
4.11 The Step 2 Tree [Ant13]. 54
4.12 Visualization of system protection measures [Ant13]. 55

5.1 Visualization of failed checks. 64
5.2 Visualization of the control structure defined above. 65
5.3 The visualization of the STPA graph. 66
5.4 Different options for improving the distinguishability of aspects. 67
5.5 The print-stlye visualization. 68

6.1 The classes for the graph elements. 71

7.1 The aircraft example modeled in the DSL. 75

ix

List of Tables

2.1 Example of a context table [Tho13]. 8

3.1 Comparison of tools by Ludvigsen [Lud18]. 29
3.2 Comparison of tools by Souza et al. [SPP+19]. 30

xi

Chapter 1

Introduction

Risk is a part of human existence and is part of our life [AR10]. When risks are ignored
or misjudged people can die or get ill. Risk research started as soon as humans were able
to reflect on the possibility of their own death and tried to avoid dangerous situations.
Nowadays, risk research is done in many areas: medical, engineering, social, cultural, etc. In
order to manage risks, several procedures must be done: risk identification, risk analysis, risk
assessment, risk prioritization, and risk mitigation [SWH13]. However, these definitions are
not generally accepted and hence these terms are also used to describe processes that include
the other activities. The focus in this master thesis lies on the risk analysis, which has a long
history in engineering, in the context of embedded systems.

Risk analysis is an important procedure during system development in order to reduce
all kinds of losses. A loss can be for example the loss of a life or the loss of sensitive
information and depends on the stakeholders. In order to prevent such losses, different
hazard/risk analysis techniques exist, which can be applied during the development or
afterwards. Wienen et al. [WBV+17] state that accident analysis methods are growing as a
field of research. There exist some traditional approaches that were already used decades ago,
but risk analysis of IT system require different approaches or adaptions of these techniques
[SWH13]. Software itself can not be unsafe, only the entire system controlled by the software
can be unsafe [Lev20]. That is because only physical entities can inflict damage and thus only
physical processes, which may be controlled by software, can be unsafe. One relatively new
method is the hazard analysis technique System-Theoretic Process Analysis (STPA), which
also can be used for embedded systems. Usually, analysts execute STPA manually on paper.

The accident model of STPA is based on the System-Theoretic Accident Model and Pro-
cesses (STAMP) introduced by Leveson [Lev04]. According to Leveson, STPA identifies more
risks than traditional hazard analysis techniques such as Fault Tree Analysis (FTA) or Hazard
and Operability Study (HAZOP) [Lev16]. A reason for that is that loss scenarios involving
unsafe interactions among the system components are considered too and not only individual
component failures.

Using STPA during development is often very time consuming when doing it manually
without software support. Visual diagrams showing the relationships between identified
elements of the aspects of STPA could be helpful, but is much work when a developer models
them manually. There are already different tools and extensions for existing software that
help to use STPA for a system. One of them is STPA based Hazard and Risk Analysis (SAHRA),
which is an extension for Sparx Systems Enterprise Architect (EA) and based on Unified

1

1. Introduction

Modeling Language (UML) [KRR16]. It allows to add several graphical elements, which
represent different aspects of STPA such as losses and hazards.

1.1 Problem Statement

In order to simplify the usage of STPA and to minimize the time needed to successfully apply
it, tools supporting STPA are helpful. The need for such tools that provide systematization,
automation, and analysis completeness has been widely acknowledged [SPP+19]. Although
there already exist tools supporting the usage of STPA, each of them has advantages as well as
disadvantages. The goal of this thesis is to provide a DSL that combines the advantages and
minimizes the disadvantages taking into account the evolution of other tools.

This thesis consists of two main parts: the exploration of the research field and the imple-
mentation of a DSL for STPA. These are completed by an evaluation stage. In the exploration
part the topic of hazard analysis is explored in detail. This includes investigating the history
of such techniques and examining alternatives to STPA. In order to determine the advantages
and usefulness of STPA, real use-cases are observed, too. Furthermore, already existing tools
supporting the application of STPA are checked out. In the implementation part the DSL is
developed based on the results of the exploration. The evaluation outlines the benefits and
differences to other approaches.

1.2 Outline

The next chapter introduces the foundations for the thesis such as the process of STPA and
used technologies. In Chapter 3 already existing tools supporting STPA are presented and
their (dis)advantages are outlined. Afterwards, Chapter 4 explores the risk analysis topic in
more detail and hence provides an overview of alternatives to STPA and STPA related topics
that can be further looked at in future work. Chapter 5 presents the conceptual ideas for the
developed DSL and Chapter 6 introduces the implementation of it. Chapter 7 evaluates the
DSL and finally Chapter 8 concludes with a summary and possible future work.

2

Chapter 2

Foundations

Developing a DSL for STPA requires to understand the STPA process at first. This chapter
introduces basic concepts needed for the DSL and technologies used for the implementation.
After outlining the STPA process in Section 2.1, Section 2.2 presents an improvement for STPA

that is already in use: Context tables. Conclusively, Section 2.3 presents technologies needed
for the actual implementation.

2.1 STPA Process

STPA is a relatively new hazard analysis technique based on System Theory, more precisely
on STAMP [LT18]. In contrast to other techniques, it also considers accidents caused by
unsafe interactions between components and not just component failures. The motivation in
developing STPA was to include new causal factors that are not considered in other techniques
[Lev16]. Additionally, in contrast to other methods such as FTA, STPA provides guidance to the
users. A similar technique based on STAMP is Causal Analysis based on System Theory (CAST).
The difference between CAST and STPA is that CAST is applied after an accident occurred in
order to understand the causes, while STPA is used to develop a safe system. STPA can be used
in any design phase but the most effective way to develop a safe system is to use it in the
earliest phase, which is called safety-guided design. The results of STPA can be used in several
ways, including: creation of requirements, identifying system recommendations, defining test
cases and creating test plans, etc. [LT18]. Furthermore, the concept of emergence and the
broad definition of a loss in STPA (explained later) enables STPA to be used for any system
property not just safety. For example security properties can be checked.

STPA is an iterative process that does not need to be applied linearly [LT18]. Earlier results
can be updated while the analysis progresses and more information becomes available. In the
remaining section, the four steps of STPA are presented as explained in the STPA handbook
[LT18]:

1. Define the purpose of the analysis

2. Model the Control Structure

3. Identify Unsafe Control Actions (UCAs)

4. Identify Loss Scenarios

3

2. Foundations

2.1.1 Define the Purpose of the Analysis

In this step the goal of the analysis is determined. This includes, among others, whether safety,
security, or another property should be ensured and the system that should be analyzed. In
order to structure this step, it is divided into four parts:

Identify losses Depending on the industry, different notions are used for what should be
prevented: Accident, mishap, adverse event, etc. In order to unify this, STPA introduces
the definition of losses. A loss involves something that is of value to the stakeholders.
For example this could be the loss of life or loss of reputation. In this phase the user can
define any number of losses and rank or prioritize them.

Identify system-level hazards At first the system and its boundaries must be defined. A system
is a set of components that work together in order to accomplish a common goal. It may
contain subsystems or be part of a bigger system. Afterwards, the hazards can be defined.
A hazard is a system state that will lead to a loss if certain worst-case environmental
conditions are true. Each hazard should be traceable to one or more losses it causes if
the worst-case conditions occur. The traceability is typically stated after the description.
An example is given in the handbook [LT18]: “H-1: Aircraft violate minimum separation
standards in flight [L-1, L-2, L-4, L-5]”, whereas L-1 to L-5 point to already defined losses.

Identify system-level constraints For each hazard, a system-level constraint should be defined.
It specifies the system conditions or behavior that are needed to prevent the hazard and
hence the losses. They can be generated by inverting the condition of the hazard. For the
hazard stated above the constraint is: “SC-1: Aircraft must satisfy minimum separation
standards from other aircraft and objects [H-1]”. As before, the conditions should contain
tracing, this time to the hazards they prevent. This can be one or more hazards. Instead of
preventing a hazard, the constraint can also state what should be done in case of a hazard
without specifying a particular solution: “SC-3: If aircraft violate minimum separation,
then the violation must be detected and measures taken to prevent collision [H-1]”.

(optional) Refine hazards The hazards identified can be further refined into sub-hazards. For
most applications this is not necessary but it can be helpful for larger and more complex
applications. Each sub-hazard should be covered by a sub-constraint.

2.1.2 Model the Control Structure

After the goal of the analysis is defined, the analyst models the control structure. It is a
system model composed of feedback control loops that should enforce constraints on the
behavior of the system. The control structure should be a functional model, not a physical
one. Control and authority in the system is indicated by the vertical axes: downward arrows
represent control actions and upward actions represent feedback. A generic control loop
can be seen Figure 2.1. The controller uses control actions to control and enforce constraints
on the controlled process. Furthermore, it contains a control algorithm that determines what

4

2.1. STPA Process

control action should be send. The process model can contain the controller’s belief about the
environment, relevant aspects of the system, or the controlled process. It may be updated by
the feedback the controlled process sends. Sensors and actuators are not needed yet, they will
be added in a later step of STPA.

Controller

Control
Algorithm

Process
Model

Controlled Process

Control
Action

Feedback

Figure 2.1. A generic control loop as shown in the STPA handbook [LT18].

This control loop can be used for software as well as for humans. For humans, the process
model is normally called the mental model and the control algorithm may be called operating
procedures. Besides the four elements already explained — controller, control action, feedback,
and controlled process — a hierarchical control structure can also contain other inputs to and
outputs from components that are neither control actions nor feedback. In order to handle
more complex systems, abstraction is used. Instead of modeling every individual subsystem,
they can be grouped together to a more abstract element of the control structure. Control
actions and feedback paths can also profit from this principle. Several individual actions can
be encapsulated by a broader action.

When modeling the control structure, responsibilities can be assigned to each entity of the
structure. A responsibility states what an entity has to do in order to enforce the system-level
constraints, possibly together with the other entities. Hence, when writing them down, they
should reference the constraints they enforce. Additionally, the responsibilities can help to
identify the control actions a controller needs.

The control structure does not need to be complete. When STPA is applied in an early
development stage, some information might be missing. In such a case, the analysis can be
started with an incomplete model and can help to identify missing parts. Furthermore, the
control structure does not have to be linear. It may have a clear vertical linear hierarchy as
well as multiple controllers at the same level that do not control each other or controllers that
all control the same process. Controllers at the same level may communicate with each other,
represented by a horizontal arrow. Additionally to the diagram, all clarifying information

5

2. Foundations

or assumptions should be clearly documented. This concerns, among others, description
and purpose of controllers and necessary information about control actions or feedback and
controlled processes in general.

2.1.3 Identify Unsafe Control Actions

Based on the control structure, Unsafe Control Actions (UCAs) can be identified. A UCA is a
control action that leads to a hazard in a specific context and worst-case environment. Hereby,
unsafe refers to the identified hazards. A control action can be unsafe in four ways:

� Not providing the control action leads to a hazard

� Providing the control action leads to a hazard

� Providing a potentially safe control action but too early, too late, or in the wrong order

� The control action lasts too long or is stopped too soon

For each control action all types should be considered but some may be not applicable in
every case. Additionally, there can exist more than one UCA in a single category. Each UCA

consists of five elements: The source, the type, the control action that is unsafe, the context
in which it is unsafe, and tracing to the hazards the UCA causes. Thereby, the source is the
controller that sends the control action and the type is one of the four categories listed above.

Analogous to the hazards, constraints should be defined for the UCAs called controller
constraints. They specify the behaviors of the controllers that must be satisfied in order to
prevent the UCAs.

2.1.4 Identify Loss Scenarios

The last step of STPA identifies the loss scenarios, which are the causes for the UCAs. A loss
scenario describes the causal factors that can lead to a UCA and hence to hazards. Two types
must be considered when identifying them: Scenarios that lead to UCAs and scenarios in
which control actions are improperly executed or not executed at all.

The first type of loss scenarios can be further divided into unsafe controller behavior and
causes of inadequate feedback and information. Unsafe controller behavior can be identified by
starting with a UCA and working backwards to explore the causes for (not) providing the
control action. These scenarios may include: failures related to the controller, inadequate
control algorithm, unsafe control input, and inadequate process model. In order to find the
causes of inadequate feedback and information, the source of them must be examined.

For the causes of inadequate feedback and information, factors that affect the control path
as well as factors that affect the controlled process, must be considered. Adding sensors and
actuators to the control structure may help to identify those factors. It is important to not list
the individual factors outside the context of a scenario. Otherwise, interaction between and
combination of factors leading to hazards may be overlooked. In order to identify the causal
factors more efficiently, Leveson provides guide words [Lev16].

6

2.2. STPA Context Table

2.1.5 STPA Outputs

Overall, STPA contains eight aspects, including the control structure. The traceability between
these aspects, explained in the previous sections, is shown in Figure 2.2. The results of STPA

can be used to create requirements, identify design recommendations, define test cases, and
more [LT18].

Losses

System-level Hazards System-level
constraints

Responsibilities
Unsafe
Control
Actions

Controller
constraints

Scenarios
(with UCAs)

Scenarios
(without UCAs)

Figure 2.2. Traceability between the STPA aspects [LT18].

2.2 STPA Context Table

Applying STPA manually can be very tedious especially in complex systems. Partially automa-
tion could reduce the necessary work. Thomas developed in his dissertation an automation
for identifying UCAs and requirement generation as well as a method to detect conflicts
between the safety requirements and other requirements [Tho13]. In order to automatize the
UCA generation, he formalized them first. An UCA consists of four parts: source controller,
type, control action, and context. The context is defined by variables and their values. As an
example he uses a train that has the variables train motion with the values stopped or moving,
train location with the values at platform or not at platform, and emergency with the values
emegerncy exists and no emergency. The controller’s process model must contain these variables
and their values. Hence, the variables in the process model are a superset of the context
variables. Moreover, the process model variables can be organized into a hierarchy. With this
formalization UCAs can be stated more precisely.

The identification of hazardous contexts can not be automated effectively but a framework
can guide the process. Thomas proposes a new procedure to systematically identify UCAs. It

7

2. Foundations

is divided into two parts: the first one inspects hazardous control actions whereas the second
one inspects control actions that are not provided in a context in which inaction leads to
a hazard. The process of the first part is as follows: At first a controller and its associated
control actions are selected. Afterwards, the process model of the controller is defined in order
to determine the states that affect the safety. Subsequently, potentially hazardous control
actions can be identified. This is done by inspecting all possible combinations of relevant
process values and determining for each of them whether sending the control action will
lead to a hazard. This is called the context table, an example can be seen in Table 2.1. In
this table the control action open door is inspected and there are three process variables: train
motion, emergency, and train position. Each row represents a possible combination of the values
of the variables whereby some rows are taken together using the doesn’t matter value. The
last column determines whether the control action is, in the given context, hazardous. This
column can be further divided by adding timing information such as too early or too late. The
second part of the process uses the same basic process. The process model variables, their
potential values, and the possible combinations are determined. Then instead of determining
whether sending the control action leads to a hazard, it is determined whether the absence of
the action would lead to a hazard.

Table 2.1. Example of a context table [Tho13].

Control
Action

Train Motion Emergency Train Position

Hazardous control action?
If provided
any time in
this context

If provided
too early in
this context

If provided
too late in

this context

Door open
command
provided

Train is moving No emergency (doesn't matter) Yes Yes Yes

Door open
command
provided

Train is moving Emergency exists (doesn't matter) Yes Yes Yes

Door open
command
provided

Train is stopped Emergency exists (doesn't matter) No No Yes

Door open
command
provided

Train is stopped No emergency
Not aligned with

platform
Yes Yes Yes

Door open
command
provided

Train is stopped No emergency
Aligned with

platform No No No

The described process provides a systematic approach and guidance for identifying UCAs.
Nevertheless, it is still “brute-force” and can be very time consuming when applying it
to contexts with many variables and values. This is why Thomas additionally proposes
automated algorithms assisting in executing this procedure. In order to generate a list of all
potential UCAs (all possible four-tuples), the following information is needed: the hazards,
the controllers in the system, the control actions for each controller, the relevant variables for
the hazards, and potential values for each variable. The decision whether a potential UCA is

8

2.2. STPA Context Table

indeed an UCA can not be automated. The analysts still have to go through the generated list
and decide for each item whether it is unsafe or not. Usages of this automated method on real
systems identified safety-critical requirements not considered in the original development of
the systems.

Based on the identified UCAs, requirements must be created in order to define the wanted
behavior. For this procedure Thomas also proposes an automated algorithm. He defines three
functions: HP(H, SC, CA, Co), HNP(H, SC, CA, Co), and R(SC, CA, Co). HP(H, SC, CA, Co)
returns true if providing the given control action CA from the source controller SC leads to
the hazard H in the given context Co. HNP(H, SC, CA, Co) covers the other case: it returns
true if not providing the control action CA leads to the hazard H. After defining both of the
functions, R(SC, CA, Co) is defined for specifying the system behavior. It returns true if the
controller SC must send the control action CA in the given context Co. In order to prevent
hazards, R(SC, CA, Co) must fulfill the following:

1. If a control action CA leads to any hazard in a specific context Co, the control action CA
must not be provided in the context Co. Formally: if HP(H, SC, CA, Co) returns true for
any hazard H, R(SC, CA, Co) must return f alse.

2. If not providing the control action CA in a specific context Co leads to hazard, this control
action must be provided in this context. Formally: if HNP(H, SC, CA, Co) returns true for
any hazard H, R(SC, CA, Co) must return true.

The resulting requirements can be documented by using a formal requirements language
for example SpecTRM Requirements Language (SpecTRM-RL). It can be the case that there is no
safe action for a specific context. If action as well as inaction leads to the same hazard, the
system has a fundamental design flaw that must be eliminated. If action as well as inaction
causes a hazard that is different, there exists a conflict between two safety-related goals,
which must be resolved. In order to detect these flaws, Thomas introduces a consistency
check: Given a controller, a control action, and a context, if a hazard exists for which HP is
true, HNP must be false for all hazard. This can be checked automatically independent of
R. The found conflicts can for some cases be automatically resolved. If the losses and hence
the hazards are prioritized, the control action that causes the least important hazard can be
selected to resolve the conflict. However, engineers using their creativity and expertise can
find the best solutions. Hence, the automation should mostly be used to detect conflicts and
to tag them for review.

For complex systems the context tables can get very large. That is why Thomas proposes
three techniques to handle them better: abstraction and hierarchy, logical simplification, and
continues process model variables. Abstraction can be applied to the control actions as well
as to the variables in order to allow high-level analysis. This can be refined later for a more
detailed analysis. With logical simplification several similar rows in the context table can be
combined using does not matter terms for variables. Tools can help to perform this reduction
automatically. For continuous process variables it is not necessary to consider an infinite number
of values. Based on the hazards, more fitting values can be determined. For example instead

9

2. Foundations

of an exact velocity, only the values moving and not moving could be used. Another helpful
method to handle complex systems is the rule-based approach. This approach defines a set of
rules that determine hazardous contexts. An automated tool can, after generating the context
table, apply the rules and mark the rows that lead to a hazard. Afterwards, the tool could
apply logical simplification, check whether rules are conflicting, and check whether there
are still rows for which no rule applies. This technique was already successfully applied for
tables with hundred of rows using only a few rules.

If the proposed process for identifying UCAs is used, the results can be further used to
guide the last step of STPA: the identification of loss scenarios. Thomas presents two parts for
which the list of hazardous control actions can be used: Identification of scenarios in which
safe control actions may not be executed and identification of scenarios that help identify
causes of the UCAs. For scenarios with not executed safe control actions, the identified UCAs

must be inspected. They contain the needed information to identify scenarios in which a
provided control action that is not followed leads to a hazard: the command and the context.
Afterwards, the causal factors causing the scenario must be identified. These can but do not
have to be component failures. Given the UCAs and context tables the basic scenarios can be
generated automatically, but the causal factors must be identified manually. Nevertheless,
this approach can lower the duplication of work between the identification of UCAs and of
scenarios and guarantees that only scenarios are considered that definitely lead to a loss.
Furthermore, direct traceability between the context tables and the scenarios is provided.
For the identification of scenarios that help identifying causes of UCAs, an important causal
factor is a flawed process model. If the controller’s information about the system and/or
environment is incorrect, it can lead to UCAs. The context tables, generated in the previous
step, provide the contexts in which flaws can and cannot cause hazards. This can be used
to identify the type of process model flaw that can cause a hazard. Relevant process model
flaws for the example context table in Table 2.1 can be seen in Figure 2.3. For each hazardous
control action, including inaction, the process model flaws are listed that lead to the UCA.
Engineers need to know which types of flaws cause hazards in order to design a safer
system. Moreover, focusing on these types instead of the individual variables can reduce the
workload. Originally, each UCAs is inspected separately, which can lead to much repetition in
the identified causes. In the new approach this repetition is eliminated by first identifying the
general process model flaws for all UCAs. This leads to a set of unique flaws in which each
flaw can be hazardous in several ways. If context tables were used in the previous STPA step,
the process model flaws can be generated automatically and traceability to the corresponding
hazards is provided. Besides the control path, also the feedback path can be analyzed, which
is done in a similar way. For this procedure Thomas translated the four types of UCAs to
feedback types:

� A feedback parameter required for safety is not provided

� An incorrect feedback parameter is provided that leads to a hazard

� Correct feedback is provided too late, too early, or out of sequence, causing a hazard

10

2.3. Used Technologies

� Correct continuous feedback is stopped too soon or applied too long, causing a hazard

Hazardous control action Relevant process model flaws

Door open command not provided
when train is stopped at platform
and person in doorway

• Controller incorrectly believes train is moving
• Controller incorrectly believes no person in doorway
• Controller incorrectly believes train is not aligned

Door open command not provided
when train is topped and
emergency exists

• Controller incorrectly believes train is moving
• Controller incorrectly believes no emergency exists

Door open command provided
when train is moving

• Controller incorrectly believes train is moving

Door open command provided
when train is stopped unaligned
with platform and there is no
emergency

• Controller incorrectly believes train is aligned
• Controller incorrectly believes there is an emergency

Door open command provided
more than X seconds after train
stops during an emergency

• Delayed realization that train is stopped
• Delayed realization of emergency

Figure 2.3. Example of process model flaws [Tho13].

Gurgel et al. proposes the rule-based approach [GHD15]. The authors state that defining
the hazardous contexts is the most critical task and it is time consuming doing it manually
as well as exhaustive and demands a careful analysis since the number of contexts can get
very large. The goal of the proposed rule-based approach is to aid the identification of those
hazardous contexts. A rule is a logical expression of variable states and means that those
states represent a hazardous context. For contexts in which the status of a variable does not
matter the keyword ANY can be used, meaning that any state can be considered for that
variable. After defining the rules, the analyst must check the rules for conflicts, redundancy,
and correctness. For each hazardous context a safety constraint can be defined. In order to
test their approach, the authors developed a tool that automatically generates the context
table based on the defined rules. They conclude that the tool saves great effort and working
time due to the automation and was useful for generating hazardous contexts based on the
rules. Furthermore, it helped to point out rework of contexts due to addition or removal of
rules.

2.3 Used Technologies

This section gives an overview of the technologies used in the implementation of the DSL

for STPA. First, Section 2.3.1 presents the VS Code Extension Application Programming In-
terface (API), which is needed to implement the DSL as an VS Code Extension. Afterwards,
Section 2.3.2 explains the Eclipse Layout Kernel (ELK), which is used for layouting diagrams.
The introduction of Sprotty in Section 2.3.3 also covers the usage together with a lanugage

11

2. Foundations

server as a VS Code Extension. At last Section 2.3.4 outlines Langium, including a possible
combination with Sprotty.

2.3.1 VS Code Extension API

VS Code provides the ability to customize and enhance it through the Extension API1. With
the help of extensions, new programming languages can be supported, webviews displaying
custom webpages can be created, the look of VS Code can be changed with a color theme,
and more. The extension entry point, activation events, and contributes are specified in the
package.json. The entry file must contain two functions: activate and deactivate. The function
activate is executed when the activation event, specified in the package.json, happens and
activates the extension. For example, when implementing a language server extension, the
activate function can start the language client. With the deactivate function a clean up can
be done before deactivating the extension. The contributes in the package.json are for example
commands, which are provided to the user. These commands also have to be implemented
with registerCommand, which can be done in the activate function.

2.3.2 ELK

ELK2 is a collection of layout algorithms as well as an infrastructure that connects diagram
editors or viewers to automatic layout algorithms. However, ELK itself does not render the
drawing. It only computes positions and possibly dimensions for diagram elements. Besides
a collection of layout algorithms, several layout options are provided. For usages in JavaScript,
the layout-relevant part of ELK is also available in elkjs3.

The main layout algorithm provided by ELK is the layered algorithm4. It is based on the
approach of Sugiyama et al. [STT81]. The algorithm places the nodes into subsequent layers
in order to route as many edges as possible into one direction. Generally, the algorithm
consists of five phases [SSH14]: Cycle breaking, layer assignment, crossing minimization,
node placement, and edge routing. Cycle breaking is needed to create a topological ordering
of the nodes. Therefore, cycles must be eliminated. Based on this ordering, the layers can
be assigned. Thereby, it must be considered that the source and target of an edge are not
allowed to be in the same layer. The crossing minimization phase orders the nodes in their layer
with the goal to reduce edge crossings between consecutive layers. Afterwards, node placement
assigns the actual vertical positions to the nodes and the last phase routes the edges.

Besides this standard approach, ELK provides layout options to change the strategy of
each phase. If the strategy is set to INTERACTIVE, the position coordinates of the nodes must be
set manually before layouting. Based on these positions, the layer and the position in the layer
are determined by the layout algorithm. For example in the crossing minimization phase in

1https://code.visualstudio.com/api
2https://www.eclipse.org/elk/
3https://github.com/kieler/elkjs
4https://www.eclipse.org/elk/reference/algorithms/org-eclipse-elk-layered.html

12

https://code.visualstudio.com/api
https://www.eclipse.org/elk/
https://github.com/kieler/elkjs
https://www.eclipse.org/elk/reference/algorithms/org-eclipse-elk-layered.html

2.3. Used Technologies

a left-to-right layout, the nodes get ordered in their layer based on their y value instead of
minimizing edge crossings. The same applies for the layer assignment. Based on the x value
and the width of the nodes, the layers are assigned such that overlapping nodes are in the
same layer and non-overlapping nodes in different layers. However, in-layer edges are still
not allowed. Finally, the actual position coordinates of the nodes are updated based on the
assigned layer and position in the layer.

2.3.3 Sprotty

Sprotty5 is an open-source web-based framework for diagrams implemented in TypeScript.
It uses Scalable Vector Graphics (SVG) and the rendering is stylable with Cascading Style
Sheets (CSS). Additionally, animations are included and transitions for morphing diagrams
are provided. Sprotty also provides a connection to ELK for automatic layout of the diagram.
Ideally, an app using Sprotty consists of a client and a server. The client only has the model
of the current diagram and renders it while the server has the underlying semantic model
and knows how to map it to diagram elements. Sprotty integrates with the Language Server
Protocol (LSP). For example a Xtext-based language server can be combined with it6.

In order to combine Sprotty with a language server as a VS Code extension7, three
components are needed: a languager server, a webview, and the extension. An overview
of the architecture can be seen in Figure 2.4. As language sever again Xtext could be used.
The webview contains the Sprotty client. As usual, it is responsible for the rendering and the
creation of SVG as well as processing the user events. Furthermore, Sprotty Actions can be
exchanged with the extension. The extension is responsible for starting the language server as
well as creating the webview and connecting it to the language server when the command to
show the diagram is triggered by the user. It is also responsible for providing the command
in the first place.

When using Sprotty for an application, a container module configuring the diagram
elements and a SprottyStarter creating the container is needed. Diagram elements are
configured by binding a type, for example node, to a model element and a view. For both,
Sprotty provides standard implementations, for example SNode with RectangularNodeView and
SEdge with PolylineEdgeView. However, custom model elements and corresponding views can
be implemented by extending these standard ones. Besides implementing a view for a graph
element, SVGs can be additionally styled with CSS8. In a CSS file, styles such as colors can be
added. When using a class selector, the style is only applied to elements with a specific class
attribute9. A class selector starts with a period followed by a class name. Afterwards, the style
is stated in brackets. Only the elements that are provided with the specific name of the class
selector in the actual class attribute are affected by the defined style.

5https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework, https://github.com/eclipse/sprotty
6https://github.com/eclipse/sprotty-vscode/tree/master/examples/states-xtext
7https://www.typefox.io/blog/using-sprotty-in-vs-code-extensions
8https://www.w3.org/Style/CSS/Overview.en.html
9https://www.w3schools.com/css/css_selectors.asp

13

https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://github.com/eclipse/sprotty
https://github.com/eclipse/sprotty-vscode/tree/master/examples/states-xtext
https://www.typefox.io/blog/using-sprotty-in-vs-code-extensions
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3schools.com/css/css_selectors.asp

2. Foundations

Figure 2.4. Architecture of a VS Code Extension using Sprotty10.

2.3.4 Langium

Langium11,12 is an open source language engineering tool, created by TypeFox13 with the goal
to lower the barrier of creating a DSL. It supports the LSP and is written in TypeScript. The
motivation of developing Langium is that the VS Code Extension API has become increasingly
relevant. In contrast to Xtext14, Langium allows language engineering in TypeScript, the same
technology used for VS Code Extensions. When creating a DSL with Langium, three files are
mandatory: a file containing the grammar, a file defining the module, and a main file that
creates the connection to the client, creates the wanted services defined in the module, and
starts the language server.

The grammar declaration language is similar to Xtext. A Langium grammar file starts with
the name of the grammar using the keyword grammar. There are three rule types: terminal
rules, parser rules, and the entry rule. For all the Extended Backus-Naur Form (EBNF) is used.
Terminal rules start with the keyword terminal and create an atomic symbol while parser

10https://github.com/eclipse/sprotty-vscode
11https://langium.org/
12https://langium.org/docs/grammar-language/
13https://www.typefox.io/
14https://www.eclipse.org/Xtext/documentation/

14

https://github.com/eclipse/sprotty-vscode
https://langium.org/
https://langium.org/docs/grammar-language/
https://www.typefox.io/
https://www.eclipse.org/Xtext/documentation/

2.3. Used Technologies

1 export const HelloWorldModule: Module<HelloWorldServices, PartialLangiumServices &

HelloWorldAddedServices> = {

2 validation: {

3 ValidationRegistry: services => new HelloWorldValidationRegistry(services),

4 HelloWorldValidator: () => new HelloWorldValidator()

5 }

6 };

Listing 2.1. Example of a language server module.

rules define the structure of objects to be created by the parser and create an Abstract Syntax
Tree (AST). A parser rule starts with the name of the rule followed by a colon. Afterwards, the
rule is stated, for example15: Person: ’person’ name=ID;. This rule creates an object of type
Person with the property name that must match the terminal ID. The entry rule defines the
starting point of the parsing. It is stated similar to a parser rule but starts with the keyword
entry. In addition to the grammar file, a langium-config.json file is required that references the
grammar file. Based on the grammar declaration, a parser and an AST are generated.

Langium also offers the most essential language services: completion, validation, go
to definition, find references, document highlights, and document symbols. Default imple-
mentations are provided for these services. However, they can be overridden with custom
implementations in the module of the language server. An example with a custom validator
can be seen in Listing 2.1. Besides overriding default implementations, also new services
can be registered here. Langium can also be used in combination with Sprotty. Therefore,
the DiagramGenerator service must be overridden, which translates a model of the DSL to
a SGraph. In order to layout the generated graph, also the ModelLayoutEngine service can
be configured with the ElkLayoutEngine. If specific options should be set for the layout, the
LayoutConfigurator service is used.

In the main file, the connection to the client is created and the defined services are created by
creating the module. If only Langium is used, it is sufficient to only start the language server
here. However, if Langium is used in combination with Sprotty, also the addDiagramHandler

method must be called. Furthermore, reactions to notification send to the language server can
be defined here.

15https://langium.org/docs/grammar-language/

15

https://langium.org/docs/grammar-language/

Chapter 3

Related Work

There are already several tools supporting the usage of STPA. The challenge of such tools
is to help applying STPA by providing a systematic process, aiding in repetitive tasks, and
resulting in a complete list of safety requirements [SPP+19]. In this chapter a variety of tools
supporting STPA is presented. Additionally, Section 3.12 outlines comparisons of a subset of
them.

3.1 A-STPA

A student project in the software engineering programme of the University of Stuttgart
developed A-STPA in order to assist analysts applying STPA [AW14]. The aim of the tool is
to automate all activities during STPA. It is an open-source tool developed in Java and built
on the Eclipse platform. The first version supports the management of the STPA aspects and
tracing between them. For the creation of the control structure, a graphical editor is provided
(Figure 3.1a) that also supports the creation of process models. UCAs and causal factors are
maintained in tables. Figure 3.1b shows an example of a UCA table. The results of the analysis
can be exported as a PDF.

The process in A-STPA consists of four phases. At first, data models for every STPA aspect
are provided. Afterwards, mapping rules between the components are added to link the
components, for example hazards to accidents. Additionally, the control actions are extracted
from the control structure and added into a table. In the third phase, analysis information is
put in the tables including UCAs, safety constraints, and causal factors. At last, the components
of the control structure can be edited. Since STPA is an iterative process, the user can perform
changes in a step, which are then passed on to subsequent steps.

The user interface of A-STPA consists of several views. Two of them are shown in Figure 3.1.
On the left side in the tool the current view can be selected. The views are categorized into
three groups. Analysis Fundamentals contains the views for the fundamentals such as losses,
hazards, and the control structure. Unsafe Control Actions contains a view for control actions,
which are automatically extracted from the control structure and added to a table. The table
can also be edited manually. This group also contains the view for UCAs and corresponding
safety constraints. These constraints are automatically derived from the UCAs. However, the
user still can edit the table manually. The last group is Causal Analysis and it contains a view
for the causal factors table.

17

3. Related Work

(a) The graphical editor for the control structure.

(b) A UCA table.

Figure 3.1. A-STPA toola.

ahttps://sourceforge.net/projects/astpa/

18

https://sourceforge.net/projects/astpa/

3.2. XSTAMPP

The eXtensible Markup Language (XML)-specification is used to document the results, but
they can also be exported as an PDF file. As a major issue the authors state that there are no
rules for drawing a control loop and missing standard notations for causal factors. One topic
for their future work is to improve the guidance regarding the causal factor analysis.

Usages of A-STPA in different areas has shown some shortcomings [AW15b]. These
concern the documenting of UCAs, drawing control structure diagrams, documenting causal
factors, and supporting STPA application in different areas. Furthermore, Thomas proposed an
improvement for identifying UCAs as explained in Section 2.2, which is especially interesting
for safety analysts. However, it is not integrated in A-STPA. Since the architecture of A-STPA
is not extendable to such improvements, the tool was superseded by the Extensible STAMP

Platform (XSTAMPP).

3.2 XSTAMPP

The Extensible STAMP Platform (XSTAMPP) is open source and based on the Eclipse Rich Client
Platform (RCP) [AW15b]. The goal is to support the usage of STPA in different areas and to
be easily extendable. Moreover, there is potential to extend XSTAMPP with support for CAST.
The main functions are the same as in A-STPA as well as additional ones. Among other
functionality, the user can add new user interfaces to customize the project and several user
interface editors can be opened at the same time. The export function is extended such that the
results can also be exported as a JPEG or an Excel file and not just a PDF. In order to achieve
the goal to be easily extendable, plug-in libraries can be integrated. As future work the safety
requirements derived by STPA should be automatically transformed to formal specifications
such as Linear Temporal Logic (LTL). This can help to verify design models and software code
against the safety requirements.

A new version of the tool, XSTAMPP 2.0, is available as open source platform [AW16]. It is
written in Java and based on the Eclipse Plug-in-Development Environment (PDE) and RCP. For
this version, new plug-in tools were developed: Automated CAST (A-CAST), which implements
the CAST functionality, and the Extended Approach to STPA (XSTPA). XSTPA integrates the
proposed improvement from Thomas and supports automatic generation of context tables.
These are used to define the safety requirements, which are automatically transformed into a
formal specification in LTL. The algorithm for the transformation is explained by Abdulkhaleq
and Wagner [AW15a]. Besides these two new plug-ins, there is still the A-STPA plug-in in
order to apply STPA without the improvements proposed by Thomas. Furthermore, XSTAMPP

2.0 provides improved usability regarding the drawing of the control structure diagram. In the
future, the developers want to add another plug-in called STPASec, which should implement
the steps of STPA for Security (STPA-Sec). Additionally, a plug-in should be developed that
connects A-STPA with model checking.

19

3. Related Work

3.3 RM Studio

RM Studio developed a standalone module for STPA1. Generally, the module can be operated
by one user or shared by multiple users. The STPA module provides an individual view for
each aspect of STPA. An overview of the tool’s interface can be seen in Figure 3.2. On the left
side in the editor, the individual views can be selected. In the view for losses, hazards, and
constraints the user can add components by entering an ID and a description. Additionally,
the created losses are available in the hazard view and the hazards are available in the
constraint view in order to enable linking between them. Another view shows the relationship
between the losses and hazards graphically. An example can be seen in Figure 3.2. Losses
as well as hazards are represented as rectangles with a symbol representing the aspect in
the upper left corner. The references of the hazards to the losses are represented by arrows.
The control structure can be created in its own view via drag and drop. Control actions that
are stated in this structure are automatically extracted to the UCA view. In this view, the user
can select a control action and can add UCAs for each category. Additionally, an UCA can be
linked to hazards and constraints. The loss scenario view contains three windows: one lists
the available control actions, another shows the control loop graphically, and in the third one
the user can choose whether the loss scenario is based on a UCA or hazard and can add a
scenario. A progress check is also provided in order to ensure completion of all STPA aspects.
Furthermore, there is an option to create a full report, which generates a file containing all
specified information.

Figure 3.2. The user interface of RM Studio’s STPA software solution2.

3.4 SAHRA

Krauss et al. [KRR16] created an extension for Sparx Systems EA3, called STPA based Hazard
and Risk Analysis (SAHRA). It integrates STPA with visual modeling languages such as UML

1https://www.riskmanagementstudio.com/stpa-software-solution/
2https://www.riskmanagementstudio.com/stpa-software-solution/
3https://sparxsystems.com/

20

https://www.riskmanagementstudio.com/stpa-software-solution/
https://www.riskmanagementstudio.com/stpa-software-solution/
https://sparxsystems.com/

3.4. SAHRA

[Fil13] and System Modeling Language (SysML) [FMS06]. In order to provide additional
diagram types, UML profiles, and more for STPA modeling, SAHRA includes a DSL profile for
STPA. Although the development is specified to EA, the general concepts for extending UML are
generic. Generally, the graphical elements for the different aspects of STPA are represented with
rectangles containing an ID, a description, and an icon in the upper-right corner representing
the aspect. Linking between defined components is shown with arrows as seen in Figure 3.3.
Additionally, UCAs are connected to a keyword. Keywords are represented in the same way
as the other graphical elements and contain as description the keyword. For modeling the
control structure, SAHRA provides element types for controller, controlled processes, sensors,
and actuators. The visualization is the same as for the other STPA aspects. Feedback and
control actions are visualized by arrows with a description. Furthermore, a process model
element can be used instead of a controller element. In contrast to the normal controller, the
process model contains process variables. A process variable is visualized by a rectangle with
a title — the variable name — and below a list of possible values.

Figure 3.3. An example diagram in SAHRA [KRS+16].

According to Krauss et al. the mind map style provided by SAHRA helps to see relation-
ships at a glance and provides more flexibility regarding documentation details [KRS+16].
Furthermore, because of the integration of SAHRA with EA, the user benefits from already
existing features such as multi-user support, automation, and more. SAHRA has been already
used in industry as well as in academic projects and it has been successful in both.

21

3. Related Work

3.5 STAMP Workbench

The STAMP Workbench4 provides several views for the different steps in STPA. At first, the
preconditions can be added to a table by stating an ID and a description. For the losses,
hazards, and constraints, there is a joint view that contains a table with a column for each
aspect. An example of such a table can be seen in Figure 3.4a. Linking is done implicitly by
adding the components that should be linked in the same row. As before each component
has an ID and a description. Another view is the Component Extracting Table. It contains a
table in which components for the control structure can be added. For a component, the
following attributes can be entered: name, responsibility, control action, feedback, I/O, and
remarks. Based on this table, the control structure diagram can be automatically generated.
Nevertheless, the diagram can be drawn manually too, using drag and drop. The components
of the control structure are visualized by rectangles containing the name of the component
as seen in Figure 3.4b. For the UCA view a table is used, in which the control actions are
automatically added by extracting them from the control structure. However, this table is
not a context table as proposed by Thomas. In order to identify the causal factors, a control
loop diagram can be opened for a UCA, only showing the relevant components and omitting
the others. Additionally, hint words for identifying causal factors can be displayed. The
results can be added in an additional view. In this view, the UCA that is inspected must be
selected first and afterwards a table is displayed. The identified causal factors can be added
to this table by stating an ID, the causal factor, the used hint word, and scenarios. At last,
countermeasures can be documented in the countermeasures table.

3.6 Astah System Safety

The Japanese company ChangeVision created Astah5,6 in 2006 as a UML modeling tool.
Nowadays, it includes six different tools aiming to support modeling, safety assessment, and
safety analysis for safety-critical systems. Among them is a tool for STPA that combines STPA

with SysML by enabling model conversions. It provides diagrams for the control structure and
the control loops as well as several tables for the other STPA aspects. Additionally, tables for
preconditions and countermeasures are provided. The control structure diagram is created
using SysML and drag and drop. When creating several diagrams, the Control Structure Entire
View can be used to enable the simultaneous view of all views. When opening the UCA table,
the control actions are automatically extracted from the control structure. For each control
action the UCAs can be added according to their category just as in the STAMP Workbench.
The control loop diagram, loss scenario table, and countermeasure table are also similar to
the ones in the STAMP Workbench, including hint words display for the causal factors. When

4https://www.ipa.go.jp/sec/stamp_wb/manual/tutorial/basic/basic.html#ref-tutorial-basic
5https://astah.net/products/astah-system-safety/
6https://astah.net/support/astah-system-safety/start-stamp-stpa-with-astah/

22

https://www.ipa.go.jp/sec/stamp_wb/manual/tutorial/basic/basic.html#ref-tutorial-basic
https://astah.net/products/astah-system-safety/
https://astah.net/support/astah-system-safety/start-stamp-stpa-with-astah/

3.6. Astah System Safety

(a) An example of a table in the STAMP Workbench.

(b) An example control structure in the STAMP Workbench.

Figure 3.4. The STAMP Workbencha.

ahttps://www.ipa.go.jp/sec/stamp_wb/manual/tutorial/basic/basic.html#ref-tutorial-basic

23

https://www.ipa.go.jp/sec/stamp_wb/manual/tutorial/basic/basic.html#ref-tutorial-basic

3. Related Work

the user is finished, the tables can be exported to Excel and the diagrams to image files. All in
all, it is quite similar to the STAMP Workbench.

3.7 CAIRIS

CAIRIS7,8 is a security design tool that was not built especially for STPA but can still be used.
The supported concepts are analogous to the ones needed for STPA. For the security analysis,
obstacles can be created. These can also be used to create losses, hazards, and UCAs by setting
their category accordingly. Additionally, the hazards can be linked to the losses and the UCAs

to hazards by using associations. In another view, goals can be created that can be used to
create system-level constraints. A view is provided where the defined goals and obstacles are
automatically visualized. The control structure must be modeled as a data flow diagram. It
contains processes and data stores that are analogous to the control algorithms and process
models in STPA. When defining the UCAs they can be associated to the data flow, at which
point the appropriate keyword must be entered. Loss scenarios are created by tasks, which can
be links to hazards and system constraints. CAIRIS provides model validation checks that can
determine issues leading to the scenarios. If all aspects are defined, CAIRIS can automatically
generate requirement specifications. The developers consider to create a more specific STPA

specification document in the future.

3.8 SafetyHAT

Safety Hazard Analysis Tool (SafetyHAT) aims to help analysts become proficient with STPA

[BVJ14]. It guides the analyst though the preparation and analysis of STPA by providing a
streamlined data entry process. Additionally, a relational database is provided to organize
and manage the data produced by the analysis. The STPA process is divided into eight steps
as shown in Figure 3.5. The first three steps are entering system information, followed by
four steps for the actual STPA analysis. At last, the results of the analysis can be exported
to Excel. SafetyHAT was mainly developed for the analysis of transportation systems, which
is why transportation-oriented guide phrases and causal factors for that area are included.
Furthermore, the categories for UCAs are extended based on the experience made by applying
STPA to transportation systems. However, the user can edit the categories and the guide
phrases for causal factors.

3.9 An STPA Tool

The Massachusetts Institute of Technology (MIT) developed An STPA Tool [Suo16; ST14]. It
allows the user to specify hazards, draw the control structure, and identify UCAs. For the

7https://cairis.org
8https://cairis.readthedocs.io/en/latest/stpa.html

24

https://cairis.org
https://cairis.readthedocs.io/en/latest/stpa.html

3.9. An STPA Tool

Figure 3.5. The main menu in SafetyHAT [BVJ14].

hazards and the control structure, a 2-D graphical editor is used. In order to identify the
UCAs, context table templates are automatically generated based on the control structure. The
user then selects which rows cause hazards. Moreover, the user can define rules that are
used to automatically determine which rows cause hazards. Figure 3.6 shows the interface
for that. Rules are defined by stating the values of the process model variables, whether the
control action is provided or not, and the related hazards. Besides this formal definition, the
rules are also shown in natural english. Conflicts between defined rules are automatically
detected by the tool. Furthermore, logical simplification is used to simplify the table and
the identified UCA can also be displayed in natural english. When the context table and thus
the identification of UCAs is finished, safety requirements are automatically generated in
executable forms using SpecTRM-RL. The results can be stored in a XML file, which can be
exported to Specification Tools and Requirements Methodology (SpecTRM) for consistency and
completeness checking.

The different notation forms can help the user to learn STPA and make the analysis more
efficient [Suo16]. For beginners, the natural english may be easier to use while engineers who
work with Excel files can export the context tables. For complex systems, the tool helps to
identify UCAs with less time and effort according to Suo. However, some improvements are
proposed. The tool can be extended to also support identification of loss scenarios. Moreover,
more guidance could be provided and the tool-assisted analysis extended to include other
emergent properties such as security as well.

25

3. Related Work

Parameters for Rule definition
Rule in English description

And/Or Table for executable safety
requirements

Figure 3.6. The interface for defining rules in An STPA Tool [ST14].

3.10 WebSTAMP

Souza et al. developed a STAMP compliant web application, called WebSTAMP [SPP+19]. It
aims to help analysts performing STPA and STPA-Sec and it is a collaborative tool. In contrast
to other tools, WebSTAMP focuses on the identification of UCAs and loss scenarios. Losses,
hazards, system-level constraints, and control structure diagrams are not supported. For
identifying UCAs, the rule-based approach is used using the context tables proposed by
Thomas (see Section 2.2). Based on the process model variables defined by the user, the
context table is automatically generated. An example can be seen in Figure 3.7. For each row
in the table, the user can choose which UCA category, introduced in Section 2.1, lead to a
hazard. Since this work is tedious, the rule-based approach proposed by Gurgel et al. (see
Section 2.2) is also supported. If a rule is applied for a row in the table, it is stated in an
additional column. For each identified UCA, a safety constraint is generated automatically.
The loss scenarios are also documented in a table for each UCA alongside with the associated
causal factors, recommendations, and rationale. They can be created by the user, but the tool also
provides a set of generic scenarios, which can be adjusted. Additionally, WebSTAMP shows a
guide question in order to help identifying important scenarios.

In order to evaluate WebSTAMP, the authors used it for analyzing a small set of systems.
The results show that the tool helps to apply STPA/STPA-Sec more systematic, automated, and
comprehensively. Furthermore, the chances of overlooking UCAs is reduced. For the future,

26

3.11. Prototype

Figure 3.7. An example context table in WebSTAMP [SPP+19].

the developers want to add a Graphical User Interface (GUI) to draw the control structure and
to extend the tool to also support CAST and leading indicators.

3.11 Prototype

In his master thesis, Ludvigson explored the functionality a tool could provide to support the
application of STPA [Lud18]. Based on a set of suggestions and requirements he worked out,
he implemented a prototype aiming to fulfill those requirements. For defining the losses and
hazards, Ludvigson suggests strict list management with support of linking the individual
components. Additionally, a visualization of the traceability would be helpful. Regarding
the UCAs, providing a table in which they can be entered would be sufficient. However, the
extension of Thomas (Section 2.2) could be used, in which case the tool should support
the generation of a context table and also provide possibilities to simplify the table using
for example logical simplification. Moreover, allowing the definition of rules would reduce
the work for the analyst. In order to prevent that the analyst needs to provide the same
information twice, information should be transferred between the tables and the control
structure. Since STPA is not linear, re-evaluation suggestions could be shown when information
is changed or added in a previous step. Furthermore, some form of version control would be
helpful. Besides these requirements for the different steps of STPA, Ludvigson also proposes
functional requirements for handling user profiles such as a profile system, authentication, and
traceability of components to the user that created them. Moreover, some quality requirements
should be fulfilled by a tool: usability, modifiability, interoperability, and security. Usability
means that all STPA steps are supported. Modifiability allows a user to make changes regarding
the analysis and a developer to make changes to the system. The possibility to exchange
information between systems is guaranteed by interoperability. The last requirement, security,
protects data and information from unauthorized access.

The prototype that was developed only supports a subset of these proposed requirements.
Ludvigson states that it should not be used until more implementation is done.

3.12 Comparison

Ludvigsen [Lud18] compares his Prototype with other tools supporting STPA based on the
set of suggestions and requirements he generated using literature and experience. In the

27

3. Related Work

comparison the tools XSTAMPP, STAMP Workbench, SafetyHAT, and An STPA Tool are inspected.
Table 3.1 shows the suggestions he states and whether they are provided by the tools. All
tools provide a way to establish the fundamentals, such as losses and hazards. Thereby, only
XSTAMPP and SafetyHAT provide support for managing lists of STPA components such as search,
filter, and sort. These two and STAMP Workbench are also the only ones which provide help
information to guide the user through the STPA process. Regarding the traceability, all tools
offer basic support. A major difference between the tools is the identification of UCAs. While
XSTAMPP, STAMP Workbench, and SafetyHAT use the original method, the Prototype and An
STPA Tool use the context tables as proposed by Thomas. Both tools using the context table offer
logical simplification and An STPA Tool supports the definition of rules for the table. However,
support for redefining an UCA as a hazard is not provided by anyone. Creating a control
structure is only supported by XSTAMPP, STAMP Workbench, and An STPA Tool. The Prototype
and SafetyHAT rely on providing a control structure from another application. Nevertheless, all
tools except the Prototype support hierarchical control structures and communication between
the different levels in the control structure. Re-evaluation suggestions proposed by Ludvigson
are not provided by any tool, not even the Prototype. Version control is also not supported by
the already existing tools except for the Prototype. Regarding team management, XSTAMPP

has support by allowing to assign roles such as admin or user. The Prototype should have
support for multiple users accessing a project but it is not yet added whereas the remaining
tools have no support at all. Overall, Ludvigson states that, in the preliminary study, XSTAMPP

was found to be the currently best solution and the prototype needs more development before
it is used.

Souza et al. [SPP+19] also identify requirements for STAMP based tools. These require-
ments, and which tools provides them, are shown in Table 3.2. The first six requirements
are functional ones, whereas the last four are non functional requirements. According to
the authors, STAMP Workbench and SafetyHAT do not really fulfill the requirements or it is
not described. WebSTAMP and XSTAMPP however, fulfill most of the requirements. While
WebSTAMP fulfills five of the functional and one of the non-functional requirements, XSTAMPP

fulfills four functional and three non-functional ones. Regarding the automation of UCAs, it is
not clear whether XSTAMPP provides support.

28

3.12. Comparison

Table 3.1. Comparison of tools by Ludvigsen [Lud18].

Suggestion Prototype XSTAMPP
STAMP
Workbench

SafetyHAT An STPA Tool

List manage-
ment

No Partial No Partial Unknown

Guide No Partial Partial Partial Unknown
Traceability Partial Partial Forced Partial Unknown
UCA table No Full Full Partial No
Context table Full Partial No No Full
Logical simpli-
fication

Partial Partial No No Full

Hazard rules No No No No Full
Linking UCA
to hazards

Full Full Partial Full Full

Redefine UCA
to hazard

No No No No No

Continuous
process model
variables

No No No No No

Extracting
fundamentals
from control
structure

- Partial Partial - Unknown

Importing or
exporting con-
trol structure

No - - No -

Hierarchical
control struc-
ture

No Partial Partial Partial Partial

Re-evaluation
suggestion

No No No No Unknown

Version con-
trol

Partial No No No Unknown

Team manage-
ment

Partial Partial No No Unknown

29

3. Related Work

Table 3.2. Comparison of tools by Souza et al. [SPP+19].

Requirements WebSTAMP
STAMP
Workbench

SafetyHAT XSTAMPP

Create safety and/or security
analyses

Yes Only safety Only safety Yes

Systematize and automate
UCA identification

Yes No No Yes

Systematize loss scenario
identification

Yes No No Unknown

Provide collaborative analysis Yes No No No
Provide change management Yes Unknown Yes Yes
Provide support for verifica-
tion of the analysis

No Unknown Unknown Yes

Provide rich user experience No Yes No Yes
Provde analysis reusability No Unknown Unknown Yes
Provide security environment No No No No

Provide portability Yes
Only win-
dows

Only windows Yes

30

Chapter 4

Exploration of Risk Analysis

This chapter presents results of the exploration of the risk analysis topic. Over the years,
many risk analysis techniques were developed in order to ensure the safety of systems. They
can be grouped by so called accident models [Hol16a]: sequential, epidemiological, and systemic.
These accident models, which are the foundation for the analysis techniques, are explored
in more detail (Section 4.1). Section 4.2 outlines alternatives to STPA, their (dis-)advantages,
and combinations of techniques. Afterwards, STPA related topics are presented that offer
insight in the usefulness of STPA and possible improvements. In particular these topics are:
use-cases (Section 4.3), extensions (Section 4.4), and improvements (Section 4.5). Conclusively,
Section 4.6 presents leading indicators. STPA can help in the creation of them and the DSL

could support this. However, this is not done in this thesis and is open for future work.

4.1 Causality/Accident Models

In the 1970s Hollnagel introduced the What-You-See-Is-What-You-Get (WYSIWYG) principle,
which states that a printed version of a document should look the same as the screen image.
Analogous, the What-You-Look-For-Is-What-You-Get (WYLFIWYG) principle was proposed
[Hol16b]. It states that the assumptions about possible causes for accidents determine which
kind of failures will be found. This means that the foundation of a risk analysis technique
— the causality model — determines the kind of risks that can be found. In the following,
the three accident model types are explained further in the same order they were developed
[WBV+17], starting with the sequential type (Section 4.1.1), which is the oldest one, followed
by the epidemiological type (Section 4.1.2), and at last the systemic type (Section 4.1.3).
Concluding, Section 4.1.4 compares these accident model types.

4.1.1 Sequential Model

The first accident model types are sequential ones, also called “Linear Chain-of-Failure
Events Model” [Lev21]. One of their principles is decomposition to handle complex systems.
Thereby, the system gets divided into smaller components that are examined individually
and the results are combined in order to understand the whole system. For example, physical
components are broken into components that interact with each other [LT18]. The behavior
is modeled as a chain of events where each event is triggered by the preceding one. The
basic idea is that accidents are caused by a chain of failures resulting in incorrect behavior or
accidents [Lev21]. Thereby, direct causality is assumed, meaning that one event or failure is

31

4. Exploration of Risk Analysis

the reason for the following one. In order to prevent accidents, one event in this chain must be
eliminated, which leads to preventing the next event from occurring. If the model is used to
analyze the causes of failures, the analysis starts with the accident and then works backwards
to an initial event, also called the root cause [Lev21]. Which event is labeled as initial is not
clear and depends on the analyst. Primarily, this accident model considers human faults and
component failures as causes of accidents.

One model that belongs to the sequential category is the Domino Model invented in 1931
by Heinrich [Lev21]. It contains five dominos representing events and the fall of one domino
leads to the fall of the next one. The events the dominos represents are shown in Figure 4.1:
Social Environment and Ancestry, Fault of the Person (Carelessness), Unsafe Act or Condition,
Accident, and Injury. If one of the dominos is removed, the accident is prevented. Heinrich
states that the best way to prevent an accident is to remove the third one. There exists some
extensions of the Domino model that contain more factors. However, common to all is the
linearity of events and that mostly an error caused by humans is the cause for accidents.

Social
Environment
and Ancestry

Fault of the
Person

(Carelessness)

Unsafe Act or
Condition

Accident Injury

Figure 4.1. The Domino Model of Heinrich as illustrated by Leveson [Lev21].

One advantage of sequential models is that they are easier to understand than other
models, but since they focus on component failure and human error, vital accident causes
may be missed [WBV+17]. The basic assumptions of the model about the causes of accidents
were true in the past and still are for certain properties in the systems today. However,
nowadays, systems are more complex, which leads to new causes for accidents, such as
unsafe interactions between components where each component itself does not fail [LT18].
Additionally, the role of the human in complex systems has changed leading to fewer accidents
caused by human error.

Examples for risk analysis techniques based on sequential models are FTA (Section 4.2.1)
and Failure Modes and Effects Analysis (FMEA) (Section 4.2.2) [LT18].

4.1.2 Epidemiological Model

In the 1980s epidemiological models arose due to the need of more powerful and complex
accident models [Hol16a]. The analysis of major industrial accidents in the 1980s showed

32

4.1. Causality/Accident Models

that sequential models are not sufficient anymore. Epidemiological models differ from the
sequential ones in four main points [Hol16a]:

performance deviation Human error as the main cause for accidents is replaced by performance
deviation. This includes technological components as well as persons.

environmental conditions Epidemiological models consider environmental conditions that can
lead to the performance deviation. These conditions exist for technology as well as for
persons.

barriers In order to prevent accidents, barriers are used. They can be added at all stages of the
accident development. A barrier can be material, functional, symbolic, or immaterial and
has a function, for example preventing movement [Hol99].

latent conditions Failures can be divided into latent and active failures, which lead to the
introduction of latent conditions. Latent conditions are already present before an acci-
dent sequence starts while active failures trigger such a sequence. The causes for latent
conditions can be for example design failures or degradation of system functions (e.g.
corrosion).

Generally, an accident is viewed as the result of the interaction of a host, agent(s), and
environmental factors. The interactions are complex and random and can not be described by
linear interactions between events [Lev21]. Leveson distinguish two types of epidemiology:
descriptive epidemiology and investigative epidemiology. In the descriptive epidemiology
incidence, prevalence, and mortality rates for accidents in large population groups are
determined based one age, sex, etc. These are used to describe the general distribution of
injuries in the population. In investigative epidemiology data on the causes of injuries is collected
and used to create countermeasures. Additionally, Leveson states that the epidemiological
model assumes that accidents have common factors that can be determined by statistical
evaluation similar to epidemiology handling diseases.

AcciMap [BHN09] is an accident model categorized as epidemiological by Wienen et al.
[WBV+17]. However, other researchers categorize it as systemic [YRL19]. Another model that
can be categorized as epidemiological [WBV+17] is the Swiss cheese model developed by
James Reason in 1990 [Rea90]. Again, this categorization is not accepted by everyone. Leveson
argues that it is a sequential model [Lev21]. The Swiss cheese model states that accidents are
the result of failures in four stages as seen in Figure 4.2: organizational influences, unsafe
supervision, preconditions for unsafe acts, and unsafe acts. These stages are represented by
slices of Swiss cheese, hence the name of the model. The holes in a slice, which can vary in
size and position, represent weaknesses or more specifically failed or absent defenses in this
stage [Hol10]. An accident happens when the holes of all slices align. When using the Swiss
cheese model to analyze the cause of an accident, the analysis starts from the accident and
traces it backwards. The analysis searches for active failures, which are unsafe acts committed
by people, and for latent conditions, which arise from decisions made by designers and other

33

4. Exploration of Risk Analysis

people. A similarity between the Swiss cheese model and the domino model is the linear
chain of events structure. However, the Swiss cheese model also considers random behavior
of components and independence between the failures in the different layers [Tho13].

Organizational
Influences

Unsafe
Supervision

Preconditions
for Unsafe Acts

Unsafe Acts

Latent
Failures

Latent
Failures

Latent
Failures

Active
Failures

Failed or
Absent Defense

Figure 4.2. The Swiss cheese model of Reason as illustrated by Leveson [Lev21].

One risk analysis technique that is based on an epidemiological model is the Cognitive
Reliability and Error Analysis Method (CREAM) [Hol10] (Section 4.2.4).

4.1.3 Systemic Model

Systemic models, also called systems theory, consider not only linear chains of events but also
multiple independent causes resulting in an accident [Lev21]. It is based on two principles
[Lev16]:

emergence and hierachy A complex system can be divided hierarchically into several organiza-
tion levels. Each level has emergent properties, which do not exist on lower levels. While
reliability is a component property, safety is viewed here as such an emergent property.
This means that the safety of a system can only be analyzed by inspecting the whole
system and not every component individually. A component can be safe in a certain
environment and in another it is not, which is why the safety cannot be determined by
only looking at the component.

communication and control Instead of trying to prevent failures in order to prevent accidents, the
focus lies on enforcing constraints. Each hierarchical level enforces constraints on the level
underneath it by sending control actions. Communication between the system components
is necessary to share information of the environment. Additionally, a controller must
acquire the status of the controlled system in order to know which control action must be
send. This information can be provided through communication by sensors. Moreover, a

34

4.1. Causality/Accident Models

controller must have a goal, must be able to affect the state of the system component, and
must contain a model of this component in order to be able to control the component as
desired. This leads to a typical control loop as shown in Figure 4.3.

Controller

Actuators

Controlled
Process

Sensors

Figure 4.3. A standard control loop for systemic models [Lev16].

System theory views safety as an emergent property that arises when the components
interact with the environment [Lev16]. In order to ensure safety, a set of constraints is enforced
on the system components. Accidents arise due to interactions that violate those constraints.
In this way, component failures as well as interactions that lead to accidents can be considered.
All in all, safety is now a control problem and not a reliability problem anymore.

The two most known accident models that are based on systems theory [WBV+17; YRL19]
are STAMP (Section 4.1.3) and the FRAM (Section 4.1.3).

STAMP

As already mentioned, System-Theoretic Accident Model and Processes (STAMP) is based
on systems theory [Lev16]. Hence, the focus lies on enforcing behavioral safety constraints
instead of preventing failures. Safety is handled as a control problem instead of a reliability
problem. The goal of the control is to enforce the constraints.

Besides the basic concepts of system theory, STAMP is based on three concepts [Lev16]:

safety constraints In order to ensure safety, system-level constraints must be identified and
responsibilities for enforcing them must be assigned.

hierarchical control structure Between the hierarchical levels of the system, control processes
take place enforcing the safety constraints on the lower level. Communication between
the levels is needed in order to execute the control processes. From top to bottom control

35

4. Exploration of Risk Analysis

commands must be sendable to enforce the safety constraints and from bottom to top
feedback about whether constraints are fulfilled must be sendable. Accidents occur if the
control is inadequate. This can happen because of missing constraints, inadequate control
commands, incorrect execution of a command, or flawed feedback.

process models As mentioned in the previous section a controller needs certain elements in
order to work properly. The goal in this case is enforcing the safety constraints. The
ability to affect the state of the controlled process and the acquisition of the system state
are provided by the control commands and feedback. The last element that is left is the
process model.

The model should contain the relationship between the system variables, their current
value (state of the system), and possible actions to change the state. Based on this, an
appropriate control action is chosen. The feedback received by the controlled system
updates the process model. Mostly, accidents occur because the process model does not
match the actual system state leading to four possible scenarios:

1. Incorrect or unsafe control commands are given

2. Required control commands are not provided

3. Potentially correct control commands are provided at the wrong time

4. Control is stopped too soon or applied too long

Just as in systems theory, accidents occur due to flawed processes violating the constraints
[Lev16]. The causes of accidents can be understood by identifying the violated constraints
and determining the reason for the failing control.

According to Leveson, STAMP can find more failures than component failures and the
analysis is more sophisticated [Lev16]. Additionally, it can be used for implementing a safety-
guided-design, meaning that the safety analysis guides the design of the system instead of
first designing the system and finding its flaws afterwards.

The two most used risk analysis techniques based on STAMP are STPA (Section 2.1) and
CAST (Section 4.2.3), both developed by Leveson [LT18]. STPA is a proactive method, meaning
that during the development potential causes of accidents are analyzed, whereas CAST is
retroactive, meaning that it is used to analyze accidents that already happened and identifies
their causes.

FRAM

Hollnagel introduced the Functional Resonance Accident Model (FRAM) in 2004. It is a
systemic model that describes non-linear relationships and interactions between functions of
the inspected system and their variability [MN21]. FRAM is based on four principles [HHC14]:

equivalence The explanations for different kinds of accidents/consequences can be the same.

36

4.1. Causality/Accident Models

approximate adjustments People adjust what they do in order to match the actions with the
conditions.

emergence Not all results can be explained by a specific cause.

resonance The cause-effect principle is not suited for all cases. Non-linear interactions and
outcomes are explained with functional resonance.

When using FRAM [HHC14] at first, a model of a process must be created describing a
typical situation, not a specific one. The model is based on the functions that must take place
in order to execute the process. These functions are defined by six aspects: input, output,
requirements, resources, control, and time. The functions are visualized with hexagons as
shown in Figure 4.4. If two functions have the same value for an aspect, for example the first
function as output and the second function as input, there is a potential connection, called
coupling. Moreover, functions can be divided into foreground and background functions. This
categorization depends on the importance of a function in the model. A function is categorized
as foreground if its variability influences the outcome of the process being inspected, whereas
background functions are assumed to not vary during the process.

Control

Precondition

Time

Function
or

Activity

Resources

Input

T

O

RP

I

C

Output

Figure 4.4. The graphical representation of a function in FRAM [HHC14].

Variability is divided into potential and actual variability. Potential variability describes
what can happen under certain conditions and actual variability describes what really happens
in a certain situation Actual variability is also called instantiated model, which contains specific
couplings for a specific situation. For an instantiated model, the coupling and resonance can
be analyzed. The analysis takes place by going through the potential couplings between the
functions. During this step a function can be categorized as upstream, meaning it already
was analyzed or is currently inspected, or downstream, meaning it follows the one currently
inspected. When inspecting a function, the focus lies on the variability of the output. There
are three main reasons why an output may vary:

37

4. Exploration of Risk Analysis

internal/endogenous variability The function itself varies.

external/exogenous variablity The environment in which the function is executed varies.

functional upstream-downstream coupling The output from an upstream function varies and
is the input, requirement, resource, control, or time of the inspected function. These
couplings are the basis of functional resonance.

Based on the source of variability, the way they manifest is inspected, called the phe-
nomenology of variability. Possible phenotypes are listed by Woltjer and Hollnagel [WH08].
Subsequently, the functional resonance is defined. In the last step, required performance mon-
itoring is specified and barriers for variability are identified [WH08]. These should prevent
unwanted events from occurring or protect them from the consequences of such events.

FRAM is used as accident analysis and risk assessment in different sectors such as rail
transport and aviation [YRL19].

4.1.4 Comparison

The sequential models worked well for the simple systems of the past. However, significant
changes occurred over time concerning the types of systems that are built and the environment
in which they are built [Lev16]. The assumptions underlying these models are not accurate
anymore. Accidents that involve no component failure at all are missed and complex couplings
and interactions among components cannot be grasped. According to Leveson, system theory
provides a much better foundation for safety engineering, is much more powerful, and
more effective. STAMP methods provide a better understanding of accidents and their causes.
However, they do not assign blame, which is why they will not be useful in law suits. Another
disadvantage of systemic models is that they are more resource-consuming [ADP19]. Yousefi
et al. state as one major difference between systemic models and the other ones that the latter
use cause-effect chains of events, whereas systemic models view an accident as a complex
network of events [YRL19].

Wienen et al. [WBV+17] compared analysis methods that are based on different accident
models. They found that the presented models have a common approach:

1. Identify the events that lead to the accident

2. Link the events to describe the history of the accident

3. Identify conditions that triggered the events (only in epidemiological and systemic models)

4. Identify components, feedback, and control (only in systemic methods)

5. Analyze how the accident could have been prevented

6. Conclude and state improvements

38

4.1. Causality/Accident Models

Furthermore, the authors compare the models along two axes: type of coupling and
contextual awareness (Figure 4.5). Sequential models are suited for loose coupled systems
and do not consider the socio-technical context. They can be used to quickly find the cause of
an accident and can be easier to understand. However, they do not find all possible causes for
accidents because they will miss the structural causes present in socio-technical systems. The
main benefit of epidemiological models is that they are aware of the socio-technical context.
That is why they can find causes of accidents in the company culture, safety procedures,
etc. that the sequential ones can not. Additionally, the concept of barriers helps to identify
measures to prevent the identified causes. The disadvantages are that they take more time
since the scope of the analysis is larger and convincing the management to accept the causes
can take time because managerial shortcomings may be one of them. Systemic models are
more suited for complex, tightly coupled systems but they take more effort and time to apply
since they contain a deeper analysis of the processes and the organization. According to
Wienen et al., this extra effort is not justifiable in many cases, especially if the consequences of
accidents are minor, which is why they are too expensive to be employed in regular businesses.
In order to support this statement they note some applications of STAMP done by Leveson,
which considered accidents with high impact for government organizations. Wienen et al.
conclude that sequential methods can be suited for the resolution phase of an accident, while
epidemiological methods should be used to achieve a deeper understanding and finding
latent factors. The effort and costs for systemic methods are not justifiable by its results.

Sequential Epidemiological

Systemic

Unaware Aware
Socio-technical Context

Loose

Coupling

Tight

Figure 4.5. Comparison of the accident models based on two axes as shown by Wienen et al. [WBV+17].

However, systemic approaches are the predominant method by researchers for analyzing
accidents [UW12]. Underwood and Waterson identified 302 references in which STAMP is the
most cited with 52.0% followed by FRAM with 19.9% [UW12]. According to them the reason
the systemic models are not used in industry at the time the paper was published may be a

39

4. Exploration of Risk Analysis

combination of limited validation, usability, analyst bias, and the implications of not finding
an individual to blame for an accident. Additionally, analysts who are familiar with sequential
models may have difficulties changing to systemic ones and the costs to train them may
be unjustifiable. The authors propose improving the communication between the research
and practitioner communities in order to reach a common understanding. A more detailed
inspection of the research–practice gap is done by Underwood and Waterson [UW13].

Adriaensen et al. review and assess safety analysis methods and conclude that there is no
one-size-fits-all solution [ADP19]. They propose that risk management should be an attempt
to improve systems instead of an isolated method/solution. However, they state the process
industry will benefit from the systemic models, which are still predominantly applied within
an academic context.

A comparison of the systemic models FRAM, STAMP, and AcciMap is done by Yousefi
et al. [YRL19]. They state that STAMP is more comprehensive in identifying recommendations
because failures/inadequate controls, unsafe decisions/control actions, and process model
flaws are already captured. Comparing STAMP and FRAM to AcciMap showed some shortages
on information in the first ones. However, the recommendations identified by STAMP were
comparable with the ones of AcciMap. Furthermore, STAMP provides a deeper understanding
of the causes of accidents because of the analysis of the hierarchical control structure. Wienen
et al. state as the main difference between FRAM and STAMP the paradigm for analyzing the
environment [WBV+17]. While STAMP uses a control model containing sensors, actuators,
controllers, and controlled processes, FRAM uses functions with several parameters that can
interact leading to events. One similarity of them is that they consider tight couplings between
functions/components in order to link different parts of the system. FRAM is not as popular
as other models and may not be applicable to certain accidents [Tho13]. It is based on the
assumption that the reaction of subsystems to nonrandom noise mimics the reaction of
nonlinear components to random noise. However, this is not proven. Furthermore, it is not
very suited for accidents caused by component failures or for cases without variability since
the model is based on the component variability.

In conclusion, systemic models may be too expensive to be widely used in industry, but
they may provide the best understanding and identification of causes for accidents. Just
looking at systemic models, STAMP seems to be suited best for most cases and it is the most
used one.

4.2 Analysis Techniques

The goal of risk analysis is to identify potential causes of accidents before they occur in
order to eliminate or control them [Lev16]. As already mentioned, the analysis techniques
are based on accident models presented in the previous chapter. The most widely used
ones are based on the sequential model and were developed around fifty years ago [Lev16]:
FTA (Section 4.2.1), FMEA (Section 4.2.2), and HAZOP. The presentation of FTA and FMEA in
the first two sections of this chapter is followed by a roundup of several other techniques

40

4.2. Analysis Techniques

such as HAZOP in Section 4.2.4. However, these traditional techniques have limitations since
the systems nowadays are more complex and software-intensive [Lev16]. Two relatively
new techniques based on STAMP, developed to overcome those limitations, are explained in
Section 2.1 (STPA) and Section 4.2.3 (CAST). Afterwards, Section 4.2.5 presents combinations of
techniques and Section 4.2.6 compares the different techniques.

4.2.1 FTA

Ruijters and Stoelinga provide an overview of the state-of-the-art in Fault Tree Analysis (FTA)
[RS15]. The most basic fault trees are the standard/static fault trees, which were developed in
the 1960s. A fault tree is a directed acyclic graph with two type of nodes: events and gates.
Events are failures in subsystems, especially failures in individual components. If an event is
triggered by one or more other events, it is called intermediate event, otherwise it is a basic event.
The event that is analyzed — the accident — is the root and hence the top of the tree and is
called the top event. Figure 4.6 shows the graphical representations of events. Basic events are
represented by circles while intermediate events are represented by rectangles. In cases where
the tree is too large for one page, triangles are used to broadcast events between different
trees. Besides the intermediate and basic categorization, an event can also be undeveloped,
represented by a diamond. This is the case if there is not enough information or it is assumed
that it is not necessary to further divide it into subtrees. In order to connect the events, gates
are used. There are some extensions that add further gates, for example the NOT gate, but
the set for standard fault trees is defined as follows:

AND The output event occurs if all input events occur.

OR The output event occurs if any of the input events occur.

k/N a.k.a. VOTING This gate has N inputs and the output event occurs if at least k of the
input events occur.

INHIBIT Additionally to the input event, the condition to the right of the gate must also
occur in order for the output event to occur. This gate could be replaced by an AND gate
with two inputs.

Intermediate
event

Transfer
in

Transfer
out

Undeveloped
event

Figure 4.6. The graphical representations of events [RS15].

41

4. Exploration of Risk Analysis

The graphical representations can be seen Figure 4.7. Creating the fault tree can be aided
by software and several methodologies have been proposed [LGT+85].

AND gate OR gate k/N gate

k/N

INHIBIT gate

Figure 4.7. The graphical representations of gates [RS15].

The analysis of a fault tree can be done with different techniques, whereby the common
ones are (minimal) cut set, (minimal) path sets, and common cause failures. If the reader is
interested in these techniques, they are explained further by Ruijters and Stoelinga [RS15].
The used techniques can be divided into qualitative and quantitative ones. Qualitative ones are
used to gain insight of the structure of the fault tree and to identify vulnerabilities, whereas
quantitative ones derive numerical values. These values can be the error probability or the
importance of a component for the reliability. Usually, a qualitative evaluation is done first,
followed by a quantitative evaluation [LGT+85].

Some extensions are: dynamic fault trees, fault trees with fuzzy numbers, repairable fault
trees, and more [RS15]. Another extension is Software FTA (SFTA), which is similar to the
standard (hardware) FTA and uses a subset of the symbols [LH83]. In this way the trees of
both methods can be connected, which is important since software must be viewed as a part
of a bigger system instead of a separated part.

Mostly FTA is used as the first step of FMEA, which is explained next.

4.2.2 FMEA

Failure Modes and Effects Analysis (FMEA) is one of the earliest systematic techniques for
risk analysis, developed in the 1950s [HVV+20]. Its accident model is the sequential one and
hence it is based on reliability theory and considers safety as a component failure problem
[SBF+19]. The general approach is as follows [Gil93]:

1. Identify the failure modes and their consequences.

2. Assess the chances that these faults occur.

3. Assess the chances that the faults are detected.

4. Assess the severity of the consequences.

5. Calculate a measure of risk.

6. Rank the faults based on their risks.

42

4.2. Analysis Techniques

7. Perform actions to prevent the high-risk problems.

8. Check the effectiveness of the actions.

Mostly, it is used in the initial design phase of a project but it can be used in every stage
[Ono97]. In the first step, the identified failure modes and their consequences are written
down in a worksheet [HVV+20]. There are several different worksheets that can be used.
Figure 4.8 shows the standard one. It has nine columns each specifying an important aspect
connected to the failure mode. More examples are given by Onodera [Ono97]. Risk assessment
is normally covered through risk priority numbers (RPNs), however, Gilchrist criticizes the
usage of RPN and proposes an alternative approach [Gil93].

1 2 3 4 5 6 7 8 9

Function Remarks
Equipment
Name

Failure
Mode

Failure
Causes

Failure
Effects

Failure
Detection

Failure
Probability

Criticality
Level

Figure 4.8. The standard FMEA worksheet [Ono97]

An extension is Failure Modes, Effects and Criticality Analysis (FMECA) in which the
failure modes are ranked based on their severity [SBF+19]. So instead of RPN, Criticality is
used. However, some authors do not distinguish between FMEA and FMECA, for example
Gilchrist [Gil93]. Another extension is the probabilistic FMEA in which the possibility that
a component failure occurs is used. Analogous to FTA, there exists a software version of
this method: Software FMEA (SFMEA) [SBF+19]. It extends FMEA by additionally considering
software intensive components, for example embedded systems. Furthermore, it considers
that software itself can not fail but incorrect behavior should be prevented. Details about this
method are explained by Goddard [God93].

All in all, the method provides a foundation for qualitative reliability, maintainability,
safety, and logistics analyses [HVV+20; Ono97]. FMEA has been highly successful [Gil93]
for example Arabian-Hoseynabadi et al. apply it successfully to wind turbines [AOT10].
Furthermore, in software reliability analysis, SFMEA is one of the most used methods [HL12].
For example Lutz and Woodhouse successfully applied it to spacecraft software and state
that a combination with FTA has found even more requirement issues [LW96].

4.2.3 CAST

Another analysis method that is based on STAMP is the Causal Analysis based on System
Theory (CAST). It can be used during an accident investigation in order to determine why the
accident occurred [Lev19]. One goal of the technique was to shift the focus to understanding
why an accident occurred and preventing similar losses instead of stopping the investigation
as soon as someone to blame was found [Lev16]. With the help of CAST the entire sociotechnical
system can be examined and its weaknesses in the safety control structure can be found. The
goal is to learn as much from an accident as possible instead of identifying one root-cause.

43

4. Exploration of Risk Analysis

Similar to STPA the loss examined can be anything and does not have to be a typical
safety or security accident [Lev19]. Additionally, safety is viewed as a control problem too.
In contrast to STPA, CAST only assists in examining the particular scenario that occurred.
However, applying CAST to past accidents can help in the STPA analysis by identifying loss
scenarios that should be prevented or controlled.

The CAST analysis consists of five steps [Lev19]:

Assemble Basic Information In this step basic information about what happened is gathered.
This entails system-level hazards that occurred and violated constraints.

Model Safety Control Structure Since safety is viewed as a control problem, the cause of a
hazard is that the control structure and controls were not effective. In order to determine
why and how the structure might be improved, it must be modeled first.

Analyze Each Component in Loss Starting from the bottom of the control structure, each
component is analyzed. Thereby, the role it played in the accident and the explanation for
its behavior is determined.

Identify Control Structure Flaws In contrast to the previous step, now the whole control
structure is considered in order to identify the general systemic factors that contributed to
the loss.

Create Improvement Program The last step is to create recommendations for improving the
control structure in order to prevent further losses.

4.2.4 Other Techniques

There exist several more risk analysis techniques. Some of them are presented in this section.
One of the more widely used techniques is Hazard and Operability Study (HAZOP). In

contrast to FTA and FMEA, it is a preliminary analysis technique [KRC15]. McKelvey points out
some key problem areas of HAZOP: lack of experience of the analysts, failure to communicate,
management short-comings, complacency and poor loss-prevention practices, shortage of
technical information, and analysts are only human [McK88]. Moreover, he presents solutions
that could counter these difficulties. Khamidi et al. successfully applied HAZOP to a mobile
mooring system [KRC15]. The process consists of eight steps [McK88]:

1. Define the scope of the study

2. Select the analysis team

3. Gather information necessary for the study

4. Review the normal functioning of the process

5. Subdivide the process into logical and manageable subunits

44

4.2. Analysis Techniques

6. Conduct a systematic review according to the established rules for the procedure being
used

7. Document the review proceedings

8. Ensure that all recommendations from the study are adequately addressed

Sneak Circuit Analysis (SCA) was introduced in the 1960s to improve system reliability
and is an effective extension for the traditional techniques such as FMEA and FTA [ZZ14]. It
is a technique for evaluating electrical circuits. The aim is to uncover latent (sneak) circuits
and conditions causing unwanted behavior1. The process consists of six steps [ZZ14]: data
collection, system classification, data input, topology simplification, network tree development,
and analysis. Disadvantageous are the large amount of effort, resources, and time needed to
perform the technique [SBF+16].

Besides safety risk analysis, there also exist security risk analysis techniques such as
CORAS, which consists of eight steps [LSS11]. The first four ones aim to understand the goal
of the analysis and for example list the assumptions about the environment. The remaining
steps are the actual analysis, containing the identification of concrete risks, and potential
solutions.

In Deductive Cause-Consequence Analysis (DCCA) informal explanations are replaced by
mathematical proofs [ORS05]. It is a formal generalization of FTA and FMEA. Ortmeier et al.
apply this technique successfully to the Elbe Tunnel.

Event Tree Analysis (ETA) is a bottom-up, deductive, system safety analytical technique
[Cle90]. The basic principle is to start with an initial event and generate a tree based on all
possible permutations of the other events. Hence, each hierarchy level consists of one event
represented by two nodes: one node presenting the event failed and one node representing
the event was successful. For each path the probability that it happens is calculated. This
technique can be used to complement for example FTA or FMEA. Furthermore, there exists
an extension with fuzzy numbers in order to improve the risk assessment: Fuzzy FTA (FETA)
[HCW01].

CTTA Risk Analysis and Management Methodology (CRAMM) is a qualitative risk analysis
and management tool, developed in 1985 [Yaz02]. It identifies threats and vulnerabilities,
which are visualized using Bayesian Networks [MZP+06]. They consist of a set of variables
and a set of directed edges between them and are useful in representing possible cause-effect
relationships. In order to identify and prioritize critical events, What-if studies are used.

One epidemiological technique is CREAM according to Wienen et al. [WBV+17]. It is an
accident investigation technique based on a clear distinction between what can be observed,
called phenotypes, and what must be inferred, called genotypes [Hol10]. For the genotypes
exist three categories: individual, technological, and organizational.

1https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap9_1200.pdf

45

https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap9_1200.pdf

4. Exploration of Risk Analysis

4.2.5 Combinations

As already mentioned, some analysis techniques complement each other. This was used to
create new techniques that are a combination of already existing ones. For example FRAM

& System Hazard Analysis (SHA) [FM14] or SCA & FMEA [SBB93]. A small subset of them is
presented in this section.

He and Li combine SFTA and SFMEA in order to create a new reliability analysis technique
[HL12]. Practical applications have shown that this model can improve the reliability and
ensure quality of software. Applying each of the techniques alone has drawbacks, which
are eliminated by combining them. It starts with adopting SFTA to build a software analysis
tree. Afterwards, SFMEA is used to analyze the basic events and determine their severity, fault
reason, fault model, and fault effects. Subsequently, faulty blocks are located and improvement
measures proposed.

Toda et al. combine STPA with FRAM [TMT18]. They transferred the four categories of UCAs

to each aspect of each function in the FRAM model. The analysis results for each combination
of an aspect of the function and a keyword include four descriptions: deviation, local influence,
global influence, and severity. In a case study the authors found out that the new technique
detected additional hazards compared to STPA. However, hazards concerning individual
components of the system were overlooked.

Antoine showed that STPA is complementary to traditional techniques such as FTA [Ant13].
He states that FMEA and traditional techniques such as HAZOP and FTA could be used after an
STPA analysis is finished in order to examine the identified hardware issues further. According
to him, FTA would be the best candidate since it starts with a hazard event while the two other
ones start with a system component. Additionally, it is a top-down approach just like STPA.

4.2.6 Comparison

As seen in the previous sections, there are many different techniques that could be used when
developing a system. In order to select the best fitting one for a system, many comparisons
were made between the techniques. Some of them are presented in this section.

According to Leveson [LT18], STPA has several advantages over the traditional techniques.
While the traditional techniques aim to analyze simpler systems and mostly after the develop-
ment is finished, STPA can analyze very complex systems and can already be applied in early
development phases. Additionally, it includes software as well as human operators in the
analysis. STPA finds all the causal scenarios found by the traditional techniques but also many
more that were not found by the traditional ones. Leveson [Lev16] states that this statement
is confirmed by the few comparisons that have been made. Furthermore, STPA needs less time
and fewer resources.

A comparison of STPA to FMEA is done by Sulaman et al. [SBF+19]. They state as the major
difference between STPA and any other bottom-up technique that in STPA the analyst can stop
refining the causes at the point were an effective prevention or weakening can be identified.
In their comparison with FMEA, they found out that STPA identified more software hazards

46

4.2. Analysis Techniques

than FMEA and outperforms it in finding causal factors of identified hazards. Furthermore,
causes identified by STPA are more detailed thanks to the keywords it provides as guidelines.
However, FMEA identified more component failure hazards and is better in risk assessment
of software failures. This is caused by the different focuses of the techniques. FMEA focuses
on the architecture and complexity of the components while STPA focuses in finding causal
factors for identified hazards. The authors conclude that the techniques complement each
other well in their study.

Song [Son12] also compares STPA with FMEA by applying STPA to the Darlignton shutdown
system, which is original done with FMEA. Moreover, he explains why FRAM is not suitable
for this system. FRAM aims to find functional resonance and hence is suitable for systems that
can be easily divided into several functions. As a second reason, he claims that characterizing
the potential for variability is subjective. Just as other researchers, as an advantage of STPA is
stated that it provides more guidance. FMEA has no guidelines for identifying hazards, failure
modes, and failure causes. Although STPA identified more hazards and causal factors, Song
states that these additional factors were not significant.

A comparison to FTA is done by Ishimatsu et al. [ILT+10] by applying STPA to the Japan
Aerospace Exploration Agency (JAXA) H-IIB Transfer vehicle (HTV). Overall, they state the
same advantages of STPA over FTA as it has compared to FMEA.

Another comparison is done with STPA and Functional Hazard Analysis (FHA) by Zikrullah
et al. [ZKM+21] in a case-study. They state that researchers already found several weaknesses
of FHA and STPA. For example STPA has the disadvantage that due to its attempt to increase
the hazard coverage, the number of UCAs can explode. FHA captures a higher number
of Hazardous events (HEs) than STPA captures UCAs because of the use of keywords for
hazard identification, the function type classification in the selected model, and the modeling
approach. In contrast to that, the number of identified loss scenarios is higher than the causal
scenarios found by FHA. Each method identified unique hazards by using keywords the
other method does not use. Nevertheless, the identified consequences and losses are the
same by both methods. They conclude that both methods are suitable for analyzing novel
technology. However, STPA is the better choice since the modeling technique captures all
systemic properties, and the safety requirements are already assigned to an agent. In FHA an
additional process is required in order to identify the agent for a requirement. The authors
also mention that Leveson [LWF+14] found out that STPA could identify causal scenarios that
FHA could not but according to Zikrullah both methods still suffer limitation for identifying
scenarios caused by component failure or software error.

Google applied STPA as part of Site Reliability Engineering2. One of the results is that more
solutions were found by STPA, which mostly are low cost and highly effective3. Moreover,
the creation of the control structure lead to gaining insights regarding the control loop.
Another advantage of STPA is that the results are generalizable and hence independent of the
implementation. The presenters state that thanks to STPA potential accidents can be detected

2http://psas.scripts.mit.edu/home/2021-stamp-workshop-program/
3http://psas.scripts.mit.edu/home/wp-content/uploads/2021/06/2021-06-23-1210__Falzone_Thomas.pdf

47

http://psas.scripts.mit.edu/home/2021-stamp-workshop-program/
http://psas.scripts.mit.edu/home/wp-content/uploads/2021/06/2021-06-23-1210__Falzone_Thomas.pdf

4. Exploration of Risk Analysis

beforehand and at much lower cost. Additionally, more recommendations per incident were
generated. As conclusion the presenters share their insights about STPA in which they state
that one of the major values of STPA for the analysts was the identification of system safety
requirements.

4.3 STPA Use Cases

Despite the claim of some researchers that STPA is not useful in industry, at the STAMP

workshop 2021 many organizations reported that they have been using STAMP/STPA4. Among
these are Google, Amazon, Airbus DS, Intel Corp, NASA, Samsung, etc. There are several
more case-studies using STPA in which STPA is also compared to other analysis techniques. A
subset of them is presented here, showing the usability of STPA in several different domains.

JAXA develops various types of space systems in which safety is essential [ILT+10]. It
has not experienced accidents that were caused by other factors than component failure
but still considers using STPA in order to prevent future accidents. The HTV, which was
originally developed using FTA, was chosen as an analysis target in a pilot case study. HTV

is an unmanned vehicle with the task to carry necessary components and commodities to
the International Space Station (ISS). The authors conclude that the causal factors identified
by STPA cover all hazard causes of the original fault tree and that there were causal factors
that were only identified by STPA. A second case study targeting HTV shows an application of
STPA to identify possible unsafe interactions among multiple controllers [ILT+14]. These can
arise due to conflicting or uncoordinated control actions. This application possibility is an
advantage in comparison with FTA since multiple controller problem can not be captured by
it. Another vehicle that is the target of a case study is the Crew return Vehicle (CV), which
is a manned vehicle carrying crews and necessary components to the ISS [NKM+11]. The
case study consisted of a safety analysis using STPA in parallel with mission design as a trial
of safety guided design. It is important to perform system and safety design in parallel to
design a safe system. The authors present their idea of a safety guided design process, which
is applied to CV in this case study.

Baumgart et al. [BFP18] apply STPA to a case in the construction equipment domain: the
quarry site case. Identifying hazards and deriving constraints were straight forward. However,
developing the control structure toke time due to finding an appropriate abstraction level.
The authors state that processes and guidelines for handling complex system of systems (SoS)
using the control structure must be developed. They conclude that in the context of SoS, STPA

has inadequacies and an improved technique must be developed for safety analysis of SoS.
However, Leveson argues that there should be no difference between a complex system and
a SoS5. The properties of an SoS are already contained in the system definition as defined in
System Theory. Leveson shows that STPA can be used for SoS without changing anything. As

4http://psas.scripts.mit.edu/home/2021-stamp-workshop-information/#
5http://sunnyday.mit.edu/SOS-hazard-analysis.pdf

48

http://psas.scripts.mit.edu/home/2021-stamp-workshop-information/#
http://sunnyday.mit.edu/SOS-hazard-analysis.pdf

4.3. STPA Use Cases

an example she uses a real defense system. She concludes that the new term SoS is unnecessary
and misleading, since a system hazard analysis and a SoS hazard analysis are the same.

Even the European Parliament promoted 2008 a system-based approach for the safety
management of road infrastructure, and the individual members are responsible for the
realization [KK21]. Although a framework is provided, the details are not determined. Kraut
and Koglbauer propose in their study a systemic approach for the road safety management
process in Austria based on STPA. The application of the approach lead to improvement in
road safety and uncovered a number of weaknesses in the safety management of the Austrian
road network. Hence, the method and the results can be applied worldwide to road networks
in order to increase the traffic safety.

STPA can also be applied to serviceability issues as shown by Slominski in her master
thesis [Slo20]. As already mentioned in Section 2.1, the broad definition of a loss allows the
usage of STPA for several emergent properties, not just safety. The technique can easily be
adapted for serviceability by identifying serviceability losses. Hence, STPA can be used to
understand system interactions and strengthen the service control structures. Case studies
are used to demonstrate the application of STPA to serviceability. Each study identified design
recommendations for serviceability as well as for the service control structure. The author
concludes that STPA can be used for addressing existing issues as well as for early design
phases of future systems in the serviceability domain.

Dong used STPA for re-analyzing a High Speed Train accident in China in his master
thesis [Don12]. Additionally, he applied the method to the Communication Based Train
Control (CBTC) system, which is similar to the one analyzed first. The methods helped to
identify more inadequate controls and required improvements. The author points out that the
control structure is very helpful for understanding and analyzing the system by providing a
better understanding of the interaction between the system elements. In conclusion, STPA can
be very comprehensive in identifying all kinds of loss scenarios.

Another application of STPA is done by Abdulkhaleq and Wagner [AW13] who used
it for analyzing a safety-critical system in the automotive domain. The aim is to analyze
the application of STPA and the difficulties for a real system in a commercial vehicle. They
conclude that STPA is suited for an in-depth analysis. It is a more powerful and useful
technique that is usable in the automotive domain.

In order to show the advantages of STPA compared to traditional techniques, Abrecht
and Leveson [AL16] applied STPA to Naval Offshore Supply Vessels (OSVs), which utilize
dynamic positioning in support of target vessel escort operations. They conclude that STPA

is effective and adheres the guidelines for hazard analysis in Department of Defense (DoD)
systems. Horney [Hor17] also concludes in his master thesis that STPA can improve the safety
management for DoD systems. He describes a technique in order to guide DoD engineers when
applying STPA.

The suitability of STPA for identifying managerial risks is evaluated by Pope [Pop19]. He
conducts a case study in which a manufacturing process is restarted after 30 years using
raw material that has been in storage. The result is that STPA produces useful results and is

49

4. Exploration of Risk Analysis

relatively easy to review. This is also supported by other hazard analysis experts to which the
results were shown.

Furthermore, Leveson et al. show the usefulness of STPA for certifying aircraft [LWF+14].
They compared the new technique with the common approach, which included traditional
analysis techniques, in order to prove their thesis that STPA is more powerful. The results are
that with STPA potentially unsafe interactions can be easier identified but the method does not
identify function reliability requirements. However, the authors conclude that the common
approach omits important causes of aircraft accidents.

4.4 STPA Extensions

The main purpose of STPA is ensuring safety. Nevertheless, it can be used for several properties
as already mentioned before. For some properties, just the losses must be defined accordingly.
However, for other properties extensions were developed. One of them is STPA-Sec. It is used
to secure software against intentional disruptions and hence aims to provide more security
[YL13]. Instead of focusing on threats as the cause for losses, the broader system structure is
analyzed in order to identify vulnerable states that are exploited by a threat leading to a loss.
Vulnerabilities are controlled by identifying and enforcing constraints on unsecure control
actions that can lead to these vulnerable states. Just like hazards lead to safety incidents in
STPA, vulnerabilities lead to security incidents. The main advantage of STPA-Sec is that the
focus lies on controlling vulnerabilities instead of trying to avoid threats like it is usually
done because these threats are mostly beyond the control of the security specialist. Applying
STPA-Sec consists of the same four basic steps as STPA:

1. Establish the foundation for the security analysis by identifying the losses that should
be prevented and defining the vulnerabilities that lead to the losses under worst-case
environmental conditions. Furthermore, a High Level Control Structure (HLCS) is modeled,
providing a graphical specification of the functional controls

2. Identify unsecure control actions that are vulnerable under certain conditions. The unsecure
control actions are divided into four types: Providing a control action leads to a hazard or
exploits the vulnerability, not providing a control action leads to a hazard or exploits a
vulnerability, providing control actions too late, too early, or in the wrong order leads to a
hazard or exploits a vulnerability, and stopping a control action too soon or continuing it
too long leads to a hazard or exploits a vulnerability.

3. Create security requirements and constraints based on the identified unsecure control
actions.

4. Identify causal scenarios that violate the safety constraints by using the guide words
STPA-Sec provides. The scenarios can be used to create protection against the occurrence of
them or at least limit the damage from them.

50

4.4. STPA Extensions

Shapiro [Sha16] proposes additional concepts to STPA-Sec to produce STPA-Priv. It ad-
dresses privacy in two ways: defining losses and capturing the control structure. The author
hopes that the STPA-Priv is as successful for privacy as STPA has proven to be successful
for identifying safety risks. The method consists of four steps: Identify potential adverse
privacy consequences, identify vulnerabilities that can lead to those consequences, create
privacy constraints and functional control structure, and identify privacy-compromising
control actions.

A unified approach to safety and security analysis based on STPA and STPA-Sec is developed
by Friedberg et al. [FMS+17] and is called STPA-SafeSec. The guidance for identifying causal
factors for safety is extended to also include the security domain. Moreover, the method
allows linking the control structure to the physical system design. This allows to complement
STPA-SafeSec with traditional security analysis techniques. Additionally, some shortcomings
of STPA and STPA-Sec are taken care of in this new method.

STPA-DFSec is a data-flow based STPA-Sec developed by Yu et al. [YWL21]. The main
difference to STPA-Sec is that the guide words were adjusted and a Functional Interaction
Structure (FIS) is used instead of a control structure. An advantage of the new method is that
information-related problems can be identified more directly and it can be used together with
other STPA-based approaches. However, two limitations were identified: lack of evaluation of
identified scenarios and missing information about the data processing of the target system.
Concluding, the authors state that STPA-DFSec can reveal more details in information security
aspects, not directly addressed by STPA-Sec. However, the new method should not replace the
original one but complement it.

France [Fra17] proposes the method STPA-Engineering for Humans in her master thesis.
Its goal is to guide the analyst in the identification of causal scenarios related to human
operator behavior. The method was originally proposed by John Thomas in order to handle
the complexity of human automation interactions. In contrast to other extensions, this one
creates a new model with focus on improving the characterization of the operator’s model
instead of modifying an existing model. This new human controller model can easily be
applied as part of the original STPA process. It consists of three components as shown in
Figure 4.9:

Control Action Selection This component contains the goals of the controller and how decisions
are made.

Mental Models Beliefs of the human about the system and the environment are contained
here. It is divided into process state, process behavior, and environment

Mental Model Updates Human experiences and expectations influence the processing of
sensory input. This influence is captured in this component.

The model’s goal is to provide a better understanding of how UCAs may arise. The
complete analysis is the same as in STPA except the identification of loss scenarios. In this
step the new introduced model should be used for UCAs performed by a human controller

51

4. Exploration of Risk Analysis

Sensory
Feedback
& Inputs

Human Controller

Control
Actions

Mental Models

Process Behavior

Process State

Environment

Control Action
Selection

Mental Model
Updates

Figure 4.9. The human controller defined by France [Fra17].

in order to identify richer scenarios, which will lead to additional requirements. The author
applied the extension to an Automated Park Assist system and concludes that it was feasible
and valuable.

Another extension of the human-controller in STPA is done by Thornberry in his master
thesis [Tho14]. Originally, the human controller just consists of the control action generation,
a model of automation, and a model of the controlled process. In the extension the different
components of the controller are the following: detection and interpretation, model of auto-
mated process, model of controlled process, decision-making, and affordance. Additionally,
Thornberry extends the causal factor analysis, and hence the identification of scenarios, by
proposing five categories for them: Flawed feedback, flawed detection and interpretation of
feedback, inconsistent process models, flawed decision-making, and inappropriate affordance.
The goal of these categories is to make conflicts between feedback more easily identifiable
and help the analyst to better identify loss scenarios related to a human operator.

Based on Thornberry’s extension, Montes developed in his dissertation STPA-RC [Mon16].
The goal is to capture the important attributes of previous research regarding incorporating
human behavior and address existing research gaps. STPA-RC is build on Thornberry’s
extension and adds new parts. Moreover, it refines his original guidance and introduces a
method for identifying outside influences on the controller. The categories for causal scenarios
introduced by Thornberry are refined with more details.

4.5 STPA Improvements

STPA may be better than other analysis techniques but it still can be improved. Zou wrote a
master thesis with the goal to bring new insights and suggestions for the practical application
of STPA [Zou18]. Therefore, he used a case study in which the operation of a fully autonomous
vessel was analyzed. The first improvement he found concerns the UCAs. FMEA and Control
HAZOP (CHAZOP) use guide words that can be redefined for the UCAs in STPA for example
intermittent, unintentional, or unintended. Testing the modified UCAs approach identified four
UCAs that were not found before. The second improvement concerns the identification of loss

52

4.5. STPA Improvements

scenarios. Originally, they are found by group brainstorming and hence, for an individual
analysis it is unavoidable to omit scenarios. In order to improve this step a systematic
analyzing framework is proposed that groups scenarios in categories: Communication, digital
hardware, software, and mechanical item. For each category the corresponding scenarios
are defined together with the causal factors and constraints. There is one big drawback: The
modified approach cannot deal with the repetition and complexity of causal factors and
safety constraints. Zou concludes that this problem must be addressed in order to reduce
the analysis time and that the severity and priority of an UCA is still difficult to determine in
contrast to FMEA and HAZOP.

Another improvement regarding the generation of scenario is proposed by John Thomas as
stated by Summers in his master thesis [Sum18]. The improvement is a new method in which
the scenarios are divided into four categories based on their location in the control structure
as seen in Figure 4.10: command not followed or followed inadequately, inappropriate
decision, inadequate feedback or other inputs, and inadequate process behavior. The goal
of this categorization is to ensure more coverage across the control structure just as the
categorization of the UCAs ensures each type is considered.

Controller

Controlled
Process

Control
Action

Feedback

Inappropriate decision

Inadequate feedback
or other inputs

Command not followed
or followed inadequately

Inadeqaute process behavior

Figure 4.10. The location of the scenario types [Sum18].

Antoine also proposes an improvement for identification of loss scenarios in his disserta-
tion [Ant13]. He wanted to eliminate the repetition of similar information caused by UCAs that
share common causal factors. Therefore, a Step 2 Tree was constructed as seen in Figure 4.11
in order to highlight common pathways through which causal factors lead to UCAs. The tree
starts with two general categories of hazardous scenarios: Inadequate command generation and
safe command not followed. Each of them is attached to three lower-level categories. The former
one to inadequate goal/input, flawed control algorithm, and flawed process model. The latter one to

53

4. Exploration of Risk Analysis

Analysis process: follow the links from
left to right, from top to bottom for
guidance in identifying scenarios that
result in an unsafe control action

for each
controller

for each
loop

for each
CA

for each
UCA

Inadequate command
generation

general categories of
hazardous scenarios

In
ap

pr
op

ria
te

G
oa

l/I
np

ut

F
la

w
ed

P
ro

ce
ss

M
od

el

F
la

w
ed

co
nt

ro
l

al
go

rit
hm

F
la

w
ed

tr
an

sm
is

si
on

F
la

w
ed

ex
ec

ut
io

n
C

on
fli

ct
in

g
C

on
tr

ol
 A

ct
io

n

Safe command not
followed

Design flaw

Flawed updating
of PV

for each
needed

PV

Missing

Inadequately timed

Wrong

Missing rules

Wrong rules

Wrong clock

Missing PV

Wrong interpretation of information

Inadequate information timing

Inadequate information transmission
(distorted, lost)

Inadequate sensor operation

Not emitted

Delayed

Distorted

Missing input

Command not received

Actuator failure

Delayed

Wrong input

Actuator failure

Not executed

Wrongly executed

Figure 4.11. The Step 2 Tree [Ant13].

54

4.6. Leading Indicators

flawed transmission, flawed execution, and conflicting control action. In order to identify the loss
scenarios for an UCA, the tree can be followed left to right, from top to bottom. The goal of
the tree is to provide structure for the process of identifying loss scenarios by making the
connections between the causal factors explicit. In three of five examples of the PROSCAN
STPA project the Step 2 Tree was applied successfully.

Besides the tree, Antoine also organizes the results of the analysis in order to be able to
visualize them. This can help to easier grasp the data and the effectiveness of elimination and
mitigation strategies for hazards. The visualization Antoine presents can be seen in Figure 4.12.
System protection measures are visualized along with the hazards, causal scenarios, and other
aspects. Hazards are represented by circles, scenarios by hexagons, UCAs by rectangles, control
actions by triangles, and controllers by diamonds. The protection measures are visualized by
dots on the links between different elements in the visualization.

Figure 4.12. Visualization of system protection measures [Ant13].

Regarding tools to support the application of STPA, Antoine states that computer databases
and searches can benefit from the data management of STPA. Moreover, software tools that
assist in the analysis itself as well as enhance the readability of the analysis and visualize the
results can be helpful.

4.6 Leading Indicators

After risk analysis is done for a system and necessary safety requirements are implemented,
it can still happen that accidents occur. In order to identify the potential for an accident before
it occurs, leading indicators for safety can be used [Lev15]. Particularly in the petrochemical

55

4. Exploration of Risk Analysis

industry, a lot of effort has been spent on trying to identify such leading indicators [Lev14].
Early attempts to develop them began in the mid-1900’s. In the past, the identification of
leading indicators involved mostly finding a set of generally applicable signals that presage
an accident [Lev15]. For example the quality of maintenance and inspection or equipment
failure rates are identified as leading indicators. There also exist standards that propose to
start from a hazard analysis to identify leading indicators but they assume accidents can be
explained by sequential models. In the paper of Leveson, a new approach is proposed. The
design of systems is based on safety-related assumptions. A leading indicator is a warning
sign used in monitoring system processes to detect when such assumptions are broken or
their validity is changing. In such cases, an action is required to prevent an accident. Those
actions can be shaping actions, which are used to maintain assumptions, or hedging actions,
which prepare for the possibility that assumption will fail.

When determining a set of leading indicators, the goal is that the set is complete, consistent,
effective, traceable, minimal, continually improving, and unbiased [Lev15]. A structured
process can help to achieve this. The basis of a leading indicator program can be safety
critical assumptions. In order to guide the identification of them, Leveson presents six types
of assumptions. Assumption can be about:

1. System hazards and the causes of them

2. The effectiveness of shaping and hedging actions

3. The operation of the system and the environment

4. Development environment and processes

5. The control structure during operations

6. Severity in risk assessment

STPA can help to identify safety-critical assumptions [Lev15]. First of all they should
include that hazards will not occur in a properly designed and operated system. Moreover,
the assumptions underlying the identified hazardous scenarios should be determined. Further
assumptions are related to the responsibilities assigned to the controllers and whether these
are properly enforced. Another source for assumptions are limitations in the design. These
are related to basic functional requirements or other environmental assumptions and should
be documented. They can relate to hazards that could not be eliminated completely and
hence represent accepted risks. Additionally, limitations can be related to trade offs made
during the system design. Assumptions can also arise from the safety culture, which is a
set of values and cultural assumptions upon which safety-related actions are taken and
decisions are made. Ball presents an extension of STPA in his master thesis in order to derive
leading indicators from assumptions underlying causality of inadequate control [Bal15]. He
concludes that the extension is valid and provides recommendations for implementation of a
leading indicator monitoring program. In order to integrate the assumptions into the system

56

4.6. Leading Indicators

engineering documentation, several methods can be used, for example Intent Specifications
[Lev15].

A leading indicator program can be based on the identified assumptions and has three
aspects: Identifying leading indicators, creating a safety indicator monitoring program, and
embedding this program within a risk management system [Lev15]. The first step is to
create leading indicators that will detect when the identified safety-critical assumptions no
longer hold. For each leading indicator several aspects should be documented: The associated
assumption(s), how and when it will be checked, and the (hedging) action(s) to take if the
assumption is violated and hence the indicator is true. After the creation of the leading
indicators, the monitoring program must be designed. Many of the assumptions can be
handled by shaping and hedging actions and signposts. Signposts are points in the future
where shaping and hedging actions may be necessary. In these cases it is sufficient to check
that these actions are effective. Several designs for the monitoring program are possible.
An example is Early Warning Sign Analysis using STPA (EWaSAP) developed by Dokas et al.,
which is an addition to STPA [DFI13]. It allows to define data indicating the violation of safety
constraints and to design assumptions.

In order that leading indicators are effective, they have to be integrated into the risk man-
agement program [Lev15]. Detailed actions plans for critical scenarios should be developed
and triggers for them specified. Furthermore, responsibilities should be assigned for checking
the existence of leading indicators.

57

Chapter 5

Concept for the STPA DSL

The goal of this master thesis is to develop a DSL for STPA. Since several tools for STPA

already exist, the aim is to combine the advantages while minimizing disadvantages. This
also includes the requirements stated by Ludvigson [Lud18] and Souza et al. [SPP+19] as
used in Section 3.12. Generally, there are two approaches for a DSL: textual and graphical.
Both have their pros and cons [GKR+14]. A graphical approach is suitable to give the user an
overview of the different elements and how they are connected. However, only being able to
add graphical elements as a user via drag and drop or pop-ups in the diagram is tedious,
and arranging the elements manually for a good layout is time consuming. Hence, a textual
approach is more efficient and less time consuming for the user. Additionally, version control
is much easier for text than for graphs. The disadvantage of the textual approach is, like
already said, that graphs are better suited to give an overview. In conclusion, a combination
of both approaches combines the advantages of both and eliminates the disadvantages of
only using one of them. That is why the goal of this thesis is to develop a textual DSL for STPA

for which a visualization is generated and layouted automatically. In this way the user has
the advantages of both approaches: An overview is given due to the visualization, but no
time is consumed by creating and layouting it.

One main benefit of this approach is that the relationships of the STPA components can
be visualized, which is so far only provided by the tool SAHRA and no other tool. However,
the disadvantages of SAHRA are that it is tedious to only work graphical and large graphs
can lead to losing the overview the graph is supposed to give. The DSL approach does not
necessarily contain these disadvantages. The remaining chapter further explains the concepts
for the DSL (Section 5.1) and the visualization (Section 5.2).

5.1 DSL

As the main goal, the grammar of the DSL should be easily readable and understandable as
well as clearly structured such that the different aspects of STPA are separated. This is achieved
by using captions for each aspect as shown in Listing 5.1. The aspects are introduced in
Section 2.1 and are the following: losses, hazards, system-level constraints, control structure,
responsibilities, UCAs, controller constraints, loss scenarios, and safety requirements. For each
aspect, several components can be defined. In order to support the tracing shown in Figure 2.2,
each component needs to have an ID and a list containing the references to other components.
Moreover, a component should have a description, which summarizes the component, leading

59

5. Concept for the STPA DSL

to the following general syntax: 〈ID〉 〈String〉 [〈Ref〉, . . .]. One exception are the losses, which
do not have tracing to other components and thus no list at the end. Example components
for losses, hazards, and system-level constraints can be seen in Listing 5.2. For the hazards
and system-level constraints also sub-hazards and sub-constraints can be defined as shown in
Listing 5.3. They are stated using brackets after the parent component. While the sub-hazards
do not need a reference list — the tracing is inherit from the parent — the sub-constraints
still need a list since they could be used to specify the tracing to sub-hazards. Nevertheless,
sub-hazards are allowed to specify a list in which only the references the parent has, are al-
lowed. The sub-hazards can be grouped by defining headers but it is not necessary. Tracing to
sub-hazards and -constraints work the same way as for the top-level hazards and constraints.

1 Losses

2

3 Hazards

4

5 SystemConstraints

6

7 ControlStructure

8

9 Responsibilities

10

11 UCAs

12

13 ControllerConstraints

14

15 LossScenarios

16

17 SafetyRequirements

Listing 5.1. The captions
for the aspects in STPA.

1 Losses

2 L1 "Loss of life or serious injury to people"

3 L2 "Damage to aircraft or objects outside the aircraft"

4

5 Hazards

6 H1 "Loss of aircraft control" [L1, L2]

7 H2 "Aircraft comes too close to other objects" [L1, L2]

8

9 SystemConstraints

10 SC2 "Aircraft must have safe distance to other objects" [H2]

Listing 5.2. Component definitions for losses, hazards, and system-
level constraints.

The control structure must be defined alongside the other components as seen in Listing 5.4.
It is done by stating a name for the overall structure, which contains the system components
of the control structure. Each system component must have a name that is its identifier and
it can contain the following elements: hierarchyLevel, processModel, controlActions, and
feedback. The hierarchyLevel determines the position in the visualization as further explained
in Section 5.2. In the processModel property, process model variables are listed with their
possible values. Control actions that can be send from the current system component to
another are stated in the controlActions property. They are stated using an ID, a label, ->, and
the target. Multiple control actions that are send to the same target are stated together. This
also applies to the feedback, which are stated in feedback.

Responsibilities are normally stated together with the system component they are assigned
to. This is the reason why in the DSL a system component must be stated prior to the

60

5.1. DSL

1 Hazards

2 H2 "Aircraft comes too close to other objects" [L1, L2] {

3 H2.1 "Deceleration is insufficient"

4 "Acceleration"

5 H2.2 "Asymmetric acceleration"

6 H2.3 "Excessive acceleration provided"

7 }

8

9 SystemConstraints

10 SC2 "Aircraft must have safe distance to other objects" [H2] {

11 SC2.1 "Deceleration must occur within ..." [H2.1]

12 SC2.2 "Asymmetric acceleration must not ..." [H2.2]

13 }

Listing 5.3. Definition of subcomponents for hazards and system-level constraints.

1 ControlStructure

2 Aircraft {

3 FlightCrew {

4 hierarchyLevel 0

5 processModel {

6 BSCUmode: ["on", "off"]

7 }

8 controlActions {

9 [powerOff "Power Off BSCU", powerOn "Power On BSCU"] -> BSCU

10 }

11 }

12 BSCU {

13 hierarchyLevel 1

14 feedback {

15 [mode "BSCU mode"] -> FlightCrew

16 }

17 }

18 }

Listing 5.4. Control structure definition.

61

5. Concept for the STPA DSL

1 Responsibilities

2 BSCU {

3 R1 "Actuate brakes when requested" [SC2.1]

4 R2 "Pulse brakes in case of a skid" [SC2.2]

5 }

6 FlightCrew {

7 R3 "Mnually brake in case of malfunction" [SC2.1, SC2.2]

8 }

Listing 5.5. Responsibilities definition.

1 UCAs

2 FlightCrew.powerOff {

3 notProviding {

4 UCA1 "Crew does not provide BSCU Power Off when abnormal WBS behavior

occurs" [H2.1]

5 }

6 providing {

7 UCA2 "Crew provides BSCU Power Off when Anti-Skid functionality is needed

and WBS is functioning normally" [H2.3]

8 }

9 tooEarly/Late {}

10 stoppedTooSoon {}

11 }

12

13 ControllerConstraints

14 C1 "Crew must provide the BSCU Power Off control action during abnormal WBS

behavior" [UCA1]

15 C2 "Crew must not provide the BSCU Power Off control action when Anti-SKid

functionality is needed" [UCA2]

Listing 5.6. UCAs and controller constraints definition.

responsibilities as shown in Listing 5.5. The responsibilities itself follow the standard definition
of components.

The definition of UCAs is done by first stating the corresponding system component and
its control action, as seen in Listing 5.6, in order to simplify the connection of an UCA to
a component. Moreover, in this way the UCAs are properly grouped, which improves the
readability of the document. For each control action, the four categories of UCAs must be
written down. This ensures that no category is forgotten. In the categories, the appropriate
UCAs can be defined. However, it is possible to leave a category empty for the case that there
is no such UCA. The corresponding constraints can be defined in the ControllerConstraints

section.
Loss scenarios can either be connected to a UCA or directly to a hazard. That is why there

are two possibilities for defining loss scenarios as shown in Listing 5.7. When the scenario is

62

5.2. Visualization

1 LossScenarios

2 Scenario1 for UCA1 "Abnormal WBS behavior occurs. Crew does not power off ..." [H2.1]

3 Scenario2 "Insufficient braking is applied due to ..." [H2.1]

4

5 SafetyRequirements

6 SR1 "Sufficient braking must be applied when ..." [Scenario2]

Listing 5.7. Loss scenarios and safety requirements definition.

linked to a UCA, it is stated together with the ID of the UCA, otherwise this is omitted. Even if
the scenario is linked to a UCA, hazards can still be referenced at the end of the component.
However, it is not necessary since the UCA already requires for them to be referenced. It
is only for use-cases where the user wants to be able to directly see the connected hazard.
Additionally to the aspects in STPA as introduced by Leveson, the DSL supports the definition
of concluding safety requirements (also shown in Listing 5.7), which can be linked to the
scenarios.

Since STPA does not need to be performed linearly, non-linear usage is also supported.
This means that changes can be done to previously defined components. Moreover, it should
be usable in every development stage and thus it is not required that components for every
aspect are defined. In order to aid the user even more, the references that are stated in the
list at the end of a component are checked to be valid IDs and to be a component of the
correct aspect. Which aspects are allowed for a component can be seen in Figure 2.2. For
the responsibilities and UCAs it is also checked whether the referenced system component
exist and in case of the UCAs whether they contain the stated control action. Furthermore,
references need to be unique in order to be useful. Therefore, another check validates the
uniqueness of all IDs. If one of the checks fails, an error is shown with a corresponding
message as seen in Figure 5.1a. Besides this essential characteristics, there are also checks that
only lead to a warning as seen in Figure 5.1b. These include controlling that in a reference list
an ID is not stated more than once and that the IDs of sub-components start with the same
ID as their parent. At last there is a check that examines whether all aspects are defined. If
this is not the case, the missing aspects are listed in an info as shown in Figure 5.1c.

5.2 Visualization

For a better overview of the tracing and thus the relationship between the defined components,
the user can request the automatic generation of a visualization. The visualization tab contains
two graphs: one representing the control structure and one representing the tracing between
the other components of STPA. Both graphs are automatically layouted with the layered
algorithm (Section 2.3.2), which assigns nodes to several layers.

The control structure graph is shown in Figure 5.2. It has a node for each system component
and is layouted in a way that a hierarchy level is represented by a layer. This means, system
components that are in the same hierarchy level are also in the same layer in the visualization.

63

5. Concept for the STPA DSL

(a) An example of an error message. At the
top the visualization in the editor and below
the message in the terminal.

(b) An example of a warning. At
the top the visualization in the ed-
itor and below the message in the
terminal.

(c) An example of an info in the terminal.

Figure 5.1. Visualization of failed checks.

In order to show the typical flow of control actions going from top to bottom and feedback
going from the bottom to the top, the layout direction is also top to bottom. This leads to the
representation of the hierarchy level 0 as the top layer. The control actions and feedback are
visualized as edges. Process models are currently not visualized, they have no influence on
the graph.

In the graph for the other STPA components, each component is represented by a node
drawn as a rectangle. An example for the defined components in the previous section can be
seen in Figure 5.3a. In order to easily be linked to the textual description, the label of the node
is the ID of the component. The layer of a node is set based on the aspect it belongs to. Each
aspect has its own layer in order to offer a clearly structured visualization and improve the
distinguishability of the aspects. The tracing between the components is visualized as edges.
For example, if a component H1 references L1, an edge is shown starting by H1 and going to
L1. This is done for every reference with the goal of giving a better overview of the connections
between the components. Loss scenarios are an exception. If they are stated with an UCA and
a reference list to hazards, they only have an edge to the UCA since the hazards are already
referenced by the UCA. Sub-components are visualized hierarchical in the graph. The node
representing the parent contains the nodes representing the sub-components. Unfortunately,

64

5.2. Visualization

1 ControlStructure

2 Aircraft {

3 FlightCrew {

4 hierarchyLevel 0

5 processModel {

6 BCSUmode: ["on", "off"]

7 }

8 controlActions {

9 [mc "Manual Controls"]-> OtherSubsystems

10 [powerOff "Power Off BSCU", powerOn "Power On BSCU"] -> BSCU

11 [manual "Manual Braking"] -> Wheels

12 }

13 }

14 OtherSubsystems {

15 hierarchyLevel 1

16 feedback {

17 [modes "Other system modes", states "states"] -> FlightCrew

18 }

19 }

20 BSCU {

21 hierarchyLevel 1

22 controlActions {

23 [brake "Brake"] -> Wheels

24 }

25 feedback {

26 [mode "BSCU mode", faults "BSCU faults"] -> FlightCrew

27 }

28 }

29 Wheels {

30 hierarchyLevel 2

31 feedback {

32 [speed "Wheel speed"] -> BSCU

33 }

34 }

35 }

FlightCrew

OtherSubsystems BSCU

Wheels

Manual Controls Power Off BSCU, Power On BSCU

Manual Braking

Other system modes, states

Brake

BSCU mode, BSCU faults

Wheel speed

Figure 5.2. Visualization of the control structure defined above.

65

5. Concept for the STPA DSL

L1 L2

H1
H2.1 H2.2H2.3

SC2.1 SC2.2

R1 R2R3

UCA1UCA2

C1C2

Scenario1Scenario2

SR1

(a) The standard visualization.

L1 L2

H1 H2

H2.1 H2.2 H2.3

SC2

SC2.1 SC2.2

R1 R2R3

UCA1 UCA2

C1 C2

Scenario1 Scenario2

SR1

(b) The optional visualization of sub-components.

Figure 5.3. The visualization of the STPA graph.

hierarchy crossing edges are not always layouted nicely. That is why the user can change the
visualization to the one shown in Figure 5.3b. Instead of entailing the sub-components in the
parent, the relationship is shown by edges starting from the sub-component and going to
the parent. Additionally, the sub-components get their own layer. The disadvantage is that
in this visualization edges have different meanings. Some edges represent the relationship
between parent and sub-component while others represent the tracing of a component. In
both visualizations, references stated by sub-hazards are ignored. They always inherit the
tracing from the parent.

Although each aspect has its own layer, the distinguishability can still be improved. This is
done by offering a colorful style where each aspect gets its own color as shown in Figure 5.4a.
These colors depend on the color theme or, to be more precise, on the color of the label. If
the label is white/gray, the brightness of the colors are reduced in order to still provide a
good contrast. In larger graphs users possibly have to zoom in to identify individual elements.
Other elements that are connected to the ones in the view are possibly not visible any more.
Still, it could be helpful to know which aspects and how many of it are defined for and hence
connected to a certain element. That is why, in the colorful style, the edges are colored in the

66

5.2. Visualization

L1 L2

H1
H2.1 H2.2H2.3

SC2.1 SC2.2

R1 R2R3

UCA1UCA2

C1C2

Scenario1Scenario2

SR1

(a) The colorful visualization.

L1 L2

H1
H2.1 H2.2H2.3

SC2.1 SC2.2

R1 R2R3

UCA1UCA2

C1C2

Scenario1Scenario2

SR1

(b) The visualization with different forms.

Figure 5.4. Different options for improving the distinguishability of aspects.

same color as their source. Additionally, this way the edges might be easier to follow as well.
For the case that the user do not like the colorful visualization or it is not as helpful as hoped,
there is an alternative option to improve the distinguishability: different forms. As seen in
Figure 5.4b instead of drawing each node as a rectangle each aspect gets its own form.

Besides the colorful and standard-color styles, there also exist the option of a print-style
(Figure 5.5). It is supposed to be used if the user wants to print a diagram or do not like the
colors at all. Naturally, the color, form, and hierarchy options are independent and thus can
be combined as the user prefers.

67

5. Concept for the STPA DSL

L1 L2

H1
H2.1 H2.2H2.3

SC2.1 SC2.2

R1 R2R3

UCA1UCA2

C1C2

Scenario1Scenario2

SR1

Figure 5.5. The print-stlye visualization.

68

Chapter 6

Implementation

The approach presented in the previous chapter is implemented as a VS Code Extension, since
the VS Code Extension API became increasingly relevant in the past years1. It uses Langium
(Section 2.3.4) for the DSL and Sprotty (Section 2.3.3) for generating the visualization. There
already exists a sprotty-vscode example2 that is a VS Code Extension combining a Langium-
based language server with a Sprotty diagram. This is used as basis for the implementation
presented in this section.

The general structure consists of three components: extension, language server, and
webview. The extension component is the entry point of the extension that combines the
language server with the visualization. In the language server, the actual DSL, the generation
of a graph, and the layout configuration for the layout of the graph is defined. The webview
contains the generation of the visualization for the graph that can be shown to the user
alongside the editor for the DSL. In the remaining chapter the implementation of the extension
(Section 6.1), the language-server (Section 6.2), and the webview (Section 6.3) are further
explained.

6.1 Extension

As mentioned in Section 2.3.1 the extension needs an entry point. In this case it is the
extension.ts file in the extension folder, which creates an StpaLspVscodeExtension in the activate

function. The commands that should be provided to the user are defined in the package.json.
The implementation of these is done in the StpaLspVscodeExtension. Depending on the
command, either a notification is send to the language server or an action is send to the
webview. The reactions to these are explained respectively in Section 6.2.4 and Section 6.3.3.
StpaLspVscodeExtension is also responsible for starting the language client and creating the
webview when requested.

6.2 Language Server

The language server is based on Langium. An alternative would have been Xtext. However,
when using Xtext with Sprotty, two different programming languages are used: Java and

1https://www.typefox.io/blog/langium-the-new-language-engineering-tool
2https://github.com/eclipse/sprotty-vscode/tree/master/examples

69

https://www.typefox.io/blog/langium-the-new-language-engineering-tool
https://github.com/eclipse/sprotty-vscode/tree/master/examples

6. Implementation

TypeScript. This complicates the development as well as the maintenance3. Langium solves
this problem by enabling to implement the language server in TypeScript as well. Additionally,
this leads to a direct integration with the VS Code Extension API4.

As explained in Section 2.3.4, to create a Langium-based language server a grammar
definition, a module and a main file is needed. The module for the STPA DSL, StpaModule,
is defined in the stpa-module file. The services registered in this module are the follow-
ing: StpaScopeProvider, StpaValidator, StpaDiagramGenerator, StpaLayoutConfigurator, and
StpaOptions. The first two improve the utility while the following two are needed for the
combination with Sprotty. The last one is used to store options needed by the language
server. In the following, the implementation of the DSL, including the grammar, the scope
provider and the validator, are explained (Section 6.2.1) followed by the implementation of
the diagram generation (Section 6.2.2). Afterwards, Section 6.2.3 explains the layout options
and Section 6.2.4 the StpaOptions service.

6.2.1 DSL

The language server contains the actual grammar for the STPA DSL, which is defined in
Langium. The entry rule is named Model and matches parser rules for each STPA aspect. Since
parser rules are defined using EBNF, this form is used to define the rules for every STPA aspect
based on the concept for the grammar (Section 5.1). For example, the rule for losses is defined
as follows: Loss: name=ID description=STRING;. For the references at the end of components,
cross references are used. The same applies for referenced system components and control
actions.

As already mentioned, StpaScopeProvider and StpaValidator that override the default
implementation of the services provided by Langium, are used as scope provider and validator.
In order for the StpaValidator to be used, the ValidationRegistry must be overridden. In
the StpaValidationRegistry, for each STPA aspect a method is registered that contains the
relevant checks for each aspect. These checks are implemented in the StpaValidator. There
are two checks generating an error message when failing. The first one ensures that all IDs
of components, including control actions and feedback, are unique. The other one checks
that losses referenced by sub-hazards are also referenced by the parent. A warning message
is generated when IDs of sub-components do not start with the ID of the parent or if
references in the reference lists are not unique. Furthermore, an info message is shown if not
all STPA aspects are defined. However, these checks only cover a subset of the wanted controls
explained in Section 5.1. In order to guarantee that references to other components are correct
in the STPA context, the StpaScopeProvider is implemented.

When the user defines a component that has a cross-reference in the grammar definition,
StpaScopeProvider provides the objects that are in scope and hence referenceable. In order to
create the scope, the declarations of the components that should be available for referencing,
are collected. These are found based on the current component that is referencing and the

3https://www.typefox.io/blog/langium-the-new-language-engineering-tool
4https://www.typefox.io/language-engineering/

70

https://www.typefox.io/blog/langium-the-new-language-engineering-tool
https://www.typefox.io/language-engineering/

6.2. Language Server

type the reference should have, which is determined by the grammar. After that, the set of
declarations is used to create the scope. This way it is guaranteed that only correct components
can be referenced, as described in Section 5.1.

6.2.2 Diagram Generation

In order to visualize the relationships of the STPA components and the control structure,
an SGraph must be created. This is done in the StpaDiagramGenerator class. It contains the
generateRoot method that gets the context, which includes the document the user created,
and creates the SModelRoot. This generated root contains two children: one for the control
structure and one for the relationships of the other components. Figure 6.1 shows an overview
of the classes used to generate the SGraph.

STPANode

- aspect: STPAAspect
- description: string
- hierarchyLvl: number

SNode

CSNode

-level: number

<<enumeration>>
STPAAspect

LOSS
HAZARD
SYSTEMCONSTRAINT
RESPONSIBILITY
UCA
CONTROLLERCONSTRAINT
SCENARIO
SAFETYREQUIREMENT
UNDEFINED

<<enumeration>>
EdgeDirection

UP
DOWN
LEFT
RIGHT
UNDEFINED

SEdge

CSEdge

- direction: EdgeDirection

Figure 6.1. The classes for the graph elements.

For the control structure graph, each system component is translated to a CSNode. Thereby, the
CS stands for control structure. It is an SNode that also has the property level, which determines
the layer the node should be in. This property is set according to the hierarchyLevel the user
stated for the system component. In order to ensure that the nodes are assigned to the correct
layer, the positions of them are set based on the level. The control actions and feedback are
translated to control structure edges (CSEdges), which extend SEdge with a direction property.
At this moment this property is set dependent on whether the edge represents a control
action or feedback but it is not used afterwards. The idea is to automatically determine the
layer a CSNode should be in based on the edges. However, this is not implemented yet.

The relationship graph is created by translating each defined component, except the con-
trol structure, into an STPANode. It extends the SNode class with three properties: aspect,

71

6. Implementation

description, and hierarchyLvl. The aspect is determined by examining to which STPA aspect
the component belongs to. It has the type STPAAspect, which is an enum containing a value
for each aspect in STPA. The description contains the description stated by the user. This is
not used at the moment, but offers the opportunity to allow a more detailed visualization
in the future. The hierarchyLvl is only important for sub-components. For every other com-
ponent the value is 0. It states how many parents a sub-component has in order to be able
to calculate the layer for each component correctly. This calculation is done by determining
the maximal hazard and system constraint hierarchy depth. Each aspect gets its own layer
by setting the position of the components accordingly. If the hierarchy option is false, also
each hierarchy level of sub-components gets its own layer. Besides these STPANodes, SEdges are
created representing the tracing of each component.

6.2.3 Layout

After the graph is generated, it still needs layouting. Therefore elkjs (Section 2.3.2) is used.
Langium already offers a DefaultLayoutConfigurator, which can be extended to configure
the layout done by elkjs. StpaLayoutConfigurator contains the layout options wanted for STPA

graphs. Most important is that in the parent node of the control structure and relationship
graph the strategies of the layout phases are set to INTERACTIVE as seen in Listing 6.1. As
explained in Section 2.3.2, these strategies assign layers and positions in the layer based on the
position coordinates of the nodes and updates these coordinates. Therefore, the positions of
the nodes must be set manually beforehand, which is already done in StpaDiagramGenerator.

Another option that is set on the parent is the hierarchyHandling. The INCLUDE_CHILDREN

value ensures that hierarchy-crossing edges get laid out properly. However, the control
structure does not need it, since there is only one hierarchy level. The general layout direction
depends on the graph. For the control structure graph the direction is DOWN while for the
relationship graph it is UP. That is because in the relationship graph the layers are set based
on the ordering of the aspects, meaning the losses are at the top. This leads to edges going
from bottom to top.

6.2.4 STPA Options

The hierarchy option is provided by the StpaOptions class. It contains a variable determining
whether sub-components should be contained in their parent or be in a separate layer. In order
that the StpaDiagramGenerator can access this variable, StpaOptions is registered as a new
service in the StpaModule. The value of the variable can be toggled by sending a notification
to the language server. The reaction to this notification is implemented in the main file.

6.3 Visualization

The visualization is done by using Sprotty for the webview. As explained in Section 2.3.3, a
container module is needed. Hence, stpaDiagramModule is implemented in which the model

72

6.3. Visualization

1 protected parentNodeOptions(snode: SNode, index: SModelIndex): LayoutOptions {

2 // in the STPA graph this is necessary for hierarchy-crossing edges to be

better layouted

3 let hierarchyHandling = ’INCLUDE_CHILDREN’

4 let direction = ’UP’

5

6 if (snode.children && snode.children[0].type == CS_NODE_TYPE) {

7 // options for the control structure

8 hierarchyHandling = ’SEPARATE_CHILDREN’

9 direction = ’DOWN’

10 }

11 return {

12 ’org.eclipse.elk.direction’: direction,

13 ’org.eclipse.elk.algorithm’: ’layered’,

14 ’org.eclipse.elk.hierarchyHandling’: hierarchyHandling,

15 // interactive strategies are used to be able to assign layers to nodes

through positioning

16 ’org.eclipse.elk.separateConnectedComponents’: ’false’,

17 ’org.eclipse.elk.layered.crossingMinimization.semiInteractive’: ’true’,

18 ’cycleBreaking.strategy’: ’INTERACTIVE’,

19 ’layering.strategy’: ’INTERACTIVE’

20 };

21 }

Listing 6.1. Layout options fot the parent nodes.

elements are configured. Thereby, all diagram elements shown in Figure 6.1 have their own
view they are bound to. The container is created by StpaPASprottyStarter, which extends
SprottyStarter. In the following, at first, Section 6.3.1 explains the styling of the elements
using CSS followed by the implementation of the different views in Section 6.3.2. Conclusively,
Section 6.3.3 outlines the implementation of diagram options.

6.3.1 CSS

In the CSS file diagram.css the colors of the nodes and edges are defined based on the color
theme of VS Code. Therefore, mainly class selectors are used, which are introduced in
Section 2.3.3. If an element has the stpa-node class, the fill color is set based on the aspect
the element represents and the color theme. Additionally, the stroke color is set to black. In
order to set the stroke color of edges, the class stpa-edge is used. This is needed to color the
edges accordingly to the aspect of their source node. For the arrows of the edges, the stroke
as well as the fill color must be set, which is done with the class stpa-edge-arrow. Besides this
coloring, there are also classes for coloring the nodes, edges, and arrows in the print style.
For the standard coloring the standard Sprotty classes are used. Furthermore, the opacity of a
parent-node is set to 0.3 so a unified color experience is provided.

73

6. Implementation

6.3.2 Diagram

The actual visualization of each element is implemented in views. For the edges path is used
for the line as well as for the arrow. Both is already provided by the sprotty-vscode example.
However, I adjusted the classes that are set. Based on the color-style the user chose, the
class is set to print, stpa, or sprotty and thus the wanted style is used. The element created
for an STPANode is usually a rectangle. However, if the user activated different forms for the
STPA aspects, the form of the element is based on the aspect. For each aspect, and hence
for each form, a render method exists in view-rendering. This contains methods for creating
a trapeze, rectangle, hexagon, pentagon, circle, mirrored triangle, triangle, and diamond.
Otherwise, just rectangles are created for each node. Additionally, classes are set based on
the chosen color-style. The CSNodes are simply translated to rectangles and can only contain
classes for print-style or sprotty-stlye. For both, CSNode and STPANode, the parent class is set for
the created element if the node contains other nodes. The two nodes containing the control
structure and the relationship graph are visualized like CSNodes.

6.3.3 Diagram Options

Both options for changing the visualization, the color and the form of STPANodes, are stored
in the DiagramOptions class. In order to be injectable and guarantee that there is only one
instance of the class, it is bound in the stpaDiagramModule to itself in a singleton scope. The
commands that can change the values of the options are defined in commands. There exist
commands for setting each color-style. Another command, FormToggleCommand, toggles the
value for the forms option. For each command also an action is defined, determining the KIND.
All commands are registered by configuring them in the StpaSprottyStarter. This way the
extension can send actions with the according KIND in order to trigger a command.

74

Chapter 7

Evaluation

In this chapter the DSL is used for an exemplary development with STPA (Section 7.1). There-
fore, the aircraft example in the STPA handbook [LT18] is used. The usage of the DSL for that
example can be seen in Figure 7.1. Furthermore, the DSL is compared to other tools supporting
STPA. For that, the suggestions of Ludvigsen and Souza et al. are used, seen in Table 3.1 and
Table 3.2. These concern among others: list management for the components, traceability,
UCA/context table, version control, systematization, and automation of STPA steps.

Figure 7.1. The aircraft example modeled in the DSL.

7.1 Exemplary Development

The STPA handbook explains the STPA process by using an aircraft system as example. This
example is used to evaluate the process of using the DSL for STPA. The fundamentals, meaning
losses, hazards, and system-level constraints, of the aircraft system can be defined in the DSL

using a similar syntax to the one in the handbook. Additionally, the definition of sub-hazards

75

7. Evaluation

and sub-constraints stated for the aircraft system can also be done in the DSL. Thereby, the
sub-hazards can be grouped by headers as suggested in the handbook.

In general, the control structure for the aircraft can be modeled in the DSL. However,
hierarchy is not allowed. Hence, grouping of system components cannot be done in the
proposed DSL. Moreover, communication between components at the same level is not
definable. This restriction is caused by the layered layout algorithm, which does not allow
edges between components in the same layer. In later steps of the STPA process, actuators and
sensors are added to the control structure. The DSL does not support them directly. Actuators
as well as sensors must be defined as standard system components. The visualization of the
control structure could also be further improved to look similar to the one in the handbook.
Nevertheless, responsibilities can be defined for each system component as done in the
handbook.

The UCAs are grouped by four categories as explained earlier (Section 2.1). In the handbook
this is done using a table. The first column states the related control action and the other four
columns are filled with the UCAs, whereby their category determines their column. Whereas
in the DSL, no table is used. Instead, the related control action must be stated followed by
the UCAs grouped by their category. The evaluation of the differences between those two
approaches is left for future work. However, both approaches offer the same feature scope.
Additionally, defining constraints for the UCAs is also supported.

Loss scenarios are generally identified without guidance. However, some guide is offered
by dividing them into two types as explained in Section 2.1. In the handbook, the scenarios for
the aircraft system are grouped by these types. This is not done directly in the DSL. The user
can state scenarios that involve a UCA and scenarios that do not, but ordering or grouping
of them is not required. Nevertheless, the user can manually order the definitions of the
scenarios based on their type. Even more guidance is provided by causal factors introduced
by Leveson [Lev16], which is not supported in the DSL yet.

All in all, the whole STPA process is supported. Additionally, in the DSL the user can define
concluding safety requirements. However, improvements regarding the control structure and
the guidance for identification of loss scenarios can be done.

7.2 Comparison

For the comparison of the DSL with the other tools, the suggestions from Ludvigsen [Lud18]
and Souza et al. [SPP+19] are used.

Regarding the suggestions from Ludvigsen, only few are fulfilled by the DSL. These are
traceability, linking UCA to hazards, and version control. Traceability is supported by the
reference lists in the DSL as well as by the visualization. This visualization is an advantage
in contrast to the other tools. Only SAHRA also visualizes the relationship between the
components. Nevertheless, it can be tedious to only work graphically and large graphs can
lead to losing the overview the graph is supposed to give. This disadvantage does not exist in
the DSL. Moreover, the textual approach naturally allows for an easy version control. Since the

76

7.2. Comparison

DSL does not contain lists or tables, neither list management nor a UCA table are supported.
Furthermore, the control structure cannot be hierarchical and re-evaluation suggestions are not
supported. Nevertheless, both can be provided in future work. A relatively big disadvantage
of the DSL is that context tables are not used and hence logical simplification and hazard rules
are not supported, either. These features are quite helpful to reduce the time needed by the
analyst to perform STPA. However, they still can be added in future work.

In contrast to WebSTAMP and XSTAMPP only safety analyses are supported and not security.
The other requirements stated by Souza et al. are only partially provided. Identification of
UCAs is systematized in the DSL by using the keywords, but as already mentioned no context
table is provided. The identification of loss scenarios however is not systematized. Change
management is provided by the traceability between the components. The requirements
of collaborative analysis and support for verification of the analysis are not provided. In
conclusion, two of the six functional requirements are fulfilled by the DSL. From the four non
functional requirements two are provided: analysis reusability and portability. For a proper
classificaiton of the user experience, an evaluation with real use-cases would be needed.

All in all, the main advantage of the DSL is the visualization of the relationships between
the STPA components. However, there is also room for further improvements. For example
when the user selects a component in the visualization, the connected components could be
highlighted. At the moment, this advantage may not compensate the disadvantage of not
providing and automating a context table. This feature should be included in future work in
order for the DSL to be useful in real use-cases. Nevertheless, more evaluation should be done
by letting analyst experts use the DSL in real use-cases.

77

Chapter 8

Conclusion

This chapter summarizes the thesis and gives an outlook at future work for improving the
DSL.

8.1 Summary

The exploration of the risk analysis topic presented the basis for risk analysis techniques: the
causality models. These models are divided into three categories: sequential, epidemiological,
and systemic. In the sequential model safety is a reliability problem and accidents are the
result of individual component failures. Whereas in the systemic model, safety is a control
problem and accidents can also be caused by unsafe interactions between system components.
Traditional techniques such as FTA and FMEA are based on the sequential model while STPA

is based on the systemic one. There are several more techniques, including combinations of
them. In comparison, STPA provides advantages over other techniques. STPA is used in many
use cases and organizations such as Google. Furthermore, several extensions, for example
STPA-Sec, and improvements are proposed for STPA.

In this thesis a DSL for STPA is implemented as a VS Code Extension using Langium and
Sprotty. It provides an editor in which components for each aspect of STPA can be defined. A
scope provider and a validator are implemented for the DSL in order to improve the utility.
Additionally, a visualization is generated based on the defined components. The visualization
shows two graphs: the control structure as well as the relationships of the other components
by representing the tracing as edges. Both graphs are automatically layouted using ELK.
Moreover, options are provided to change the color-style of the graphs and to determine how
sub-components are visualized.

The evaluation of the DSL revealed that generally the whole STPA process is supported, but
there is still room for further improvements. Its main advantage in comparison to other tools
is the visualization of the relationships between the components while the main disadvantage
lays in the missing context tables. Additionally, some suggested features from Ludvigsen and
Souza et al. are not provided by the DSL.

In conclusion, the DSL supports the application of STPA. The visualization of the rela-
tionships of the components can help the analysts and is so far only supported by the tool
SAHRA. Nevertheless, the disadvantages of SAHRA are resolved by using textual definitions of
components. The DSL has potential to be a good alternative to other tools. However, further
improvements are necessary such as providing context tables.

79

8. Conclusion

8.2 Future Work

There are several features that can be added to the DSL, to offer even more support for the
application of STPA. One of them is the support of leading indicators introduced in Section 4.6.
For example, the definition of assumptions, on which the leading indicators are based,
could be allowed and maybe also visualized. Another feature that could be implemented
is that definitions of STPA components can be split onto several files and still are visible to
other components. This way, the analysts can order the definitions the way they want to.
Furthermore, an automatic update of the visualization when the user change the file in the
editor could be implemented. The following sections present further future work for the DSL

(Section 8.2.1) and the visualization (Section 8.2.2).

8.2.1 DSL

The DSL could further inspect the tracing of the STPA components. It should be checked that
every component has a reference list and that every component is referenced at least once.
Moreover, a check that UCAs are defined for all control actions would be useful. These checks
can help the analysts to not overlook important components.

Regarding the definition of losses, ranking or prioritizing of them should be allowed. This
way the analyst gets a better overview which safety requirement are more important than
others. Another feature that could be implemented is re-evaluation suggestions as proposed
by Ludvigsen [Lud18]. The ranking as well as the re-evaluation suggestions can be done in
the DSL but it may be reasonable to show them in the visualization, too.

The control structure can also be improved. First of all, it can be helpful to allow the
definition of several control structures. This way control structures for different abstraction
levels can be defined. Furthermore, actuators and sensors should be definable explicitly
and not as system components. Otherwise, it is possible that the analysts mistake them
for system components. This can also be supported in the visualization. The definition of
controller system components can be further improved by allowing explicit definition of
human controllers. There exist some extensions regarding human controllers (see Section 4.4),
which could be considered.

Identification of loss scenarios can be guided more. At the moment, there is no guidance
at all but, as mentioned in Chapter 7, Leveson provides causal factors, which help in the
identification. Supporting the definition of these or at least showing what causal factors exist
like some tools do it, would help in the identification of loss scenarios. Another possibility to
improve this identification is to implement the Step 2 Tree proposed by Antoine (Section 4.5)
and/or the improvements proposed by Thomas (Section 2.2).

Another improvement considers automation. For the UCAs, a context table could be
generated automatically. The user should be allowed to either edit the table manually to
select which contexts are hazardous or to define rules as proposed by Gurgel et al. This can
be even further improved by providing logical simplification and consistency checks. If a
context table is used, additionally the generation of controller constraints and basic scenarios

80

8.2. Future Work

could be automated as stated by Thomas. Furthermore, formalization of safety requirements
could be supported for verification purposes like other tools already offer. In this case, the
transformation of safety requirements to formal specifications such as LTL could also be
automated.

8.2.2 Visualization

The visualization can be improved by introducing filters. Such filters can be that the selection
of an element highlights the elements connected to it or only showing components that belong
to a specific aspect. Moreover, the selection of an UCA or responsibility component could
lead to a highlighting of the according control action or system component in the control
structure. With these features, analysts could better inspect specific elements. Additionally,
the selection of a diagram element could highlight the textual definition in order to provide a
clearer connection between diagram and editor.

In order to improve the overview, an option to only show one of the two graphs could be
added. Another option could be provided to hide specific aspects that are not relevant to the
analyst at the moment. The clarity of the diagram could also be improved by allowing the
user to select whether only IDs are shown or also the descriptions of the components.

The visualization of the control structure could generally be improves as stated in Chap-
ter 7. First of all, the layout can be improved to include horizontal edges and look more like it
would when drawing it manually. Moreover, the process model of a controller should also be
visualized. Determining the layer of system components automatically could also reduce the
workload for analysts.

81

Bibliography

[ADP19] Arie Adriaensen, Wilm Decré, and Liliane Pintelon. “Can Complexity-Thinking
Methods Contribute to Improving Occupational Safety in Industry 4.0? A Review
of Safety Analysis Methods and Their Concepts”. In: Safety (Dec. 2019), p. 65.

[AL16] Blake Abrecht and Nancy Leveson. “Systems Theoretic Process Analysis (STPA)
of an Offshore Supply Vessel Dynamic Positioning System”. In: Massachusetts
Institute of Technology (2016), p. 79.

[Ant13] Blandine Antoine. “Systems Theoretic Hazard Analysis (STPA) applied to the
risk review of complex systems: an example from the medical device industry”.
PhD thesis. Massachusetts Institute of Technology, 2013.

[AOT10] H. Arabian-Hoseynabadi, H. Oraee, and P. J. Tavner. “Failure Modes and Effects
Analysis (FMEA) for wind turbines”. In: International Journal of Electrical Power &
Energy Systems (Sept. 2010), pp. 817–824.

[AR10] Terje Aven and Ortwin Renn. Risk Management and Governance: Concepts, Guide-
lines and Applications. Springer Science & Business Media, Sept. 2010.

[AW13] Asim Abdulkhaleq and Stefan Wagner. “Experiences with applying STPA to
software-intensive systems in the automotive domain”. In: STAMP Workshop
(2013).

[AW14] Asim Abdulkhaleq and Stefan Wagner. “Open tool support for System-Theoretic
Process Analysis”. In: 2014 STAMP Workshop, MIT, Boston, USA. 2014.

[AW15a] Asim Abdulkhaleq and Stefan Wagner. “Integrated Safety Analysis Using
Systems-Theoretic Process Analysis and Software Model Checking”. In: Computer
Safety, Reliability, and Security. Ed. by Floor Koornneef and Coen van Gulijk. 2015,
pp. 121–134.

[AW15b] Asim Abdulkhaleq and Stefan Wagner. “XSTAMPP: An eXtensible STAMP
platform as tool support for safety engineering”. In: 2015 STAMP Workshop, MIT,
Boston, USA (2015).

[AW16] Asim Abdulkhaleq and Stefan Wagner. “XSTAMPP 2.0: New Improvements to
XSTAMPP Including CAST Accident Analysis and an Extended Approach to
STPA”. In: MIT (2016).

[Bal15] Allen J. (Allen Joseph) Ball. “Identification of Leading Indicators for Producibility
Risk in Early-Stage Aerospace Product Development”. MA thesis. Massachusetts
Institute of Technology, 2015.

83

Bibliography

[BFP18] Stephan Baumgart, Joakim Froberg, and Sasikumar Punnekkat. “Can STPA be
used for a System-of-Systems? Experiences from an Automated Quarry Site”. In:
2018 IEEE International Systems Engineering Symposium (ISSE). Oct. 2018, pp. 1–8.

[BHN09] Kate Branford, Andrew Hopkins, and Neelam Naikar. “Guidelines for AcciMap
analysis”. In: Learning from high reliability organisations. CCH Australia Ltd, 2009.

[BVJ14] Christopher Becker, Qi Van Eikema Hommes, and John A. Volpe National
Transportation Systems Center (U.S.) Transportation Systems Safety Hazard Analysis
Tool (SafetyHAT) User Guide (version 1.0). Tech. rep. John A. Volpe National
Transportation Systems Center (US), Mar. 2014.

[Cle90] PL Clemens. “Event Tree Analysis”. In: available at: www. fault-tree. net (accessed
25 January 2012) (1990), p. 13.

[DFI13] Ioannis M. Dokas, John Feehan, and Syed Imran. “EWaSAP: An early warning
sign identification approach based on a systemic hazard analysis”. In: Safety
Science (Oct. 2013), pp. 11–26.

[Don12] Airong Dong. “Application of CAST and STPA to railroad safety in China”.
MA thesis. Massachusetts Institute of Technology, 2012.

[Fil13] Associated Normative Machine Consumable Files. “Omg unified modeling
languzage tm (omg uml)”. In: Object Management Group (2013), p. 752.

[FM14] Brendon Frost and John P T Mo. “System Hazard Analysis of a Complex
Socio-Technical System: The Functional Resonance Analysis Method in Hazard
Identification”. In: Proc. of Australian System Safety Conference, Melbourne Australia.
2014, p. 14.

[FMS+17] Ivo Friedberg, Kieran McLaughlin, Paul Smith, David Laverty, and Sakir Sezer.
“STPA-SafeSec: Safety and security analysis for cyber-physical systems”. In:
Journal of Information Security and Applications (June 2017), pp. 183–196.

[FMS06] Sanford Friedenthal, Alan Moore, and Rick Steiner. “OMG Systems Modeling
Language (OMG SysML™) Tutorial”. In: INCOSE Intl. Symp. 2006, p. 122.

[Fra17] Megan Elizabeth France. “Engineering for Humans: A New Extension to STPA”.
MA thesis. Massachusetts Institute of Technology, 2017.

[GHD15] Danilo Lopes Gurgel, Celso Massaki Hirata, and Juliana De M. Bezerra. “A rule-
based approach for safety analysis using STAMP/STPA”. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC). Sept. 2015.

[Gil93] Warren Gilchrist. “Modelling Failure Modes and Effects Analysis”. In: Interna-
tional Journal of Quality & Reliability Management (Jan. 1993).

[GKR+14] Hans Grönninger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. “Textbased Modeling”. In: arXiv preprint arXiv:1409.6623 (Sept. 2014).

84

Bibliography

[God93] P.L. Goddard. “Validating the safety of embedded real-time control systems using
FMEA”. In: Annual Reliability and Maintainability Symposium 1993 Proceedings. Jan.
1993, pp. 227–230.

[HCW01] David Huang, Toly Chen, and Mao-Jiun J. Wang. “A fuzzy set approach for
event tree analysis”. In: Fuzzy Sets and Systems (Feb. 2001), pp. 153–165.

[HHC14] Erik Hollnagel, Jeanette Hounsgaard, and Lacey Colligan. FRAM - the Functional
Resonance Analysis Method. Center for Kvalitet. Region Syddanmark, 2014.

[HL12] Xin He and Yun-Jun Li. “Software reliability analysis on embedded system based
on SFMEA and SFTA model”. In: 2012 International Conference on Systems and
Informatics (ICSAI2012). May 2012, pp. 2471–2474.

[Hol10] Erik Hollnagel. “The Changing Nature Of Risks”. In: Ergonomics Australia Journal
(2010), pp. 33–46.

[Hol16a] Erik Hollnagel. Barriers and Accident Prevention. Routledge, Dec. 2016.

[Hol16b] Erik Hollnagel. “Investigation as an Impediment to Learning”. In: Resilience
Engineering Perspectives, Volume 1. CRC Press, 2016, pp. 273–282.

[Hol99] Erik Hollnagel. “Accidents and barriers”. en. In: Proceedings of lex valenciennes.
1999, pp. 175–182.

[Hor17] David C. Horney. Systems-Theoretic Process Analysis and Safety-Guided Design of
Military Systems. en. Tech. rep. MIT Lincoln LaboratoryMassachusetts Institute
of Technology, June 2017.

[HVV+20] Lokmane Hezla, Avdotin V.P, Plyuschicov V.G, Sambros N.B, Nadjla Hezla, and
Derouiche L. “The Role of Organizational Failure Mode, Effects & Analy-
sis(FMEA) in Risk Management and Its Impact on the Company’s Performance”.
In: Proceedings of the 2020 International Conference on Big Data in Management. May
2020, pp. 108–112.

[ILT+10] Takuto Ishimatsu, Nancy G. Leveson, John Thomas, Masa Katahira, Yuko
Miyamoto, and Haruka Nakao. “Modeling and Hazard Analysis Using STPA”.
In: International Association for the Advancement of Space Safety (IAASS) (Sept.
2010).

[ILT+14] Takuto Ishimatsu, Nancy G. Leveson, John P. Thomas, Cody H. Fleming, Masa-
fumi Katahira, Yuko Miyamoto, Ryo Ujiie, Haruka Nakao, and Nobuyuki
Hoshino. “Hazard Analysis of Complex Spacecraft Using Systems-Theoretic
Process Analysis”. In: Journal of Spacecraft and Rockets (2014), pp. 509–522.

[KK21] Marianne Kraut and Ioana Victoria Koglbauer. “STPA-Based Analysis of the
Process Involved in Enforcing Road Safety in Austria”. In: Safety (June 2021),
p. 34.

85

Bibliography

[KRC15] Mohd Faris Khamidi, Imam Rochani, and Dirta Marina Chamelia. “Hazard and
Operability Analysis (HAZOP) of Mobile Mooring System”. In: Procedia Earth
and Planetary Science (Jan. 2015), pp. 208–212.

[KRR16] Sven Stefan Krauss, Martin Rejzek, and Monika Ulrike Reif. “Towards a mod-
eling language for Systems-Theoretic Process Analysis (STPA) : Proposal for a
domain specific language (DSL) for model driven Systems-Theoretic Process
Analysis (STPA) based on UML”. In: ZHAW Züricher Hochschule für Angewandte
Wissenschaften (Dec. 2016).

[KRS+16] Sven S Krauss, Martin Rejzek, Christoph W Senn, and Christian Hilbes. “SAHRA
- An integrated software tool for STPA”. In: 4th European STAMP Workshop, Zurich,
13-15 September 2016. 2016.

[Lev04] Nancy Leveson. “A new accident model for engineering safer systems”. In: Safety
Science (Apr. 2004), pp. 237–270.

[Lev14] Nancy G Leveson. “Using STAMP to Develop Leading Indicators”. In: GI-
Jahrestagung. 2014, pp. 597–600.

[Lev15] Nancy Leveson. “A Systems Approach to Risk Management Through Leading
Safety Indicators”. In: Reliability Engineering & System Safety (Apr. 2015), pp. 17–
34.

[Lev16] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety.
The MIT Press, 2016.

[Lev19] Nancy G Leveson. “How to Learn More from Incidents and Accidents”. In:
Procedia manufacturing (2019), p. 148.

[Lev20] Nancy Leveson. “Are You Sure Your Software Will Not Kill Anyone?” In: Com-
munications of the ACM (Jan. 2020), pp. 25–28.

[Lev21] Nancy Leveson. “Safety III: A Systems Approach to Safety and Resilience”. en.
In: MIT Systems Engineering Lab. (2021), p. 110.

[LGT+85] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie. “Fault Tree Analysis,
Methods, and Applications - A Review”. In: IEEE Transactions on Reliability (Aug.
1985), pp. 194–203.

[LH83] N.G. Leveson and P.R. Harvey. “Analyzing Software Safety”. In: IEEE Transactions
on Software Engineering (Sept. 1983), pp. 569–579.

[LSS11] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. “A Guided Tour of the
CORAS Method”. In: Model-Driven Risk Analysis: The CORAS Approach. Ed. by
Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Springer, 2011, pp. 23–43.

[LT18] Nancy Leveson and John P Thomas. “STPA Handbook”. In: MIT Partnership for
Systems Approaches to Safety and Security (PSASS) (2018).

[Lud18] Niklas Ludvigsen. “Prototyping a digital support tool for an agile implementa-
tion of STPA”. MA thesis. NTNU, 2018.

86

Bibliography

[LW96] R.R. Lutz and R.M. Woodhouse. “Contributions of SFMEA to requirements
analysis”. In: Proceedings of the Second International Conference on Requirements
Engineering. Apr. 1996, pp. 44–51.

[LWF+14] Nancy Leveson, Chris Wilkinson, Cody Fleming, John Thomas, and Ian Tracy.
“A Comparison of STPA and the ARP 4761 Safety Assessment Process”. In: MIT
PSAS Technical Report, Rev 1 (2014), p. 79.

[McK88] T.C. McKelvey. “How to Improve the Effectiveness of Hazard and Operability
Analysis”. In: IEEE Transactions on Reliability (June 1988), pp. 167–170.

[MN21] Alimeh Mofidi Naeini and Sylvie Nadeau. “FRAM and STAMP new avenue
for risk analysis of manufacturing in the context of industry 4.0”. In: GfA-Press.
2021.

[Mon16] Daniel R. (Daniel Ramon) Montes. “Using STPA to Inform Developmental
Product Testing”. PhD thesis. Massachusetts Institute of Technology, 2016.

[MZP+06] I. Maglogiannis, E. Zafiropoulos, A. Platis, and C. Lambrinoudakis. “Risk anal-
ysis of a patient monitoring system using Bayesian Network modeling”. In:
Journal of Biomedical Informatics (Dec. 2006), pp. 637–647.

[NKM+11] Haruka Nakao, Masa Katahira, Yuko Miyamoto, and Nancy Leveson. “Safety
guided design of crew return vehicle in concept design phase using STAM-
P/STPA”. In: Proc. of the 5: th IAASS Conference. 2011, pp. 497–501.

[Ono97] K. Onodera. “Effective techniques of FMEA at each life-cycle stage”. In: Annual
Reliability and Maintainability Symposium. ISSN: 0149-144X. 1997, pp. 50–56.

[ORS05] Frank Ortmeier, Wolfgang Reif, and Gerhard Schellhorn. “DEDUCTIVE CAUSE-
CONSEQUENCE ANALYSIS (DCCA)”. In: IFAC Proceedings Volumes (Jan. 2005),
pp. 62–67.

[Pop19] G Pope. Risk Management Using Systemic Theoretic Process Analysis (STPA). Tech.
rep. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
2019.

[Rea90] James Reason. Human Error. Cambridge University Press, Oct. 1990.

[RS15] Enno Ruijters and Mariëlle Stoelinga. “Fault Tree Analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. In: Computer Science Review (Feb.
2015), pp. 29–62.

[SBB93] D.S. Savakoor, J.B. Bowles, and R.D. Bonnell. “Combining sneak circuit analysis
and failure modes and effects analysis”. In: Annual Reliability and Maintainability
Symposium 1993 Proceedings. Jan. 1993, pp. 199–205.

[SBF+16] Antonio Scappaticci, Rod Benson, Daniel Foley, and Darryl Kellner. “Sneak
Circuit Analysis: Lessons Learned For Beginners Based on a Successful Appli-
cation”. In: 2016 Annual Reliability and Maintainability Symposium (RAMS). Jan.
2016.

87

Bibliography

[SBF+19] Sardar Muhammad Sulaman, Armin Beer, Michael Felderer, and Martin Höst.
“Comparison of the FMEA and STPA safety analysis methods–a case study”. In:
Software Quality Journal (Mar. 2019), pp. 349–387.

[Sha16] Stuart S. Shapiro. “Privacy Risk Analysis Based on System Control Structures:
Adapting System-Theoretic Process Analysis for Privacy Engineering”. In: 2016
IEEE Security and Privacy Workshops (SPW). May 2016, pp. 17–24.

[Slo20] Hannah M. Slominski. “Using STPA and CAST to Design for Serviceability and
Diagnostics”. MA thesis. Massachusetts Institute of Technology, 2020.

[Son12] Yao Song. “Applying System-Theoretic Accident Model and Processes (STAMP)
to Hazard Analysis”. MA thesis. McMaster University, Apr. 2012.

[SPP+19] Fellipe G. R. Souza, Daniel P. Pereira, Rodrigo M. Pagliares, Simin Nadjm-
Tehrani, and Celso M. Hirata. “WebSTAMP: a Web Application for STPA &
STPA-Sec”. In: MATEC Web of Conferences (2019).

[SSH14] Christoph Daniel Schulze, Miro Spönemann, and Reinhard von Hanxleden.
“Drawing Layered Graphs with Port Constraints”. In: Journal of Visual Languages
& Computing (Apr. 2014), pp. 89–106.

[ST14] Dajing Suo and John Thomas. “An STPA Tool”. In: STAMP 2014 Conference at
MIT. 2014.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for Visual
Understanding of Hierarchical System Structures”. In: IEEE Transactions on
Systems, Man, and Cybernetics (Feb. 1981), pp. 109–125.

[Sum18] Sarah E. Summers. “Systems Theoretic Process Analysis Applied to Air Force
Acquisition Technical Requirements Development”. MA thesis. Massachusetts
Institute of Technology, 2018.

[Suo16] Dajiang Suo. “Tool-assisted hazard analysis and requirement generation based
on STPA”. MA thesis. Massachusetts Institute of Technology, 2016.

[SWH13] Sardar Muhammad Sulaman, Kim Weyns, and Martin Höst. “A review of
research on risk analysis methods for IT systems | Proceedings of the 17th Inter-
national Conference on Evaluation and Assessment in Software Engineering”.
In: Proceedings of the 17th International Conference on Evaluation and Assessment in
Software Engineering. 2013, pp. 86–96.

[Tho13] John P. Thomas. “Extending and automating a systems-theoretic hazard analysis
for requirements generation and analysis”. PhD thesis. Massachusetts Institute
of Technology, 2013.

[Tho14] Cameron L Thornberry. “Extending the Human-Controller Methodology in
Systems- Theoretic Process Analysis (STPA)”. MA thesis. MIT, 2014.

88

Bibliography

[TMT18] Yoshinari Toda, Yutaka Matsubara, and Hiroaki Takada. “FRAM/STPA: Hazard
Analysis Method for FRAM Model”. In: Proceedings of the 2018 FRAM Workshop.
Cardiff, Wales. 2018.

[UW12] P Underwood and P Waterson. “A critical review of the STAMP, FRAM and
Accimap systemic accident analysis models”. In: Advances in human aspects of
road and rail transportation (2012), p. 11.

[UW13] Peter Underwood and Patrick Waterson. “Systemic accident analysis: Examining
the gap between research and practice”. In: Accident Analysis & Prevention (June
2013), pp. 154–164.

[WBV+17] Hans Wienen, Faiza Allah Bukhsh, Eelco Vriezekolk, and Roel Wieringa. “Acci-
dent Analysis Methods and Models - a Systematic Literature Review”. In: Centre
Telematics Inf Technol (2017).

[WH08] R Woltjer and E Hollnagel. “Functional modeling for risk assessment of automa-
tion in a changing air traffic management environment”. In: Proceedings of the 4th
international conference working on safety. 2008.

[Yaz02] Zeki Yazar. “A qualitative risk analysis and management tool – CRAMM”. In:
SANS InfoSec Reading Room White Paper (2002), p. 13.

[YL13] William Young and Nancy Leveson. “Systems Thinking for Safety and Security”.
In: Proceedings of the 29th Annual Computer Security Applications Conference. 2013,
pp. 1–8.

[YRL19] Abouzar Yousefi, Manuel Rodriguez Hernandez, and Valentin Lopez Peña.
“Systemic accident analysis models: A comparison study between AcciMap,
FRAM, and STAMP”. In: Process Safety Progress (2019).

[YWL21] Jinghua Yu, Stefan Wagner, and Feng Luo. “Data-flow-based adaption of the
System-Theoretic Process Analysis for Security (STPA-Sec)”. In: PeerJ Computer
Science (Feb. 2021).

[ZKM+21] Nanda Anugrah Zikrullah, Hyungju Kim, Meine JP van der Meulen, Gunleiv
Skofteland, and Mary Ann Lundteigen. “A comparison of hazard analysis
methods capability for safety requirements generation”. In: Proceedings of the
Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability (Dec. 2021),
pp. 1132–1153.

[Zou18] Jiahui Zou. “Systems-Theoretic Process Analysis (STPA) Applied to the Opera-
tion of Fully Autonomous Vessels”. MA thesis. NTNU, 2018.

[ZZ14] Mengni Zhu and Zheng Zhou. “System reliability and Sneak Circuit Analysis”.
In: 2014 10th International Conference on Reliability, Maintainability and Safety
(ICRMS). Aug. 2014, pp. 369–373.

89

Abbreviations

DSL Domain Specific Language

STAMP System-Theoretic Accident Model and Processes

STPA System-Theoretic Process Analysis

STPA-Sec STPA for Security

EWaSAP Early Warning Sign Analysis using STPA

CAST Causal Analysis based on System Theory

FTA Fault Tree Analysis

SFTA Software FTA

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

SFMEA Software FMEA

HAZOP Hazard and Operability Study

CHAZOP Control HAZOP

SCA Sneak Circuit Analysis

91

8. Abbreviations

FRAM Functional Resonance Accident Model

DCCA Deductive Cause-Consequence Analysis

ETA Event Tree Analysis

FETA Fuzzy FTA

CRAMM CTTA Risk Analysis and Management Methodology

FHA Functional Hazard Analysis

SHA System Hazard Analysis

UCA Unsafe Control Action

JAXA Japan Aerospace Exploration Agency

HTV H-IIB Transfer vehicle

SAHRA STPA based Hazard and Risk Analysis

XSTAMPP Extensible STAMP Platform

SafetyHAT Safety Hazard Analysis Tool

CREAM Cognitive Reliability and Error Analysis Method

WYLFIWYG What-You-Look-For-Is-What-You-Get

WYSIWYG What-You-See-Is-What-You-Get

92

RPN risk priority number

HE Hazardous event

HLCS High Level Control Structure

FIS Functional Interaction Structure

ISS International Space Station

CV Crew return Vehicle

SoS system of systems

CBTC Communication Based Train Control

OSV Offshore Supply Vessel

DoD Department of Defense

SpecTRM Specification Tools and Requirements Methodology

SpecTRM-RL SpecTRM Requirements Language

RCP Rich Client Platform

LTL Linear Temporal Logic

A-CAST Automated CAST

XSTPA Extended Approach to STPA

93

8. Abbreviations

PDE Plug-in-Development Environment

UML Unified Modeling Language

SysML System Modeling Language

EA Enterprise Architect

GUI Graphical User Interface

ELK Eclipse Layout Kernel

MIT Massachusetts Institute of Technology

XML eXtensible Markup Language

EBNF Extended Backus-Naur Form

CSS Cascading Style Sheets

LSP Language Server Protocol

AST Abstract Syntax Tree

SVG Scalable Vector Graphics

VS Code Visual Studio Code

API Application Programming Interface

94

	Introduction
	Problem Statement
	Outline

	Foundations
	STPA Process
	Define the Purpose of the Analysis
	Model the Control Structure
	Identify Unsafe Control Actions
	Identify Loss Scenarios
	STPA Outputs

	STPA Context Table
	Used Technologies
	VS Code Extension API
	ELK
	Sprotty
	Langium

	Related Work
	A-STPA
	XSTAMPP
	RM Studio
	SAHRA
	STAMP Workbench
	Astah System Safety
	CAIRIS
	SafetyHAT
	An STPA Tool
	WebSTAMP
	Prototype
	Comparison

	Exploration of Risk Analysis
	Causality/Accident Models
	Sequential Model
	Epidemiological Model
	Systemic Model
	Comparison

	Analysis Techniques
	FTA
	FMEA
	CAST
	Other Techniques
	Combinations
	Comparison

	STPA Use Cases
	STPA Extensions
	STPA Improvements
	Leading Indicators

	Concept for the STPA DSL
	DSL
	Visualization

	Implementation
	Extension
	Language Server
	DSL
	Diagram Generation
	Layout
	STPA Options

	Visualization
	CSS
	Diagram
	Diagram Options

	Evaluation
	Exemplary Development
	Comparison

	Conclusion
	Summary
	Future Work
	DSL
	Visualization

	Bibliography
	Abbreviations

